


Praise for Zero

“Mathematicians, contrary to popular misconception, are often the most lucid of writers (Bertrand
Russell won a Nobel Prize not in mathematics but in literature), and Seife is a welcome example. He
writes with an understated charm that takes account of human fear, the mistakes of geniuses and the
mind’s grandest ambitions.”

—Atlanta Journal Constitution

“Zero emerges as a daunting intellectual riddle in this fascinating chronicle. With remarkable
economy, Seife urges his readers to peer through the zero down into the abyss of absolute emptiness
and out into the infinite expanse of space…. Deftly and surely, Seife recounts the historical debates,
then swiftly rolls the zero right up to the present day, where he plunges through its perilous opening
down into the voracious maw of a black hole, and then out into the deep freeze of an ever cooling
cosmos. A must read for every armchair physicist.”

—Booklist (starred review)

“His narrative…shifts smoothly from history and philosophy to science and technology, and his prose
displays a gift for making complex ideas clear.”

—The Dallas Morning News

“Seife keeps the tone as light as his subject matter is deep. By book’s end, no reader will dispute
Seife’s claim that zero is among the most fertile—and therefore most dangerous—ideas that
humanity has devised…Seife’s prose provides readers who struggled through math and science
courses a clear window for seeing both the powerful techniques of calculus and the conundrums of
modern physics…. In doing so…this entertaining and enlightening book reveals one of the roots of
humanity’s deepest uncertainties and greatest insights.”

—Publishers Weekly (starred review)

“Even innumerates…can appreciate the intricate web of conceptual connections Seife illuminates.”

—Boston Globe

“The greater part of this book tells a fascinating human story with skill and wit…we come to
appreciate the surprising depth and richness of ‘simple’ concepts such as zero and infinity—and their
remarkable links to the religion and culture of earlier civilizations and to present-day science.”

—The Philadelphia Inquirer



“Seife…recounts his story as an accomplished science journalist, standing on the outside to bring
clarity to complex ideas…. the crisp explanations are refreshing…straightforward and bright.”

—The New York Times

“Seife has a talent for making the most ball-busting of modern theories…seem fairly lucid and
common sensical.”

—Salon
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Chapter 0
Null and Void

Zero hit the USS Yorktown like a torpedo.

On September 21, 1997, while cruising off the coast of Virginia, the
billion-dollar missile cruiser shuddered to a halt. Yorktown was dead in the
water.

Warships are designed to withstand the strike of a torpedo or the blast of
a mine. Though it was armored against weapons, nobody had thought to
defend the Yorktown from zero. It was a grave mistake.

The Yorktown’s computers had just received new software that was
controlling the engines. Unfortunately, nobody had spotted the time bomb
lurking in the code, a zero that engineers were supposed to remove while
installing the software. But for one reason or another, the zero was
overlooked, and it stayed hidden in the code. Hidden, that is, until the
software called it into memory—and choked.

When the Yorktown’s computer system tried to divide by zero, 80,000
horsepower instantly became worthless. It took nearly three hours to attach
emergency controls to the engines, and the Yorktown then limped into port.



Engineers spent two days getting rid of the zero, repairing the engines, and
putting the Yorktown back into fighting trim.

No other number can do such damage. Computer failures like the one
that struck the Yorktown are just a faint shadow of the power of zero.
Cultures girded themselves against zero, and philosophies crumbled under
its influence, for zero is different from the other numbers. It provides a
glimpse of the ineffable and the infinite. This is why it has been feared and
hated—and outlawed.

This is the story of zero, from its birth in ancient times to its growth and
nourishment in the East, its struggle for acceptance in Europe, its
ascendance in the West, and its ever-present threat to modern physics. It is
the story of the people who battled over the meaning of the mysterious
number—the scholars and mystics, the scientists and clergymen—who each
tried to understand zero. It is the story of the Western world’s attempts to
shield itself unsuccessfully (and sometimes violently) from an Eastern idea.
And it is a history of the paradoxes posed by an innocent-looking number,
rattling even this century’s brightest minds and threatening to unravel the
whole framework of scientific thought.

Zero is powerful because it is infinity’s twin. They are equal and
opposite, yin and yang. They are equally paradoxical and troubling. The
biggest questions in science and religion are about nothingness and eternity,
the void and the infinite, zero and infinity. The clashes over zero were the
battles that shook the foundations of philosophy, of science, of
mathematics, and of religion. Underneath every revolution lay a zero—and
an infinity.

Zero was at the heart of the battle between East and West. Zero was at
the center of the struggle between religion and science. Zero became the
language of nature and the most important tool in mathematics. And the
most profound problems in physics—the dark core of a black hole and the
brilliant flash of the big bang—are struggles to defeat zero.

Yet through all its history, despite the rejection and the exile, zero has
always defeated those who opposed it. Humanity could never force zero to



fit its philosophies. Instead, zero shaped humanity’s view of the universe—
and of God.



Chapter 1
Nothing Doing
[ THE ORIGIN OF ZERO ]

There was neither non-existence nor existence then; there was
neither the realm of space nor the sky which is beyond. What
stirred? Where?

—THE RIG VEDA

The story of zero is an ancient one. Its roots stretch back to the dawn of
mathematics, in the time thousands of years before the first civilization,
long before humans could read and write. But as natural as zero seems to us
today, for ancient peoples zero was a foreign—and frightening—idea. An
Eastern concept, born in the Fertile Crescent a few centuries before the birth
of Christ, zero not only evoked images of a primal void, it also had
dangerous mathematical properties. Within zero there is the power to shatter
the framework of logic.

The beginnings of mathematical thought were found in the desire to
count sheep and in the need to keep track of property and of the passage of
time. None of these tasks requires zero; civilizations functioned perfectly
well for millennia before its discovery. Indeed, zero was so abhorrent to
some cultures that they chose to live without it.



Life without Zero

The point about zero is that we do not need to use it in the
operations of daily life. No one goes out to buy zero fish. It is in a
way the most civilized of all the cardinals, and its use is only forced
on us by the needs of cultivated modes of thought.

—ALFRED NORTH WHITEHEAD

It’s difficult for a modern person to imagine a life without zero, just as it’s
hard to imagine life without the number seven or the number 31. However,
there was a time where there was no zero—just as there was no seven and
31. It was before the beginning of history, so paleontologists have had to
piece together the tale of the birth of mathematics from bits of stone and
bone. From these fragments, researchers discovered that Stone Age
mathematicians were a bit more rugged than modern ones. Instead of
blackboards, they used wolves.

A key clue to the nature of Stone Age mathematics was unearthed in the
late 1930s when archaeologist Karl Absolom, sifting through
Czechoslovakian dirt, uncovered a 30,000-year-old wolf bone with a series
of notches carved into it. Nobody knows whether Gog the caveman had
used the bone to count the deer he killed, the paintings he drew, or the days
he had gone without a bath, but it is pretty clear that early humans were
counting something.

A wolf bone was the Stone Age equivalent of a supercomputer. Gog’s
ancestors couldn’t even count up to two, and they certainly did not need
zero. In the very beginning of mathematics, it seems that people could only
distinguish between one and many. A caveman owned one spearhead or
many spear-heads; he had eaten one crushed lizard or many crushed lizards.
There was no way to express any quantities other than one and many. Over
time, primitive languages evolved to distinguish between one, two, and
many, and eventually one, two, three, many, but didn’t have terms for higher
numbers. Some languages still have this shortcoming. The Siriona Indians
of Bolivia and the Brazilian Yanoama people don’t have words for anything
larger than three; instead, these two tribes use the words for “many” or
“much.”



Thanks to the very nature of numbers—they can be added together to
create new ones—the number system didn’t stop at three. After a while,
clever tribesmen began to string number-words in a row to yield more
numbers. The languages currently used by the Bacairi and the Bororo
peoples of Brazil show this process in action; they have number systems
that go “one,” “two,” “two and one,” “two and two,” “two and two and
one,” and so forth. These people count by twos. Mathematicians call this a
binary system.

Few people count by twos like the Bacairi and Bororo. The old wolf
bone seems to be more typical of ancient counting systems. Gog’s wolf
bone had 55 little notches in it, arranged into groups of five; there was a
second notch after the first 25 marks. It looks suspiciously as if Gog was
counting by fives, and then tallied groups in bunches of five. This makes a
lot of sense. It is a lot faster to tally the number of marks in groups than it is
to count them one by one. Modern mathematicians would say that Gog, the
wolf carver, used a five-based or quinary counting system.

But why five? Deep down, it’s an arbitrary decision. If Gog put his
tallies in groups of four, and counted in groups of four and 16, his number
system would have worked just as well, as would groups of six and 36. The
groupings don’t affect the number of marks on the bone; they only affect
the way that Gog tallies them up in the end—and he will always get the
same answer no matter how he counts them. However, Gog preferred to
count in groups of five rather than four, and people all over the world
shared Gog’s preference. It was an accident of nature that gave humans five
fingers on each hand, and because of this accident, five seemed to be a
favorite base system across many cultures. The early Greeks, for instance,
used the word “fiving” to describe the process of tallying.

Even in the South American binary counting schemes, linguists see the
beginnings of a quinary system. A different phrase in Bororo for “two and
two and one” is “this is my hand all together.” Apparently, ancient peoples
liked to count with their body parts, and five (a hand), ten (both hands), and
twenty (both hands and both feet) were the favorites. In English, eleven and
twelve seem to be derived from “one over [ten]” and “two over [ten],”
while thirteen, fourteen, fifteen, and so on are contractions of “three and



ten,” “four and ten,” and “five and ten.” From this, linguists conclude that
ten was the basic unit in the Germanic protolanguages that English came
from, and thus those people used a base-10 number system. On the other
hand, in French, eighty is quatre-vingts (four twenties), and ninety is
quatre-vingt-dix (four twenties and ten). This may mean that the people
who lived in what is now France used a base-20 or vigesimal number
system. Numbers like seven and 31 belonged to all of these systems,
quinary, decimal, and vigesimal alike. However, none of these systems had
a name for zero. The concept simply did not exist.

You never need to keep track of zero sheep or tally your zero children.
Instead of “We have zero bananas,” the grocer says, “We have no bananas.”
You don’t have to have a number to express the lack of something, and it
didn’t occur to anybody to assign a symbol to the absence of objects. This is
why people got along without zero for so long. It simply wasn’t needed.
Zero just never came up.

In fact, knowing about numbers at all was quite an ability in prehistoric
times. Simply being able to count was considered a talent as mystical and
arcane as casting spells and calling the gods by name. In the Egyptian Book
of the Dead, when a dead soul is challenged by Aqen, the ferryman who
conveys departed spirits across a river in the netherworld, Aqen refuses to
allow anyone aboard “who does not know the number of his fingers.” The
soul must then recite a counting rhyme to tally his fingers, satisfying the
ferryman. (The Greek ferryman, on the other hand, wanted money, which
was stowed under the dead person’s tongue.)

Though counting abilities were rare in the ancient world, numbers and
the fundamentals of counting always developed before writing and reading.
When early civilizations started pressing reeds to clay tablets, carving
figures in stone, and daubing ink on parchment and on papyrus, number
systems had already been well-established. Transcribing the oral number
system into written form was a simple task: people just needed to figure out
a coding method whereby scribes could set the numbers down in a more
permanent form. (Some societies even found a way to do this before they
discovered writing. The illiterate Incas, for one, used the quipu, a string of
colored, knotted cords, to record calculations.)



The first scribes wrote down numbers in a way that matched their base
system, and predictably, did it in the most concise way they could think of.
Society had progressed since the time of Gog. Instead of making little
groups of marks over and over, the scribes created symbols for each type of
grouping; in a quinary system, a scribe might make a certain mark for one,
a different symbol for a group of five, yet another mark for a group of 25,
and so forth.

The Egyptians did just that. More than 5,000 years ago, before the time
of the pyramids, the ancient Egyptians designed a system for transcribing
their decimal system, where pictures stood for numbers. A single vertical
mark represented a unit, while a heel bone represented 10, a swirly snare
stood for 100, and so on. To write down a number with this scheme, all an
Egyptian scribe had to do was record groups of these symbols. Instead of
having to write down 123 tick marks to denote the number “one hundred
and twenty-three,” the scribe wrote six symbols: one snare, two heels, and
three vertical marks. It was the typical way of doing mathematics in
antiquity. And like most other civilizations Egypt did not have—or need—a
zero.

Yet the ancient Egyptians were quite sophisticated mathematicians.
They were master astronomers and timekeepers, which meant that they had
to use advanced math, thanks to the wandering nature of the calendar.

Creating a stable calendar was a problem for most ancient peoples,
because they generally started out with a lunar calendar: the length of a
month was the time between successive full moons. It was a natural choice;
the waxing and waning of the moon in the heavens was hard to overlook,
and it offered a convenient way of marking periodic cycles of time. But the
lunar month is between 29 and 30 days long. No matter how you arrange it,
12 lunar months only add up to about 354 days—roughly 11 short of the
solar year’s length. Thirteen lunar months yield roughly 19 days too many.
Since it is the solar year, not the lunar year, that determines the time for
harvest and planting, the seasons seem to drift when you reckon by an
uncorrected lunar year.

Correcting the lunar calendar is a complicated undertaking. A number
of modern-day nations, like Israel and Saudi Arabia, still use a modified



lunar calendar, but 6,000 years ago the Egyptians came up with a better
system. Their method was a much simpler way of keeping track of the
passage of the days, producing a calendar that stayed in sync with the
seasons for many years. Instead of using the moon to keep track of the
passage of time, the Egyptians used the sun, just as most nations do today.

The Egyptian calendar had 12 months, like the lunar one, but each
month was 30 days long. (Being base-10 sort of people, their week, the
decade, was 10 days long.) At the end of the year, there were an extra five
days, bringing the total up to 365. This calendar was the ancestor of our
own calendar; the Egyptian system was adopted by Greece and then by
Rome, where it was modified by adding leap years, and then became the
standard calendar of the Western world. However, since the Egyptians, the
Greeks, and the Romans did not have zero, the Western calendar does not
have any zeros—an oversight that would cause problems millennia later.

The Egyptians’ innovation of the solar calendar was a breakthrough, but
they made an even more important mark on history: the invention of the art
of geometry. Even without a zero, the Egyptians had quickly become
masters of mathematics. They had to, thanks to an angry river. Every year
the Nile would overflow its banks and flood the delta. The good news was
that the flooding deposited rich, alluvial silt all over the fields, making the
Nile delta the richest farmland in the ancient world. The bad news was that
the river destroyed many of the boundary markers, erasing all of the
landmarks that told farmers which land was theirs to cultivate. (The
Egyptians took property rights very seriously. In the Egyptian Book of the
Dead, a newly deceased person must swear to the gods that he hasn’t
cheated his neighbor by stealing his land. It was a sin punishable by having
his heart fed to a horrible beast called the devourer. In Egypt, filching your
neighbor’s land was considered as grave an offense as breaking an oath,
murdering somebody, or masturbating in a temple.)

The ancient pharaohs assigned surveyors to assess the damage and reset
the boundary markers, and thus geometry was born. These surveyors, or
rope stretchers (named for their measuring devices and knotted ropes
designed to mark right angles), eventually learned to determine the areas of
plots of land by dividing them into rectangles and triangles. The Egyptians



also learned how to measure the volumes of objects—like pyramids.
Egyptian mathematics was famed throughout the Mediterranean, and it is
likely that the early Greek mathematicians, masters of geometry like Thales
and Pythagoras, studied in Egypt. Yet despite the Egyptians’ brilliant
geometric work, zero was nowhere to be found within Egypt.

This was, in part, because the Egyptians were of a practical bent. They
never progressed beyond measuring volumes and counting days and hours.
Mathematics wasn’t used for anything impractical, except their system of
astrology. As a result, their best mathematicians were unable to use the
principles of geometry for anything unrelated to real world problems—they
did not take their system of mathematics and turn it into an abstract system
of logic. They were also not inclined to put math into their philosophy. The
Greeks were different; they embraced the abstract and the philosophical,
and brought mathematics to its highest point in ancient times. Yet it was not
the Greeks who discovered zero. Zero came from the East, not the West.

The Birth of Zero

In the history of culture the discovery of zero will always stand out
as one of the greatest single achievements of the human race.

—TOBIAS DANZIG, NUMBER: THE LANGUAGE OF SCIENCE

The Greeks understood mathematics better than the Egyptians did; once
they mastered the Egyptian art of geometry, Greek mathematicians quickly
surpassed their teachers.

At first the Greek system of numbers was quite similar to the
Egyptians’. Greeks also had a base-10 style of counting, and there was very
little difference in the ways the two cultures wrote down their numbers.
Instead of using pictures to represent numbers as the Egyptians did, the
Greeks used letters. H (eta) stood for hekaton: 100. M (mu) stood for
myriori: 10,000—the myriad, the biggest grouping in the Greek system.
They also had a symbol for five, indicating a mixed quinary-decimal
system, but overall the Greek and Egyptian systems of writing numbers
were almost identical—for a time. Unlike the Egyptians, the Greeks



outgrew this primitive way of writing numbers and developed a more
sophisticated system.

Instead of using two strokes to represent 2, or three Hs to represent 300
as the Egyptian style of counting did, a newer Greek system of writing,
appearing before 500 BC, had distinct letters for 2, 3, 300, and many other
numbers (Figure 1). In this way the Greeks avoided repeated letters. For
instance, writing the number 87 in the Egyptian system would require 15
symbols: eight heels and seven vertical marks. The new Greek system
would need only two symbols: ? for 80, and  for 7. (The Roman system,
which supplanted Greek numbers, was a step backward toward the less
sophisticated Egyptian system. The Roman 87, LXXXVII, requires seven
symbols, with several repeats.)

Though the Greek number system was more sophisticated than the
Egyptian system, it was not the most advanced way of writing numbers in
the ancient world. That title was held by another Eastern invention: the
Babylonian style of counting. And thanks to this system, zero finally
appeared in the East, in the Fertile Crescent of present-day Iraq.

At first glance the Babylonian system seems perverse. For one thing the
system is sexagesimal—based on the number 60. This is an odd-looking
choice, especially since most human societies chose 5, 10, or 20 as their
base number. Also, the Babylonians used only two marks to represent their
numbers: a wedge that represented 1 and a double wedge that represented
10. Groups of these marks, arranged in clumps that summed to 59 or less,
were the basic symbols of the counting system, just as the Greek system
was based on letters and the Egyptian system was based on pictures. But the
really odd feature of the Babylonian system was that, instead of having a
different symbol for each number like the Egyptian and Greek systems,
each Babylonian symbol could represent a multitude of different numbers.
A single wedge, for instance, could stand for 1; 60; 3,600; or countless
others.



Figure 1: Numerals of different cultures

As strange as this system seems to modern eyes, it made perfect sense
to ancient peoples. It was the Bronze Age equivalent of computer code. The
Babylonians, like many different cultures, had invented machines that
helped them count. The most famous was the abacus. Known as the
soroban in Japan, the suan-pan in China, the s’choty in Russia, the coulba
in Turkey, the choreb in Armenia, and by a variety of other names in
different cultures, the abacus relies upon sliding stones to keep track of
amounts. (The words calculate, calculus, and calcium all come from the
Latin word for pebble: calculus.)

Adding numbers on an abacus is as simple as moving the stones up and
down. Stones in different columns have different values, and by
manipulating them a skilled user can add large numbers with great speed.
When a calculation is complete, all the user has to do is look at the final
position of the stones and translate that into a number—a pretty
straightforward operation.

The Babylonian system of numbering was like an abacus inscribed
symbolically onto a clay tablet. Each grouping of symbols represented a
certain number of stones that had been moved on the abacus, and like each
column of the abacus, each grouping had a different value, depending on its
position. In this way the Babylonian system was not so different from the
system we use today. Each 1 in the number 111 stands for a different value;
from right to left, they stand for “one,” “ten,” and “one hundred,”
respectively. Similarly, the symbol  in  stood for “one,” “sixty,” or
“thirty-six hundred” in the three different positions. It was just like an
abacus, except for one problem. How would a Babylonian write the number
60? The number 1 was easy to write: . Unfortunately, 60 was also written



as ; the only difference was that  was in the second position rather than the
first. With the abacus it’s easy to tell which number is represented. A single
stone in the first column is easy to distinguish from a single stone in the
second column. The same isn’t true for writing. The Babylonians had no
way to denote which column a written symbol was in;  could represent 1,
60, or 3,600. It got worse when they mixed numbers. The symbol  could
mean 61; 3,601; 3,660; or even greater values.

Zero was the solution to the problem. By around 300 BC the
Babylonians had started using two slanted wedges, , to represent an empty
space, an empty column on the abacus. This placeholder mark made it easy
to tell which position a symbol was in. Before the advent of zero,  could
be interpreted as 61 or 3,601. But with zero,  meant 61; 3,601 was written
as    (Figure 2). Zero was born out of the need to give any given
sequence of Babylonian digits a unique, permanent meaning.

Though zero was useful, it was only a placeholder. It was merely a
symbol for a blank place in the abacus, a column where all the stones were
at the bottom. It did little more than make sure digits fell in the right places;
it didn’t really have a numerical value of its own. After all, 000,002,148
means exactly the same thing as 2,148. A zero in a string of digits takes its
meaning from some other digit to its left. On its own, it meant…nothing.
Zero was a digit, not a number. It had no value.

Figure 2: Babylonian numbers

A number’s value comes from its place on the number line—from its
position compared with other numbers. For instance, the number two comes
before the number three and after the number one; nowhere else makes any
sense. However, the 0 mark didn’t have a spot on the number line at first. It



was just a symbol; it didn’t have a place in the hierarchy of numbers. Even
today, we sometimes treat zero as a nonnumber even though we all know
that zero has a numerical value of its own, using the digit 0 as a placeholder
without connecting it to the number zero. Look at a telephone or the top of
a computer keyboard. The 0 comes after the 9, not before the 1 where it
belongs. It doesn’t matter where the placeholder 0 sits; it can be anywhere
in the number sequence. But nowadays everybody knows that zero can’t
really sit anywhere on the number line, because it has a definite numerical
value of its own. It is the number that separates the positive numbers from
the negative numbers. It is an even number, and it is the integer that
precedes one. Zero must sit in its rightful place on the number line, before
one and after negative one. Nowhere else makes any sense. Yet zero sits at
the end of the computer and at the bottom of the telephone because we
always start counting with one.

One seems like the appropriate place to start counting, but doing so
forces us to put zero in an unnatural place. To other cultures, like the Mayan
people of Mexico and Central America, starting with one didn’t seem like
the rational thing to do. In fact, the Mayans had a number system—and a
calendar—that made more sense than ours does. Like the Babylonians, the
Mayans had a place-value system of digits and places. The only real
difference was that instead of basing their numbers on 60 as the
Babylonians did, the Mayans had a vigesimal, base-20 system that had the
remnants of an earlier base-10 system in it. And like the Babylonians, they
needed a zero to keep track of what each digit meant. Just to make things
interesting, the Mayans had two types of digits. The simple type was based
on dots and lines, while the complicated type was based on glyphs—
grotesque faces. To a modern eye, Mayan glyph writing is about as alien-
looking as you can get (Figure 3).

Like the Egyptians, the Mayans also had an excellent solar calendar.
Because their system of counting was based on the number 20, the Mayans
naturally divided their year into 18 months of 20 days each, totaling 360
days. A special period of five days at the end, called Uayeb, brought the
count to 365. Unlike the Egyptians, though, the Mayans had a zero in their
counting system, so they did the obvious thing: they started numbering days
with the number zero. The first day of the month of Zip, for example, was



usually called the “installation” or “seating” of Zip. The next day was 1 Zip,
the following day was 2 Zip, and so forth, until they reached 19 Zip. The
next day was the seating of Zotz’—0 Zotz’ followed by 1 Zotz’ and so
forth. Each month had 20 days, numbered 0 through 19, not numbered 1
through 20 as we do today. (The Mayan calendar was wonderfully
complicated. Along with this solar calendar, there was a ritual calendar that
had 20 weeks, each of 13 days. Combined with the solar year, this created a
calendar round that had a different name for every day in a 52-year cycle.)

Figure 3: Mayan numbers

The Mayan system made more sense than the Western system does.
Since the Western calendar was created at a time when there was no zero,
we never see a day zero, or a year zero. This apparently insignificant
omission caused a great deal of trouble; it kindled the controversy over the
start of the millennium. The Mayans would never have argued about



whether 2000 or 2001 was the first year in the twenty-first century. But it
was not the Mayans who formed our calendar; it was the Egyptians and,
later, the Romans. For this reason, we are stuck with a troublesome, zero-
free calendar.

The Egyptian civilization’s lack of zero was bad for the calendar and
bad for the future of Western mathematics. In fact, Egyptian civilization
was bad for math in more ways than one; it was not just the absence of a
zero that caused future difficulties. The Egyptians had an extremely
cumbersome way of handling fractions. They didn’t think of ¾ as a ratio of
three to four as we do today; they saw it as the sum of ½ and ¼. With the
sole exception of 2/3, all Egyptian fractions were written as a sum of
numbers in the form of 1/n (where n is a counting number)—the so-called
unit fractions. Long chains of these unit fractions made ratios extremely
difficult to handle in the Egyptian (and Greek) number systems.

Zero makes this cumbersome system obsolete. In the Babylonian
system—with zero in it—it’s easy to write fractions. Just as we can write
0.5 for ½ and 0.75 for ¾, the Babylonians used the numbers 0;30 for ½ and
0;45 for ¾. (In fact, the Babylonian base-60 system is even better suited to
writing down fractions than our modern-day base-10 system.)

Unfortunately, the Greeks and Romans hated zero so much that they
clung to their own Egyptian-like notation rather than convert to the
Babylonian system, even though the Babylonian system was easier to use.
For intricate calculations, like those needed to create astronomical tables,
the Greek system was so cumbersome that the mathematicians converted
the unit fractions to the Babylonian sexagesimal system, did the
calculations, and then translated the answers back into the Greek style.
They could have saved many time-consuming steps. (We all know how fun
it is to convert fractions back and forth!) However, the Greeks so despised
zero that they refused to admit it into their writings, even though they saw
how useful it was. The reason: zero was dangerous.

The Fearsome Properties of Nothing



In earliest times did Ymir live: was nor sea nor land nor salty
waves, neither earth was there nor upper heaven, but a gaping
nothing, and green things nowhere.

—THE ELDER EDDA

It is hard to imagine being afraid of a number. Yet zero was inexorably
linked with the void—with nothing. There was a primal fear of void and
chaos. There was also a fear of zero.

Most ancient peoples believed that only emptiness and chaos were
present before the universe came to be. The Greeks claimed that at first
Darkness was the mother of all things, and from Darkness sprang Chaos.
Darkness and Chaos then spawned the rest of creation. The Hebrew
creation myths say that the earth was chaotic and void before God showered
it with light and formed its features. (The Hebrew phrase is tohu v’bohu.
Robert Graves linked these tohu to Tehomot, a primal Semitic dragon that
was present at the birth of the universe and whose body became the sky and
earth. Bohu was linked to Behomot, the famed Behemoth monster of
Hebrew legend.) The older Hindu tradition tells of a creator who churns the
butter of chaos into the earth, and the Norse myth tells a tale of an open
void that gets covered with ice, and from the chaos caused by the mingling
of fire and ice was born the primal Giant. Emptiness and disorder were the
primeval, natural state of the cosmos, and there was always a nagging fear
that at the end of time, disorder and void would reign once more. Zero
represented that void.

But the fear of zero went deeper than unease about the void. To the
ancients, zero’s mathematical properties were inexplicable, as shrouded in
mystery as the birth of the universe. This is because zero is different from
the other numbers. Unlike the other digits in the Babylonian system, zero
never was allowed to stand alone—for good reason. A lone zero always
misbehaves. At the very least it does not behave the way other numbers do.

Add a number to itself and it changes. One and one is not one—it’s two.
Two and two is four. But zero and zero is zero. This violates a basic
principle of numbers called the axiom of Archimedes, which says that if
you add something to itself enough times, it will exceed any other number



in magnitude. (The axiom of Archimedes was phrased in terms of areas; a
number was viewed as the difference of two unequal areas.) Zero refuses to
get bigger. It also refuses to make any other number bigger. Add two and
zero and you get two; it is as if you never bothered to add the numbers in
the first place. The same thing happens with subtraction. Take zero away
from two and you get two. Zero has no substance. Yet this substanceless
number threatens to undermine the simplest operations in mathematics, like
multiplication and division.

In the realm of numbers, multiplication is a stretch—literally. Imagine
that the number line is a rubber band with tick marks on it (Figure 4).
Multiplying by two can be thought of as stretching out the rubber band by a
factor of two: the tick mark that was at one is now at two; the tick mark that
was at three is now at six. Likewise, multiplying by one-half is like relaxing
the rubber band a bit: the tick mark at two is now at one, and the tick mark
at three winds up at one and a half. But what happens when you multiply by
zero?



Figure 4: The multiplication rubber band

Anything times zero is zero, so all the tick marks are at zero.

The rubber band has broken. The whole number line has collapsed.

Unfortunately, there is no way to get around this unpleasant fact. Zero
times anything must be zero; it’s a property of our number system. For
everyday numbers to make sense, they have to have something called the
distributive property, which is best seen through an example. Imagine that a
toy store sells balls in groups of two and blocks in groups of three. The
neighboring toy store sells a combination pack with two balls and three
blocks in it. One bag of balls and one bag of blocks is the same thing as one
combination package from the neighboring store. To be consistent, buying
seven bags of balls and seven bags of blocks from one toy store has to be



the same thing as buying seven combination packs from the neighboring
shop. This is the distributive property. Mathematically speaking, we say that
7 × 2 + 7 × 3 = 7 × (2 + 3). Everything comes out right.

Apply this property to zero and something strange happens. We know
that 0 + 0 = 0, so a number multiplied by zero is the same thing as
multiplying by (0 + 0). Taking two as an example, 2 × 0 = 2 × (0 + 0), but
by the distributive property we know that 2 × (0 + 0) is the same thing as 2
× 0 + 2 × 0. But this means 2 × 0 = 2 × 0 + 2 × 0. Whatever 2 × 0 is, when
you add it to itself, it stays the same. This seems a lot like zero. In fact, that
is just what it is. Subtract 2 × 0 from each side of the equation and we see
that 0 = 2 × 0. Thus, no matter what you do, multiplying a number by zero
gives you zero. This troublesome number crushes the number line into a
point. But as annoying as this property was, the true power of zero becomes
apparent with division, not multiplication.

Just as multiplying by a number stretches the number line, dividing
shrinks it. Multiply by two and you stretch the number line by a factor of
two; divide by two and you relax the rubber band by a factor of two,
undoing the multiplication. Divide by a number and you undo the
multiplication: a tick mark that had been stretched to a new place on the
number line resumes its original position.

We saw what happened when you multiply a number by zero: the
number line is destroyed. Division by zero should be the opposite of
multiplying by zero. It should undo the destruction of the number line.
Unfortunately, this isn’t quite what happens.

In the previous example we saw that 2 × 0 is 0. Thus to undo the
multiplication, we have to assume that (2 × 0)/0 will get us back to 2.
Likewise, (3 × 0)/0 should get us back to 3, and (4 × 0)/0 should equal 4.
But 2 × 0 and 3 × 0 and 4 × 0 each equal zero, as we saw—so (2 × 0)/0
equals 0/0, as do (3 × 0)/0 and (4 × 0)/0. Alas, this means that 0/0 equals 2,
but it also equals 3, and it also equals 4. This just doesn’t make any sense.

Strange things also happen when we look at 1/0 in a different way.
Multiplication by zero should undo division by zero, so 1/0 × 0 should
equal 1. However, we saw that anything multiplied by zero equals zero!



There is no such number that, when multiplied by zero, yields one—at least
no number that we’ve met.

Worst of all, if you wantonly divide by zero, you can destroy the entire
foundation of logic and mathematics. Dividing by zero once—just one time
—allows you to prove, mathematically, anything at all in the universe. You
can prove that 1 + 1 = 42, and from there you can prove that J. Edgar
Hoover was a space alien, that William Shakespeare came from Uzbekistan,
or even that the sky is polka-dotted. (See appendix A for a proof that
Winston Churchill was a carrot.)

Multiplying by zero collapses the number line. But dividing by zero
destroys the entire framework of mathematics.

There is a lot of power in this simple number. It was to become the most
important tool in mathematics. But thanks to the odd mathematical and
philosophical properties of zero, it would clash with the fundamental
philosophy of the West.



Chapter 2
Nothing Comes of Nothing

[ THE WEST REJECTS ZERO ]

Nothing can be created from nothing.
—LUCRETIUS, DE RERUM NATURA

Zero clashed with one of the central tenets of Western philosophy, a
dictum whose roots were in the number-philosophy of Pythagoras and
whose importance came from the paradoxes of Zeno. The whole Greek
universe rested upon this pillar: there is no void.

The Greek universe, created by Pythagoras, Aristotle, and Ptolemy,
survived long after the collapse of Greek civilization. In that universe there
is no such thing as nothing. There is no zero. Because of this, the West
could not accept zero for nearly two millennia. The consequences were dire.
Zero’s absence would stunt the growth of mathematics, stifle innovation in
science, and, incidentally, make a mess of the calendar. Before they could
accept zero, philosophers in the West would have to destroy their universe.

The Origin of Greek Number-Philosophy

In the beginning, there was the ratio, and the ratio was with God,
and the ratio was God.*



—JOHN 1:1

The Egyptians, who had invented geometry, thought little about
mathematics. For them it was a tool to reckon the passage of the days and to
maintain plots of land. The Greeks had a very different attitude. To them,
numbers and philosophy were inseparable, and they took both very
seriously. Indeed, the Greeks went overboard when it came to numbers.
Literally.

Hippasus of Metapontum stood on the deck, preparing to die. Around
him stood the members of a cult, a secret brotherhood that he had betrayed.
Hippasus had revealed a secret that was deadly to the Greek way of
thinking, a secret that threatened to undermine the entire philosophy that the
brotherhood had struggled to build. For revealing that secret, the great
Pythagoras himself sentenced Hippasus to death by drowning. To protect
their number-philosophy, the cult would kill. Yet as deadly as the secret that
Hippasus revealed was, it was small compared to the dangers of zero.

The leader of the cult was Pythagoras, an ancient radical. According to
most accounts, he was born in the sixth century BC on Samos, a Greek
island off the coast of Turkey famed for a temple to Hera and for really
good wine. Even by the standards of the superstitious ancient Greeks,
Pythagoras’s beliefs were eccentric. He was firmly convinced that he was
the reincarnated soul of Euphorbus, a Trojan hero. This helped convince
Pythagoras that all souls—including those of animals—transmigrated to
other bodies after death. Because of this, he was a strict vegetarian. Beans,
however, were taboo, as they generate flatulence and are like the genitalia.

Pythagoras may have been an ancient New Age thinker, but he was a
powerful orator, a renowned scholar, and a charismatic teacher. He was said
to have written the constitution for Greeks living in Italy. Students flocked
to him, and he soon acquired a retinue of followers who wanted to learn
from the master.

The Pythagoreans lived according to the dicta of their leader. Among
other things they believed that it is best to make love to women in the
winter, but not in the summer; that all disease is caused by indigestion; that
one should eat raw food and drink only water; and that one must avoid



wearing wool. But at the center of their philosophy was the most important
tenet of the Pythagoreans: all is number.

The Greeks had inherited their numbers from the geometric Egyptians.
As a result, in Greek mathematics there was no significant distinction
between shapes and numbers. To the Greek philosopher-mathematicians
they were pretty much the same thing. (Even today, we have square
numbers and triangular numbers thanks to their influence [Figure 5].) In
those days, proving a mathematical theorem was often as simple as drawing
an elegant picture; the tools of ancient Greek mathematics weren’t pencil
and paper—they were a straightedge and compasses. And to Pythagoras the
connection between shapes and numbers was deep and mystical. Every
number-shape had a hidden meaning, and the most beautiful number-shapes
were sacred.

The mystical symbol of the Pythagorean cult was, naturally, a number-
shape: the pentagram, a five-pointed star. This simple figure is a glimpse at
the infinite. Nestled within the lines of the star is a pentagon. Connecting
the corners of that pentagon with lines generates a small, upside-down, five-
pointed star, which is exactly the same as the original star in its proportions.
This star, in turn, contains an even smaller pentagon, which contains a tinier
star with its tiny pentagon, and so forth (Figure 6). As interesting as this
was, to the Pythagoreans the most important property of the pentagram was
not in this self-replication but was hidden within the lines of the star. They
contained a number-shape that was the ultimate symbol of the Pythagorean
view of the universe: the golden ratio.



Figure 5: Square and triangular numbers

Figure 6: The pentagram

The importance of the golden ratio comes from a Pythagorean discovery
that is now barely remembered. In modern schools, children learn of
Pythagoras for his famed theorem: the square of the hypotenuse of a right
triangle is equal to the sum of the squares of the other two sides. However,



this was in fact ancient news. It was known more than 1,000 years before
Pythagoras’s time. In ancient Greece, Pythagoras was remembered for a
different invention: the musical scale.

One day, according to legend, Pythagoras was toying with a
monochord, a box with a string on it (Figure 7). By moving a sliding bridge
up and down the monochord, Pythagoras changed the notes that the device
played. He quickly discovered that strings have a peculiar, yet predictable,
behavior. When you pluck the string without the bridge, you get a clear
note, the tone known as the fundamental. Putting the bridge on the
monochord so it touches the string changes the notes that are played. When
you place the bridge exactly in the middle of the monochord, touching the
center of the string, each half of the string plays the same note: a tone
exactly one octave higher than the string’s fundamental. Shifting the bridge
slightly might divide the string so that one side has three-fifths of the string
and the other has two-fifths; in this case Pythagoras noticed that plucking
the string segments creates two notes that form a perfect fifth, which is said
to be the most powerful and evocative musical relationship. Different ratios
gave different tones that could soothe or disturb. (The discordant tritone, for
instance, was dubbed the “devil in music” and was rejected by medieval
musicians.) Oddly enough, when Pythagoras put the bridge at a place that
did not divide the string into a simple ratio, the plucked notes did not meld
well. The sound was usually dissonant and sometimes even worse. Often
the tone wobbled like a drunkard up and down the scale.

To Pythagoras, playing music was a mathematical act. Like squares and
triangles, lines were number-shapes, so dividing a string into two parts was
the same as taking a ratio of two numbers. The harmony of the monochord
was the harmony of mathematics—and the harmony of the universe.
Pythagoras concluded that ratios govern not only music but also all other
types of beauty. To the Pythagoreans, ratios and proportions controlled
musical beauty, physical beauty, and mathematical beauty. Understanding
nature was as simple as understanding the mathematics of proportions.



Figure 7: The mystical monochord

This philosophy—the interchangeability of music, math, and nature—
led to the earliest Pythagorean model of the planets. Pythagoras argued that
the earth sat at the center of the universe, and the sun, moon, planets, and
stars revolved around the earth, each pinned inside a sphere (Figure 8). The
ratios of the sizes of the spheres were nice and orderly, and as the spheres
moved, they made music. The outermost planets, Jupiter and Saturn, moved
the fastest and made the highest-pitched notes. The innermost ones, like the
moon, made lower notes. Taken all together, the moving planets made a
“harmony of the spheres,” and the heavens are a beautiful mathematical
orchestra. This is what Pythagoras meant when he insisted, “All is number.”



Figure 8: The Greek universe

Because ratios were the keys to understanding nature, the Pythagoreans
and later Greek mathematicians spent much of their energy investigating
their properties. Eventually, they categorized proportions into 10 different
classes, with names like the harmonic mean. One of these means yielded
the most “beautiful” number in the world: the golden ratio.

Achieving this blissful mean is a matter of dividing a line in a special
way: divide it in two so that the ratio of the small part to the large part is the
same as the ratio of the large part to the whole (see appendix B). In words,
it doesn’t seem particularly special, but figures imbued with this golden
ratio seem to be the most beautiful objects. Even today, artists and
architects intuitively know that objects that have this ratio of length to
width are the most aesthetically pleasing, and the ratio governs the
proportions of many works of art and architecture. Some historians and
mathematicians argue that the Parthenon, the majestic Athenian temple, was
built so that the golden ratio is visible in every aspect of its construction.
Even nature seems to have the golden ratio in its design plans. Compare the
ratios of the size of any two succeeding chambers of the nautilus, or take
the ratio of clockwise grooves to counterclockwise grooves in the
pineapple, and you will see that these ratios approach the golden ratio
(Figure 9).



The pentagram became the most sacred symbol of the Pythagorean
brotherhood because the lines of the star are divided in this special way—
the pentagram is chock-full of the golden ratio—and for Pythagoras, the
golden ratio was the king of numbers. The golden ratio was favored by
artists and nature alike and seemed to prove the Pythagorean assertion that
music, beauty, architecture, nature, and the very construction of the cosmos
were all intertwined and inseparable. To the Pythagorean mind, ratios
controlled the universe, and what was true for the Pythagoreans soon
became true for the entire West. The supernatural link between aesthetics,
ratios, and the universe became one of the central and long-lasting tenets of
Western civilization. As late as Shakespeare’s time, scientists talked about
the revolution of orbs of different proportions and discussed the heavenly
music that reverberated throughout the cosmos.

Figure 9: The Parthenon, the chambered nautilus, and the golden ratio



Zero had no place within the Pythagorean framework. The equivalence
of numbers and shapes made the ancient Greeks the masters of geometry,
yet it had a serious drawback. It precluded anyone from treating zero as a
number. What shape, after all, could zero be?

It is easy to visualize a square with width two and height two, but what
is a square with width zero and height zero? It’s hard to imagine something
with no width and no height—with no substance at all—being a square.
This meant that multiplication by zero didn’t make any sense either.
Multiplying two numbers was equivalent to taking an area of a rectangle,
but what could the area of a rectangle with zero height or zero width be?

Nowadays the great unsolved problems in mathematics are stated in
terms of conjectures that mathematicians are unable to prove. In ancient
Greece, however, number-shapes inspired a different way of thinking. The
famous unsolved problems of the day were geometric: With only a
straightedge and compasses, could you make a square equal in area to a
given circle? Could you use those tools to trisect an angle?* Geometric
constructions and shapes were the same thing. Zero was a number that
didn’t seem to make any geometric sense, so to include it, the Greeks would
have had to revamp their entire way of doing mathematics. They chose not
to.

Even if zero were a number in the Greek sense, the act of taking a ratio
with zero in it would seem to defy nature. No longer would a proportion be
a relationship between two objects. The ratio of zero to anything—zero
divided by a number—is always zero; the other number is completely
consumed by the zero. And the ratio of anything to zero—a number divided
by zero—can destroy logic. Zero would punch a hole in the neat
Pythagorean order of the universe, and for that reason it could not be
tolerated.

Indeed, the Pythagoreans had tried to squelch another troublesome
mathematical concept—the irrational. This concept was the first challenge
to the Pythagorean point of view, and the brotherhood tried to keep it secret.
When the secret leaked out, the cult turned to violence.



The concept of the irrational was hidden like a time bomb inside Greek
mathematics. Thanks to the number-shape duality, to the Greeks counting
was tantamount to measuring a line. Thus, a ratio of two numbers was
nothing more than the comparison of two lines of different lengths.
However, to make any sort of measurement, you need a standard, a
common yardstick, to compare to the size of the lines. As an example,
imagine a line exactly a foot long. Make a mark, say, five and a half inches
from one end, dividing the foot into two unequal parts. The Greeks would
figure out the ratio by dividing the line into tiny pieces, using, for example,
a standard or yardstick half an inch long. One line segment contains 11 of
those pieces; the other contains 13. The ratio of the two segments, then, is
11 to 13.

For everything in the universe to be governed by ratios, as the
Pythagoreans hoped, everything that made sense in the universe had to be
related to a nice, neat proportion. It literally had to be rational. More
precisely, these ratios had to be written in the form a/b, where a and b were
nice, neat counting numbers like 1, 2, or 47. (Mathematicians are careful to
note that b is not allowed to be zero, for that would be tantamount to
division by zero, which we know to be disastrous.) Needless to say, the
universe is not really that orderly. Some numbers cannot be expressed as a
simple ratio of a/b. These irrational numbers were an unavoidable
consequence of Greek mathematics.

The square is one of the simplest figures of geometry, and it was duly
revered by the Pythagoreans. (It had four sides, corresponding to the four
elements; it symbolized the perfection of numbers.) But the irrational is
nestled within the simplicity of the square. If you draw the diagonal—a line
from one corner to the opposite corner—the irrational appears. As a
concrete example, imagine a square whose sides are one foot long. Draw
the diagonal. Ratio-obsessed people like the Greeks naturally looked at the
side of the square and the diagonal and asked themselves: what is the ratio
of the two lines?

The first step, again, is to create a common yardstick, perhaps a tiny
ruler half an inch long. The next step is to use that yardstick to divide each
of the two lines into equal segments. With a half-inch yardstick we can



divide the foot-long side of the square into 24 segments, each half an inch
long. What happens when we measure the diagonal? Using the same
yardstick, we see that the diagonal gets…well, almost 34 segments, but it
doesn’t come out quite evenly. The 34th segment is a wee bit too short; the
half-inch ruler juts out a little beyond the corner of the square. We can do
better. Let’s divide the line into even smaller segments, using, say, a ruler
one-sixth of an inch long. The side of the square is partitioned into 72
segments, while the diagonal comes out to more than 101 but fewer than
102 segments. Again, the measurement is not quite perfect. What happens
when we try really small segments, measuring in bits a millionth of an inch
each? The side of the square gets 12 million bits, and the diagonal gets a tad
less than 16,970,563 bits. Once again, our ruler doesn’t fit both lines
exactly. No matter what ruler we choose, our measurement never seems to
come out right.

In fact, no matter how tiny you make the bits, it is impossible to choose
a common yardstick that will measure both the side and the diagonal
perfectly: the diagonal is incommensurable with the side. However, without
a common yardstick, it is impossible to express the two lines in a ratio. For
a square of size one, this means that we cannot choose counting numbers a
and b such that the diagonal of the square can be expressed as a/b. In other
words, the diagonal of that square is irrational—and nowadays we
recognize that number as the square root of two.

This meant trouble for the Pythagorean doctrine. How could nature be
governed by ratios and proportions when something as simple as a square
can confound the language of ratios? This idea was hard for the
Pythagoreans to believe, but it was incontrovertible—a consequence of the
mathematical laws that they held so dear. One of the first mathematical
proofs in history was about the incommensurability/irrationality of the
square’s diagonal.

Irrationality was dangerous to Pythagoras, as it threatened the basis of
his ratio-universe. To add insult to injury, the Pythagoreans soon discovered
that the golden ratio, the ultimate Pythagorean symbol of beauty and
rationality, was an irrational number. To keep these horrible numbers from
ruining the Pythagorean doctrine, the irrationals were kept secret. Everyone



in the Pythagorean brotherhood was already tight-lipped—nobody was
allowed even to take written notes—and the incommensurability of the
square root of two became the deepest, darkest secret of the Pythagorean
order.

However, irrational numbers, unlike zero, could not easily be ignored
by the Greeks. The irrationals occurred and reoccurred in all sorts of
geometrical constructions. It would be hard to keep the secret of the
irrational hidden from a people so obsessed with geometry and ratios. One
day someone was going to let the secret out. This someone was Hippasus of
Metapontum, a mathematician and member of the Pythagorean
brotherhood. The secret of the irrationals would cause him great misfortune.

The legends are very hazy and contain contradictory stories about the
betrayal and ultimate fate of Hippasus. Mathematicians to this day tell of
the hapless man who revealed the secret of the irrational to the world. Some
say that the Pythagoreans tossed Hippasus overboard, drowning him, a just
punishment for ruining a beautiful theory with harsh facts. Ancient sources
talk about his perishing at sea for his impiety, or alternatively, say that the
brotherhood banished him and constructed a tomb for him, expelling him
from the world of human beings. But whatever Hippasus’s true fate was,
there is little doubt that he was reviled by his brothers. The secret he
revealed shook the very foundations of the Pythagorean doctrine, but by
considering the irrational an anomaly, the Pythagoreans could keep the
irrationals from contaminating their view of the universe. Indeed, over time
the Greeks reluctantly admitted the irrationals to the realm of numbers. The
irrationals didn’t kill Pythagoras. Beans did.

Just as the legends of Hippasus’s murder are hazy, so too are the legends
of Pythagoras’s end. Nevertheless, they all imply that the master died in a
bizarre way. Some say that Pythagoras starved himself, but the most
common versions all say that beans were his undoing. One day, according
to a version of the legend, his house was set ablaze by his enemies (who
were angry at not being considered worthy to be admitted into Pythagoras’s
presence), and the brothers in the house scattered in all directions, running
for their lives. The mob slaughtered Pythagorean after Pythagorean. The
brotherhood was being destroyed. Pythagoras himself fled for his life, and



he might have gotten away had he not run smack into a bean field. There he
stopped. He declared that he would rather be killed than cross the field of
beans. His pursuers were more than happy to oblige. They cut his throat.

Though the brotherhood was scattered and the leader was dead, the
essence of the Pythagorean teachings lived on. It was soon to become the
basis of the most influential philosophy in Western history—the
Aristotelian doctrine that would live for two millennia. Zero would clash
with this doctrine, and unlike the irrational, zero could be ignored. The
number-shape duality in Greek numbers made it easy; after all, zero didn’t
have a shape and could thus not be a number.

Yet it was not the Greek number system that prevented zero’s
acceptance—nor was it lack of knowledge. The Greeks had learned about
zero because of their obsession with the night sky. Like most ancient
peoples, the Greeks were stargazers, and the Babylonians were the first
masters of astronomy: they had learned how to predict eclipses. Thales, the
first Greek astronomer, learned how to do this from the Babylonians, or
perhaps through the Egyptians. In 585 BC he was said to have predicted a
solar eclipse.

With Babylonian astronomy came Babylonian numbers. For
astronomical purposes the Greeks adopted a sexagesimal number system
and even divided hours into 60 minutes, and minutes into 60 seconds.
Around 500 BC the placeholder zero began to appear in Babylonian
writings; it naturally spread to the Greek astronomical community. During
the peak of ancient astronomy, Greek astronomical tables regularly
employed zero; its symbol was the lowercase omicron, o, which looks very
much like our modern-day zero, though it’s probably a coincidence.
(Perhaps the use of omicron came from the first letter of the Greek word for
nothing, ouden.) The Greeks didn’t like zero at all and used it as
infrequently as possible. After doing their calculations with Babylonian
notation, Greek astronomers usually converted the numbers back into
clunky Greek-style numerals—without zero. Zero never worked its way
into ancient Western numbers, so it is unlikely that the omicron is the
mother of our 0. The Greeks saw the usefulness of zero in their calculations,
yet they still rejected it.



So it was not ignorance that led the Greeks to reject zero, nor was it the
restrictive Greek number-shape system. It was philosophy. Zero conflicted
with the fundamental philosophical beliefs of the West, for contained within
zero are two ideas that were poisonous to Western doctrine. Indeed, these
concepts would eventually destroy Aristotelian philosophy after its long
reign. These dangerous ideas are the void and the infinite.

The Infinite, the Void, and the West

So, naturalists observe, a flea

Hath smaller fleas that on him prey,

And these have smaller yet to bite ’em,

And so proceed ad infinitum….
—JONATHAN SWIFT, “ON POETRY: A RHAPSODY”

The infinite and the void had powers that frightened the Greeks. The
infinite threatened to make all motion impossible, while the void threatened
to smash the nutshell universe into a thousand flinders. By rejecting zero,
the Greek philosophers gave their view of the universe the durability to
survive for two millennia.

Pythagoras’s doctrine became the centerpiece of Western philosophy:
all the universe was governed by ratios and shapes; the planets moved in
heavenly spheres that made music as they turned. But what lay beyond
these spheres? Were there more and more spheres, each larger than its
neighbor? Or was the outermost sphere the end of the universe? Aristotle
and later philosophers would insist that there could not be an infinite
number of nested spheres. With the adoption of this philosophy, the West
had no room for infinity or the infinite. They rejected it outright. For the
infinite had already begun to gnaw at the roots of Western thought, thanks
to Zeno of Elea, a philosopher reckoned by his contemporaries to be the
most annoying man in the West.



Zeno was born around 490 BC, at the beginning of the Persian wars—a
great conflict between East and West. Greece would defeat the Persians;
Greek philosophy would never quite defeat Zeno—for Zeno had a paradox,
a logical puzzle that seemed intractable to the reasoning of Greek
philosophers. It was the most troubling argument in Greece: Zeno had
proved the impossible.

According to Zeno, nothing in the universe could move. Of course, this
is a silly statement; anyone can refute it by walking across the room.
Though everybody knew that Zeno’s statement was false, nobody could
find a flaw in Zeno’s argument. He had come up with a paradox. Zeno’s
logical puzzle baffled Greek philosophers—as well as the philosophers who
came after them. Zeno’s riddles plagued mathematicians for nearly two
thousand years.

In his most famous puzzle, “The Achilles,” Zeno proves that swift
Achilles can never catch up with a lumbering tortoise that has a head start.
To make things more concrete, let’s put some numbers on the problem.
Imagine that Achilles runs at a foot a second, while the tortoise runs at half
that speed. Imagine, too, that the tortoise starts off a foot ahead of Achilles.

Achilles speeds ahead, and in a mere second he has caught up to where
the tortoise was. But by the time he reaches that point, the tortoise, which is
also running, has moved ahead by half a foot. No matter. Achilles is faster,
so in half a second, he makes up the half foot. But again, the tortoise has
moved ahead, this time by a quarter foot. In a flash—a quarter second—
Achilles has made up the distance. But the tortoise lumbers ahead in that
time by an eighth of a foot. Achilles runs and runs, but the tortoise scoots
ahead each time; no matter how close Achilles gets to the tortoise, by the
time he reaches the point where the tortoise was, the tortoise has moved. An
eighth of a foot…a sixteenth of a foot…a thirty-second of a foot…smaller
and smaller distances, but Achilles never catches up. The tortoise is always
ahead (Figure 10).

Everybody knows that, in the real world, Achilles would quickly run
past the tortoise, but Zeno’s argument seemed to prove that Achilles could
never catch up. The philosophers of his day were unable to refute the
paradox. Even though they knew that the conclusion was wrong, they could



never find a mistake in Zeno’s mathematical proof. The philosophers’ main
weapon was logic, but logical deduction seemed useless against Zeno’s
argument. Each step along the way seemed airtight, and if all the steps are
correct, how could the conclusion be wrong?

Figure 10: Achilles and the tortoise

The Greeks were stumped by the problem, but they did find the source
of the trouble: infinity. It is the infinite that lies at the heart of Zeno’s
paradox: Zeno had taken continuous motion and divided it into an infinite
number of tiny steps. Because there are an infinite number of steps, the
Greeks assumed that the race would go on forever and ever, even though
the steps get smaller and smaller. The race would never finish in finite time
—or so they thought. The ancients didn’t have the equipment to deal with
the infinite, but modern mathematicians have learned to handle it. The
infinite must be approached very carefully, but it can be mastered, with the
help of zero. Armed with 2,400 years’ worth of extra mathematics, it is not
hard for us to go back and find Zeno’s Achilles’ heel.

The Greeks did not have zero, but we do, and it is the key to solving
Zeno’s puzzle. It is sometimes possible to add infinite terms together to get



a finite result—but to do so, the terms being added together must approach
zero.* This is the case with Achilles and the tortoise. When you add up the
distance that Achilles runs, you start with the number 1, then add ½, then
add ¼, then add 1/8, and so on, with the terms getting smaller and smaller,
getting closer and closer to zero; each term is like a step along a journey
where the destination is zero. However, since the Greeks rejected the
number zero, they couldn’t understand that this journey could ever have an
end. To them, the numbers 1, ½, ¼, 1/8, 1/16, and so forth aren’t approaching
anything; the destination doesn’t exist. Instead, the Greeks just saw the
terms as simply getting smaller and smaller, meandering outside the realm
of numbers.

Modern mathematicians know that the terms have a limit; the numbers
1, ½, ¼, 1/8, 1/16, and so forth are approaching zero as their limit. The
journey has a destination. Once the journey has a destination, it is easy to
ask how far away that destination is and how long it will take to get there. It
is not that difficult to sum up the distances that Achilles runs: 1 + ½ + ¼ +
1/8 + 1/16 +…+ ½n +…. In the same way that the steps that Achilles takes
get smaller and smaller, and closer and closer to zero, the sum of those steps
gets closer and closer to 2. How do we know this? Well, let’s start off with
2, and subtract the terms of the sum, one by one. We begin with 2 - 1, which
is, of course, 1. Next, we subtract ½, leaving ½. Then remove the next term:
subtract ¼, leaving ¼ behind. Subtracting 1/8 leaves 1/8 behind. We’re back
to our familiar sequence. We already know that 1, ½, ¼, 1/8, and so forth
has a limit of zero; thus, as we subtract the terms from 2, we have nothing
left. The limit of the sum 1 + ½ + ¼ + 1/8 + 1/16 +…is 2 (Figure 11).
Achilles runs 2 feet in catching up to the tortoise, even though he takes an
infinite number of steps to do it. Better yet, look at the time it takes Achilles
to overtake the tortoise: 1 + ½ + ¼ + 1/8 + 1/16 +…—2 seconds. Not only
does Achilles take an infinite number of steps to run a finite distance, but he
takes only 2 seconds to do it.



Figure 11: 1 + ½ + ¼ + 1/8 + 1/16 +…= 2

The Greeks couldn’t do this neat little mathematical trick. They didn’t
have the concept of a limit because they didn’t believe in zero. The terms in
the infinite series didn’t have a limit or a destination; they seemed to get
smaller and smaller without any particular end in sight. As a result, the
Greeks couldn’t handle the infinite. They pondered the concept of the void
but rejected zero as a number, and they toyed with the concept of the
infinite but refused to allow infinity—numbers that are infinitely small and
infinitely large—anywhere near the realm of numbers. This is the biggest
failure in Greek mathematics, and it is the only thing that kept them from
discovering calculus.

Infinity, zero, and the concept of limits are all tied together in a bundle.
Greek philosophers were unable to untie that bundle; therefore, they were
ill-equipped to solve Zeno’s puzzle. Yet Zeno’s paradox was so powerful
that the Greeks tried over and over to explain away his infinities. They were
doomed to failure, unarmed with the proper concepts.

Zeno himself didn’t have a proper solution to the paradox, nor did he
seek one. The paradox suited his philosophy perfectly. He was a member of
the Eleatic school of thought, whose founder, Parmenides, held that the
underlying nature of the universe was changeless and immobile. Zeno’s
puzzles appear to have been in support of Parmenides’ argument; in
showing that change and motion were paradoxical, he hoped to convince
people that everything is one—and changeless. Zeno really did believe that
motion was impossible, and his paradox was this theory’s chief support.

There were other schools of thought. The atomists, for example,
believed that the universe is made up of little particles called atoms, which



are indivisible and eternal. Motion, according to the atomists, was the
movement of these little particles. Of course, for these atoms to move, there
has to be empty space for them to move into. After all, these little atoms
had to move around somehow; if there were no such thing as a vacuum, the
atoms would be constantly pressed against one another. Everything would
be stuck in one position for eternity, unable to move. Thus, the atomic
theory required that the universe be filled with emptiness—an infinite void.
The atomists embraced the concept of the infinite vacuum—infinity and
zero wrapped into one. This was a shocking conclusion, but the indivisible
kernels of matter in atomic theory got around the problem of Zeno’s
paradoxes. Because atoms are indivisible, there is a point beyond which
things could not be divided. Zeno’s hair-splitting doesn’t go on ad
infinitum. After a number of strides, Achilles would be taking tiny steps
that can’t get any smaller; eventually he would have to hurdle an atom that
the tortoise doesn’t. Achilles would finally catch up to the elusive turtle.

Another philosophy vied with the atomic theory, and instead of posing
such bizarre concepts as the infinite vacuum, it turned the universe into a
cozy nutshell. There was no infinity, no void—just beautiful spheres that
surrounded the earth, which was naturally placed at the very center of the
universe. This was the Aristotelian system, which was later refined by the
Alexandrian astronomer Ptolemy. It became the dominant philosophy in the
Western world. And by rejecting zero and infinity, Aristotle explained away
Zeno’s paradoxes.

Aristotle simply declared that mathematicians “do not need the infinite,
or use it.” Though “potential” infinities could exist in the minds of
mathematicians—like the concept of dividing lines into infinite pieces—
nobody could actually do it, so the infinite doesn’t exist in reality. Achilles
runs smoothly past the tortoise because the infinite points are simply a
figment of Zeno’s imagination, rather than a real-world construct. Aristotle
just wished infinity away by stating that it is simply a construct of the
human mind.

From that concept comes a startling revelation. Based upon the
Pythagorean universe, the Aristotelian cosmos (and its later refinement by
the astronomer Ptolemy) had the planets moving in crystalline orbs.



However, since there is no infinity, there can’t be an endless number of
spheres; there must be a last one. This outermost sphere was a midnight
blue globe encrusted with tiny glowing points of light—the stars. There was
no such thing as “beyond” the outermost sphere; the universe ended
abruptly with that outermost layer. The universe was contained in a
nutshell, ensconced comfortably within the sphere of fixed stars; the
cosmos was finite in extent, and entirely filled with matter. There was no
infinite; there was no void. There was no infinity; there was no zero.

This line of reasoning had another consequence—and this is why
Aristotle’s philosophy endured for so many years. His system proved the
existence of God.

The heavenly spheres are slowly spinning in their places, making a
music that suffuses the cosmos. But something must be causing that motion.
The stationary earth cannot be the source of that motive power, so the
innermost sphere must be moved by the next sphere out. That sphere, in
turn, is moved by its larger neighbor, and on and on. However, there is no
infinity; there are a finite number of spheres, and a finite number of things
that are moving each other. Something must be the ultimate cause of
motion. Something must be moving the sphere of fixed stars. This is the
prime mover: God. When Christianity swept through the West, it became
closely tied to the Aristotelian view of the universe and the proof of God’s
existence. Atomism became associated with atheism. Questioning the
Aristotelian doctrine was tantamount to questioning God’s existence.

Aristotle’s system was extremely successful. His most famous student,
Alexander the Great, spread the doctrine as far east as India before
Alexander’s untimely death in 323 BC. The Aristotelian system would
outlast Alexander’s empire; it would survive until Elizabethan times, the
sixteenth century. With this long-standing acceptance of Aristotle came a
rejection of the infinite—and the void, for Aristotle’s denial of the infinite
required a denial of the void, because the void implies the existence of the
infinite. After all, there were only two logical possibilities for the nature of
the void, and both implied that the infinite exists. First, there could be an
infinite amount of void—thus infinity exists. Second, there could be a finite
amount of void, but since void is simply the lack of matter, there must be an



infinite amount of matter to make sure that there is only a finite amount of
void—thus infinity exists. In both cases the existence of the void implies
the existence of the infinite. Void/zero destroys Aristotle’s neat argument,
his refutation of Zeno, and his proof of God. So as Aristotle’s arguments
were accepted, the Greeks were forced to reject zero, void, the infinite, and
infinity.

There was a problem, though. It is not so easy to reject both infinity and
zero. Look back through time. Events have happened throughout history,
but if there is no such thing as infinity, there cannot be an infinite number of
events. Thus, there must be a first event: creation. But what existed before
creation? Void? That was unacceptable to Aristotle. Conversely, if there was
not a first event, then the universe must have always existed—and will
always exist in the future. You’ve got to have either infinity or zero; a
universe without both of them makes no sense.

Aristotle hated the idea of the void so much that he chose the eternal,
infinite universe over one that had a vacuum in it; he said that the eternity
of time was a “potential” infinity like Zeno’s infinite subdivisions. (It was a
stretch, but many scholars bought the argument; some even chose the
creation story as further evidence for God. Medieval philosophers and
theologians were doomed to battle over this puzzle for several hundred
years.)

The Aristotelian view of physics, as wrong as it was, was so influential
that for more than a millennium it eclipsed all opposing views, including
more realistic ones. Science would never progress until the world discarded
Aristotle’s physics—along with Aristotle’s rejection of Zeno’s infinities.

For all his wit, Zeno got himself into serious trouble. Around 435 BC, he
conspired to overthrow the tyrant of Elea, Nearchus. He was smuggling
arms to support the cause. Unfortunately for Zeno, Nearchus found out
about the plot, and Zeno was arrested. Hoping to discover who the
coconspirators were, Nearchus had Zeno tortured. Soon Zeno begged the
torturers to stop and promised that he would name his colleagues. When
Nearchus drew near, Zeno insisted that the tyrant come closer, since it was
best to keep the names a secret. Nearchus leaned over, tilting his head
toward Zeno. All of a sudden Zeno sank his teeth into Nearchus’s ear.



Nearchus screamed, but Zeno refused to let go. The torturers could only
force Zeno to let go by stabbing him to death. Thus died the master of the
infinite.

Eventually, one ancient Greek surpassed Zeno in matters of the infinite:
Archimedes, the eccentric mathematician of Syracuse. He was the only
thinker of his day to glimpse the infinite.

Syracuse was the richest city on the island of Sicily, and Archimedes
was its most famous resident. Little is known about his youth, but it seems
that Archimedes was born around 287 BC in Samos, Pythagoras’s
birthplace. He then immigrated to Syracuse, where he solved engineering
problems for the king. It was the king of Syracuse who asked Archimedes
to determine whether his crown was pure gold or had been mixed with lead,
a task beyond the abilities of all the scientists at the time. However, when
Archimedes settled into a tub of water, he noticed that the water flowed
over the sides, and he suddenly realized that he could measure the density
of the crown, and thus its purity, by submerging it in a tub of water and
measuring how much water it displaced. Elated by the insight, Archimedes
leapt out of the tub and ran through the streets of Syracuse shouting,
“Eureka! Eureka!” Of course Archimedes forgot that he was stark naked.

Archimedes’ talents were useful to the Syracusan military as well. In
the third century BC the era of Greek hegemony was over. Alexander’s
empire had collapsed into bickering states, and a new power was flexing its
muscles in the West: Rome. And Rome had set its sights on Syracuse.
According to legend, Archimedes armed the Syracusans with miraculous
weapons to defend the city from the Romans: stone throwers; huge cranes
that grabbed the Roman warships, lifted them up, and dumped them, bow
first, into the water; and mirrors made of such quality that they set Roman
ships afire at a great distance by reflecting sunlight. The Roman soldiers
were so afraid of these war engines that if they saw so much as a bit of rope
or wood sticking over the wall they would flee for fear that Archimedes was
aiming a weapon at them.

Archimedes first glimpsed the infinite in the polish of his war mirrors.
For centuries the Greeks had been fascinated with conic sections. Take a
cone and cut it up; you get circles, ellipses, parabolas, and hyperbolas,



depending on how you slice it. The parabola has a special property: it takes
the rays of light from the sun, or any distant source, and focuses them to a
point, concentrating all the light’s energy on a very small area. Any mirror
that could set ships afire must be in the shape of a parabola. Archimedes
studied the properties of the parabola, and it is here that he first started
toying with the infinite.

To understand the parabola, Archimedes had to learn how to measure it;
for instance, nobody knew how to determine the area of a section of a
parabola. Triangles and circles were easy to measure, but slightly more
irregular curves like the parabola were beyond the ken of the Greek
mathematicians of the day. However, Archimedes figured out a way to
measure the parabola’s area by resorting to the infinite. The first step was to
inscribe a triangle inside the parabola. In the two little gaps left,
Archimedes inscribed more triangles. This left four gaps, which were filled
with more triangles, and so on (Figure 12). It’s like Achilles and the tortoise
—an infinite series of steps, each getting smaller and smaller. The areas of
the little triangles quickly approach zero. After a long, involved set of
calculations, Archimedes summed the areas of the infinite triangles and
divined the area of the parabola. However, any mathematician of the day
would have scoffed at this line of reasoning; Archimedes used the tools of
the infinite, which were so expressly disallowed by his mathematical
colleagues. To satisfy them, Archimedes also included a proof, based upon
the accepted mathematics of the time, that relied upon the so-called axiom
of Archimedes, although Archimedes himself mentioned that earlier
mathematicians deserved the credit. As you may recall, this axiom says that
any number added to itself over and over again can exceed any other
number. Zero, clearly, was not included.



Figure 12: Archimedes’ parabola

Archimedes’ proof by triangles was as close as you could come to the
idea of limits—and calculus—without actually discovering them. In later
works Archimedes figured out the volumes of parabolas and circles, rotated
around a line, which any math student knows are early homework problems
in a calculus course. But the axiom of Archimedes rejected zero, which is
the bridge between the realms of the finite and the infinite, a bridge that is
absolutely necessary for calculus and higher mathematics.

Even the brilliant Archimedes occasionally scorned the infinite along
with his contemporaries. He believed in the Aristotelian universe; the
universe was contained within a giant sphere. On a whim he decided to
calculate how many grains of sand could fit in the (spherical) universe. In
his “Sand Reckoner,” Archimedes first calculated how many grains of sand
would fit across a poppy seed, and then how many poppy seeds would span
a finger’s breadth. From finger breadths to the length of a stadium (the
standard Greek unit of long distance) and on to the size of the universe,
Archimedes figured out that 1051 grains of sand would fill the entire
universe, packed full even unto the outermost sphere of fixed stars. (1051 is
a really, really big number. Take 1051 molecules of water, for instance. It



would take every man, woman, and child now on Earth, each drinking a ton
of water a second, over 150,000 years to drink it all.) This number was so
large that the Greek system of numeration was unable to handle it;
Archimedes had to invent a whole new method of denoting really huge
numbers.

The myriad was the biggest grouping in the Greek number system, and
by counting myriads the Greeks could denote numbers up to a myriad
myriads (100,000,000) and a little further. But Archimedes got beyond this
limitation by hitting the reset button. He simply started over at a myriad
myriads, setting 100,000,000 equal to one, and counting again, calling these
new numbers, numbers of the second order. (Archimedes did not set
100,000,001 equal to one and 100,000,000 equal to zero, which is what a
modern mathematician would do. It had never occurred to Archimedes that
starting over with zero would make more sense.) The numbers of the
second order went from one myriad myriads to a myriad myriad myriad
myriads. The numbers of the third order went to one myriad myriad myriad
myriad myriad myriads (1,000,000,000,000,000,000,000,000), and so forth,
until he reached the numbers of the myriad myriadth order, which he called
the numbers of the first period. It was a cumbersome way of doing business,
but it got the job done and went far beyond what Archimedes needed to
solve his thought experiment. Yet as big as those numbers were, they were
finite—and were more than enough to fill the universe to overflowing with
sand. The infinite was not needed in the Greek universe.

Perhaps, given more time, Archimedes might have begun to see the lure
of the infinite and of zero. But the sand reckoner was destined to meet his
fate while reckoning in the sand. The Romans were too powerful for the
Syracusans. Taking advantage of a poorly manned watchtower and an easy-
to-climb wall, the Romans managed to get some soldiers inside the city. As
soon as they realized that Romans were inside the walls of the city, the
Syracusans, wild with fear, could not mount a defense. The Romans poured
through the city, but Archimedes was deaf to the panic around him. He sat
on the ground, drawing circles in the sand, trying to prove a theorem. A
Roman soldier saw the bedraggled 75-year-old and demanded that
Archimedes follow him. Archimedes refused, since his mathematical proof



was not yet finished. The enraged soldier cut him down. Thus died the
greatest mind in the ancient world, slaughtered needlessly by the Romans.

Killing Archimedes was one of the biggest Roman contributions to
mathematics. The Roman era lasted for about seven centuries. In all that
time there were no significant mathematical developments. History
marched on: Christianity swept through Europe, the Roman Empire fell, the
Library at Alexandria burned, and the Dark Ages began. It would be
another seven centuries before zero reappeared in the West. In the meantime
two monks created a calendar without zero, damning us to eternal
confusion.

Blind Dates

It is a silly, childish discussion and only exposes the want of brains
of those who maintain a contrary opinion to that we have stated.

—THE TIMES (LONDON), DECEMBER 26, 1799

This “silly, childish discussion”—whether the new century begins on the
year 00 or the year 01—appears and reappears like clockwork every
hundred years. If medieval monks had only known of zero, our calendar
would not be in such a muddle.

The monks can’t be faulted for their ignorance. Indeed, during the
Middle Ages the only Westerners who studied math were the Christian
monks. They were the only learned ones left. Monks needed math for two
things: prayer and money. To count money, they needed to know how to…
well…count. To do this, they used an abacus or a counting board, a device
similar to an abacus, where stones or other counters get moved around on a
table. It was not a very demanding task, but by ancient standards it was the
state of the art. To pray, monks needed to know the time and the date. As a
result, timekeeping was vital to the monks’ rituals. They had different
prayers to be said at different hours, day in and day out. (Our word noon
comes from the word nones, the midday prayer service of medieval clergy.)
How else would the night watchman know when to roust his fellows out of
their comfortable straw beds to begin the day’s devotions? And if you didn’t



have an accurate calendar, you couldn’t know when to celebrate Easter.
This was a big problem.

Calculating the date of Easter was no mean feat, thanks to a clash of
calendars. The seat of the church was Rome, and Christians used the
Roman solar calendar that was 365 days (and change) long. But Jesus was a
Jew, and he used the Jewish lunar calendar that was only 354 days (and
change) long. The big events in Jesus’ life were marked with reference to
the moon, while everyday life was ruled by the sun. The two calendars
drifted with respect to each other, making it very difficult to predict when a
holiday was due. Easter was just such a drifting holiday, so every few
generations a monk was drafted to calculate the dates when Easter would
fall for the next few hundred years.

Dionysius Exiguus was one of these monks. In the sixth century the
pope, John I, asked him to extend the Easter tables. While translating and
recalculating the tables, Dionysius did a little research on the side; he
realized that he could figure out just when Jesus Christ was born. After
chugging through a bit of math, he decided that the current year was the
525th year since the birth of Christ. Dionysius decided that the year of
Christ’s birth should, thenceforth, be the year 1 anno Domini, or the first
year of Our Lord. (Technically, Dionysius said that Christ’s birth happened
on December 25 the year before, and he started his calendar on January 1 to
match the Roman year.) The next year after that was 2 AD, and the next 3
AD, and so forth, replacing the two dating systems then most commonly in
use.* But there was a problem. Make that two.

For one thing, Dionysius got the date of Christ’s birth wrong. The
sources agree that Mary and Joseph fled the wrath of King Herod, since
Herod had heard a prophecy about a newborn Messiah. But Herod died in 3
BC, years before the supposed birth of Christ. Dionysius was clearly wrong;
today most scholars believe that the birth of Christ was in 4 BC. Dionysius
was a few years off.

In truth, this mistake was not so terrible. When choosing the first year
of a calendar, it really doesn’t matter which year is chosen, so long as
everything is consistent after that. A four-year error is inconsequential if



everyone agrees to make the same mistake, as, indeed, we have. But there
was a more serious problem with Dionysius’s calendar: zero.

There was no year zero. Normally this would be no big deal; most
calendars of that day started with the year one, not the year zero. Dionysius
didn’t even have a choice; he didn’t know about zero. He was brought up
after the decline of the Roman Empire. Even during the heyday of Rome,
the Romans were not exactly math whizzes. In the year 525, at the start of
the Dark Ages, all Westerners clung to the clunky Roman style of numbers,
and there was no zero in that counting system. To Dionysius, the first year
of Our Lord was, naturally, the year I. The next year was year II, and
Dionysius came to this conclusion in the year DXXV. In most
circumstances this would not have caused any trouble, especially since
Dionysius’s calendar did not catch on immediately. In 525 there was serious
trouble for the intellectuals in the Roman court. Pope John died, and in the
ensuing power shift all the philosophers and mathematicians like Dionysius
were kicked out of office. They were lucky to escape with their lives.
(Others were not so lucky. Anicius Boethius was a powerful courtier who
was among the finest medieval Western mathematicians, which makes him
worth noting. At about the same time that Dionysius was kicked out of
office, Boethius, too, fell from power and was imprisoned. Boethius is not
remembered for his math but for his Consolation of Philosophy, a tract in
which he comforts himself with Aristotelian-style philosophy. He was
clubbed to death soon afterward.) In any case, the new calendar languished
for years.

The lack of a year zero began to cause problems two centuries later. In
731 AD, about the time Dionysius’s Easter tables were set to run out, Bede,
a soon-to-be-venerable monk from the northern part of England, extended
them again. This is probably how he came to know of Dionysius’s work.
When Bede wrote a history of the church in Britain, the Ecclesiastical
History of the English People, he used the new calendar.

The book was a huge success, but it had one significant flaw. Bede
started his history with the year 60 BC—60 years before Dionysius’s
reference year. Bede didn’t want to abandon the new dating system, so he
extended Dionysius’s calendar backward. To Bede, also ignorant of the



number zero, the year that came before 1 AD was 1 BC. There was no year
zero. After all, to Bede, zero didn’t exist.

At first glance this style of numbering might not seem so bad, but it
guaranteed trouble. Think of the AD years as positive numbers and the BC
years as negative ones. Bede’s style of counting went…, –3, –2, –1, 1, 2, 3,
…. Zero, whose proper place is between –1 and 1, is nowhere to be seen.
This throws everybody off. In 1996, an article about the calendar in the
Washington Post told people “how to think” about the millennium
controversy—and casually mentioned that since Jesus was born in 4 BC, the
year 1996 was the 2,000th year since his birth. That makes perfect sense:
1996 – (–4) = 2000. But it is wrong. It was actually only 1,999 years.

Imagine a child born on January 1 in the year 4 BC. In 3 BC he turns one
year old. In 2 BC he turns two years old. In 1 BC he turns three years old. In
1 AD he turns four years old. In 2 AD he turns five years old. On January 1 in
2 AD, how many years has it been since he was born? Five years, obviously.
But this isn’t what you get if you subtract the years: 2 – (–4) = 6 years old.
You get the wrong answer because there is no year zero.

By rights, the child should have turned four years old on January 1 in
the year 0 AD, five in 1 AD, and six in 2 AD. Then all the numbers would
come out right, and figuring out the child’s age would be a simple matter of
subtracting - 4 from 2. But it isn’t so. You’ve got to subtract an additional
year from the total to get the right answer. Hence, Jesus was not 2,000 years
old in 1996; he was only 1,999. It’s very confusing, and it gets worse.

Imagine a child born in the first second of the first day of the first year:
January 1 in 1 AD. In the year 2, he would be one year old, in the year 3 he
would be two, and so forth; in the year 99 he’d be 98 years old, and in the
year 100 he’d be 99 years old. Now imagine that this child is named
Century. The century is only 99 years old in the year 100, and only
celebrates its hundredth birthday on January 1 in the year 101. Thus the
second century begins in the year 101. Likewise, the third century begins in
the year 201, and the twentieth century begins in the year 1901. This means
that the twenty-first century—and the third millennium—begins in the year
2001. Not that you’d notice.



Hotels and restaurants around the world were completely booked well
in advance for December 31, 1999—not so for December 31, 2000.
Everybody celebrated the turn of the millennium on the wrong date. Even
the Royal Greenwich Observatory, the official keeper of the world’s time
and arbiter of all things chronological, planned to be swamped by the
revelers. While the atomic-precision clocks ticked away in the observatory
on the hill, the masses down below awaited a state-sponsored Millennium
Experience, complete with a “spectacular opening ceremony” that the
organizers scheduled for—you guessed it—December 31, 1999. The
exhibit’s close on December 31, 2000, is just when the astronomers on top
of the hill crack open their champagne bottles to celebrate the turn of the
millennium. That is, of course, assuming that astronomers care about the
date at all.

Astronomers can’t play with time as easily as everyone else can. After
all, they are watching the clockwork of the heavens—a clockwork that does
not hiccup on leap years or reset itself every time humans decide to change
the calendar. Thus the astronomers decided to ignore human calendars
altogether. They don’t measure time in years since the birth of Christ. They
count days since January 1, 4713 BC, a pretty-much arbitrary date that the
scholar Joseph Scaliger chose in 1583. His Julian Date (named after his
father, Julius, rather than Julius Caesar) became the standard way to refer to
astronomical events, because it avoided all the weirdness caused by
calendars that were constantly under construction. (The system has since
been modified slightly. Modified Julian Date is simply the Julian Date less
2,400,000 days and 12 hours, putting the zero hour at midnight on
November 17,1858. Again, a more or less arbitrary date.) Perhaps
astronomers will refuse to celebrate 51542 Modified Julian Date, and the
Jews will ignore 23 Tevet, 5760 (anno Mundi), and the Muslims will forget
about 23 Ramadan, 1420 (anno Hejirae). On second thought, probably not.
They will all know that it is December 31, 1999 (anno Domini), and there is
something very special about the year 2000.

It’s hard to say just why, but we humans love nice, round numbers with
lots of zeros. How many of us remember being a child and going for a ride
in a car that was about to top the 20,000-mile mark? Everybody in the car



waits, silently, as 19,999.9 slowly creeps forward…and then, with a click,
20,000! All the children cheer.

December 31, 1999, is the evening when the great odometer in the sky
clicks ahead.

The Zeroth Number

Waclaw Sierpinski, the great Polish mathematician…was worried
that he’d lost one piece of his luggage. “No, dear!” said his wife.
“All six pieces are here.” “That can’t be true,” said Sierpinski,
“I’ve counted them several times: zero, one, two, three, four, five.”

—JOHN CONWAY AND RICHARD GUY, THE BOOK OF NUMBERS

It may seem bizarre to suggest that Dionysius and Bede made a mistake
when they forgot to include zero in their calendar. After all, children count
“one, two, three,” not “zero, one, two.” Except for the Mayans, nobody else
had a year zero or started a month with day zero. It seems unnatural. On the
other hand, when you count backward, it is second nature.

Ten. Nine. Eight. Seven. Six. Five. Four. Three. Two. One. Liftoff.

The space shuttle always waits for zero before it blasts into the air. An
important event happens at the zero hour, not the one hour. When you drive
toward the site where a bomb went off, you’re approaching ground zero.

If you look carefully enough, you will see that people usually do start
counting with zero. A stopwatch starts ticking from 0:00.00 and only
reaches 0:01.00 after a second has elapsed. A car’s odometer comes from
the factory set at 00000, though by the time the dealer’s done tooling
around town, it’s probably got a few more miles on it. The military’s day
officially begins at 0000 hours. But count aloud and you always start with
“one,” unless you’re a mathematician or a computer programmer.* It has to
do with order.

When we are dealing with the counting numbers—1, 2, 3, and so on—it
is easy to rank them in order. One is the first counting number, two is the



second counting number, and three is the third. We don’t have to worry
about mixing up the value of the number—its cardinality—with the order in
which it arrives—its ordinality—since they are essentially the same thing.
For years, this was the state of affairs, and everybody was happy. But as
zero came into the fold, the neat relationship between a number’s
cardinality and its ordinality was ruined. The numbers went 0, 1, 2, 3: zero
came first, one was second in line, and two was in third place. No longer
were cardinality and ordinality interchangable. This is the root of the
calendar problem.

The first hour of the day starts at zero seconds past midnight; the second
hour starts at 1 AM, and the third hour starts at 2 AM. Though we count with
the ordinals (first, second, third), we mark time with the cardinals (0, 1, 2).
All of us have assimilated this way of thinking, whether we appreciate it or
not. After a baby finishes his 12th month, we all say that the child is one
year old; he has finished his first 12 months of life. If the baby turns one
when she’s already lived a year, isn’t the only consistent choice to say that
the baby is zero years old before that time? Of course, we say that the child
is six weeks old or nine months old instead—a clever way of getting around
the fact that the baby is zero.

Dionysius didn’t have a zero, so he started the calendar with year 1, just
as the ancients before him had started theirs. People of those times thought
in terms of the old-style equivalence of cardinality and ordinality. That was
just fine…for them. If zero never entered their minds, it could hardly be a
problem.

The Gaping Void

It was not absolute nothingness. It was a kind of formlessness
without any definition…. True reasoning convinced me that I should
wholly subtract all remnants of every kind of form if I wished to
conceive the absolutely formless. I could not achieve this.

—SAINT AUGUSTINE, CONFESSIONS

It’s hard to blame the monks for their ignorance. The world of Dionysius
Exiguus, Boethius, and Bede was dark indeed. Rome had collapsed, and



Western civilization seemed but a shadow of Rome’s past glory. The future
seemed more horrid than the past. It is no wonder that in the search for
wisdom medieval scholars didn’t look to their peers for ideas. Instead, they
turned to the ancients like Aristotle and the Neoplatonists. As these
medieval thinkers imported the philosophy and science of the ancients, they
inherited the ancient prejudices: a fear of the infinite and a horror of the
void.

Medieval scholars branded void as evil—and evil as void. Satan was
quite literally nothing. Boethius made the argument as follows: God is
omnipotent. There is nothing God cannot do. But God, the ultimate
goodness, cannot do evil. Therefore evil is nothing. It made perfect sense to
the medieval mind.

Lurking underneath the veil of medieval philosophy, however, was a
conflict. The Aristotelian system was Greek, but the Judeo-Christian story
of creation was Semitic—and Semites didn’t have such a fear of the void.
The very act of creation was out of a chaotic void, and theologians like
Saint Augustine, who lived in the fourth century, tried to explain it away by
referring to the state before creation as “a nothing something” that is empty
of form but yet “falls short of utter nothingness.” The fear of the void was
so great that Christian scholars tried to fix the Bible to match Aristotle
rather than vice versa.

Luckily, not all civilizations were so afraid of zero.



Chapter 3
Nothing Ventured

[ ZERO GOES EAST ]

Where there is the Infinite there is joy. There is no joy in the finite.
—THE CHANDOGYA UPANISHAD

Though the West was afraid of the void, the East welcomed it. In Europe,
zero was an outcast, but in India and later in the Arab lands, it flourished.

When we last saw zero, it was simply a placeholder. It was a blank spot
in the Babylonian system of numeration. Zero was useful but was not truly
a number on its own—it had no value. It only took its meaning from the
digits to its left; the symbol for zero literally meant nothing if it was by
itself. In India, all this changed.

In the fourth century BC, Alexander the Great marched with his Persian
troops from Babylon to India. It was through this invasion that Indian
mathematicians first learned about the Babylonian system of numbers—and
about zero. When Alexander died in 323 BC, his squabbling generals split
his empire into pieces. Rome rose to power in the second century BC and
swallowed up Greece, but Rome’s power did not extend as far east as
Alexander’s had. As a result, remote India was insulated from the rise of
Christianity and the fall of Rome in the fourth and fifth centuries AD.



India was also insulated from Aristotle’s philosophy. Though Alexander
had been tutored by Aristotle, and no doubt introduced India to Aristotelian
ideas, the Greek philosophy never took hold. Unlike Greece, India never
had a fear of the infinite or of the void. Indeed, it embraced them.

The void had an important place in the Hindu religion. Hinduism had
started off as a polytheistic religion, a set of tales about warrior gods and
battles similar in many ways to the Greek mythos. However, over centuries
—centuries before Alexander arrived—the gods began to merge together.
While Hinduism retained its popular rituals and devotion to its pantheon, at
its core Hinduism became monotheistic and introspective. All the gods
became aspects of an all-encompassing god, Brahma. At about the same
time that the Greeks were rising in the Western world, Hinduism was
becoming less like the Western myths; the individual gods became less
distinct and the religion became more and more mystical. The mysticism
was patently Eastern.

Like many Eastern religions, Hinduism was steeped in the symbolism
of duality. (Of course, this idea occasionally came up in the Western world,
where it was promptly branded as heretical. One example is the
Manichaean heresy, which saw the world as being under the influence of
equal and opposite sources of good and evil.) As with the yin and yang of
the Far East and Zoroaster’s dualism of good and evil in the Near East,
creation and destruction were intermingled in Hinduism. The god Shiva was
both creator and destroyer of the world and was depicted with the drum of
creation in one hand and a flame of destruction in another (Figure 13).
However, Shiva also represented nothingness. One aspect of the deity,
Nishkala Shiva, was literally the Shiva “without parts.” He was the ultimate
void, the supreme nothing—lifelessness incarnate. But out of the void, the
universe was born, as was the infinite. Unlike the Western universe, the
Hindu cosmos was infinite in extent; beyond our own universe were
innumerable other universes.



Figure 13: Shiva’s dance

At the same time, though, the cosmos never truly abandoned its original
emptiness. Nothingness was what the world came from, and to achieve
nothingness again became the ultimate goal of mankind. In one story, Death
tells a disciple about the soul: “Concealed in the heart of all beings is the
Atman, the Spirit, the Self,” he says. “Smaller than the smallest atom,
greater than the vast spaces.” This Atman, which resides in every thing, is
part of the essence of the universe, and is immortal. When a person dies, the
Atman is released from the body and soon enters another being; the soul
transmigrates and the person is reincarnated. The goal of the Hindu is to
free the Atman entirely from the cycle of rebirth, to stop wandering from
death to death. The way to achieve the ultimate liberation through
lifelessness is to cease paying heed to the illusion of reality. “The body, the
house of the spirit, is under the power of pleasure and pain,” explains a god.
“And if a man is ruled by his body then this man can never be free.” But
once you are able to separate yourself from the whims of the flesh and
embrace the silence and nothingness of your soul, you will be liberated.
Your Atman will fly from the web of human desire and join the collective
consciousness—the infinite soul that suffuses the universe, at once
everywhere and nowhere at the same time. It is infinity, and it is nothing.



So India, as a society that actively explored the void and the infinite,
accepted zero.

Zero’s Reincarnation

In the earliest age of the gods, existence was born from non-
existence.

—THE RIG VEDA

Indian mathematicians did more than simply accept zero. They transformed
it, changing its role from mere placeholder to number. This reincarnation
was what gave zero its power.

The roots of Indian mathematics are hidden by time. An Indian text
written the same year that Rome fell—476 AD—shows the influence of
Greek, Egyptian, and Babylonian mathematics, brought by Alexander as he
penetrated Indian lands. Like the Egyptians, the Indians had rope stretchers
to survey fields and lay out temples. They also had a sophisticated system
of astronomy; like the Greeks, they tried to calculate the distance to the sun.
That requires trigonometry; the Indian version was probably derived from
the system that the Greeks had developed.

Sometime around the fifth century AD, Indian mathematicians changed
their style of numbering; they moved from a Greek-like system to a
Babylonian-style one. An important difference between the new Indian
number system and the Babylonian style was that Indian numbers were
base-10 instead of base-60. Our numbers evolved from the symbols that the
Indians used; by rights they should be called Indian numerals rather than
Arabic ones (Figure 14).

Nobody knows when the Indians made the switch to a Babylonian-style
place-value number system. The earliest reference to the Hindu numerals
comes from a Syrian bishop who wrote, in 662, of how the Indians did
calculations “by means of nine signs.” Nine—not ten. Zero was evidently
not among them. But it’s hard to tell for sure. It is fairly clear that the Hindu
numerals were around before the bishop wrote about them; there is
evidence that zero appeared in some variants of the Indian system by that



time, though the bishop hadn’t heard about it. In any case, a symbol for zero
—the placeholder in the base-10 numbering system—was certainly in use
by the ninth century. By then Indian mathematicians had already made a
giant leap.

The Indians had borrowed little of Greek geometry. They apparently
didn’t have a deep interest in the plane figures that the Greeks loved so
much. They never worried about whether the diagonal of a square was
rational or irrational, nor did they investigate the conic sections as
Archimedes had. But they did learn how to play with numbers.

The Indian system of numbering allowed them to use fancy tricks to
add, subtract, multiply, and divide numbers without using an abacus to help
them. Thanks to their place-number system, they could add and subtract
large numbers in roughly the same way we do today. With training, a person
could multiply with Indian numerals faster than an abacist could tally.
Contests between the abacists and the so-called algorists who used Indian
numerals were the medieval equivalents of the Kasparov versus Deep Blue
chess match (Figure 15). Like Deep Blue, the algorists would win in the
end.



Figure 14: The evolution of our numerals

Though the Indian number system was useful for everyday tasks like
addition and multiplication, the true impact of Indian numbers was
considerably deeper. Numbers had finally become distinct from geometry;
numbers were used to do more than merely measure objects. Unlike the
Greeks, the Indians did not see squares in square numbers or the areas of
rectangles when they multiplied two different values. Instead, they saw the
interplay of numerals—numbers stripped of their geometric significance.
This was the birth of what we now know as algebra. Though this mind-set
prevented the Indians from contributing much to geometry, it had another,
unexpected effect. It freed the Indians from the shortcomings of the Greek
system of thought—and their rejection of zero.



Figure 15: An algorist versus an abacist

Once numbers shed their geometric significance, mathematicians no
longer had to worry about mathematical operations making geometric
sense. You can’t remove a three-acre swath from a two-acre field, but
nothing prevents you from subtracting three from two. Nowadays we
recognize that 2 – 3 = –1: negative one. However, this was not at all
obvious to the ancients. Many times they solved equations only to get a
negative result and concluded that their answer had no meaning. After all, if
you are thinking in geometric terms, what is a negative area? It simply
didn’t make any sense to the Greeks.

To the Indians, negative numbers made perfect sense. Indeed, it was in
India (and in China) that negative numbers first appeared. Brahmagupta, an
Indian mathematician of the seventh century, gave rules for dividing
numbers by each other, and he included the negatives. “Positive divided by
positive, or negative by negative, is affirmative,” he wrote. “Positive
divided by negative is negative. Negative divided by affirmative is
negative.” These are the rules that we recognize today: divide two numbers
and the answer is positive if the numbers’ signs are the same.



Just as 2 – 3 was now a number, so was 2 – 2. It was zero. Not just a
mere placeholder zero that represents an empty space on the abacus, but
zero the number. It had a specific value, a fixed place on the number line.
Since zero was equal to 2 – 2, then it had to be placed between one (2 – 1)
and negative one (2 – 3). Nothing else made sense. No longer could zero sit
to the right of nine, just as it does on the top of the computer keyboard; zero
had a position in the number line that was all its own. A number line
without zero could no more exist than a number system without two. Zero
had finally arrived.

However, even the Indians thought that zero was a pretty bizarre
number, for all the usual reasons. After all, zero multiplied by anything is
zero; it sucks everything into itself. And when you divide with it, all hell
breaks loose. Brahmagupta tried to figure out what 0 ÷ 0 and 1 ÷ 0 were,
and failed. “Cipher divided by cipher is naught,” he wrote. “Positive or
negative divided by cipher is a fraction with that for a denominator.” In
other words, he thought 0 ÷ 0 was 0 (he was wrong, as we will see), and he
thought that 1 ÷ 0 was, well, we don’t really know, because he doesn’t make
a whole lot of sense. Basically, he was waving his hands and hoping that the
problem would go away.

Brahmagupta’s mistake did not last for very long. In time the Indians
realized that 1 ÷ 0 was infinite. “This fraction of which the denominator is a
cipher, is termed an infinite quantity,” writes Bhaskara, a twelfth-century
Indian mathematician, who tells of what happens when you add a number to
1 ÷ 0. “There is no alteration, though many be inserted or extracted; as no
change takes place in the infinite and immutable God.”

God was found in infinity—and in zero.

The Arab Numeral

Does man forget that We created him out of the void?
—THE KORAN

By the seventh century, the West had withered with the fall of Rome, but
the East was flourishing. India’s growth was eclipsed by another Eastern



civilization. As the star of the West sank below the horizon, another star
was rising: Islam. Islam would take zero from India—and the West would
eventually take it from Islam. Zero’s rise to preeminence had to begin in the
East.

One evening in 610 AD, Mohammed, a thirty-year-old native of Mecca,
fell into a trance on Mount Hira. According to legend, the angel Gabriel
told him, “Recite!” Mohammed did, and his divine revelations started a
wildfire. A decade after Mohammed’s death in 632, his followers had
captured Egypt, Syria, Mesopotamia, and Persia. Jerusalem, the holy city of
the Jews and the Christians, had fallen. By 700, Islam stretched as far as the
Indus River in the East and Algiers in the West. In 711 the Muslims
captured Spain, and they advanced as far as France. In the East they
defeated the Chinese in 751. Their empire stretched farther than even
Alexander could have imagined. Along the way to China, the Muslims
conquered India. And there the Arabs learned about Indian numerals.

The Muslims were quick to absorb the wisdom of the peoples that they
conquered. Scholars started translating texts into Arabic, and in the ninth
century Caliph al-Mamun founded a great library: the House of Wisdom at
Baghdad. It was to become the center of learning in the Eastern world—and
one of its first scholars was the mathematician Mohammed ibn-Musa al-
Khowarizmi.

Al-Khowarizmi wrote several important books, like Aljabr wa’l
muqabala, a treatise on how to solve elementary equations; the Al-jabr in
the title (which means something like “completion”) gave us the term
algebra. He also wrote a book about the Hindu numeral system, which
allowed the new style of numbers to spread quickly through the Arab world
—along with algorithms, the tricks for multiplying and dividing Hindu
numerals quickly. In fact, the word algorithm was a corruption of al-
Khowarizmi’s name. Though the Arabs took the notation from India, the
rest of the world would dub the new system Arabic numerals.

The very word zero smacks of its Hindu and Arabic roots. When the
Arabs adopted Hindu-Arabic numerals, they also adopted zero. The Indian
name for zero was sunya, meaning “empty,” which the Arabs turned into
sifr. When some Western scholars described the new number to their



colleagues, they turned sifr into a Latin-sounding word, yielding zephirus,
which is the root of our word zero. Other Western mathematicians didn’t
change the word so heavily and called zero cifra, which became cipher.
Zero was so important to the new set of numbers that people started calling
all numbers ciphers, which gave the French their term chiffre, digit.

However, when al-Khowarizmi was writing about the Hindu system of
numbers, the West was still far from adopting zero. Even the Muslim world,
with its Eastern traditions, was heavily contaminated by the teachings of
Aristotle, thanks to the conquests of Alexander the Great. However, as
Indian mathematicians had made quite clear, zero was the embodiment of
the void. Thus, if the Muslims were to accept zero, they had to reject
Aristotle. That was precisely what they did.

A twelfth-century Jewish scholar, Moses Maimonides, described the
Kalam—the beliefs of Islamic theologians—with horror. He noted that
instead of accepting Aristotle’s proof of God, the Muslim scholars turned to
the atomists, Aristotle’s old rivals, whose doctrine, though out of favor,
managed to survive the ravages of time. The atomists, remember, held that
matter was composed of individual particles called atoms, and if these
particles were able to move about, there had to be a vacuum between them,
otherwise the atoms would be bumping into one another, unable to get out
of one another’s way.

The Muslims seized upon the atomists’ ideas; after all, now that zero
was around, the void was again a respectable idea. Aristotle hated the void;
the atomists required it. The Bible told of the creation from the void, while
the Greek doctrine rejected the possibility. The Christians, cowed by the
power of Greek philosophy, chose Aristotle over their Bible. The Muslims,
on the other hand, made the opposite choice.

I Am That I Am: Nothing

Nothingness is being and being nothingness…. Our limited mind
can not grasp or fathom this, for it joins infinity.

—AZRAEL OF GERONA



Zero was an emblem of the new teachings, of the rejection of Aristotle and
the acceptance of the void and the infinite. As Islam spread, zero diffused
throughout the Muslim-controlled world, everywhere conflicting with
Aristotle’s doctrine. Islamic scholars battled back and forth, and in the
eleventh century a Muslim philosopher, Abu Hamid al-Ghazali, declared
that clinging to Aristotelian doctrine should be punishable by death. The
debate ended shortly thereafter.

It’s no surprise that zero caused such discord. The Muslims, with their
Semitic, Eastern background, believed that God created the universe out of
the void—a doctrine that could never be accepted where people shared
Aristotle’s hatred of the void and of the infinite. As zero spread through the
Arab lands, the Muslims embraced it and rejected Aristotle. The Jews were
the next in line.

For millennia the center of Jewish life had been planted firmly in the
Middle East, but in the tenth century an opportunity for Jews arose in Spain.
Caliph Abd al-Rahman III had a Jewish minister who imported a number of
intellectuals from Babylonia. Soon a large Jewish community flourished in
Islamic Spain.

Early medieval Jews, both in Spain and in Babylon, were wed firmly to
Aristotle’s doctrines. Like their Christian counterparts, they refused to
believe in the infinite or the void. However, just as Aristotelian philosophy
conflicted with Islamic teachings, it conflicted with Jewish theology. This is
what drove Maimonides, the twelfth-century rabbi, to write a tome to
reconcile the Semitic, Eastern Bible with the Greek, Western philosophy
that permeated Europe.

From Aristotle, Maimonides had learned to prove God’s existence by
denying the infinite. Reproducing the Greek arguments faithfully,
Maimonides contended that the hollow spheres that twirled about the earth
had to be moved by something, say, the next sphere out. But the next sphere
out had to be moved by something—the next sphere in line. However, since
there cannot be an infinite number of spheres (because infinity was
impossible), something had to be moving the outermost sphere. That was
the prime mover: God.



Maimonides’ argument was, indeed, a “proof” of God’s existence—
something incredibly valuable in any theology. Yet at the same time, the
Bible and other Semitic traditions were full of the ideas of the infinite and
the void, ideas that the Muslims already embraced. Just like Saint
Augustine 800 years earlier, Maimonides tried to reshape the Semitic Bible
to fit into Greek doctrine: doctrine that had an unreasonable fear of the
void. But unlike the early Christians, who had freed themselves to interpret
parts of the Old Testament as metaphor, Maimonides was unwilling to
Hellenize his religion completely. Rabbinic tradition compelled him to
accept the biblical account of the universe’s creation from the void. This, in
turn, meant contradicting Aristotle.

Maimonides argued that there were flaws in Aristotle’s proof that the
universe had always existed. After all, it conflicted with the Scriptures.
This, of course, meant that Aristotle had to go. Maimonides stated that the
act of creation came from nothing. It was creatio ex nihilo, despite the
Aristotelian ban on the vacuum. With that stroke the void moved from
sacrilege to holiness.

For the Jews, the years after Maimonides’ death became the era of
nothing. In the thirteenth century a new doctrine spread: kabbalism, or
Jewish mysticism. One centerpiece of kabbalistic thought is gematria—the
search for coded messages within the text of the Bible. Like the Greeks, the
Hebrews used letters from their alphabet to represent numbers, so every
word had a numerical value. This could be used to interpret the hidden
meaning of words. For instance, Gulf War participants might have noticed
that Saddam has the following value: samech (60) + aleph (1) + daled (4) +
aleph (1) + mem (600) = 666—a number that Christians associate with the
evil Beast that appears during the Apocalypse. (Whether “Saddam” has two
daleds or one would make no difference to the kabbalists, who often used
alternate spellings of words to make sums come out right.) Kabbalists
thought that words and phrases with the same numerical value were
mystically linked. For instance, Genesis 49:10 states, “The scepter shall not
depart from Judah…until Shiloh come.” The Hebrew phrase for “until
Shiloh come” has a value of 358, exactly the same for the Hebrew word
meshiach, messiah. Hence, the passage presages the coming of the Messiah.
Certain numbers were holy or evil, according to the kabbalists—and they



looked through the Bible for these numbers and for hidden messages found
by scanning through it in various ways. A recent bestseller, The Bible Code,
purported to find prophecies by this method.

The kabbalah was much more than number crunching; it was a tradition
so mystical that some scholars say that it bears a striking resemblance to
Hinduism. For instance, the kabbalah seized upon the idea of the dual
nature of God. The Hebrew term ein sof, which meant “infinite,”
represented the creator aspect of God, the part of the deity that made the
universe and that permeates every corner of the cosmos. But at the same
time it had a different name: ayin, or “nothing.” The infinite and the void go
hand in hand, and are both part of the divine creator. Better yet, the term
ayin is an anagram of (and has the same numerical value as) the word aniy,
the Hebrew “I.” It could scarcely be clearer: God was saying, in code, “I am
nothing.” And at the same time, infinity.

As the Jews pitted their Western sensibilities against their Eastern Bible,
the same battle was under way in the Christian world. Even as the
Christians battled the Muslims—during Charlemagne’s reign in the ninth
century and during the Crusades in the eleventh, twelfth, and thirteenth
centuries—warrior-monks, scholars, and traders began to bring Islamic
ideas back to the West. Monks discovered that the astrolabe, an Arabic
invention, was a handy tool for keeping track of time in the evening,
helping them keep their prayers on schedule. The astrolabes were often
inscribed with Arabic numerals.

The new numbers didn’t catch on, even though a tenth-century pope,
Sylvester II, was an admirer of them. He probably learned about the
numerals during a visit to Spain and brought them back with him when he
returned to Italy. But the version he learned did not have a zero—and the
system would have been even less popular if it had. Aristotle still had a firm
grip on the church, and its finest thinkers still rejected the infinitely large,
the infinitely small, and the void. Even as the Crusades drew to a close in
the thirteenth century, Saint Thomas Aquinas declared that God could not
make something that was infinite any more than he could make a scholarly
horse. But that implied that God was not omnipotent—a forbidden thought
in Christian theology.



In 1277 the bishop of Paris, Étienne Tempier, called an assembly of
scholars to discuss Aristotelianism, or rather, to attack it. Tempier abolished
many Aristotelian doctrines that contradicted God’s omnipotence, such as,
“God can not move the heavens in a straight line, because that would leave
behind a vacuum.” (The rotating spheres caused no problem, because they
still occupied the same space. It is only when you move the spheres in a line
that you are forced to have a space to move the heavens into, and you are
forced to have a space behind them after they move.) God could make a
vacuum if he wanted. All of a sudden the void was allowed, because an
omnipotent deity doesn’t need to follow Aristotle’s rules if he doesn’t want
to.

Tempier’s pronouncements were not the final blow to Aristotelian
philosophy, but they certainly signaled that the foundations were crumbling.
The church would cling to Aristotle for a few more centuries, but the fall of
Aristotle and the rise of the void and the infinite were clearly beginning. It
was a propitious time for zero to arrive in the West. In the mid-twelfth
century the first adaptations of al-Khowarizmi’s Aljabr were working their
way through Spain, England, and the rest of Europe. Zero was on the way,
and just as the church was breaking the shackles of Aristotelianism, it
arrived.

Zero’s Triumph

…a profound and important idea which appears so simple to us now
that we ignore its true merit. But its very simplicity and the great
ease which it lent to all computations put our arithmetic in the first
rank of useful inventions.

—PIERRE-SIMON LAPLACE

Christianity initially rejected zero, but trade would soon demand it. The
man who reintroduced zero to the West was Leonardo of Pisa. The son of
an Italian trader, he traveled to northern Africa. There the young man—
better known as Fibonacci—learned mathematics from the Muslims and
soon became a good mathematician in his own right.



Fibonacci is best remembered for a silly little problem he posed in his
book, Liber Abaci, which was published in 1202. Imagine that a farmer has
a pair of baby rabbits. Babies take two months to reach maturity, and from
then on they produce another pair of rabbits at the beginning of every
month. As these rabbits mature and reproduce, and those rabbits mature and
reproduce, and so on, how many pairs of rabbits do you have during any
given month?

Well, during the first month, you have one pair of rabbits, and since
they haven’t matured, they can’t reproduce.

During the second month you still have only one pair.

But at the beginning of the third month, the first pair reproduces: you’ve
got two pairs.

At the beginning of the fourth month, the first pair reproduces again, but
the second pair is not mature enough: three pairs.

The next month the first pair reproduces, the second pair reproduces,
since it has reached maturity, but the third pair is too young. That is two
additional pairs of rabbits: five in all.

The number of rabbits goes as follows: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,…;
the number of rabbits you have in any given month is the sum of the rabbits
that you had in each of the two previous months. Mathematicians instantly
realized the importance of this series. Take any term and divide it by its
previous term. For instance, 8/5 = 1.6; 13/8 = 1.625; 21/13 =1.61538…. These
ratios approach a particularly interesting number: the golden ratio, which is
1.61803….

Pythagoras had noticed that nature seemed to be governed by the golden
ratio. Fibonacci discovered the sequence that is responsible. The size of the
chambers of the nautilus and the number of clockwise grooves to
counterclockwise grooves in the pineapple are governed by this sequence.
This is why their ratios approach the golden ratio.



Though this sequence is the source of Fibonacci’s fame, Fibonacci’s
Liber Abaci had a much more important purpose than animal husbandry.
Fibonacci had learned his mathematics from the Muslims, so he knew about
Arabic numerals, including zero. He included the new system in Liber
Abaci, finally introducing Europe to zero. The book showed how useful
Arabic numerals were for doing complex calculations, and the Italian
merchants and bankers quickly seized upon the new system, zero included.

Before Arabic numerals came around, money counters had to make do
with an abacus or a counting board. The Germans called the counting board
a Rechenbank, which is why we call moneylenders banks. At that time,
banking methods were primitive. Not only did they use counting boards,
they used tally sticks to record loans: a money value was written along the
stick’s side, and it was split in two (Figure 16). The lender kept the biggest
piece, the stock. After all, he was the stockholder.*

Figure 16: A tally stick

Italian merchants loved the Arabic numbers. They allowed the bankers
to get rid of their counting boards. However, while businessmen saw their
usefulness, the local governments hated them. In 1299, Florence banned
Arabic numerals. The ostensible reason was that the numbers were easily
changed and falsified. (A 0 could be turned into a 6 with a simple flourish
of a pen, for instance.) But the advantages of zero and the other Arabic
numerals were not so easily dispensed with; Italian merchants continued to
use them, and even used them to send encrypted messages—which is how
the word cipher came to mean “secret code.”

In the end the governments had to relent in the face of commercial
pressure. The Arabic notation was allowed into Italy and soon spread



throughout Europe. Zero had arrived—as had the void. The Aristotelian
wall was crumbling, thanks to the influence of the Muslims and the Hindus,
and by the 1400s even the staunchest European supporters of
Aristotelianism had their doubts. Thomas Bradwardine, who was to become
archbishop of Canterbury, tried to disprove atomism, Aristotle’s old
nemesis. At the same time, he wondered whether his own logic was faulty,
since he based his arguments on geometry, whose infinitely divisible lines
automatically reject atomism. However, the battle against Aristotle was far
from over. If Aristotle were to fall, the proof of God—a bulwark of the
church—was no longer valid. A new proof was needed.

Worse yet, if the universe were infinite, then there could be no center.
How could Earth, then, be the center of the universe? The answer was
found in zero.



Chapter 4
The Infinite God of Nothing

[ THE THEOLOGY OF ZERO ]

And new philosophy calls all in doubt,

The element of fire is quite put out;

The sun is lost, and th’ earth, and no man’s wit

Can well direct him where to look for it….’

Tis all in pieces, all coherence gone;

All just supply, and all relation:

Prince, subject, Father, Son, are things forgot.
—JOHN DONNE, “AN ANATOMY OF THE WORLD”

Zero and infinity were at the very center of the Renaissance. As Europe
slowly awakened from the Dark Ages, the void and the infinite—nothing
and everything—would destroy the Aristotelian foundation of the church
and open the way to the scientific revolution.



At first the papacy was blind to the danger. High-ranking clergymen
experimented with the dangerous ideas of the void and the infinite, even
though the ideas struck at the core of the ancient Greek philosophy that the
church cherished so much. Zero appeared in the middle of every
Renaissance painting, and a cardinal declared that the universe was infinite
—boundless. However, the brief love affair with zero and infinity was not
to last.

When the church was threatened, it retreated into its old philosophy,
turning back toward the Aristotelian doctrine that had supported it for so
many years. It was too late. Zero had taken hold in the West, and despite the
papacy’s objections, it was too strong to be exiled once more. Aristotle fell
to the infinite and to the void, and so did the proof of God’s existence.

Only one option remained for the church: accept zero and infinity.
Indeed, to the devout, God could be found, hidden within the void and the
infinite.

The Nutshell Cracked

O God, I could be bounded in a nutshell and count myself a king of
infinite space, were it not that I have bad dreams.

—WILLIAM SHAKESPEARE, HAMLET

At the beginning of the Renaissance, it was not obvious that zero would
pose a threat to the church. It was an artistic tool, an infinite nothing that
ushered in the great Renaissance in the visual arts.

Before the fifteenth century, paintings and drawings were largely flat
and lifeless. The images in them were distorted and two-dimensional;
gigantic, flat knights peered out of tiny, misshapen castles (Figure 17). Even
the best artists could not draw a realistic scene. They did not know how to
use the power of zero.



Figure 17: Flat knights and misshapen castles

It was an Italian architect, Filippo Brunelleschi, who first demonstrated
the power of an infinite zero: he created a realistic painting by using a
vanishing point.

By definition, a point is a zero—thanks to the concept of dimension. In
everyday life you deal with three-dimensional objects. (Actually, Einstein
revealed that our world is four-dimensional, as we shall see in a later
chapter.) The clock on your dresser, the cup of coffee you drink in the
morning, the book you’re reading right now—all these are three-
dimensional objects. Now imagine that a giant hand comes down and
squashes the book flat. Instead of being a three-dimensional object, the
book is now a flat, floppy rectangle. It has lost a dimension; it has length
and width, but no height. It is now two-dimensional. Now imagine that the
book, turned sideways, is crushed once again by the giant hand. The book is
no longer a rectangle. It is a line. Again, it has lost a dimension; it has
neither height nor width, but it has length. It is a one-dimensional object.
You can take away even this single dimension. Squashed along its length,
the line becomes a point, an infinitesimal nothing with no length, no width,
and no height. A point is a zero-dimensional object.

In 1425, Brunelleschi placed just such a point in the center of a drawing
of a famous Florentine building, the Baptistery. This zero-dimensional



object, the vanishing point, is an infinitesimal dot on the canvas that
represents a spot infinitely far away from the viewer (Figure 18). As objects
recede into the distance in the painting, they get closer and closer to the
vanishing point, getting more compressed as they get farther away from the
viewer. Everything sufficiently distant—people, trees, buildings—is
squashed into a zero-dimensional point and disappears. The zero in the
center of the painting contains an infinity of space.

This apparently contradictory object turned Brunelleschi’s drawing,
almost magically, into such a good likeness of the three-dimensional
Baptistery building that it was indistinguishable from the real thing. Indeed,
when Brunelleschi used a mirror to compare the painting and the building,
the reflected image matched the building’s geometry exactly. The vanishing
point turned a two-dimensional drawing into a perfect simulation of a three-
dimensional building.

Figure 18: The vanishing point

It is no coincidence that zero and infinity are linked in the vanishing
point. Just as multiplying by zero causes the number line to collapse into a
point, the vanishing point has caused most of the universe to sit in a tiny
dot. This is a singularity, a concept that became very important later in the
history of science—but at this early stage, mathematicians knew little more
than the artists about the properties of zero. In fact, in the fifteenth century,
artists were amateur mathematicians. Leonardo da Vinci wrote a guide to
drawing in perspective. Another of his books, about painting, warns, “Let
no one who is not a mathematician read my works.” These mathematician-



artists perfected the technique of perspective and could soon depict
arbitrary objects in three dimensions. No longer would artists be restricted
to flat likenesses. Zero had transformed the art world.

Zero was, quite literally, at the center of Brunelleschi’s painting. The
church, too, dabbled with zero and the infinite, though church doctrine was
still dependent on Aristotelian ideas. A contemporary of Brunelleschi, a
German cardinal named Nicholas of Cusa, looked at infinity and promptly
declared, “Terra non est centra mundi”: the earth is not the center of the
universe. The church didn’t yet realize how dangerous, how revolutionary,
that idea was.

One of the old declarations of the medieval Aristotelian doctrine—as
strong as the ban on the vacuum—was the statement that Earth was unique.
It was at the universe’s very center. Earth’s special position at the center of
the universe made it the only world capable of containing life, as Aristotle
held that all objects sought out their proper place. Heavy objects, like rocks
or people, belonged on the ground; light objects, like air, belonged in the
heavens. Not only did this imply that the planets—in the heavens—were
made of light, airy stuff, but it also meant that any people in the heavens
would naturally fall to Earth. Thus creatures could only inhabit the nutmeat
in the center of the nutshell cosmos. Having other planets with life on them
was as silly as having a sphere with two centers.

When Tempier declared that the omnipotent God could create a vacuum
if he so desired, Tempier insisted that God could break any Aristotelian law.
God could create life on other worlds if he wished. There could be
thousands of other Earths, each teeming with creatures; it was certainly
within God’s power, whether Aristotle agrees or not.

Nicholas of Cusa was bold enough to say that God must have done so.
“The regions of the other stars are similar to this,” he said, “for we believe
that none of them is deprived of inhabitants.” The sky was littered with an
infinite number of stars. The planets glowed in the heavens; the moon and
the sun each glowed with light. Why couldn’t the stars in the sky be planets
or moons or suns on their own? Maybe Earth glows brightly in their
heavens, just as they glow in ours. Nicholas was sure that God had, indeed,
created an infinite number of other worlds. Earth was no longer at the



center of the universe. Yet Nicholas was not declared a heretic, and the
church didn’t react to the new idea.

In the meantime another Nicholas turned Cusa’s philosophy into a
scientific theory. Nicolaus Copernicus showed that Earth is not the center of
the universe. It revolves around the sun.

A Polish monk and a physician, Copernicus learned mathematics so he
could cast astrological tables, the better to cure his patients with. Along the
way, Copernicus’s dabblings with the planets and stars showed him how
complicated the old Greek system of tracking the planets was. Ptolemy’s
clockwork heavens—with Earth at the center—were extremely accurate.
However, they were terribly complex. Planets course around the sky
throughout the year, but every so often they stop, move backward, and then
shoot ahead once more. To account for the planets’ bizarre behavior,
Ptolemy added epicycles to his planetary clockwork: little circles within
circles could explain the backward, or retrograde, motion of the planets
(Figure 19).

The power of Copernicus’s idea was in its simplicity. Instead of placing
Earth at the center of the universe filled with epicycle-filled clockworks,
Copernicus imagined that the sun was at the center instead, and the planets
moved in simple circles. Planets would seem to zoom backward as Earth
overtook them; no epicycles were needed. Though Copernicus’s system
didn’t agree with the data completely—the circular orbits were wrong,
though the heliocentric idea was correct—it was much simpler than the
Ptolemaic system. The earth revolved around the sun. Terra non est centra
mundi.

Nicholas of Cusa and Nicolaus Copernicus cracked open the nutshell
universe of Aristotle and Ptolemy. No longer was the earth comfortably
ensconced in the center of the universe; there was no shell containing the
cosmos. The universe went on into infinity, dotted with innumerable
worlds, each inhabited by mysterious creatures. But how could Rome claim
to be the seat of the one true Church if its authority could not extend to
other solar systems? Were there other popes on other planets? It was a grim
prospect for the Catholic Church, especially since it was beginning to have
trouble with its subjects on even its own world.



Copernicus published his magnum opus on his deathbed—in 1543, just
before the church started clamping down on new ideas. Copernicus’s book,
De Revolutionibus, was even dedicated to Pope Paul III. However, the
church was under attack. As a result, the new ideas—the questioning of
Aristotle—could no longer be tolerated.

The attack on the church began in earnest in 1517, when a constipated
German monk nailed a list of complaints to the door of the church in
Wittenberg. (Luther’s constipation was legendary. Some scholars believe
that his great revelation about faith came to him when he was sitting on the
privy. “Luther’s release from the constricting bondage of fear corresponded
to the release of his bowels,” notes one text, commenting on this theory.)
This was the beginning of the Reformation; intellectuals everywhere began
to reject the authority of the pope. By the 1530s, in a quest to ensure an
orderly succession to the throne, Henry VIII had spurned the authority of
the pope, declaring himself the head of the English clergy.



Figure 19: Epicycles, retrograde motion, and heliocentrism



The Catholic Church had to strike back. Though it had been
experimenting with other philosophies for several centuries, when
threatened with schism it turned orthodox once again. It fell back upon its
orthodox teachings—the Aristotelian-based philosophies of scholars like
Saint Augustine and Boethius, as well as Aristotle’s proof of God. No
longer could cardinals and clerics question the ancient doctrines. Zero was a
heretic. The nutshell universe had to be accepted; the void and the infinite
must be rejected. One of the key groups that spread these teachings was
founded in the 1530s: the Jesuit order, a collection of highly trained
intellectuals well suited to attack Protestantism. The church had other tools
to fight heresy as well; the Spanish Inquisition started burning Protestants in
1543, the same year Copernicus died and the same year that Pope Paul III
issued the Index of forbidden books. The Counter-Reformation was the
church’s attempt to rebuild the old order by crushing the new ideas. An idea
embraced by Bishop Étienne Tempier in the thirteenth century and Cardinal
Nicholas of Cusa in the fifteenth century could mean a death sentence in the
sixteenth century.

This is what happened to the unfortunate Giordano Bruno. In the 1580s,
Bruno, a former Dominican cleric, published On the Infinite Universe and
Worlds, where he suggested, like Nicholas of Cusa, that the earth was not
the center of the universe and that there were infinite worlds like our own.



In 1600 he was burned at the stake. In 1616 the famous Galileo Galilei,
another Copernican, was ordered by the church to cease his scientific
investigations. The same year, Copernicus’s De Revolutionibus was placed
on the Index of forbidden books. An attack on Aristotle was considered an
attack upon the church.

Despite the church’s Counter-Reformation, the new philosophy wasn’t
easily destroyed. It got stronger as time went on, thanks to the
investigations of Copernicus’s successors. In the beginning of the
seventeenth century, another astrologer-monk, Johannes Kepler, refined
Copernicus’s theory, making it even more accurate than the Ptolemaic
system. Instead of moving in circles, the planets, including Earth, moved in
ellipses around the sun. This explained the motion of the planets in the
heavens with incredible accuracy; no longer could astronomers object that
the heliocentric system was inferior to the geocentric one. Kepler’s model
was simpler than Ptolemy’s, and it was more accurate. Despite the church’s
objections, Kepler’s heliocentric system would prevail eventually, because
Kepler was right and Aristotle was wrong.

The church attempted to patch the holes in the old way of thought, but
Aristotle, the geocentric world, and the feudal way of life were all mortally
wounded. Everything that philosophers had taken for granted for millennia
was called into doubt. The Aristotelian system could not be trusted, and at
the same time it could not be rejected. What, then, could be taken for
granted? Literally nothing.

Zero and the Void

I am in a sense something intermediate between God and nought.
—RENÉ DESCARTES, DISCOURSE ON METHOD

Zero and the infinite were at the very center of the philosophical war taking
place during the sixteenth and seventeenth centuries. The void had
weakened Aristotle’s philosophy, and the idea of an infinitely large cosmos
helped shatter the nutshell universe. The earth could not be at the center of
God’s creation. As the papacy lost its hold on its flock, the Catholic Church
tried to reject zero and the void more strongly than ever, yet zero had



already taken root. Even the most devout intellectuals—the Jesuits—were
torn between the old, Aristotelian ways and the new philosophies that
included zero and the void, infinity and the infinite.

René Descartes was trained as a Jesuit, and he, too, was torn between
the old and the new. He rejected the void but put it at the center of his
world. Born in 1596 in the middle of France, Descartes would bring zero to
the center of the number line, and he would seek a proof of God in the void
and the infinite. Yet Descartes could not reject Aristotle entirely; he was so
afraid of the void that he denied its existence.

Like Pythagoras, Descartes was a mathematician-philosopher; perhaps
his most lasting legacy was a mathematical invention—what we now call
Cartesian coordinates. Anyone who has taken geometry in high school has
seen them: they are the sets of numbers in parentheses that represent a point
in space. For instance, the symbol (4, 2) represents a point four units to the
right and two units upward. But to the right and upward of what? The
Origin. Zero (Figure 20).

Descartes realized that he could not start his two reference lines, or
axes, with the number 1. That would lead to an error like the one Bede
encountered when revamping the calendar. However, unlike Bede, he lived
in a Europe where Arabic numerals were common, so he started counting
with zero. At the very center of the coordinate system—where the two axes
cross—sits a zero. The origin, the point (0, 0), is the foundation of the
Cartesian system of coordinates. (Descartes’s notation was slightly different
from what we use today. For one thing, he didn’t extend his coordinate
system to the negative numbers, though his colleagues would soon do that
for him.)



Figure 20: Cartesian coordinates

Descartes quickly realized how powerful his coordinate system was. He
used it to turn figures and shapes into equations and numbers; with
Cartesian coordinates every geometric object—squares, triangles, wavy
lines—could be represented by an equation, a mathematical relationship.
For example, a circle at the origin can be represented by the set of all points
where x2 + y2 – 1 = 0. A parabola might be y – x2 = 0. Descartes unified
numbers and shapes. No longer were the Western art of geometry and the
Eastern art of algebra separate domains. They were the same thing, as every
shape could simply be expressed as an equation of the form f(x, y) = 0
(Figure 21). Zero was at the center of the coordinate system, and zero was
implicit in each geometric shape.

To Descartes, zero was also implicit in God’s domain, as was the
infinite. Since the old Aristotelian doctrine was crumbling, Descartes, true
to his Jesuit training, tried to use nought and infinity to replace the old proof
of God’s existence.

Like the ancients, Descartes assumed that nothing, not even knowledge,
can be created out of nothing, which means that all ideas—all philosophies,
all notions, all future discoveries—already exist in people’s brains when
they are born. Learning is just the process of uncovering that previously
imprinted code of laws about the workings of the universe. Since we have a



concept of an infinite perfect being in our minds, Descartes then argued that
this infinite and perfect being—God—must exist. All other beings are less
than divine; they are finite. They all lie somewhere between God and
nought. They are a combination of infinity and zero.

However, though zero appeared and reappeared throughout Descartes’s
philosophy, Descartes insisted unto his death that the void—the ultimate
zero—does not exist. A child of the Counter-Reformation, Descartes
learned about Aristotle at the very moment when the church was relying
upon his principles the most. As a result, Descartes, indoctrinated with the
Aristotelian philosophy, denied the existence of the vacuum.

Figure 21: A parabola, a circle, and an elliptic curve



It was a difficult position to take; Descartes was certainly mindful of the
metaphysical problems of rejecting the vacuum entirely. Later in his life he
wrote about atoms and the vacuum: “About these things that involve a
contradiction, it can absolutely be said that they cannot happen. However,
one shouldn’t deny that they can be done by God, namely, if he were to
change the laws of nature.” Yet, like the medieval scholars before him,
Descartes believed that nothing truly moved in a straight line, for that
would leave a vacuum behind it. Instead, everything in the universe moved
in a circular path. It was a truly Aristotelian way of thinking—yet the void
would soon unseat Aristotle once and for all.

Even today, children are taught “Nature abhors a vacuum,” while the
teachers don’t really understand where that phrase came from. It was an
extension of the Aristotelian philosophy: vacuums don’t exist. If someone
would attempt to create a vacuum, nature would do anything in its power to
prevent it from happening. It was Galileo’s secretary, Evangelista Torricelli,
who proved that this wasn’t true—by creating the first vacuum.

In Italy workmen used a kind of pump, which worked more or less like
a giant syringe, to raise water out of wells and canals. This pump had a
piston that fitted snugly in a tube. The bottom of the tube was placed in the
water, so when the piston was raised, the water level followed the plunger
upward.

Galileo heard from a worker that these pumps had a problem: they
could only lift water about 33 feet. After that, the plunger kept on going
upward, yet the water level stayed the same. It was a curious phenomenon,
and Galileo passed the problem on to his assistant, Torricelli, who started
doing experiments, trying to figure out the reason for the pumps’ curious
limitation. In 1643, Torricelli took a long tube that was closed at one end
and filled it with mercury. He upended it, placing the open end in a dish
also filled with mercury. Now, if Torricelli had upended the tube in air,
everyone would expect the mercury to run out, because it would quickly be
replaced by air; no vacuum would be created. But when it was upended in a
dish of mercury, there was no air to replace the mercury in the tube. If
nature truly abhorred a vacuum so much, the mercury in the tube would
have to stay put so as not to create a void. The mercury didn’t stay put. It



sank downward a bit, leaving a space at the top. What was in that space?
Nothing. It was the first time in history anyone had created a sustained
vacuum.

No matter the dimensions of the tube that Torricelli used, the mercury
would sink down until its highest point was about 30 inches above the dish;
or, looking at it another way, mercury could only rise 30 inches to combat
the vacuum above it. Nature only abhorred a vacuum as far as 30 inches. It
would take an anti-Descartes to explain why.

In 1623, Descartes was twenty-seven, and Blaise Pascal, who would
become Descartes’s opponent, was zero years old. Pascal’s father, Étienne,
was an accomplished scientist and mathematician; the young Blaise was a
genius equal to his father. As a young man, Blaise invented a mechanical
calculating machine, named the Pascaline, which is similar to some of the
mechanical calculators that engineers used before the invention of the
electronic calculator.

When Blaise was twenty-three, his father slipped on a patch of ice and
broke his thigh. He was cared for by a group of Jansenists, Catholics who
belonged to a sect based largely on a hatred of the Jesuit order. Soon the
entire Pascal family was won over, and Blaise became an anti-Jesuit, a
counter-counter-reformationist. Pascal’s newfound religion was not a
comfortable fit for the young scientist. Bishop Jansen, the founder of the
sect, had declared that science was sinful; curiosity about the natural world
was akin to lust. Luckily, Pascal’s lust was greater than his religious fervor
for a time, because he would use science to unravel the secret of the
vacuum.

About the time of the Pascals’ conversion, a friend of Étienne’s—a
military engineer—came to visit and repeated Torricelli’s experiment for
the Pascals. Blaise Pascal was enthralled, and started performing
experiments of his own, using water, wine, and other fluids. The result was
New experiments concerning the vacuum, published in 1647. This work left
the main question unanswered: why would mercury rise only 30 inches and
water only 33 feet? The theories of the time tried to save a fragment of
Aristotle’s philosophy by declaring that nature’s horror of the vacuum was



“limited”; it could only destroy a finite amount of vacuum. Pascal had a
different idea.

In the fall of 1648, acting on a hunch, Pascal sent his brother-in-law up
a mountain with a mercury-filled tube. On top of the mountain, the mercury
rose considerably less than 30 inches (Figure 22). Was nature somehow
perturbed less by a vacuum on top of a mountain than by a vacuum in the
valley?

Figure 22: Pascal’s experiment

To Pascal, this seemingly bizarre behavior proved that it wasn’t an
abhorrence of the vacuum that drove the mercury up the tube. It was the
weight of the atmosphere pressing down on the mercury exposed in the pan
that makes the fluid shoot up the column. The atmospheric pressure bearing
down on a pan of liquid—be it mercury, water, or wine—will make the
level inside the tube rise, just as gently squeezing the bottom of a toothpaste
tube will make the contents squirt out the top. Since the atmosphere cannot
push infinitely hard, it can only drive mercury about 30 inches up the tube
—and at the top of the mountain, there is less atmosphere pushing down, so
the air can’t even push the mercury as high as 30 inches.



It is a subtle point: vacuums don’t suck; the atmosphere pushes. But
Pascal’s simple experiment demolished Aristotle’s assertion that nature
abhors a vacuum. Pascal wrote, “But until now one could find no one who
took this…view, that nature has no repugnance for the vacuum, that it
makes no effort to avoid it, and that it admits vacuum without difficulty and
without resistance.” Aristotle was defeated, and scientists stopped fearing
the void and began to study it.

It was also in zero and the infinite that Pascal, the devout Jansenist,
sought to prove God’s existence. He did it in a very profane way.

The Divine Wager

What is man in nature? Nothing in relation to the infinite,
everything in relation to nothing, a mean between nothing and
everything.

—BLAISE PASCAL, PENSÉES

Pascal was a mathematician as well as a scientist. In science Pascal
investigated the vacuum—the nature of the void. In mathematics Pascal
helped invent a whole new branch of the field: probability theory. When
Pascal combined probability theory with zero and with infinity, he found
God.

Probability theory was invented to help rich aristocrats win more money
with their gambling. Pascal’s theory was extremely successful, but his
mathematical career was not to last. On November 23, 1654, Pascal had an
intense spiritual experience. Perhaps it was the old Jansenist antiscience
creed that was building up in him, but for whatever the reason, Pascal’s
newfound devotion led him to abandon mathematics and science altogether.
(He made an exception for a brief time four years later, when he was unable
to sleep owing to illness. He started doing mathematics and the pain eased.
Pascal believed that this was a sign that God was not displeased with his
studies.) He became a theologian—but he could not escape his profane past.
Even when it came to arguing about God’s existence, he kept coming back
to those crass gambling Frenchmen. Pascal argued that it was best to
believe in God, because it was a good bet. Literally.



Just as he analyzed the value—or expectation—of a gamble, Pascal
analyzed the value of accepting Christ as savior. Thanks to the mathematics
of zero and infinity, Pascal concluded that one should assume that God
exists.

Before considering the wager itself, it is easy to analyze a slightly
different game. Imagine that there are two envelopes, marked A and B.
Before you are shown the envelopes, a flip of the coin determined which
envelope has money in it. If the coin toss was a heads, A has a brand-new
$100 bill inside. If the coin came up tails, B has the money—but this time,
it’s $1,000,000. Which envelope should you choose?

B, obviously! Its value is much greater. It is not difficult to show this
using a tool from probability theory called an expectation, which is a
measure of how much we expect each envelope to be worth.

Envelope A might or might not have a $100 bill in it; it has some value,
because it might have money in it, but it isn’t worth as much as $100,
because you’re not absolutely sure that it contains anything. In fact a
mathematician would add up all of the possible contents of envelope A and
then multiply by the probability of each outcome:

The mathematician would conclude that the expected value of the envelope
is $50. At the same time, the expected value of envelope B is:



So the expected value of B is $500,000—10,000 times as much as the
expected value of envelope A. Clearly, if you are offered a choice between
the two envelopes, the smart thing to do is to choose B.

Pascal’s wager is exactly like this game, except that it uses a different
set of envelopes: Christian and atheist. (Actually, Pascal only analyzed the
Christian case, but the atheist case is the logical extension.) For the sake of
argument, imagine for the moment that there’s a 50-50 chance that God
exists. (Pascal assumed that it would be the Christian God, of course.) Now,
choosing the Christian envelope is equivalent to choosing to be a devout
Christian. If you happen to choose this path, there are two possibilities. If
you are a faithful Christian and there is no God, you just fade into
nothingness when you die. But if there is a God, you go to heaven and live
for eternity in bliss: infinity. So the expected value of being a Christian is:

After all, half of infinity is still infinity. Thus, the value of being a Christian
is infinite. Now what happens if you are an atheist? If you are correct—
there is no God—you gain nothing from being right. After all, if there is no
God, there is no heaven. But if you are wrong and there is a God, you go to
hell for an eternity: negative infinity. So the expected value of being an
atheist is:

Negative infinity. The value is as bad as you can possibly get. The wise
person would clearly choose Christianity instead of atheism.



But we made an assumption here—that there is a 50-50 chance that God
exists. What happens if there is only a 1/1000 chance? The value of being a
Christian would be:

It’s still the same: infinite, and the value of being an atheist is still negative
infinity. It’s still much better to be a Christian. If the probability is 1/10,000
or 1/1,000,000 or one in a gazillion, it comes out the same. The only
exception is zero.

If there is no chance that God exists, Pascal’s wager—as it came to be
known—makes no sense. The expected value of being a Christian would
then be 0 ×?, and that was gibberish. Nobody was willing to say that there
was zero chance that God exists. No matter what your outlook, it is always
better to believe in God, thanks to the magic of zero and infinity. Certainly
Pascal knew which way to wager, even though he gave up mathematics to
win his bet.



Chapter 5
Infinite Zeros and Infidel Mathematicians

[ZERO AND THE SCIENTIFIC REVOLUTION]

With the introduction of…the infinitely small and infinitely large,
mathematics, usually so strictly ethical, fell from grace…. The virgin
state of absolute validity and irrefutable proof of everything
mathematical was gone forever; the realm of controversy was
inaugurated, and we have reached the point where most people
differentiate and integrate not because they understand what they
are doing but from pure faith, because up to now it has always come
out right.

—FRIEDRICH ENGELS, ANTI-DUHRING

Zero and infinity had destroyed the Arisotelian philosophy; the void and
the infinite cosmos had eliminated the nutshell universe and the idea of
nature’s abhorrence of the vacuum. The ancient wisdom was discarded, and
scientists began to divine the laws that governed the workings of nature.
However, there was a problem with the scientific revolution: zero.

Deep within the scientific world’s powerful new tool—calculus—was a
paradox. The inventors of calculus, Isaac Newton and Gottfried Wilhelm
Leibniz, created the most powerful mathematical method ever by dividing
by zero and adding an infinite number of zeros together. Both acts were as



illogical as adding 1 + 1 to get 3. Calculus, at its core, defied the logic of
mathematics. Accepting it was a leap of faith. Scientists took that leap, for
calculus is the language of nature. To understand that language completely,
science had to conquer the infinite zeros.

The Infinite Zeros

When, after a thousand-year stupor, European thought shook off the
effect of the sleeping powders so skilfully administered by the
Christian Fathers, the problem of infinity was one of the first to be
revived.

—TOBIAS DANZIG, NUMBER: THE LANGUAGE OF SCIENCE

Zeno’s curse hung over mathematics for two millennia. Achilles seemed
doomed to chase the tortoise forever, never catching up. Infinity lurked in
Zeno’s simple riddle. The Greeks were stumped by Achilles’ infinite steps.
They never considered adding infinite parts together even though Achilles’
strides approach zero size; the Greeks could hardly add steps of zero size
together without the concept of zero. However, once the West embraced
zero, mathematicians began to tame the infinite and ended Achilles’ race.

Even though Zeno’s sequence has infinite parts, we can add all of the
steps together and still stay within the realm of the finite: 1 + ½ + ¼ + 1/8 +
1/16 +…= 2. The first person to do this sort of trick—adding infinite terms
to get a finite result—was the fourteenth-century British logician Richard
Suiseth. Suiseth took an infinite sequence of numbers: ¼, 2/4, 3/8, 4/16,…,
n/2n,…, and added them all together, yielding two. After all, the numbers in
the sequence get closer and closer to zero; naively, one would guess that
this would ensure that the sum remains finite. Alas, the infinite is not quite
that simple.

At about the same time Suiseth was writing, Nicholas Oresme, a French
mathematician, tried his hand at adding together another infinite sequence
of numbers—the so-called harmonic series:



½ + 1/3 + ¼ + 1/5 + 1/6 +…

Like the Zeno sequence and Suiseth’s sequence, all the terms get closer and
closer to zero. However, when Oresme tried to sum the terms in the
sequence, he realized that the sums got larger and larger and larger. Even
though the individual terms go to zero, the sum goes off to infinity. Oresme
showed this by clumping the terms together: ½ + (1/3 + ¼) + (1/5 + 1/6 + 1/7
+ 1/8) +…. The first group clearly equals ½; the second group is greater
than (¼ + ¼), or ½. The third group is greater than (1/8 + 1/8 + 1/8 + 1/8), or
½. And so forth. You keep adding ½ after ½ after ½, and the sum gets
bigger and bigger, and off to infinity. Even though the terms themselves go
to zero, they don’t approach zero fast enough. An infinite sum of numbers
can be infinite, even if the numbers themselves approach zero. Yet this isn’t
the strangest aspect of infinite sums. Zero itself is not immune to the bizarre
nature of infinity.

Consider the following series: 1 – 1 + 1 – 1 + 1 – 1 + 1 – 1 + 1 –…. It’s
not so hard to show that this series sums to zero. After all,

(1 – 1) + (1 – 1) + (1 – 1) + (1 – 1) + (1 – 1) + (1 – 1) +…

is the same thing as

0 + 0 + 0 + 0 + 0 + 0 +…

which clearly sums to zero. But beware! Group the series in a different way:

1 + (-1 + 1) + (-1 + 1) + (-1 + 1) + (-1 + 1) + (-1 + 1) +…

is the same thing as

1 + 0 + 0 + 0 + 0 + 0 +…

which clearly sums to one. The same infinite sum of zeros can equal 0 and
1 at the same time. An Italian priest, Father Guido Grandi, even used this
series to prove that God could create the universe (1) out of nothing (0). In
fact, the sequence can be set to equal anything at all. To make the sum equal



5, start with 5s and -5s instead of 1s and -1s, and we can show that 0 + 0 + 0
+ 0 +…equals 5.

Adding infinite things to each other can yield bizarre and contradictory
results. Sometimes, when the terms go to zero, the sum is finite, a nice,
normal number like 2 or 53. Other times the sum goes off to infinity. And
an infinite sum of zeros can equal anything at all—and everything at the
same time. Something very bizarre was going on; nobody knew quite how
to handle the infinite.

Luckily the physical world made a little more sense than the
mathematical one. Adding infinite things to each other seems to work out
most of the time, so long as you are dealing with something in real life, like
finding the volume of a barrel of wine. And 1612 was a banner year for
wine.

Johannes Kepler—the man who figured out that planets move in
ellipses—spent that year gazing into wine barrels, since he realized that the
methods that vintners and coopers used to estimate the size of barrels were
extremely crude. To help the wine merchants out, Kepler chopped up the
barrels—in his mind—into an infinite number of infinitely tiny pieces, and
then added them back together again to yield their volumes. This may seem
a backward way of going about measuring barrels, but it was a brilliant
idea.

To make the problem a bit simpler, let us consider a two-dimensional
object rather than a three-dimensional one—a triangle. The triangle in
Figure 23 has a height of 8 and a base of 8; since the area of a triangle is
half the base times the height, the area is 32.

Now imagine trying to estimate the size of the triangle by inscribing
little rectangles inside the triangle. For a first try, we get an area of 16, quite
short of the actual value of 32. The second try is a bit better; with three
rectangles, we get a value of 24. Closer, but still not there yet. The third try
gives us 28—closer still. As you can see, making smaller and smaller
rectangles—whose widths, denoted by the symbol ?x, go to zero—makes
the value closer and closer to 32, the true value for the area of the triangle.
(The sum of these rectangles is equal to ?f(x)?x where the Greek ?



represents the sum over an appropriate range and f(x) is the equation of the
curve that the rectangles strike. In modern notation, as ?x goes to zero, we
replace the ? with a new symbol, , and ?x with dx, turning the equation into
 f(x) dx, which is the integral.)

Figure 23: Estimating the area of a triangle

In one of Kepler’s lesser-known works, Volume-Measurement of
Barrels, he does this in three dimensions, slicing barrels into planes and
summing the planes together. Kepler, at least, wasn’t afraid of a glaring
problem: as ?x goes to zero, the sum becomes equivalent to adding an
infinite number of zeros together—a result that makes no sense. Kepler
ignored the problem; though adding infinite zeros together was gibberish
from a logical point of view, the answer it yielded was the right one.

Kepler was not the only prominent scientist who sliced objects infinitely
thin. Galileo, too, pondered infinity and these infinitely small slices of area.
These two ideas transcend our finite understanding, he wrote, “the former
on account of their magnitude, the latter because of their smallness.” Yet
despite the deep mystery of the infinite zeros, Galileo sensed their power.



“Imagine what they are when combined,” he wondered. Galileo’s student
Bonaventura Cavalieri would provide part of the answer.

Instead of barrels, Cavalieri cut up geometric objects. To Cavalieri,
every area, like that of the triangle, is made up of an infinite number of
zero-width lines, and a volume is made up of an infinite number of zero-
height planes. These indivisible lines and planes are like atoms of area and
volume; they can’t be divided any further. Just as Kepler measured the
volumes of barrels with his thin slices, Cavalieri added up an infinite
number of these indivisible zeros to figure out the area or the volume of a
geometric object.

For geometers, Cavalieri’s statement was troublesome indeed; adding
infinite zero-area lines could not yield a two-dimensional triangle, nor could
infinite zero-volume planes add up to a three-dimensional structure. It was
the same problem: infinite zeros make no logical sense. However,
Cavalieri’s method always gave the right answer. Mathematicians ignored
the logical and philosophical troubles with adding infinite zeros—especially
since indivisibles or infinitesimals, as they came to be called, finally solved
a long-standing puzzle: the problem of the tangent.

A tangent is a line that just kisses a curve. For any point along a smooth
curve that flows through space, there is a line that just grazes the curve,
touching at exactly one point. This is the tangent, and mathematicians
realized that it is extremely important in studying motion. For instance,
imagine swinging a ball on a string around your head. It’s traveling in a
circle. However, if you suddenly cut the string, the ball will fly off along
that tangent line; in the same way, a baseball pitcher’s arm travels in an arc
as he throws, but as soon as he lets go, the ball flies off on the tangent
(Figure 24). As another example, if you want to find out where a ball will
come to rest at the bottom of a hill, you look for a point where the tangent
line is horizontal. The steepness of the tangent line—its slope—has some
important properties in physics: for instance, if you’ve got a curve that
represents the position of, say, a bicycle, then the slope of the tangent line to
that curve at any given point tells you how fast that bicycle is going when it
reaches that spot.



Figure 24: Flying off at a tangent

For this reason, several seventeenth-century mathematicians—like
Evangelista Torricelli, René Descartes, the Frenchman Pierre de Fermat
(famous for his last theorem), and the Englishman Isaac Barrow—created
different methods for calculating the tangent line to any given point on a
curve. However, like Cavalieri, all of them came up against the
infinitesimal.

To draw a tangent line at any given point, it’s best to make a guess.
Choose another point nearby and connect the two. The line you get isn’t
exactly the tangent line, but if the curve isn’t too bumpy, the two lines will
be pretty close. As you reduce the distance between the points, the guess
gets closer to the tangent line (Figure 25). When your points are zero
distance away from each other, your approximation is perfect: you have
found the tangent. Of course, there’s a problem.



Figure 25: Approximating the tangent

The most important property of a line is its slope, and to measure this,
mathematicians look at how high a line rises in a certain amount of
distance. As an example, imagine you are driving east on a hill; for every
mile east you drive, you gain half a mile in altitude. The slope of the hill is
simply the height—half a mile—over the horizontal distance you have
driven—one mile. Mathematicians say that the slope of the hill is ½. The
same thing is true for lines; to measure the slope of a line, you look at how
much the line rises (which mathematicians denote by the symbol ?y) in a
given horizontal distance (which is denoted by ?x). The slope of the line is ?
y/?x.

When you try to calculate the slope of a tangent line, zero wrecks your
approximation process. As your approximations of the tangent lines get
better and better, the points on the curve you use to create the
approximations get closer together. This means that the difference in height,
?y, goes to zero, as does the horizontal distance between the points, ?x. As
your tangent approximations get better and better, ?y/?x approaches 0/0.
Zero divided by zero can equal any number in the universe. Does the slope
of the tangent line have any meaning?

Every time mathematicians tried to deal with the infinite or with zero,
they encountered trouble with illogic. To figure out the volume of a barrel
or the area under a parabola, mathematicians added infinite zeros together;
to find out the tangent of a curve, they divided zero by itself. Zero and
infinity made the simple acts of taking tangents and finding areas appear to
be self-contradictory. These troubles would have ended as an interesting
footnote but for one thing: these infinities and zeros are the key to
understanding nature.

Zero and the Mystical Calculus

If we lift the veil and look underneath…we shall discover much
emptiness, darkness, and confusion; nay, if I mistake not, direct
impossibilities and contradictions…. They are neither finite



quantities, nor quantities infinitely small, nor yet nothing. May we
not call them the ghosts of departed quantities?

—BISHOP BERKELEY, THE ANALYST

The tangent problem and the area problem both ran afoul of the same
difficulties with infinities and zeros. It’s no wonder, because the tangent
problem and the area problem are actually the same thing. They are both
aspects of calculus, a scientific tool far more powerful than anything ever
seen before. The telescope, for instance, had given scientists the ability to
find moons and stars that had never been observed before. Calculus, on the
other hand, gave scientists a way to express the laws that govern the motion
of the celestial bodies—and laws that would eventually tell scientists how
those moons and stars had formed. Calculus was the very language of
nature, yet its very fabric was infused with zeros and infinities that
threatened to destroy the new tool.

The first discoverer of calculus nearly died before he ever took a breath.
Born prematurely on Christmas Day in 1642, Isaac Newton squirmed into
the world, so small that he was able to fit into a quart pot. His father, a
farmer, had died two months earlier.

Despite a traumatic childhood* and a mother who wanted him to
become a farmer, Newton enrolled in Cambridge in the 1660s—and
flourished. Within a few years he developed a systematic method of solving
the tangent problem; he could figure out the tangent to any smooth curve at
any point. This process, the first half of calculus, is now known as
differentiation; however, Newton’s method of differentiation doesn’t look
very much like the one we use today.

Newton’s style of differentiation was based upon fluxions—the flows—
of mathematical expressions that he called fluents. As an example of
Newton’s fluxions, take the equation

y = x2 + x + 1

In this equation, the fluents are y and x; Newton supposed that y and x are
changing, or flowing, as time progresses. Their rates of change—their



fluxions—are denoted by  and  respectively.

Newton’s method of differentiation was based on a notational trick: he
let the fluxions change, but he only let them change infinitesimally.
Essentially, he gave them no time to flow. In Newton’s notation, y would
change in that instant to (y + o ) while x changes to (x + o ). (The letter o
represented the amount of time that had passed; it was almost a zero, but
not quite, as we shall see.) The equation then becomes

Multiplying out the (x + o )2 term gives us

Rearranging the terms yields

Since y = x2 + x + 1, we can subtract y from the left side of the equation and
x2 + x + 1 from the right side of the equation and leave the system
unchanged. That leaves us with

Now comes the dirty trick. Newton declared that since o  was really, really
small, (o )2 was even smaller: it vanished. In essence, it was zero, and could
be ignored. That gives us

which means that o /o  = 2x + 1, which is the slope of the tangent line at
any point x on the curve (Figure 26). The infinitesimal time period o drops
right out of the equation, o /o  becomes / , and o need never be thought of
again.

The method gave the right answer, but Newton’s vanishing act was very
troubling. If, as Newton insisted, (o )2 and (o )3 and higher powers of o
were equal to zero, then o  itself must be equal to zero.* On the other hand,
if o  was zero, then dividing by o  as we do toward the end is the same



thing as dividing by zero—as is the very last step of getting rid of the o in
the top and bottom of the o /o  expression. Division by zero is forbidden by
the logic of mathematics.

Figure 26: To find the slope at a point on the parabola y=x2 + x + 1, use
the formula 2x + 1.

Newton’s method of fluxions was very dubious. It relied upon an illegal
mathematical operation, but it had one huge advantage. It worked. The
method of fluxions not only solved the tangent problem, it also solved the
area problem. Finding the area under a curve (or a line, which is a type of
curve)—an operation we now call integration—is nothing more than the
reverse of differentiation. Just as differentiating the curve y = x2 + x + 1
gives you an equation for the slope of the tangent—y = 2x + 1—integrating
the curve y = 2x + 1 gives you a formula for the area under the curve. This
formula is y = x2 + x + 1; the area underneath the curve between the
boundaries x = a and x = b is simply (b2 + b + 1) - (a2 + a + 1) (Figure 27).
(Technically, the formula is y = x2 + x + c, where c is any constant you



choose. The process of differentiation destroys information, so the process
of integration doesn’t give you exactly the answer you are looking for
unless you add another bit of information.)

Calculus is the combination of these two tools, differentiation and
integration, in one package. Though Newton broke some very important
mathematical rules by toying with the powers of zero and infinity, calculus
was so powerful that no mathematician could reject it.

Nature speaks in equations. It is an odd coincidence. The rules of
mathematics were built around counting sheep and surveying property, yet
these very rules govern the way the universe works. Natural laws are
described with equations, and equations, in a sense, are simply tools where
you plug in numbers and get another number out. The ancients knew a few
of these equation-laws, like the law of the lever, but with the beginning of
the scientific revolution these equation-laws sprang up everywhere.
Kepler’s third law described the time it takes for planets to complete an
orbit: r3/t2 = k for time t, distance r, and a constant k. In 1662, Robert Boyle
showed that if you take a sealed container with a gas in it, squishing the
container would increase the pressure inside: pressure p times volume v was
always a constant—pv = k for a constant k. In 1676, Robert Hooke figured
out that the force exerted by a spring, f, was a negative constant, –k,
multiplied by the distance, x, that you’ve stretched it: f =-kx. These early
equation-laws were extremely good at expressing simple relationships, but
equations have limitations—their constancy, which prevented them from
being universal laws.



Figure 27: To find the area under the line y = 2x + 1, use the formula x2 + x
+ 1.

As an example, let’s take the famous equation we all learned in high
school: rate times time equals distance. It shows how far you get, x miles,
when you run with a certain velocity, v miles per hour, for a time, t hours: vt
= x; after all, miles per hour times hours equals miles. This equation is very
useful when you are calculating how long it will take to get from New York
to Chicago on a train that moves exactly 120 miles an hour. But how many
things really move at a constant rate like a train in a math problem? Drop a
ball, and it moves faster and faster; in this case, x = vt is quite simply
wrong. For the case of a dropped ball, x = gt2/2, where g is the acceleration
due to gravity. On the other hand, if you’ve got an increasing force on the
ball, x might equal something like t3/3. Rate times time equals distance is
not a universal law; it doesn’t apply under all conditions.

Calculus allowed Newton to combine all these equations into one grand
set of laws—laws that applied in all cases, under all conditions. For the first



time, science could see the universal laws that underlie all of these little half
laws. Even though mathematicians knew that calculus was deeply flawed—
thanks to the mathematics of zero and infinity—they quickly embraced the
new mathematical tools. For the truth is, nature doesn’t speak in ordinary
equations. It speaks in differential equations, and calculus is the tool that
you need to pose and solve these differential equations.

Differential equations are not like the everyday equations that we are all
familiar with. An everyday equation is like a machine; you feed numbers
into the machine and out pops another number. A differential equation is
also like a machine, but this time you feed equations into the machine and
out pop new equations. Plug in an equation that describes the conditions of
the problem (is the ball moving at a constant rate, or is a force acting on the
ball?) and out pops the equation that encodes the answer that you seek (the
ball moves in a straight line or in a parabola). One differential equation
governs all of the uncountable numbers of equation-laws. And unlike the
little equation-laws that sometimes hold and sometimes don’t, the
differential equation is always true. It is a universal law. It is a glimpse at
the machinery of nature.

Newton’s calculus—his method of fluxions—did just this by tying
together concepts like position, velocity, and acceleration. When Newton
denoted position with the variable x, he realized that velocity is simply the
fluxion—what modern mathematicians call the derivative—of x:  And
acceleration is nothing more than the derivative of velocity,  Going from
position to velocity to acceleration and back again is as simple as
differentiating (adding another dot) or integrating (removing a dot). With
that notation in hand, Newton was able to create a simple differential
equation that describes the motion of all objects in the universe: F = m
where F is the force on an object and m is its mass. (Actually, this is not
quite a universal law, as the equation only holds when the mass of an object
is constant. The more general version of Newton’s law is F =  where p is
an object’s momentum. Of course, Newton’s equations were eventually
refined further by Einstein.) If you’ve got an equation that tells you about
the force that is being applied on an object, the differential equation reveals
exactly how the object moves. For instance, if you have a ball in free fall, it
moves in a parabola, while a frictionless spring wobbles back and forth



forever, and a spring with friction slowly comes to rest (Figure 28). As
different as these outcomes seem, they are all governed by the same
differential equation.

Likewise, if you know the way an object moves—whether it be a toy
ball or a giant planet—the differential equation can tell you what kind of
force is being applied. (Newton’s triumph was taking the equation that
described the force of gravity and figuring out the shapes of the planets’
orbits. People had suspected that the force was proportional to 1/r2, and
when ellipses popped right out of Newton’s differential equations, people
began to believe that Newton was correct.) Despite the power of calculus,
the key problem remained. Newton’s work was based on a very shaky
foundation—dividing zero by itself. His rival’s work had the same flaw.



Figure 28: Different motions, all governed by the same differential equation

In 1673 an esteemed German lawyer and philosopher visited London.
His name was Gottfried Wilhelm Leibniz. He and Newton would tear the
scientific world asunder, though neither would solve the problem of the
zeros that suffused calculus.

Nobody knows whether the thirty-three-year-old Leibniz encountered
Newton’s unpublished work during his trip to England. But between 1673
and 1676, when Leibniz next visited London, he, too, had developed
calculus, although in a slightly different form.

Looking back, it appears that Leibniz formulated his version
independently of Newton, though the matter is still being debated. The two
had a correspondence in the 1670s, making it very difficult to establish how
they influenced each other. However, though the two theories came up with
the same answers, their notations—and their philosophies—were very
different.

Newton disliked infinitesimals, the little os in his fluxion equations that
sometimes acted like zeros and sometimes like nonzero numbers. In a sense
these infinitesimals were infinitely small, smaller than any positive number
you could name, yet still somehow greater than zero. To the mathematicians
of the time, this was a ridiculous concept. Newton was embarrassed by the
infinitesimals in his equations, and he swept them under the rug. The os in
his calculations were only intermediaries, crutches that vanished
miraculously by the end of the computation. On the other hand, Leibniz
reveled in the infinitesimal. Where Newton wrote o  Leibniz wrote dx—an
infinitesimally tiny little piece of x. These infinitesimals survived
unchanged throughout Leibniz’s calculations; indeed the derivative of y
with respect to x was not the infinitesimal-free ratio of fluxions /  but the
ratio of infinitesimals dy/dx.

With Leibniz’s calculus, these dys and dxs can be manipulated just like
ordinary numbers, which is why modern mathematicians and physicists
usually use Leibniz’s notation rather than Newton’s. Leibniz’s calculus had
the same power as Newton’s, and thanks to its notation, even a bit more.



Nevertheless, underneath all the mathematics, Leibniz’s differentials still
had the same forbidden 0/0 nature that plagued Newton’s fluxions. As long
as this flaw remained, calculus would be based upon faith rather than logic.
(In fact, faith was very much on Leibniz’s mind when he derived new
mathematics, such as the binary numbers. Any number can be written as a
string of zeros and ones; to Leibniz, this was the creation ex nihilo, the
creation of the universe out of nothing more than God/1 and void/0. Leibniz
even tried to get the Jesuits to use this knowledge to convert the Chinese to
Christianity.)

It would be many years before mathematicians began to free calculus
from its mystical underpinnings, for the mathematical world was busy
fighting over who invented calculus.

There is little doubt that Newton came up with the idea first—in the
1660s—but he did not publish his work for 20 years. Newton was a
magician, theologian, and alchemist as well as a scientist (for instance, he
used biblical texts to conclude that the second coming of Christ would
occur around 1948) and many of his views were heretical. As a result, he
was secretive and reluctant to reveal his work. In the meantime, while
Newton sat upon his discovery, Leibniz developed his own calculus. The
two promptly accused each other of plagiarism, and the English
mathematical community, which backed Newton, pulled away from the
Continental mathematicians, who supported Leibniz. As a result, the
English stuck to Newton’s fluxion notation rather than adopting Leibniz’s
superior differential notation—cutting off their noses to spite their faces.
English mathematicians fell far behind their Continental counterparts when
it came to developing calculus.

A Frenchman, not an Englishman, would be remembered for taking the
first nibble at the mysterious zeros and infinities that suffused calculus;
mathematicians learn of l’Hôpital’s rule when they first learn about
calculus. Oddly enough, it was not l’Hôpital who came up with the rule that
bears his name.

Born in 1661, Guillaume-François-Antoine de l’Hôpital was a marquis
—and was thus very wealthy. He had an early interest in mathematics, and



though he spent some time in the army, becoming a cavalry captain, he soon
turned back to his true love of math.

L’Hôpital bought himself the best teacher that money could buy: Johann
Bernoulli, a Swiss mathematician and one of the early masters of Leibniz’s
calculus of infinitesimals. In 1692, Bernoulli taught l’Hôpital calculus.
L’Hôpital was so enthralled by the new mathematics that he persuaded
Bernoulli to send him all Bernoulli’s new mathematical discoveries for the
marquis to use as he desired, in return for cash. The result was a textbook.
In 1696, l’Hôpital’s Analyse des infiniment petits became the first textbook
on calculus and introduced much of Europe to the Leibnizian version. Not
only did l’Hôpital explain the fundaments of calculus in his textbook, he
also included some exciting new results. The most famous is known as
l’Hôpital’s rule.

L’Hôpital’s rule took the first crack at the troubling 0/0 expressions that
were popping up throughout calculus. The rule provided a way to figure out
the true value of a mathematical function that goes to 0/0 at a point.
L’Hôpital’s rule states that the value of the fraction was equal to the
derivative of the top expression divided by the derivative of the bottom
expression. For instance, consider the expression x/(sin x) when x = 0; x =
0, as does sin x, so the expression is equal to 0/0. Using L’Hopital’s rule, we
see that the expression goes to 1/(cos x), as 1 is the derivative of x and cos x
is the derivative of sin x. Cos x = 1 when x = 0, so the whole expression
equals 1/1 = 1. Clever manipulations could also bring l’Hopital’s rule to
resolve other odd expressions: ?/?, 00, 0?, and ?0.

All of these expressions, but especially 0/0, could take on any value you
desire them to have, depending on the functions you put in the numerator
and denominator. This is why 0/0 is dubbed indeterminate. It was no longer
a complete mystery; mathematicians could extract some information about
0/0 if they approached it very carefully. Zero was no longer an enemy to be
avoided; it was an enigma to be studied.

Soon after l’Hôpital’s death in 1704, Bernoulli started implying that
l’Hôpital had stolen his work. At the time the mathematical community
rejected Bernoulli’s claims; not only had l’Hôpital proved himself an able
mathematician, but Johann Bernoulli had a tarnished reputation. He had



previously tried to claim credit for another mathematician’s proof. (The
other mathematician happened to be his brother, Jakob.) In this case,
though, Johann Bernoulli’s claim was justified. His correspondence with
l’Hôpital backs his story. Alas for Bernoulli, the name for l’Hôpital’s rule
stuck.

L’Hôpital’s rule was extremely important for resolving some of the
difficulties with 0/0, but the underlying problem remained. Newton’s and
Leibniz’s calculus depends upon dividing by zero—and on numbers that
miraculously disappear when you square them. L’Hôpital’s rule examines
0/0 with tools that were built upon 0/0 to begin with. It is a circular
argument. And as physicists and mathematicians all over the world were
beginning to use calculus to explain nature, cries of protest emanated from
the church.

In 1734, seven years after Newton’s death, an Irish bishop, George
Berkeley, wrote a book entitled The Analyst, Or a Discourse Addressed to
an Infidel Mathematician. (The mathematician in question was most likely
Edmund Halley, always a supporter of Newton.) In The Analyst, Berkeley
pounced on Newton’s (and Leibniz’s) dirty tricks with zeros.

Calling infinitesimals “ghosts of departed quantities,” Berkeley showed
how making these infinitesimals disappear with impunity can lead to a
contradiction. He concluded that “he who can digest a second or third
fluxion, a second or third difference, need not, methinks, be squeamish
about any point in divinity.”

Though mathematicians of the day sniped at Berkeley’s logic, the good
bishop was entirely correct. In those days calculus was very different from
other realms of mathematics. Every theorem in geometry had been
rigorously proved; by taking a few rules from Euclid and proceeding, very
carefully, step by step, a mathematician could show how a triangle’s angles
sum to 180 degrees, or any other geometric fact. On the other hand,
calculus was based on faith.

Nobody could explain how those infinitesimals disappeared when
squared; they just accepted the fact because making them vanish at the right
time gave the correct answer. Nobody worried about dividing by zero when



conveniently ignoring the rules of mathematics explained everything from
the fall of an apple to the orbits of the planets in the sky. Though it gave the
right answer, using calculus was as much an act of faith as declaring a belief
in God.

The End of Mysticism

A quantity is something or nothing; if it is something, it has not yet
vanished; if it is nothing, it has literally vanished. The supposition
that there is an intermediate state between these two is a chimera.

—JEAN LE ROND D’ALEMBERT

In the shadow of the French Revolution, the mystical was driven out of
calculus.

Despite calculus’s shaky foundations, by the end of the eighteenth
century, mathematicians all over Europe were having stunning successes
with the new tool. Colin Maclaurin and Brook Taylor, perhaps the best
British mathematicians in the era of isolation from the Continent,
discovered how to use calculus to rewrite functions in a totally different
form. For instance, after using some tricks in calculus, mathematicians
realized that the function 1/(1 – x) can be written as

1 + x + x2 + x3 + x4 + x5 +…

Though the two expressions look dramatically different, they are (with
some caveats) exactly the same.

Those caveats, which stem from the properties of zero and infinity, can
become very important, however. The Swiss mathematician Leonhard
Euler, inspired by calculus’s easy manipulation of zeros and infinities, used
similar reasoning as Taylor and Maclaurin and “proved” that the sum

…1/x3 + 1/x2 + 1/x + 1 + x + x2 + x3…

equals zero. (To convince yourself that something fishy is going on, plug in
the number 1 for x and see what happens.) Euler was an excellent



mathematician—in fact, he was one of the most prolific and influential in
history—but in this case the careless manipulation of zero and infinity led
him astray.

It was a foundling who finally tamed the zeros and infinities in calculus
and rid mathematics of its mysticism. In 1717 an infant was found on the
steps of the church of Saint Jean Baptiste le Rond in Paris. In memory of
that occasion, the child was named Jean Le Rond, and he eventually took
the surname d’Alembert. Though he was raised by an impoverished
working-class couple—his foster father was a glazier—it turns out that his
birth father was a general and his mother was an aristocrat.

D’Alembert is best known for his collaboration on the famed
Encyclopédie of human knowledge—a 20-year effort with coauthor Denis
Diderot. But d’Alembert was more than an encyclopedist. It was
d’Alembert who realized that it was important to consider the journey as
well as the destination. He was the one who hatched the idea of limit and
solved calculus’s problems with zeros.

Once again, let us consider the story of Achilles and the tortoise, which
is an infinite sum of steps that get closer and closer to zero. Manipulating an
infinite sum—whether it is in the Achilles problem or in finding the area
underneath a curve or finding an alternate form for a mathematical function
—caused mathematicians to come up with contradictory results.

D’Alembert realized that the Achilles problem vanishes if you consider
the limit of the race. In our example on page 41, at every step the tortoise
and Achilles get closer and closer to the two-foot mark. No step takes them
farther away or even keeps them at the same distance; each moment brings
them closer to that mark. Thus, the limit of that race—its ultimate
destination—is at the two-foot mark. This is where Achilles passes the
tortoise.

But how do you prove that two feet is actually the limit of the race? I
ask you to challenge me. Give me a tiny distance, no matter how small, and
I will tell you when both Achilles and the tortoise are less than that tiny
distance away from the limit.



As an example, let’s say that you challenge me with a distance of one-
thousandth of a foot. Well, a few calculations later, I would tell you that
after the 11th step, Achilles is 977 millionths of a foot away from the two-
foot mark, while the tortoise is half that distance away; I have met your
challenge with 23 millionths of a foot to spare. What if you challenged me
with a distance of one-billionth of a foot? After 31 steps, Achilles is 931
trillionths of a foot away from the target—69 trillionths closer than you
needed—while the tortoise, again, is half that distance away. No matter how
you challenge me, I can meet that challenge by telling you a time when
Achilles is closer to the mark than you require. This shows that, indeed,
Achilles is getting arbitrarily close to the two-foot mark as the race
progresses: two feet is the limit of the race.

Now, instead of thinking of the race as a sum of infinite parts, think of it
as a limit of finite sub-races. For instance, in the first race Achilles runs to
the one-foot mark. Achilles has run

1

1 foot in all. In the next race Achilles does the first two parts—first running
1 foot, and then a half foot. In total, Achilles has run

1 + ½

1.5 feet in all. The third race takes him as far as

1 + ½ + ¼

1.75 feet, all told. Each of these sub-races is finite and well-defined; we
never encounter an infinity.

What d’Alembert did informally—and what the Frenchman Augustin
Cauchy, the Czech Bernhard Bolzano, and the German Karl Weierstrass
would later formalize—was to rewrite the infinite sum

1 + ½ + ¼ + 1/8 +…+ ½n +…

as the expression



limit (as n goes to ?) of 1 + ½ + ¼ + 1/8 +…+ ½n

 

It’s a very subtle change in notation, but it makes all the difference in the
world.

When you have an infinity in an expression, or when you divide by
zero, all the mathematical operations—even those as simple as addition,
subtraction, multiplication, and division—go out the window. Nothing
makes sense any longer. So when you deal with an infinite number of terms
in a series, even the + sign doesn’t seem so straightforward. That is why the
infinite sum of +1 and -1 we saw at the beginning of the chapter seems to
equal 0 and 1 at the same time.

However, by putting this limit sign in front of a series, you separate the
process from the goal. In this way you avoid manipulating infinities and
zeros. Just as Achilles’ sub-races are each finite, each partial sum in a limit
is finite. You can add them, divide them, square them; you can do whatever
you want. The rules of mathematics still work, since everything is finite.
Then, after all your manipulations are complete, you take the limit: you
extrapolate and figure out where the expression is headed.

Sometimes that limit doesn’t exist. For instance, the infinite sum of +1
and -1 does not have a limit. The value of the partial sums flips back and
forth between 1 and 0; it’s not really heading to a predictable destination.
But with Achilles’ race, the partial sums go from 1 to 1.5 to 1.75 to 1.875 to
1.9375 and so forth; they get closer and closer to two. The sums have a
destination—a limit.

The same thing goes for taking the derivative. Instead of dividing by
zero as Newton and Leibniz did, modern mathematicians divide by a
number that they let approach zero. They do the division—perfectly legally,
since there are no zeros—then they take the limit. The dirty tricks of
making squared infinitesimals disappear and then dividing by zero to get a
derivative were no longer necessary (see appendix C).



This logic may seem like splitting hairs, like an argument as mystical as
Newton’s “ghosts,” but in reality it’s not. It satisfies the mathematician’s
strict requirement of logical rigor. There is a very firm, consistent basis for
the concept of limits. Indeed, you can even dispense with the “I challenge
you” argument entirely, as there are other ways of defining a limit, such as
calling it the convergence of two numbers, the lim sup and lim inf. (I have a
wonderful proof of this, but alas, this book is too small to contain it.) Since
limits are logically airtight, by defining a derivative in terms of limits, it
becomes airtight as well—and puts calculus on a solid foundation.

No longer was it necessary to divide by zeros. Mysticism vanished from
the realm of mathematics and logic ruled once more. The peace lasted until
the Reign of Terror.



Chapter 6
Infinity’s Twin

[THE INFINITE NATURE OF ZERO]

God made integers; all else is the work of man.
—LEOPOLD KRONECKER

Zero and infinity always looked suspiciously alike. Multiply zero by
anything and you get zero. Multiply infinity by anything and you get
infinity. Dividing a number by zero yields infinity; dividing a number by
infinity yields zero. Adding zero to a number leaves the number unchanged.
Adding a number to infinity leaves infinity unchanged.

These similarities were obvious since the Renaissance, but
mathematicians had to wait until the end of the French Revolution before
they finally unraveled zero’s big secret.

Zero and infinity are two sides of the same coin—equal and opposite,
yin and yang, equally powerful adversaries at either end of the realm of
numbers. The troublesome nature of zero lies with the strange powers of the
infinite, and it is possible to understand the infinite by studying zero. To
learn this, mathematicians had to venture into the world of the imaginary, a
bizarre world where circles are lines, lines are circles, and infinity and zero
sit on opposite poles.



The Imaginary

…a fine and wonderful refuge of the divine spirit—almost an
amphibian between being and non-being.

—GOTTFRIED WILHELM LEIBNIZ

Zero is not the only number that was rejected by mathematicians for
centuries. Just as zero suffered from Greek prejudice, other numbers were
ignored as well, numbers that made no geometric sense. One of these
numbers, i, held the key to zero’s strange properties.

Algebra presented another way of looking at numbers, entirely divorced
from the Greek geometric ideas. Instead of trying to measure the area inside
a parabola as the Greeks did, early algebraists sought to find the solutions to
equations that encode relationships between different numbers. For
instance, the simple equation 4x - 12 = 0 describes how an unknown
number x is related to 4, 12, and 0. The task of the algebra student is to
figure out what number x is. In this case x is 3. Substitute 3 for x in the
above equation and you will quickly see that the equation is satisfied; 3 is a
solution for the equation 4x - 12 = 0. In other words, 3 is a zero or a root of
the expression 4x - 12.

When you start stringing symbols together to get equations, you can
wind up with something unexpected. For instance, take the above equation
and change the - sign into a + sign. This leaves us with a very innocent-
looking equation, 4x + 12 = 0, but the solution to that equation is now - 3, a
negative number.

Just as Indian mathematicians accepted zero while Europeans rejected it
for centuries, the East embraced negative numbers while the West tried to
ignore them. As late as the seventeenth century, Descartes refused to accept
negative numbers as roots of equations. He called them “false roots,” which
explains why he never extended his coordinate system to the negative
numbers. Descartes was a late holdover, a victim of his success in marrying
algebra to geometry. Negative numbers had long been useful to algebraists
—even Western algebraists. Negative numbers came up all the time in
solving equations, such as quadratic equations.



A linear equation like 4x - 12 = 0 is extremely simple to solve, and such
problems didn’t entertain algebraists for very long. So they soon turned to
more difficult problems: quadratic equations—equations that begin with an
x2 term, like x2 - 1 = 0. Quadratic equations are more complicated than
regular equations; for one thing, they can have two different roots. For
instance, x2 - 1 = 0 has two solutions: 1 and -1. (Substitute -1 or 1 for x in
the equation and you’ll see what happens.) Either one of those solutions
works; as it turns out, the expression x2 - 1 splits into (x - 1)(x + 1), making
it easy to see that if x is 1 or -1, the expression goes to zero.

Though quadratic equations are more complicated than linear equations,
there is a simple way to figure out what the roots of a quadratic equation
are. It’s the famous quadratic formula, which is the crowning achievement
of high-school algebra class. The formula for finding the roots of a
quadratic equation ax2 + bx + c = 0 is: . The + sign gives us
one root, while the - sign gives us the other. The quadratic formula has been
known for centuries; the ninth-century mathematician al-Khowarizmi knew
how to solve almost every quadratic equation, though he didn’t seem to
consider negative numbers as roots. Not long after that, algebraists learned
to accept negative numbers as valid solutions to equations. Imaginary
numbers, though, were a little different.

Imaginary numbers never appeared in linear equations, but they began
to crop up in quadratic ones. Consider the equation x2 + 1 = 0. No number
seems to solve the equation; plugging in –1, 3, –750, 235.23, or any other
positive or negative number you could think of doesn’t yield the correct
answer. The expression simply will not split. Worse yet, when you try to
apply the quadratic equation, you get two silly-sounding answers:

These expressions don’t seem to make any sense. The Indian
mathematician Bhaskara wrote in the twelfth century that “there is no
square root of a negative number, for a negative number is not a square.”
What Bhaskara and others realized was that when you square a positive
number, you get a positive number back; 2 times 2 equals 4, for instance.
When you square a negative number, you still get a positive number: –2



times –2 also equals 4. When you square zero, you get zero. Positive
numbers, negative numbers, and zero all give you nonnegative squares, and
those three possibilities cover the whole number line. This means that there
is no number on the number line that gives you a negative number when
you square it. The square root of a negative number seemed like a
ridiculous concept.

Descartes thought that these numbers were even worse than negative
numbers; he came up with a scornful name for the square roots of
negatives: imaginary numbers. The name stuck, and eventually, the symbol
for the square root of –1 became i.

Algebraists loved i. Almost everyone else hated it. It was wonderful for
solving polynomials—expressions like x3 + 3x + 1 that have x raised to
various powers. In fact, once you allow i into the realm of numbers, every
polynomial becomes solvable: x2 + 1 suddenly splits into (x - i)(x + i)—the
roots of the equation are +i and -i. Cubic expressions like x3 - x2 + x - 1 split
three ways, such as (x - 1)(x + i)(x - i). Quartic expressions—ones with a
leading x4 term—always split into four terms, and quintics—ones with a
leading x5 term—split five ways. All polynomials of degree n—those that
have a leading term of xn—split into n distinct terms. This is the
fundamental theorem of algebra.

As early as the sixteenth century, mathematicians were using numbers
with i included—the so-called complex numbers—to solve cubic and
quartic polynomials. And while many mathematicians saw the complex
numbers as a convenient fiction, others saw God.

Leibniz thought that i was a bizarre mix between existence and
nonexistence, something like a cross between 1 (God) and 0 (Void) in his
binary scheme. Leibniz likened i to the Holy Spirit: both have an ethereal
and barely substantial existence. But even Leibniz didn’t realize that i
would finally reveal the relationship between zero and infinity. It would
take two important developments in mathematics before the true link was
uncovered.

Point and Counterpoint



One will then see the simplicity with which these concepts lead to
properties already known and to an infinity of others which ordinary
geometry does not seem to touch easily.

—JEAN-VICTOR PONCELET

The first development—projective geometry—was born in the turmoil of
war. In the 1700s, France, England, Austria, Prussia, Spain, the
Netherlands, and other countries were vying for power. Alliances formed
and broke over and over again; new territorial disputes erupted over
colonies, and countries struggled to dominate trade to and from the New
World. France, England, and other countries skirmished throughout the first
half of the eighteenth century, and roughly a quarter century after Newton
died, a full-scale war erupted. France, Austria, Spain, and Russia fought
England and Prussia for nine years.

In 1763 the French capitulated and the Seven Years’ War was over.
(Two years of fighting occurred before war was officially declared.) The
victory made England the preeminent power in the world, but it came at a
great cost. Both France and England were exhausted and in debt—and they
would both suffer the consequences: revolutions. A little more than a
decade after the end of the Seven Years’ War, the American Revolution
began; the revolt would strip England of its richest colony. In 1789, just as
George Washington was sworn into office in the newly founded United
States, the French Revolution began. Four years later the revolutionaries
removed the French king’s head.

A mathematician, Gaspard Monge, signed the revolutionary
government’s record of the king’s execution. Monge was a consummate
geometer, specializing in three-dimensional geometry. He was responsible
for the way architects and engineers draw buildings and machines: they
project the design onto a vertical plane and a horizontal plane, preserving
all the information needed to reconstruct the object. Monge’s work was so
important to the military that much of it was made into a state secret by the
revolutionary government and by the Napoleonic government that
succeeded it soon afterward.



Jean-Victor Poncelet was a student of Monge’s who learned about three-
dimensional geometry as he trained to become an engineer for Napoleon’s
army. Unluckily for Poncelet, he entered the army just as Napoleon set off
for Moscow in 1812.

While retreating from Moscow, Napoleon’s army was whittled down to
almost nothing by a harsh winter and an equally harsh Russian army. At the
battle of Krasnoy, Poncelet was left for dead on the battlefield. Still alive,
he was captured by the Russians. Moldering in a Russian prison, Poncelet
founded a new discipline: projective geometry.

Poncelet’s mathematics was the culmination of the work begun by the
artists and architects of the fifteenth century, like Filippo Brunelleschi and
Leonardo da Vinci, who discovered how to draw realistically—in
perspective. When “parallel” lines converge at the vanishing point in a
painting, observers are tricked into believing that the lines never meet.
Squares on the floor become trapezoids in a painting; everything gets gently
distorted, but it looks perfectly natural to the viewer. This is the property of
an infinitely distant point—a zero at infinity.

Johannes Kepler, the man who discovered that planets travel in ellipses,
took this idea—the infinitely distant point—one step further. Ellipses have
two centers, or foci; the more elongated the ellipse, the farther apart these
foci are. And all ellipses have the same property: if you had a mirror in the
shape of an ellipse and you placed a lightbulb at one focus, all the beams of
light would converge at the other focus, no matter how stretched-out the
ellipses are (Figure 29).

In his mind Kepler stretched an ellipse out more and more, dragging
one focus farther and farther away. Then Kepler imagined that the second
focus was infinitely far away: the second focus was a point at infinity. All
of a sudden the ellipse becomes a parabola, and all of the lines that
converged to a point become parallel lines. A parabola is simply an ellipse
with one focus at infinity (Figure 30).



Figure 29: Light rays inside an ellipse

You can see this very nicely with a flashlight. Go into a dark room,
stand next to a wall, and point the flashlight directly at it. You will get a
nice, round circle of light projected on the wall. Now slowly tilt the
flashlight upward (Figure 31). You’ll see the circle stretch out into an
ellipse that gets longer and longer as you increase the tilt. All of a sudden,
the ellipse opens up and becomes a parabola. Thus, Kepler’s point at
infinity proved that parabolas and ellipses are actually the same thing. This
was the beginning of the discipline of projective geometry, where
mathematicians look at the shadows and projections of geometric figures to
uncover hidden truths even more powerful than the equivalence of
parabolas and ellipses. However, it all depended upon accepting a point at
infinity.



Figure 30: Stretching an ellipse yields a parabola.

Figure 31: Flashlight ellipses and parabola

Gérard Desargues, a seventeenth-century French architect, was one of
the early pioneers of projective geometry. He used the point at infinity to
prove a number of important new theorems, but Desargues’s colleagues



couldn’t understand his terminology and concluded that Desargues was
nuts. Though a few mathematicians, like Blaise Pascal, picked up on
Desargues’s work, it was forgotten.

None of this mattered to Jean-Victor Poncelet. As Monge’s student,
Poncelet had learned the technique of projecting diagrams onto two planes,
and as a prisoner of war he had a lot of spare time on his hands. He used his
stay in prison to reinvent the concept of a point at infinity, and combining it
with Monge’s work, he became the first true projective geometer. Upon his
return from Russia (carrying a Russian abacus, by then an archaic oddity)
he raised the discipline to a high art.* However, Poncelet had no idea that
projective geometry would reveal the mysterious nature of zero, because the
second important advance, the complex plane, was still needed. We must
turn to Germany for this piece of the puzzle.

Carl Friedrich Gauss, born in 1777, was a German prodigy, and he
began his mathematical career with an investigation of imaginary numbers.
His doctoral thesis was a proof of the fundamental theorem of algebra—
proving that a polynomial of degree n (a quadratic has degree 2, a cubic has
degree 3, a quartic has degree 4, and so on) has n roots. This is only true if
you accept imaginary numbers as well as real numbers.

Throughout his life Gauss worked on an incredible variety of topics—
his work on curvature would become a key component of Einstein’s general
theory of relativity—but it was Gauss’s way of graphing complex numbers
that revealed a whole new structure in mathematics.

In the 1830s Gauss realized that each complex number—numbers that
have real and imaginary parts, like 1 - 2i—can be displayed on a Cartesian
grid. The horizontal axis represents the real part of the complex number,
while the vertical axis represents the imaginary part (Figure 32). This
simple construction, called the complex plane, revealed a lot about the way
numbers work. Take, for example, the number i. The angle between i and
the x-axis is 90 degrees (Figure 33). What happens when you square i?
Well, by definition, i2 =-1—a point whose angle is 180 degrees from the x-
axis; the angle has doubled. The number i3 is equal to -i—270 degrees from
the x-axis; the angle has tripled. The number i4 = 1; we have gone around



360 degrees—exactly four times the original angle (Figure 34). This is not a
coincidence. Take any complex number and measure its angle. Raising a
number to the nth power multiplies its angle by n. And as you keep raising
the number to higher and higher powers, the number will spiral inward or
outward, depending on whether the number is on the inside or on the
outside of the unit circle, a circle centered at the origin with radius 1 (Figure
35). Multiplication and exponentiation in the complex plane became
geometric ideas; you could actually see them happening. This was the
second big advance.

Figure 32: The complex plane

Figure 33: i is at 90 degrees



Figure 34: Different powers of i

The person who combined these two ideas was a student of Gauss’s:
Georg Friedrich Bernhard Riemann. Riemann merged projective geometry
with the complex numbers, and all of a sudden lines became circles, circles
became lines, and zero and infinity became the poles on a globe full of
numbers.

Figure 35: Spirals inside and outside of the unit circle

Riemann imagined a translucent ball sitting atop the complex plane,
with the south pole of the ball touching zero. If there were a tiny light at the
north pole of the ball, any figures that are marked on the ball would cast



shadows on the plane below. The shadow of the equator would be a circle
around the origin. The shadow of the southern hemisphere is inside the
circle and the shadow of the northern hemisphere is outside (Figure 36).
The origin—zero—corresponds to the south pole. Every point on the ball
has a shadow on the complex plane; in a sense, every point on the ball is
equivalent to its shadow on the plane and vice versa. Every circle on the
plane is the shadow of a circle on the ball, and a circle on the ball
corresponds to a circle on the plane…with one exception.

If you’ve got a circle that goes through the north pole of the ball, the
shadow is no longer a circle. It is a line. The north pole is like the point at
infinity that Kepler and Poncelet imagined. Lines on the plane are simply
circles on the sphere that go through the north pole—the point at infinity
(Figure 37).

Figure 36: Stereographic projection of the globe

Once Riemann saw that the complex plane (with a point at infinity) was
the same thing as a sphere, mathematicians could see multiplication,
division, and other, more difficult operations by analyzing the way the
sphere deformed and rotated. For instance, multiplying by the number i was
equivalent to spinning the sphere 90 degrees clockwise. If you take a
number x and replace it with (x - 1)/(x + 1), that is equivalent to rotating the
whole globe by 90 degrees so that the north and south poles lie on the



equator (Figures 38, 39, 40). Most interesting of all, if you take a number x
and replace it with its reciprocal 1/x, that is equivalent to flipping the sphere
upside down and reflecting it in a mirror. The north pole becomes the south
pole and the south pole becomes the north pole: zero becomes infinity and
infinity becomes zero. It’s all built into the geometry of the sphere; 1/0 =?
and 1/?= 0. Infinity and zero are simply opposite poles on the Riemann
sphere, and they can switch places in a blink. And they have equal and
opposite powers.

Figure 37: Lines and circles are the same.

Take all of the numbers in the complex plane and multiply them by two.
That is like putting your hands on the south pole and stretching a rubber
cover on the sphere away from the south pole and toward the north pole.
Multiplying by one-half has the opposite effect. It is like stretching the
rubber cover away from the north pole and toward the south pole.
Multiplying by infinity is like sticking a needle in the south pole; the rubber
sheet all flings upward toward the north pole: anything times infinity is
infinity. Multiplying by zero is like sticking a needle on the north pole and
everything winds up at zero: anything times zero is zero. Infinity and zero
are equal and opposite—and equally destructive.



Figure 38: Riemann sphere

Figure 39: Riemann sphere transformed by i

Figure 40: Riemann sphere transformed by (x - 1)/(x + 1)

Zero and infinity are eternally locked in a struggle to engulf all the
numbers. Like a Manichaean nightmare, the two sit on opposite poles of the
number sphere, sucking numbers in like tiny black holes. Take any number
on the plane. For the sake of argument, we’ll choose i/2. Square it. Cube it.
Raise it to the fourth power. The fifth. The sixth. The seventh. Keep
multiplying. It slowly spirals toward zero like water down a drain. What
happens to 2i? The exact opposite. Square it. Cube it. Raise it to the fourth



power. It spirals outward (Figure 41). But on the number sphere, the two
curves are duplicates of each other; they are mirror images (Figure 42). All
numbers in the complex plane suffer this fate. They are drawn inexorably
toward 0 or toward ?. The only numbers that escape are the ones that are
equally distant from the two rivals—the numbers on the equator, like 1, -1,
and i. These numbers, pulled by the tug of both zero and infinity, spiral
around on the equator forever and ever, never able to escape the grasp of
either. (You can see this on your calculator. Enter a number—any number.
Square it. Square it again. Do it again and again; the number will quickly
zoom toward infinity or toward zero, except if you entered 1 or -1 to begin
with. There is no escape.)

The Infinite Zero

My theory stands as firm as a rock; every arrow directed against it
will return quickly to its archer. How do I know this? I have studied
it…I have followed its roots, so to speak, to the first infallible cause
of all created things.

—GEORG CANTOR

Infinity was no longer mystical; it became an ordinary number. It was a
specimen impaled on a pin, ready for study, and mathematicians were quick
to analyze it. But in the deepest infinity—nestled within the vast continuum
of numbers—zero kept appearing. Most appalling of all, infinity itself can
be a zero.



Figure 41: Spiraling outward and inward on the plane…

Figure 42:…are mirror images on the sphere.



In the old days, before Riemann saw that the complex plane was really a
sphere, functions like 1/x would stump mathematicians. When x goes to
zero, 1/x gets bigger and bigger and bigger and finally just blows up and
goes off to infinity. Riemann made it perfectly acceptable to go off to
infinity; since infinity is just a point on the sphere like any other point, it
was no longer something to be feared. In fact, mathematicians started
analyzing and classifying the points where a function blows up:
singularities.

The curve 1/x has a singularity at the point x = 0—a very simple sort of
singularity that mathematicians dubbed a pole. There are other types of
singularities as well; for instance, the curve sin(1/x) has an essential
singularity at x = 0. Essential singularities are weird beasts; near a
singularity of this sort, a curve goes absolutely berserk. It oscillates up and
down faster and faster as it approaches the singularity, whipping from
positive to negative and back again. In even the tiniest neighborhood
around the singularity, the curve takes on almost every conceivable value
over and over and over again. Yet as weird as these singularities behave,
they were no longer mysterious to mathematicians, who were learning to
dissect the infinite.

The master anatomist of the infinite was Georg Cantor. Though he was
born in Russia in 1845, Cantor spent most of his life in Germany. And it
was in Germany—the land of Gauss and of Riemann—where infinity’s
secrets were revealed. Unfortunately, Germany was also the land of
Leopold Kronecker, the mathematician who would hound Cantor into a
mental institution.

Underneath Cantor’s conflict with Kronecker was a vision of the
infinite, a vision that can be described with a simple puzzle. Imagine that
there is a large stadium filled with people and you want to know whether
there are more seats, more people, or an equal number of both. You could
count the number of people and count the number of seats and then
compare the two numbers, but that would take a lot of time. There’s a much
cleverer way. Just ask everyone to sit down in a seat. If there are empty
seats, then there are too few people. If people remain standing, there are too



few seats. If every seat is filled and nobody is left standing, then the number
of people and seats are equal.

Cantor generalized this trick. He said that two sets of numbers are the
same size when one set of numbers can “sit” on top of another set of
numbers—one to a customer—with none left over. For instance, consider
the set {1, 2, 3}. It is the same size as {2, 4, 6} because we can make a
perfect seating pattern where all the numbers are “seated” and all the
“seats” are occupied:

1 2 3

| | |

2 4 6

But it’s not the same size as {2, 4, 6, 8}

1 2 3

| | | |

2 4 6 8

because 8 is an empty “seat.”

Things get really interesting when you get to infinite sets. Consider the
set of whole numbers: {0, 1, 2, 3, 4, 5,…}. Obviously, this set is equal to
itself; we can just have each number “sit” upon itself:

0 1 2 3 4 5…

| | | | | |

0 1 2 3 4 5…

There’s no trick here. Every set is obviously equal to itself. But what
happens when we start removing numbers from the set? For instance, what
happens when we remove 0? Oddly enough, removing 0 doesn’t change the



size of the set at all. By rearranging the seating pattern slightly, we can
ensure that everybody has a seat, and all the seats are still taken:

1 2 3 4 5 6…

| | | | | |

0 1 2 3 4 5…

The set is the same size, even though we’ve removed something from it. In
fact, we can remove an infinite number of elements from the set of whole
numbers—we can delete the odd numbers, for example—and the size of the
set remains unchanged. Everybody still has a seat, and every seat is filled:

0 2 4 6 8 10…

| | | | | |

0 1 2 3 4 5…

This is the definition of the infinite: it is something that can stay the same
size even when you subtract from it.

The even numbers, the odd numbers, the whole numbers, the integers—
all of these sets were the same size, a size that Cantor soon dubbed  (aleph
nought, named after the first letter of the Hebrew alphabet). Since these
numbers are the same size as the counting numbers, any set of size  is
called countable. (Of course, you couldn’t really count them unless you had
an infinite amount of time on your hands.) Even the rational numbers—the
set of numbers that can be written as a/b for integers a and b—were
countable. By a clever way of assigning rational numbers to their proper
seats, Cantor showed that the rationals were an -sized set (see appendix
D).

But as Pythagoras knew, the rationals aren’t everything under the sun;
both the rationals and irrationals make up the so-called real numbers.
Cantor discovered that the set of real numbers is much, much bigger than
the rationals. His proof was a very simple one.



Imagine that we’ve already got a perfect seating plan for the real
numbers: every real number has a seat, and every seat is filled. That means
we can make a list of seats, showing a seat’s number along with the real
number that is sitting in it. For instance, our list might look like the
following:

The trick came when Cantor created a real number that was not on the list.

Look at the first digit of the first number on the list; in our example, it’s
a 3. If our new number were equal to the first number on the list, it would
also have a first digit of 3—but we can easily prevent that from happening.
Let’s just say that our new number has a first digit of 2. Since the first
number on the list starts with a 3 and our new number starts with a 2, we
know that the two numbers are different. (This is not strictly true. The
number 0.300000…is equal to 0.2999999…, since there are two ways to
write many rational numbers. But this is a minor point that is easily
overcome. For the sake of clarity, we’ll ignore that exception.)

On to the second number. How can we make sure that our new number
is different from the second number on the list? Well, we’ve already
determined the first digit in our new number, so we can’t pull exactly the
same trick, but we can do something just as good. The second number on
the list has an 8 for its second digit. If our new number has a 7 for its
second digit, we can ensure that our new number is not the same as the
second number on the list; their second digits don’t match, so they aren’t
the same thing. We do the same thing on down the list; look at the third
digit of the third number and change it, look at the fourth digit on the fourth
number and change it, and so on.



Yielding a new number, .27800…, that

is different from the first number (their first digits don’t match),

is different from the second number (their second digits don’t match),

is different from the third number (their third digits don’t match),

is different from the fourth number (their fourth digits don’t match), and
so forth.

 

Going down the diagonal in this way, we create a new number. This
process ensures that it’s different from all the other numbers on the list. If it
is different from all the numbers on the list, it can’t be on the list—but we
already assumed our list contains all real numbers; after all, it was a perfect
seating list. This is a contradiction. The perfect seating list cannot exist.

The real numbers are a bigger infinity than the rational numbers. The
term for this type of infinity was , the first uncountable infinity.
(Technically, the term for the infinity of the real line was C, or the
continuum infinity. For years mathematicians struggled to determine
whether C was indeed . In 1963 a mathematician, Paul Cohen, proved
that this puzzle, the so-called continuum hypothesis, was neither provable
nor disprovable, thanks to Gödel’s incompleteness theorem. Today most
mathematicians accept the continuum hypothesis as true, though some
study non-Cantorian transfinite numbers where the continuum hypothesis



is taken to be false.) In Cantor’s mind there were an infinite number of
infinities—the transfinite numbers—each nested in the other.  is smaller
than , which is smaller than , which is smaller than , and so forth. At
the top of the chain sits the ultimate infinity that engulfs all other infinities:
God, the infinity that defies all comprehension.

Unfortunately for Cantor, not everyone had the same vision of God.
Leopold Kronecker was an eminent professor at the University of Berlin,
and one of Cantor’s teachers. Kronecker believed that God would never
allow such ugliness as the irrationals, much less an ever-increasing set of
Russian-doll infinities. The integers represented the purity of God, while
the irrationals and other bizarre sets of numbers were abominations—
figments of the imperfect human mind. Cantor’s transfinite numbers were
the worst of the lot.

Disgusted with Cantor, Kronecker launched vitriolic attacks against
Cantor’s work and made it extremely difficult for him to publish papers.
When Cantor applied for a position at the University of Berlin in 1883, he
was rejected; he had to settle for a professorship at the much less
prestigious University of Halle instead. Kronecker, who was influential at
Berlin, was likely to blame. The same year, he wrote a defense against
Kronecker’s attacks. Then, in 1884, the depressed Cantor had his first
mental breakdown.

It would be little comfort to Cantor that his work was the foundation of
a whole new branch of mathematics: set theory. Using set theory,
mathematicians would not only create the numbers we know out of nothing
at all, they would create numbers that were previously unheard of—infinite
infinities that can be added to, multiplied with, subtracted from, and divided
by other infinities, just like ordinary numbers. Cantor opened up a whole
new universe of numbers. The German mathematician David Hilbert would
say, “No one shall expel us from the paradise which Cantor has created for
us.” But it was too late for Cantor. Cantor was in and out of mental
institutions for the remainder of his life, and he died in the mental hospital
at Halle in 1918.

In the battle between Kronecker and Cantor, Cantor would ultimately
prevail. Cantor’s theory would show that Kronecker’s precious integers—



and even the rational numbers—were nothing at all. They were an infinite
zero.

There are an infinite number of rationals, and between any two numbers
you choose, no matter how close together, there are still an infinite number
of rationals. They are everywhere. But Cantor’s hierarchy of infinities
would tell a different tale: it would show just how little space the rational
numbers take up on the number line.

It takes a clever trick to do such an intricate calculation. Irregularly
shaped objects can be very difficult to measure. For instance, imagine that
you’ve got a stain on your wood floor. How much area does the stain take
up? It’s not so obvious. If the stain were shaped like a circle, or like a
square or a triangle, it would be easy to figure out; just take a ruler and
measure its radius or its height and base. But there’s no formula for figuring
out the area of an amoeba-shaped mess. However, there is another way.

Take a rectangular carpet and place it on top of the stain. If the carpet
covers the stain entirely, we know that the stain is smaller than the carpet; if
the carpet is one square foot, then the stain must take up less than one
square foot. If we use smaller carpets, our approximation gets better and
better. Perhaps the stain is covered by five carpets of size one-eighth square
foot; we would then know that the stain takes up at most five-eighths of a
square foot, which is less than our approximation with a one-square-foot
carpet. As you make the carpets smaller and smaller, the covering gets
better and better, and your total carpet area approaches the true size of the
stain; in fact, you can define the size of the stain as the limit as your carpets
approach zero size (Figure 43).

Let’s do the same thing with the rational numbers—but this time our
carpets are sets of numbers. For instance, the number 2.5 is “covered” by a
carpet that includes, for example, all the numbers between 2 and 3—a
carpet of size 1. Using this sort of carpet to cover the rational numbers has
some very odd consequences, as Cantor soon showed, thanks to his seating
chart. That seating chart accounts for all the rational numbers—it assigns
each of them a seat—so we can count them off one by one, in order, based
on their seat number. Take the first rational number and imagine it on the
number line. Let’s cover it with a carpet of size 1. Lots of other numbers are



covered by that carpet, but we don’t have to worry about that. So long as
the first number is covered, we are happy.

Figure 43: Covering a stain

Now take the second number. Cover it with a carpet of size ½. Take the
third number and cover it with a carpet of size ¼, and so forth. Go on and
on to infinity; since every rational number is on the seating chart, every
rational number will eventually be covered by a carpet. What is the total
size of the carpets? It’s our old friend, the Achilles sum. Adding up the size
of the carpets, we see 1 + ½ + ¼ + 1/8 +…+ ½n goes to 2 as n goes to
infinity. So we can cover the infinite cohorts of rational numbers in the
number line with a set of carpets, and the total size of the carpets is 2. This
means that the rational numbers take up less than two units of space.

Just as we did with the stain, let’s make the carpet sizes even smaller to
get a better approximation of the size of the rationals. Instead of starting
with a carpet of size 1, starting with a carpet of size ½ makes the total size
of the carpets equal to 1; the rational numbers take up less than one unit of



space, in total. If we start off with an initial carpet that has size 1/1000, all
the carpets, in total, take up less than 1/500 unit of space; all the rational
numbers take up less room than 1/500 unit. If we start with a carpet the size
of half an atom, we can cover all the rational numbers on the number line
with carpets that, in total, take up less room than an atom. Yet even those
tiny carpets, all of which can fit in the span of an atom, cover all of the
rational numbers (Figure 44).

We can get smaller and smaller—as small as we want. We can cover the
rationals with carpets that, summed together, fit in the size of half an atom
—or a neutron—or a quark—or as small as we can possibly imagine.

How big are the rational numbers, then? We defined size as a limit—the
sum of the carpets as the individual sizes go to zero. Yet at the same time,
we saw that as the carpets get smaller and smaller, the sum of the cover gets
tinier and tinier—smaller than an atom or a quark or a millionth-billionth
part of a quark—and we can still cover the rationals. What is the limit of
something that gets smaller and smaller and smaller without stopping?

Figure 44: Covering the rationals

Zero.

How big are the rational numbers? They take up no space at all. It’s a
tough concept to swallow, but it’s true.

Even though there are rational numbers everywhere on the number line,
they take up no space at all. If we were to throw a dart at the number line, it
would never hit a rational number. Never. And though the rationals are tiny,
the irrationals aren’t, since we can’t make a seating chart and cover them
one by one; there will always be uncovered irrationals left over. Kronecker
hated the irrationals, but they take up all the space in the number line.



The infinity of the rationals is nothing more than a zero.



Chapter 7
Absolute Zeros
[THE PHYSICS OF ZERO]

Sensible mathematics involves neglecting a quantity when it is small
—not neglecting it because it is infinitely great and you do not want
it!

—P. A. M. DIRAC

It was finally unmistakable: infinity and zero are inseparable and are
essential to mathematics. Mathematicians had no choice but to learn to live
with them. For physicists, however, zero and infinity seemed utterly
irrelevant to the workings of the universe. Adding infinities and dividing by
zeros might be a part of mathematics, but it is not the way of nature.

Or so scientists had hoped. As mathematicians were uncovering the
connection between zero and infinity, physicists began to encounter zeros in
the natural world; zero crossed over from mathematics to physics. In
thermodynamics a zero became an uncrossable barrier: the coldest
temperature possible. In Einstein’s theory of general relativity, a zero
became a black hole, a monstrous star that swallows entire suns. In
quantum mechanics, a zero is responsible for a bizarre source of energy—
infinite and ubiquitous, present even in the deepest vacuum—and a
phantom force exerted by nothing at all.



Zero Heat

When you can measure what you are speaking about, and express it
in numbers, you know something about it; but when you cannot
measure it, when you cannot express it in numbers, your knowledge
is of a meager and unsatisfactory kind: it may be the beginning of
knowledge, but you have scarcely, in your thoughts, advanced to the
stage of science.

—WILLIAM THOMSON, LORD KELVIN

The first inescapable zero in physics comes from a law that had been in use
for half a century. This law was discovered in 1787 by Jacques-Alexandre
Charles, a French physicist already famous for being the first to fly aboard a
hydrogen balloon. Charles isn’t remembered for his aeronautic stunts, but
for the law of nature that bears his name.

Charles, like many physicists of his time, was fascinated with the very
different properties of gases. Oxygen makes embers burst into flame, while
carbon dioxide snuffs them out. Chlorine is green and is deadly; nitrous
oxide is colorless and makes people giggle. Yet all these gases have very
basic properties in common: heat them up and they expand; cool them
down and they contract.

Charles discovered that this behavior is extremely regular and
predictable. Take an equal volume of any two different gases and put them
in identical balloons. Heat them up by the same amount and they expand by
the same amount; cool them down together and they contract in unison.
Furthermore, for each degree up or down you go, you gain or lose a certain
percentage of the volume. Charles’ law describes the relationship of the
volume of a gas to its temperature.

In the 1850s, however, William Thomson, a British physicist, noticed
something odd about Charles’ law: the specter of zero. Lower the
temperature and the volume of the balloons gets smaller and smaller. Keep
lowering at a steady pace and the balloons keep shrinking at a constant rate,
but they cannot go on shrinking forever. There is a point at which gas, in
theory, takes up no space at all; Charles’ law says that a balloon of gas must



shrink to zero space. Of course, zero space is the smallest possible volume;
when a gas reaches this point, it takes up no space at all. (It certainly can’t
take up negative space.) If the volume of a gas is related to its temperature,
a minimum volume means that there is a minimum temperature. A gas
cannot keep getting colder and colder indefinitely; when you can’t shrink
the balloon any further, you can’t lower the temperature any further. This is
absolute zero. It is the lowest temperature possible, a little more than 273
degrees Celsius below the freezing point of water.

Thomson is better known as Lord Kelvin, and it is for Kelvin that the
universal temperature scale is named. In the centigrade scale, zero degrees
is the freezing point of water. In the Kelvin scale, zero degrees is absolute
zero.

Absolute zero is the state where a container of gas has been drained of
all of its energy. This is, in actuality, an unattainable goal. You can never
cool an object to absolute zero. You can get very close; thanks to laser
cooling, physicists can chill atoms to a few millionths of a degree above the
ultimate coldness. However, everything in the universe is conspiring to stop
you from actually reaching absolute zero. This is because any object that
has energy is bouncing around—and radiating light. For instance, people
are made up of molecules of water and a few organic contaminants. All of
these atoms are wiggling about in space; the higher the temperature, the
faster the atoms wiggle. These wiggling atoms bump into one another,
getting their neighbors to wiggle as well.

Say you are trying to cool a banana to absolute zero. To get rid of all of
the energy in the banana, you’ve got to stop its atoms from moving around;
you have to put it in a box and cool it down. However, the box the banana is
in is made of atoms, too. The box’s atoms are wiggling around, and they
will bump the banana’s atoms and set them in motion again. Even if you get
the banana to float in a perfect vacuum in the center of the box, you can’t
stop the wiggling entirely, because dancing particles give off light. Light is
constantly coming off of the box and striking the banana, getting the
banana’s molecules to move again.

All of the atoms that make up a tweezer, a refrigerator coil, and a tub of
liquid nitrogen are moving and radiating, so the banana is constantly



absorbing energy from the wiggles and radiation of the box it is in, from the
tweezers you use to manipulate the banana, and from the refrigerator coil
you use to cool it down. You cannot shield the banana from the box or the
tweezer or the coil; the shield, too, is wiggling and radiating. Every object
is influenced by the environment it’s in, so it’s impossible to cool anything
in the universe—a banana, an ice cube, a dollop of liquid helium—to
absolute zero. It is an unbreakable barrier.

Absolute zero was a discovery that had a very different flavor from
Newton’s laws. Newton’s equations gave physicists power. They could
predict the orbits of the planets and the motion of objects with great
accuracy. On the other hand, Kelvin’s discovery of absolute zero told
physicists what they couldn’t do. They couldn’t ever reach absolute zero.
This barrier was disappointing news to the physics world, but it was the
beginning of a new branch of physics: thermodynamics.

Thermodynamics is the study of the way heat and energy behave. Like
Kelvin’s discovery of absolute zero, the laws of thermodynamics erected
impenetrable barriers that no scientists can ever cross, no matter how hard
they try. For instance, thermodynamics tells you that it is impossible to
create a perpetual-motion machine. Avid inventors tend to swamp physics
departments and science magazines with blueprints for incredible machines
—machines that eternally generate power without any source of energy.
However, the laws of thermodynamics state that it is impossible to create
such a machine. It is another task that cannot be done, no matter how hard
you try. It is impossible even to get a machine to run without wasting
energy, frittering some of its power into the universe as heat.
(Thermodynamics is worse than a casino; you can’t win, no matter how
much you work at it. You can’t even break even.)

From thermodynamics came the discipline of statistical mechanics. By
looking at the collective motion of groups of atoms, physicists could predict
the way matter behaves. For instance, the statistical description of a gas
explains Charles’ law. As you raise the temperature of a gas, the average
molecule moves faster and smashes harder into the walls of its container.
The gas pushes harder on the walls: the pressure goes up. Statistical



mechanics—the theory of wiggles—explained some of the basic properties
of matter, and it even seemed to explain the nature of light itself.

The nature of light was a problem that had consumed scientists for
centuries. Isaac Newton believed that light was composed of little particles
that flowed from every bright object. Over time, though, scientists came to
believe that light was not in fact a particle, but a wave. In 1801 a British
scientist discovered that light interferes with itself, apparently putting the
matter to rest once and for all.

Interference happens with all sorts of waves. When you drop a stone
into a pond, you create circular ripples in the water—waves. The water
bobs up and down, and crests and troughs spread outward in a circular
pattern. If you drop two stones at the same time, the ripples interfere with
one another. You can see this more clearly if you dip two oscillating pistons
into a tub of water. When a crest from one piston runs into a trough from
the other, the two cancel out; if you look carefully at the pattern of ripples,
you can see lines of still, wave-free water (Figure 45).

The same thing is true of light. If light shines through two small slits,
there are areas that are dark—wave-free (Figure 46). (You can see a related
effect at home. Hold your fingers together; you should have tiny gaps where
some light can get through. Gaze through one of those gaps at a lightbulb
and you’ll see faint dark lines, especially near the top and bottom of the
gap. These lines, too, are due to the wavelike nature of light.) Waves
interfere in this way; particles do not. Thus, the phenomenon of interference
seemed to settle the question of light’s nature once and for all. Physicists
concluded that light was not a particle, but a wave of electric and magnetic
fields.

This was the state of the art in the mid-1800s, and it seemed to mesh
perfectly with the laws of statistical mechanics. Statistical mechanics tells
you how the molecules of matter wiggle; the wave theory of light implied
that these molecular wiggles somehow cause ripples of radiation—light
waves. Better yet, the hotter the object is, the faster its molecules move; at
the same time, the hotter the object, the more energetic the ripples of light it
sends out. This works out perfectly. With light, the faster the wave bobs up
and down—the higher its frequency—the more energy it has. (Also, the



higher its frequency, the smaller its wavelength: the distance between two
wave crests.) Indeed, one of the most important thermodynamic laws—the
so-called Stefan-Boltzmann equation—seems to tie the wiggles of
molecules to the wiggles of light. It relates the temperature of an object to
the total amount of light energy it radiates. This was the biggest victory for
statistical mechanics and the wave theory of light. (The equation states that
the radiated energy is proportional to the temperature raised to the fourth
power. It not only tells how much radiation an object gives off, but also how
hot an object gets when irradiated with a given amount of energy. This is
the law that physicists used—along with a passage in the book of Isaiah—to
determine that heaven is more than 500 degrees Kelvin.)

Figure 45: Interference pattern in water



Figure 46: Light interference. If you turn the book sideways and look along
the page, you can see the interference patterns on the page.

Unfortunately, the victory would not last for long. At the turn of the
century, two British physicists tried to use the wiggle theory to solve a
simple problem. It was a fairly straightforward calculation: how much light
does an empty cavity radiate? Applying the basic equations of statistical
mechanics (which tells how the molecules wiggle) and the equations that
describe the way electric and magnetic fields interact (which tells how light
wiggles), they came up with an equation that describes what wavelengths of
light a cavity radiates at any given temperature.

The so-called Rayleigh-Jeans law, named after the physicists Lord
Rayleigh and Sir James Jeans, worked fairly well. It did a good job of
predicting the amount of large-wavelength, low-energy light that comes off
a hot object. At high energies, though, the equation faltered. The Rayleigh-
Jeans law predicted that an object gives off more and more light at smaller
and smaller wavelengths (and thus higher and higher energies).
Consequently at realms close to zero wavelength, the object gives off an
infinite amount of high-energy light. According to the Rayleigh-Jeans
equation, every object is constantly radiating an infinite amount of energy,
no matter what its temperature is; even an ice cube would be radiating
enough ultraviolet rays, x rays, and gamma rays to vaporize everything
around. This was the “ultraviolet catastrophe.” Zero wavelength equals



infinite energy; zero and infinity conspired to break a nice, neat system of
laws. Solving this paradox quickly became the leading puzzle in physics.

Rayleigh and Jeans had done nothing wrong. They used equations that
physicists thought were valid, manipulated them in an accepted way, and
came out with an answer that didn’t reflect the way the world works. Ice
cubes don’t wipe out civilizations with bursts of gamma rays, though
following the then-accepted rules of physics led inexorably to that
conclusion. One of the laws of physics had to be wrong. But which one?

The Quantum Zero: Infinite Energy

To physicists, vacuum has all particles and forces latent in it. It’s a
far richer substance than the philosopher’s nothing.

—SIR MARTIN REES

The ultraviolet catastrophe led to the quantum revolution. Quantum
mechanics got rid of the zero in the classical theory of light—removing the
infinite energy that supposedly came from every bit of matter in the
universe. However, this was not much of a victory. A zero in quantum
mechanics means that the entire universe—including the vacuum—is filled
with an infinite amount of energy: the zero-point energy. This, in turn, leads
to the most bizarre zero in the universe: the phantom force of nothing.

In 1900, German experimenters tried to shed some light on the
ultraviolet catastrophe. By making careful measurements of how much
radiation came off objects at various temperatures, they showed that the
Rayleigh-Jeans formula was, indeed, failing to predict the true amount of
light that comes from objects. A young physicist named Max Planck looked
at the new data and within hours came up with a new equation that replaced
the Rayleigh-Jeans formula. Not only did Planck’s formula explain the new
measurements, it solved the ultraviolet catastrophe. The Planck formula did
not zoom off to infinity as the wavelength decreased; instead of having the
energy get bigger and bigger as the wavelength goes down, it got smaller
and smaller again (Figure 47). Unfortunately, though Planck’s formula was
correct, its repercussions were more troubling than the ultraviolet
catastrophe it solved.



Figure 47: Rayleigh-Jeans goes off to infinity, but Planck stays finite.

The problem arose because the ordinary assumptions of statistical
mechanics—the laws of physics—did not lead Planck to his formula. The
laws of physics had to change to accommodate the Planck formula. Planck
later described what he did as an “act of desperation”; nothing less than
desperation would compel a physicist to make such a seemingly
nonsensical change in the laws of physics: According to Planck, molecules
are forbidden to move in most ways. They vibrate only with certain
acceptable energies, called quanta. It is impossible for molecules to have
energies in between these acceptable values.

This might not seem like such a strange assumption, but it is not the
way the world seems to work. Nature doesn’t move in jumps. It would seem
silly to have five-foot-tall people and six-foot-tall people but nothing in
between. It would be ridiculous if cars drove at 30 miles an hour and 40
miles an hour, but never at 33 or 38 miles an hour. However, a quantum car
would behave in exactly this way. You might be driving along at 30 miles
an hour, but when you step on the gas, all of a sudden you would instantly
—pop!—be driving 40 miles an hour. Nothing in between is allowed, so to
get from 30 to 40 miles an hour, you have to make a quantum leap. In the



same way, quantum people could not grow very easily; they would hover at
four feet for a number of years, and then, in a fraction of a second—pop!—
they would be five feet tall. The quantum hypothesis violates everything
our everyday experience tells us.

Even though it doesn’t agree with the way nature seems to work,
Planck’s strange hypothesis—that molecular vibrations were quantized—
led to the correct formula for the frequencies of light that come off an
object. Even though physicists quickly realized that Planck’s equation was
right, they did not accept the quantum hypothesis. It was too bizarre to
accept.

An unlikely candidate would turn the quantum hypothesis from a
pecularity to an accepted fact. Albert Einstein, a twenty-six-year-old patent
clerk, showed the physics world that nature worked in quanta rather than in
smooth increments. He would later become the chief opponent of the theory
he helped create.

Einstein didn’t seem like a revolutionary. When Max Planck was
turning the physics world on its head, Albert Einstein was scrambling for a
job. Out of money, he took a temporary position at the Swiss patent office, a
far cry from the assistantship at a university that he wanted. By 1904 he was
married, had a newborn son, and was laboring in the patent office—hardly
the path to greatness. However, in March 1905, he wrote a paper that would
eventually earn him the Nobel Prize. This paper—which explained the
photoelectric effect, brought quantum mechanics into the mainstream. Once
quantum mechanics was accepted, so, too, would the mysterious powers of
zero.

The photoelectric effect was discovered in 1887 when the German
physicist Heinrich Hertz discovered that a beam of ultraviolet light could
cause a plate to spark: electrons quite simply pop out of the metal when
light shines on it. This phenomenon, causing sparks with a beam of light,
was very puzzling to classical physicists. Ultraviolet light is light with a lot
of energy, so scientists naturally concluded that it took quite a bit of energy
to kick an electron out of an atom. But according to the wave theory of
light, there is another way to get high-energy light: make it brighter. A very
bright blue light, for instance, might have as much energy as a dim ultra-



violet beam; therefore, a bright blue light should be able to kick electrons
out of atoms, just as a dim ultraviolet beam can.

This simply is not the case, as experiments quickly showed. Even a dim
beam of ultraviolet (high frequency) light causes electrons to get knocked
out of the metal. However, if you lower the frequency just a little bit beyond
a critical threshold—making the light a wee bit too red—the sparking stops
all of a sudden. No matter how bright the beam is, if the light is the wrong
color, all the electrons in the metal stay put; none of them can escape.
That’s not the sort of thing a light wave would do.

Einstein solved this quandary—the puzzle of the photo-electric effect—
but his solution was even more revolutionary than Planck’s hypothesis.
While Planck proposed that molecules’ vibrations were quantized, Einstein
proposed that light came in little packets of energy called photons. This idea
conflicted with the accepted physics of light, because it meant that light was
not a wave.

On the other hand, if light energy is bundled into little packets, then the
photoelectric effect is easy to explain. The light is acting like little bullets
that get shot into the metal. When a bullet hits an electron, it gives it a
nudge. If the bullet has enough energy—if its frequency is high enough—
then it knocks the electron free. On the other hand, if a light particle doesn’t
have enough energy to nudge the electron out, then the electron stays put;
the photon skitters away instead.

Einstein’s idea explained the photoelectric effect brilliantly. Light is
quantized into photons, directly contradicting the wave theory of light that
had not been questioned for more than a century. Indeed, it turns out that
light has both a wave nature and a particle nature. Though light acts like a
particle sometimes, it acts like a wave at other times. In truth, light is
neither particle nor wave, but a strange combination of the two. It’s a hard
concept to grasp. However, this idea is at the heart of the quantum theory.

According to quantum theory, everything—light, electrons, protons,
small dogs—have both wavelike and particle-like properties. But if objects
are particles and waves at the same time, what on earth could they be?
Mathematicians know how to describe them: they are wave functions,



solutions to a differential equation called the Schrödinger equation.
Unfortunately, this mathematical description has no intuitive meaning; it is
all but impossible to visualize what these wave functions are.* Worse yet,
as physicists discovered the intricacies of quantum mechanics, stranger and
stranger things began to appear. Perhaps the weirdest of all is caused by a
zero in the equations of quantum mechanics: the zero-point energy.

This strange force is woven into the mathematical equations of the
quantum universe. In the mid-1920s a German physicist, Werner
Heisenberg, saw that these equations had a shocking consequence:
uncertainty. The force of nothing is caused by the Heisenberg uncertainty
principle.

The concept of uncertainty pertains to scientists’ ability to describe the
properties of a particle. For instance, if we want to find a particular particle,
we need to determine the particle’s position and velocity—where it is and
how fast it is going. Heisenberg’s uncertainty principle tells us that we can’t
do even this simple act. No matter how hard we try, we cannot measure a
particle’s position and its velocity with perfect accuracy at the same time.
This is because the very act of measuring destroys some of the information
we are trying to gather.

To measure something, you need to prod it. For instance, imagine that
you are measuring the length of a pencil. You could run your fingers along
it and measure how long it is; however, you’ll probably give the pencil a
nudge, disturbing the pencil’s velocity slightly. A better way would be to
place a ruler gently next to the pencil, but in fact, comparing the lengths of
the two objects also changes the pencil’s speed a tiny bit. You can only look
at the pencil when light is bouncing off it; though the disturbance is very
slight, the photons that carom off the pencil nudge it ever so gently,
changing the pencil’s velocity a tiny bit. No matter what way you think of
to measure the pencil, you will give it a tiny nudge in the process.
Heisenberg’s uncertainty principle shows that there is no possible way to
measure the pencil’s length—or an electron’s position—and its velocity
with perfect accuracy at the same time. In fact, the better you know a
particle’s position, the less you know about its velocity, and vice versa. If
you measure an electron’s position with zero error—you know exactly



where it is at a given moment—you must have zero information about how
fast it is going. And if you know a particle’s velocity with infinite precision
—zero error—you have infinite error when you measure its position; you
know nothing at all about where it is.* You can never know both at the
same time, and if you have some information about one, you must have
some uncertainty about the other. It’s another unbreakable law.

Heisenberg’s uncertainty principle applies to more than just
measurements performed by humans. Like the laws of thermodynamics, the
principle applies to nature itself. Uncertainty makes the universe seethe
with infinite energy. Imagine an extremely tiny volume in space, like a
really small box. If we analyze what is going on inside that box, we can
make some assumptions. For instance, we know, with some precision, the
position of the particles inside. After all, they can’t be outside the box; we
know that they are restricted to a certain volume, because if they were
outside the box, we would not be looking at them. Because we have some
information about the particles’ position, the Heisenberg uncertainty
principle implies that we must have some uncertainty about the particles’
velocity—their energy. As we make that box smaller and smaller, we know
less and less about the particles’ energy.

This argument holds everywhere in the universe—in the center of the
earth and in the deepest vacuum of space. This means that in a sufficiently
small volume, even in a vacuum, we have some uncertainty about the
amount of energy inside. But uncertainty about the energy in a vacuum
sounds ridiculous. The vacuum, by definition, has nothing in it—no
particles, no light, nothing. Thus, the vacuum should have no energy at all.
Yet according to Heisenberg’s principle, we cannot know how much energy
there is in a volume of the vacuum at any given time. The energy in a tiny
volume of vacuum must be fluctuating constantly.

How could the vacuum, which has nothing in it, have any energy at all?
The answer comes from another equation: Einstein’s famous E = mc2. This
simple formula relates mass and energy: the mass of an object is equivalent
to a certain amount of energy. (In fact, particle physicists don’t measure the
mass of the electron, say, in kilograms or pounds or any of the usual units of
mass or weight. They say that the electron’s rest mass is 0.511 MeV



[million electron volts]—a lump of energy.) The fluctuation in the energy in
the vacuum is the same thing as a fluctuation in the amount of mass.
Particles are constantly winking in and out of existence, like tiny Cheshire
cats. The vacuum is never truly empty. Instead, it is seething with these
virtual particles; at every point in space, an infinite number are happily
popping up and disappearing. This is the zero-point energy, an infinity in
the formulas of quantum theory. Interpreted strictly, the zero-point energy is
limitless. According to the equations of quantum mechanics, more power
than is stored in all the coal mines, oil fields, and nuclear weapons in the
world is sitting in the space inside your toaster.

When an equation has an infinity in it, physicists usually assume that
there is something wrong; the infinity has no physical meaning. The zero-
point energy is no different; most scientists ignore it completely. They
simply pretend that the zero-point energy is zero, even though they know it
is infinite. It’s a convenient fiction, and it usually doesn’t matter. However,
sometimes it does. In 1948 two Dutch physicists, Hendrick B. G. Casimir
and Dik Polder, first realized that the zero-point energy can’t always be
ignored. The two scientists were studying the forces between atoms when
they realized that their measurements didn’t match the forces that had been
predicted. In a search for an explanation, Casimir realized that he had felt
the force of nothing.

The secret to the Casimir force lies with the nature of waves. In ancient
Greece, Pythagoras saw the peculiar behavior of waves that traveled up and
down a plucked string—how certain notes were allowed and others were
forbidden. When Pythagoras strummed a string, the string sounded a clear
note, the tone known as the fundamental. When he gently placed his finger
in the middle of the string and plucked again, he got another nice, clear
note, this time one octave above the fundamental. One-third of the way
down yielded another nice tone. But Pythagoras realized that not all notes
are allowed. When he placed his finger randomly on the string, he seldom
got a clear note. Only certain notes can be played on the string; most are
excluded (Figure 48).

Matter waves are not so different from string waves. Just as a guitar
string of a given size is not capable of playing every possible note—some



waves are “forbidden” from appearing on the string—some particle waves
are forbidden from being inside a box. Put two metal plates close together,
for instance, and you can’t fit every sort of particle inside. Only those
whose waves match the size of the box are allowed in (Figure 49).

Figure 48: Forbidden notes on a guitar string

Casimir realized that the forbidden particle waves would affect the zero-
point energy of the vacuum, since particles are everywhere winking in and
out of existence. If you put two metal plates close together and some of
those particles aren’t allowed between the plates, then there are more
particles on the outside of the plates than on the inside. The undiminished
zoo of particles presses on the outside of the plates, and without the full
complement on the inside, the plates are crushed together, even in the
deepest vacuum. This is the force of the vacuum, a force produced by
nothing at all. This is the Casimir effect.



Figure 49: The Casimir effect

Though the Casimir force—a mysterious, phantom force exerted by
nothing at all—seems like science fiction, it exists. It is a tiny force and
very difficult to measure, but in 1995 the physicist Steven Lamoreaux
measured the Casimir effect directly. By putting two gold-covered plates on
a sensitive twist-measuring device, he determined how much force it took
to counteract the Casimir force between them. The answer—about the
weight of one slice of an ant that’s been chopped into 30,000 pieces—
agreed with Casimir’s theory. Lamoreaux had measured the force exerted
by empty space.

The Relativistic Zero: The Black Hole

[The star,] like the Cheshire cat, fades from view. One leaves behind
only its grin, the other, only its gravitational attraction.

—JOHN WHEELER

Zero in quantum mechanics invests the vacuum with infinite energy. A zero
in the other great modern theory—relativity—creates another paradox: the
infinite nothing of the black hole.



Like quantum mechanics, the theory of relativity was born in light; this
time it was the speed of light that caused the trouble. Most objects in the
universe don’t have a speed that every observer can agree on. For instance,
imagine a small boy who is throwing stones in all directions. For an
observer approaching the boy, the stones seem to be going faster than for an
observer who is running away; the velocity of the stones seems to depend
on your direction and speed. In the same way, the speed of light should
depend on whether you are running toward or running away from the
lightbulb that’s shining on you. In 1887 the American physicists Albert
Michelson and Edward Morley tried to measure this effect. They were
baffled when they found no difference; the speed of light was the same in
every direction. How could this be?

Again, it was the young Einstein who had the answer in 1905. And
again, very simple assumptions would have enormous consequences.

The first assumption Einstein made seems fairly obvious. Einstein
stated that if a number of people watch the same phenomenon—say, the
flight of a raven toward a tree, the laws of physics are the same for each
observer. If you compare the notes of a person on the ground and a person
on a train moving parallel to the raven, they would disagree about the speed
of the raven and the tree. But the eventual outcome of the flight is the same:
after a few seconds, the raven arrives at the tree. Both observers agree on
the final result, though they might disagree about some of the details. This
is the principle of relativity. (In the special theory of relativity, which we are
discussing here, there are restrictions on the kind of motion that is allowed.
Each observer must be moving with constant velocity in a straight line. In
other words, they can’t feel an acceleration. With the general theory of
relativity, the restrictions are removed.)

The second assumption is a little more troubling, especially since it
seems to contradict the principle of relativity. Einstein assumed that
everybody—no matter at what speed they are traveling—agrees about the
speed of light in a vacuum: about 300 million meters per second, a constant
denoted by the letter c. If someone shines a flashlight at you, the light
rushes at you at a speed of c. It doesn’t matter whether the person holding
the flashlight is standing still, running toward you, or running away; the



beam of light always travels at a speed of c from your point of view—and
everybody else’s.

This assumption challenged everything physicists had assumed about
the motion of objects. If the raven were acting like a photon, then an
observer on the train and the person standing still would have to agree on
the value for the raven’s speed. That would mean that the two observers
would disagree about when the raven meets the tree (Figure 50). Einstein
realized that there is one way around this: the flow of time changes,
depending on an observer’s speed. The clock on the train must tick more
slowly than the stationary clock. Ten seconds for the observer on the ground
might seem like only five seconds for somebody on the train. It’s the same
thing for a person who zooms away at great speed. Every tick of his
stopwatch takes more than a second from a stationary observer’s point of
view. If an astronaut took a 20-year journey (according to his pocket watch)
at nine-tenths of the speed of light, he would come back to Earth having
aged 20 years, as expected. But everyone who stayed behind would have
aged 46 years.



Figure 50: The raven’s constant speed means that time must be relative.

Not only does time change with speed, so do length and mass. As
objects speed up, they get shorter and heavier. At nine-tenths of the speed of
light, for instance, a yardstick would only be 0.44 yards long, and a one-
pound bag of sugar would weigh nearly 2.3 pounds—from a stationary
observer’s point of view. (Of course, this doesn’t mean that you would be
able to bake more cookies with the same bag of sugar. From the bag’s point
of view, its weight stays the same.)

This variability in the flow of time might be hard to believe, but it has
been observed. When a subatomic particle travels very fast, it survives
longer than expected before it decays, because its clock is slow. Also, a very
precise clock has been observed to slow down ever so slightly when flown
in an airplane at great speed. Einstein’s theory works. There was a potential
problem though: zero.

When a spaceship approaches the speed of light, time slows down more
and more and more. If the ship were to travel at the speed of light, every
tick of the clock on board would equal infinite seconds on the ground. In
less than a fraction of a second, billions and billions of years would pass;
the universe would have already met its ultimate fate and burned itself out.
For an astronaut aboard the spaceship, time stops. The flow of time is
multiplied by zero.

Luckily, it is not so easy to stop time. As the spaceship goes ever faster,
time slows down more and more, but at the same time, the spaceship’s mass
gets greater and greater. It is like pushing a baby carriage where the baby
grows and grows. Pretty soon you are pushing a sumo wrestler—not so
easy. If you manage to push the carriage even faster, the baby becomes as
massive as a car…and then a battleship…and then a planet…and then a
star…and then a galaxy. As the baby gets more massive, your push has less
and less effect. In the same way, you can take a spaceship and accelerate it,
getting it closer and closer to the speed of light. But after a while, it gets too
massive to push any longer. The spaceship—or for that matter any other
object with mass—never quite reaches the speed of light. The speed of light



is the ultimate speed limit; you cannot reach it, much less exceed it. Nature
has defended itself from an unruly zero.

However, zero is too powerful even for nature. When Einstein extended
the theory of relativity to include gravity, he did not suspect that his new
equations—the general theory of relativity—would describe the ultimate
zero and the worst infinity of them all: the black hole.

Einstein’s equations treat time and space as different aspects of the same
thing. We are already used to the idea that if you accelerate, you change the
way you move through space; you can speed up or slow down. What
Einstein’s equations showed was that just as acceleration changes the way
you move through space, it changes the way you move through time. It can
speed up the way time flows or slow it down. Thus, when you accelerate an
object—when you subject it to any force, be it gravity or be it the push of a
gigantic cosmic elephant—you change its motion through space and
through time: through space-time.

It’s a difficult concept to grasp, but the easiest way to approach space-
time is through an analogy: space and time are like a gigantic rubber sheet.
Planets, stars, and everything else sit on that sheet, distorting it slightly.
That distortion—the curvature caused by objects sitting on the sheet—is
gravity. The more massive the object that is sitting on the sheet, the more
the sheet gets distorted, and the larger the dimple around that object. The
pull of gravity is just like the tendency of objects to roll into the dimple.

The curvature of the rubber sheet is not only a curvature of space, but a
curvature of time as well. Just as space gets distorted close to a massive
object, time does, too. It gets slower and slower as the curvature gets
greater and greater. The same thing happens with mass. As you get into
greatly curved regions of space, bodies’ masses effectively increase, a
phenomenon known as mass inflation.

This analogy explains the orbits of the planets; Earth is simply rolling
around in the dimple that the sun makes in the rubber sheet. Light doesn’t
go in a straight line, but in a curved path around stars—an effect that the
British astronomer Sir Arthur Eddington went on an expedition in 1919 to



observe. Eddington measured the position of a star during a solar eclipse
and spotted the curvature that Einstein had predicted (Figure 51).

Einstein’s equations also predicted something much more sinister: the
black hole, a star so dense that nothing can escape its grasp, not even light.

Figure 51: Gravity bends light around the sun.

A black hole begins, like all stars, as a big ball of hot gas—mostly
hydrogen. If left to its own devices, a sufficiently large ball of gas would
collapse under the weight of its own gravity; it would crush itself into a tiny
lump. Luckily for us, stars don’t collapse because there is another force at
work: nuclear fusion. As a cloud of gas collapses, it gets hotter and denser,
and hydrogen atoms slam into one another with increasing force.
Eventually, the star gets so hot and dense that the hydrogen atoms stick to
one another and fuse, creating helium and releasing large quantities of
energy. This energy shoots out from the center of the star, causing it to



expand a little bit. During most of its life, a star is in an uneasy equilibrium:
the propensity to collapse under its own gravity is balanced by the energy
that comes from the fusing hydrogen in its center.

This equilibrium cannot last forever; the star has only a limited amount
of hydrogen fuel to burn. After a while, the fusion reaction dims, and the
equilibrium is upset. (How long this process takes depends on how big the
star is. Ironically, the bigger the star—the more hydrogen it has—the
shorter its life, because it burns much more violently. The sun has about
five billion years of fuel left, but don’t let that make you complacent. The
sun’s temperature will increase gradually before that, boiling off the oceans
and turning Earth into an uninhabitable desert like Venus. We should count
ourselves lucky if we have a mere billion years left of life on Earth.) After a
drawn-out series of death throes—the precise sequence of events depends,
again, on the mass of the star—the star’s fusion engine fails, and the star
begins to collapse under its own gravity.

A quantum-mechanical law called the Pauli exclusion principle keeps
matter from squishing itself into a point. Discovered in the mid-1920s by
German physicist Wolfgang Pauli, the exclusion principle states, roughly,
that no two things can be in the same place at the same time. In particular,
no two electrons of the same quantum state can be forced into the same
spot. In 1933, the Indian physicist Subrahmanyan Chandrasekhar realized
that the Pauli exclusion principle had only a limited ability to fight against
the squeeze of gravity.

As pressure in the star increases, the exclusion principle states that
electrons inside must move faster and faster to avoid one another. But
there’s a speed limit: electrons cannot move faster than the speed of light,
so if you put enough pressure on a lump of matter, electrons cannot move
fast enough to stop the matter from collapsing. Chandrasekhar showed that
a collapsing star that has about 1.4 times the mass of our sun will have
enough gravity to overwhelm the Pauli exclusion principle. Above this
Chandrasekhar limit a star’s gravity will pull on itself so strongly that
electrons can’t stop its collapse. The force of gravity is so great that the
star’s electrons give up their struggle once and for all; the electrons smash



into the star’s protons, creating neutrons. The massive star winds up being a
gigantic ball of neutrons: a neutron star.

Further calculations showed that when collapsing stars are a little more
massive than the Chandrasekhar limit, the pressure of the resulting neutrons
—similar to the pressure of electrons—can stave off collapse for a little
while; this is what happens in a neutron star. At this point, the star is so
dense that every teaspoon weighs hundreds of millions of tons. There is a
limit, though, to even the pressure that neutrons can bear. Some
astrophysicists believe that a little more squeezing makes the neutrons
break down into their component quarks, creating a quark star. But that is
the last stronghold. After that, all hell breaks loose.

When an extremely massive star collapses, it disappears. The
gravitational attraction is so great that physicists know of no force in the
universe that can stop its collapse—not the repulsion of its electrons, not the
pressure of neutron against neutron or quark against quark—nothing. The
dying star gets smaller and smaller and smaller. Then…zero. The star crams
itself into zero space. This is a black hole, an object so paradoxical that
some scientists believe that black holes can be used to travel faster than
light—and backward in time.

The key to a black hole’s strange properties is the way it curves space-
time. A black hole takes up no space at all, but it still has mass. Since the
black hole has mass, it causes space-time to curve. Normally, this would not
cause a problem. As you approach a heavy star, the curvature gets greater
and greater, but once you have passed the outer edge of the star itself, the
curvature decreases again, bottoming out at the center of the star. In
contrast, a black hole is a point. It takes up zero space, so there is no outer
edge, no place where space begins to flatten out again. The curvature of
space gets greater and greater as you approach a black hole, and it never
bottoms out. The curvature goes off to infinity because the black hole takes
up zero space; the star has torn a hole in space-time (Figure 52). The zero of
a black hole is a singularity, an open wound in the fabric of the universe.

This is a very troublesome concept. The smooth, continuous fabric of
space-time might have tears in it, and nobody knows quite what happens in
the region of those tears. Einstein was so disturbed by the idea of



singularities that he denied the existence of black holes. He was wrong;
black holes do exist. However, the singularity of a black hole is so ugly, so
dangerous, that nature tries to shield it, preventing anyone from seeing the
zero at the center of a black hole and returning to tell the tale. Nature has a
“cosmic censor.”

Figure 52: Unlike other stars, a black hole tears a hole in space-time.

The censor is gravity itself. If you toss a rock upward, it will curve back
down, pulled back by the earth’s gravity. But if you throw a rock fast
enough, it won’t curve back down to earth; it will zoom out of the earth’s
atmosphere and escape the earth’s gravitational pull. This is roughly what
NASA does when it sends a spacecraft to Mars. The minimum speed you
need to throw the rock to enable it to escape is called, naturally enough, the
escape velocity. Black holes are so dense that if you get too close—past the
so-called event horizon—the escape velocity is faster than the speed of
light. Past the event horizon the pull of a black hole’s gravity is so strong—
and space is so curved—that nothing can escape, not even light.

Even though a black hole is a star, none of the light it shines ever
escapes past the event horizon; that’s why it’s black. The only way to view
a black hole’s singularity is to go beyond the event horizon and see for
yourself. However, even if you had an impossibly strong spacesuit that kept



you from being stretched into a piece of astronaut spaghetti, you could
never tell anybody about what you saw. Once you pass the event horizon,
signals you broadcast can’t escape the black hole’s pull—neither can you.
Traveling beyond the edge of the event horizon is like stepping off the edge
of the universe. You will never return. This is the power of the cosmic
censor.

Even though nature tries to shield the singularities of black holes,
scientists know that black holes exist. In the direction of the constellation
Sagittarius, at the very center of our galaxy, sits a supermassive black hole
that weighs as much as two-and-a-half million suns. Astronomers have
watched stars dance around an invisible partner; the stars’ motions reveal
the presence of the black hole even if the black hole is not visible. However,
though scientists can detect black holes, they still haven’t spotted the zeros
at their centers, since the ugly singularities are shielded by the event
horizon.

This is a good thing. If there were no event horizon, no cosmic censor
that shields the singularity from the rest of the universe, very strange things
might happen. In theory, a naked singularity with no event horizon might
allow you to travel faster than light or backward in time. This could be done
with a structure known as a wormhole.

Back in the rubber-sheet analogy, a singularity is a point of infinite
curvature; it is a hole in the fabric of space and time. Under certain
circumstances that hole can be stretched out. For instance, if a black hole is
spinning or has an electric charge, mathematicians have calculated that the
singularity is not a point—a pinpoint hole in space-time—but a ring.
Physicists have speculated that two of these stretched-out singularities
might be linked with a tunnel: a wormhole (Figure 53). A person who
travels through a wormhole will emerge at another point in space—and
perhaps in time. Just as worm-holes can, in theory, send you halfway across
the universe in the blink of an eye, they can send you backward and forward
in time (see appendix E). You might even be able to track down your
mother and kill her before she meets your father, preventing you from being
born and causing a terrible paradox.



A wormhole is a paradox caused by a zero in the equations of general
relativity. Nobody truly knows whether or not wormholes exist—but NASA
is hoping that they do.

Figure 53: A wormhole

Something for Nothing?

There’s no such thing as a free lunch.
—“THE SECOND LAW OF THERMODYNAMICS”

NASA hopes that zero might hold the secret to traveling to distant stars. In
1998, NASA held a symposium entitled Physics for the Third Millennium,
where scientists debated the merits of wormholes, warp drives, vacuum-
energy engines, and other far-out ideas.

The problem with space travel is that there is nothing to push against.
When you swim through a pool, you push against the water, forcing it
backward and pushing you forward. When you walk on the ground, your
feet are pushing against the floor, providing the force to drive you forward.
In space, there is nothing to push backward; you can paddle all you want,
but you’ll get nowhere.

Rockets bring their own supply of stuff to push against. Rocket fuel
burns in the engine and is sent out the back of the rocket, driving the
spaceship forward, just as the rush of air out of a balloon sends it flying



around the room. But tossing away fuel is an expensive and cumbersome
way to go places, and even modern improvements on the chemical engine,
such as engines that use electricity to throw stuff out the back of a rocket,
are unable to provide the fuel efficiency to send probes to distant stars in a
reasonable amount of time. To get even to the nearest star, you would need
an enormous amount of fuel to jettison out the back of the rocket—a
tremendous waste.

Physicist Marc Millis heads NASA’s Breakthrough Propulsion Project
and hopes to overcome this problem with the physics of zero.
Unfortunately, the zeros of black holes—singularities—look like unlikely
candidates in the short term. Not only is it extremely difficult to create a
naked singularity that a wormhole needs, but it also appears that even a
naked singularity will tear space travelers to shreds. In 1998 two physicists
from the Hebrew University in Jerusalem showed that even a spinning or
charged black hole—with a nice, ring-shaped singularity—will kill an
astronaut, thanks to mass inflation. As you fall toward the singularity, the
black hole’s mass appears to grow and grow to infinity. The gravitational
tug is so strong that you’d be torn apart in a fraction of a second.
Wormholes would be hazardous to your health.

Even if the zeros at the center of black holes don’t provide an easy way
to travel through space, the zero of quantum mechanics provides an
alternative: the zero-point energy might be the ultimate fuel. It is here that
the mainstream of physics ends and the fringe begins.

According to Millis, astronauts might harness the energy in the vacuum
to push a spaceship, just as mariners harnessed the wind to drive a frigate.
“I’m making an analogy to the Casimir effect, where you can push plates
together with a noticeable radiation pressure from the vacuum,” he says. “If
there were any way to get asymmetric forces out of that, where you get
force in one direction and not the other, you’d get a propulsive force.”
Unfortunately, so far the Casimir effect seems to be symmetric; both plates
collapse and pull each other together. The action of one has an equal and
opposite reaction on the other. But if there were some sort of quantum sail,
a one-way mirror that reflected virtual particles on one side but let them
pass unhindered through the other, the vacuum energy would push the



whole object toward the unreflective half of the sail. Millis admits that
nobody has any clue how to do this. “There are no theories how to engineer
the device,” he says sadly.

The problem is that the laws of physics say you can’t get something for
nothing; just as the frigate lowers the speed of the wind, the quantum sail
would have to lower the energy of the vacuum. How can you modify
nothing?

Harold Puthoff, the director of the Institute for Advanced Studies in
Austin, Texas, believes that a quantum sail would simply alter the
properties of the vacuum. (Puthoff is best known for his 1974 paper in
Nature that purported to prove that Uri Geller and other psychics could
view objects remotely—without their eyes. This conclusion was not in the
mainstream of science.) “The vacuum decays to a slightly lower state,” says
Puthoff. If so, then quantum sails are just the beginning; it would be
possible to make engines that run solely on zero-point energy. Their only
drawback would be that the fabric of the universe would fall apart. Slowly.
“We’d never make a dent. It’s like scooping up cupfuls of water from the
ocean,” says Puthoff.

It might also destroy the universe.

There is no question that the vacuum has energy; the Casimir force is
witness to that fact. But is it possible that the energy of the vacuum is truly
the lowest possible energy? If not, danger might be lurking in the vacuum.
In 1983 two scientists suggested in Nature that tinkering with the energy of
the vacuum might cause the universe to self-destruct. The paper argued that
our vacuum might be a “false” vacuum in an unnaturally energetic state—
like a ball perched precariously on the side of a hill. If we give the vacuum
a big enough nudge, it might start rolling down the hill—settling into a
lower energy state—and we would not be able to stop it. We would release
a huge bubble of energy that expands at the speed of light, leaving a vast
trail of destruction in its wake. It might be so bad that every one of our
atoms would be torn apart during the apocalypse.

Luckily, this is an extremely unlikely scenario. Our universe has lasted
billions of years, and it’s improbable that we are living in such a precarious



state; cosmic-ray collisions would probably already have “sparked” the
vacuum with enough energy to cause such a disaster were it possible. This
hasn’t stopped some believers—physicists included—from picketing high-
energy laboratories like Fermilab; they believe that a high-energy collision
could cause a spontaneous collapse of the vacuum. Even if those concerns
were valid, it seems all but impossible to propel a spaceship with zero-point
energy. However, Puthoff believes he has a way to extract energy from the
void.

In theory, scientists can get energy from the Casimir effect even at
absolute zero in the bleakest part of the vacuum of space. Two plates
generate heat when they smack together—heat that can be converted to
electricity. Alas, the plates have to be pried apart again, which requires
more energy than was initially produced; most scientists believe that this
fact kills the idea of making a perpetual-motion machine that runs on
vacuum energy. But Puthoff thinks he sees several ways around this
dilemma. One is to use plasmas instead of plates.

A plasma, a gas of charged particles, is just like a metal plate as far as
the Casimir effect is concerned. A conducting, cylinder-shaped gas would
be compressed by the zero-point fluctuations just as plates are forced
together. The collapse would heat the plasma, releasing energy. Unlike
metal plates, plasmas could be made easily with a bolt of electricity,
according to Puthoff, and instead of having to pry the plates apart again, the
plasma “ash” is discarded. Puthoff gingerly claims to have gotten out 30
times more energy with this method than was put in. “There’s some
evidence; we’ve even got a patent,” he says. However, Puthoff’s device is
one in a long line of “free energy” machines—none of which, in the past,
have withstood scientific scrutiny. It is unlikely that his device to harness
the zero-point energy will be any different.

According to quantum mechanics and general relativity, the power of
zero is infinite, so it’s no surprise that people are hoping to tap its potential.
But for the time being, it appears that nothing will come of nothing.



Chapter 8
Zero Hour at Ground Zero
[ZERO AT THE EDGE OF SPACE AND TIME]

Alien they seemed to be:

No mortal eye could see

The intimate welding of their later history…
—THOMAS HARDY, “THE CONVERGENCE OF THE TWAIN”

Modern physics is a struggle of two titans. General relativity holds sway
in the realm of the very, very big: the most massive objects in the universe,
such as stars, solar systems, and galaxies. Quantum mechanics rules the
domain of the very, very small: atoms and electrons and subatomic
particles. It would seem that these two theories could live in harmony
together, each dictating the rules of physics for different aspects of the
universe.

Unfortunately, there are objects that lie in both realms. Black holes are
very, very massive, so they are subject to the laws of relativity; at the same
time, black holes are very, very tiny, so they are in the domain of quantum
mechanics. And far from agreeing, the two sets of laws clash at the center
of a black hole.



Zero dwells at the juxtaposition of quantum mechanics and relativity;
zero lives where the two theories meet, and zero causes the two theories to
clash. A black hole is a zero in the equations of general relativity; the
energy of the vacuum is a zero in the mathematics of quantum theory. The
big bang, the most puzzling event in the history of the universe, is a zero in
both theories. The universe came from nothing—and both theories break
down when they try to explain the origin of the cosmos.

To understand the big bang, physicists must marry quantum theory with
relativity. In the past few years they have begun to succeed, creating a
monster theory that explains the quantum-mechanical nature of gravity,
allowing them to peer at the very creation of our universe. All they had to
do was banish zero.

The Theory of Everything is, in truth, a theory of nothing.

Zero Banished: String Theory

The problem is, when we try to calculate all the way down to zero
distance, the equation blows up in our face and gives us
meaningless answers—things like infinity. This caused a lot of
trouble when the theory of quantum electrodynamics first came out.
People were getting infinity for every problem they tried to
calculate!

—RICHARD FEYNMAN

General relativity and quantum mechanics were bound to be incompatible.
The universe of general relativity is a smooth rubber sheet. It is continuous
and flowing, never sharp, never pointy. Quantum mechanics, on the other
hand, describes a jerky and discontinuous universe. What the two theories
have in common—and what they clash over—is zero.

The infinite zero of a black hole—mass crammed into zero space,
curving space infinitely—punches a hole in the smooth rubber sheet. The
equations of general relativity cannot deal with the sharpness of zero. In a
black hole, space and time are meaningless.



Quantum mechanics has a similar problem, a problem related to the
zero-point energy. The laws of quantum mechanics treat particles such as
the electron as points; that is, they take up no space at all. The electron is a
zero-dimensional object, and its very zerolike nature ensures that scientists
don’t even know the electron’s mass or charge.

This seems like a silly statement. It has been nearly a century since
scientists measured the electron’s mass and charge. How could physicists
not know something that has been measured? The answer lies with zero.

The electron that scientists see in the laboratory—the electron that
physicists, chemists, and engineers have known and loved for decades—is
an impostor. It is not the true electron. The true electron is hidden in a
shroud of particles, made up of the zero-point fluctuations, those particles
that constantly pop in and out of existence. As an electron sits in the
vacuum, it occasionally absorbs or spits out one of these particles, such as a
photon. The swarm of particles makes it difficult to get a measurement of
the electron’s mass and charge, because the particles interfere with the
measurement, masking the electron’s true properties. The “true” electron is
a bit heavier and carries a greater charge than the electron that physicists
observe.

Scientists might get a better idea of the true mass and charge of the
electron if they could get a little closer; if they could invent a tiny device
that could get a short distance inside the cloud of particles, they would be
able to see more clearly. According to quantum theory, as the measuring
device gets past the first few virtual particles on the rim of the cloud,
scientists would see the mass and charge of the electron go up, and as the
probe gets closer and closer to the electron, it would pass more and more
virtual particles, so the observed mass and charge go up and up. As the
probe approaches zero distance from the electron, the number of particles it
passes goes up to infinity—so the probe’s measurements of the mass and
charge of the electron also go to infinity. According to the rules of quantum
mechanics, the zero-dimensional electron has infinite mass and infinite
charge.

As with the zero-point energy, scientists learned to ignore the infinite
mass and charge of the electron. They don’t go all the way to zero distance



from the electron when they calculate the electron’s true mass and charge;
they stop short of zero at an arbitrary distance. Once a scientist chooses a
suitably close distance, all the calculations using the “true” mass and charge
agree with one another. This is a process called renormalization. “It is what
I would call a dippy process,” wrote physicist Richard Feynman, even
though Feynman won his Nobel Prize for perfecting the art of
renormalization.

Just as zero punches a hole in the smooth sheet of general relativity,
zero smooths and spreads out the sharp point charge of the electron,
covering it in a fog. However, since quantum mechanics deals with zero-
dimensional particle-points such as the electron, technically all particle-
particle interactions in quantum theory deal with infinities: they are
singularities. When two particles merge, for instance, they meet at a point: a
zero-dimensional singularity. This singularity makes no sense in quantum
mechanics or in general relativity. Zero is the wrench in the works of both
great theories. So physicists simply got rid of it.

It is not obvious how to get rid of zero, as zero appears and reappears
throughout time and space. Black holes are zero-dimensional, as are
particles such as the electron. Electrons and black holes are real things;
physicists can’t simply will them away. But scientists can give black holes
and electrons an extra dimension.

This is the reason for string theory, which was created in the 1970s
when physicists began to see the advantages of treating every particle as a
vibrating string rather than as a dot. If electrons (and black holes) are
treated as one-dimensional, like a loop of string, instead of as zero-
dimensional, like a point, the infinities in general relativity and quantum
mechanics miraculously disappear. For instance, the renormalization trouble
—the infinite mass and charge of the electron—vanishes. A zero-
dimensional electron has an infinite mass and charge because it is a
singularity; as you get closer and closer to it, your measurements zoom off
to infinity. However, if the electron is a loop of string, the particle is no
longer a singularity. This means that the mass and charge don’t go off to
infinity, because you are no longer passing an infinite cloud of particles as
you approach the electron. Furthermore, as two particles merge, no



longerdo they meet at a point-like singularity; they form a nice, smooth,
continuous surface in space-time (Figures 54,55).

Figure 54: Point particles create a singularity…

Figure 55:…string particles don’t.

In string theory different particles are really the same type of string, just
wiggling in different ways. Everything in the universe is made up of these
strings, which are about 10-33 centimeters across; comparing the size of a
string to the size of a neutron is like comparing the size of a neutron to the
size of our solar system. From the perspective of beings as large as we are,
the loops look like points because they are so tiny. Distances (and times)
smaller than the size of the loops no longer matter; they don’t make any
physical sense. In string theory, zero has been banished from the universe;
there is no such thing as zero distance or zero time. This solves all the
infinity problems of quantum mechanics.



Banishing zero also solves the infinity problems in general relativity. If
you imagine a black hole as a string, no longer do objects fall through a rip
in the fabric of space-time. Instead, a particle loop approaching a black-hole
loop stretches out and touches the black hole. The two loops tremble, tear,
and form one loop: a slightly more massive black hole. (Some theorists
believe that the act of merging a particle to a black hole creates bizarre
particles such as tachyons: particles with imaginary mass that travel
backward in time and move faster than light. Such particles might be
admissible in certain versions of string theory.)

Removing zero from the universe might seem like a drastic step, but
strings are much more tractable than dots; by eliminating zero, string theory
smooths out the discontinuous, particle-like nature of quantum mechanics
and mends the gashes torn in general relativity by black holes. With these
problems patched over, the two theories are no longer incompatible.
Physicists began to think that string theory would unify quantum mechanics
with relativity; they believed that it would lead to the theory of quantum
gravity—the Theory of Everything that explains every phenomenon in the
universe. However, string theory had some problems. For one thing, it
required 10 dimensions to work.

For most people, four dimensions are one too many. It is easy to see
three of them: left-right, front-back, and up-down represent the three
directions we can move in. The fourth arrived when Einstein showed that
time was similar to these three dimensions; we are constantly moving
through time like a car that’s speeding down a highway. The theory of
relativity shows that just as we can change how quickly we rush down a
highway, we can change the rate at which we move through time—the
faster we go through space, the quicker we move through time. To
understand Einstein’s universe, we have to accept the idea that time is the
fourth dimension.

Four is reasonable—but 10? We can measure four dimensions, but what
happened to the other six dimensions? According to string theory, they are
rolled up like little balls, too tiny to see. When you pick up a piece of paper,
it seems two-dimensional. It has length and breadth, but it doesn’t seem to
have any depth at all. Nevertheless, if you take a magnifying glass and gaze



at the edge of the piece of paper, you begin to see that it has a wee bit of
depth. You need a tool to help you see it, but that third dimension is there,
too tiny to see under normal conditions. The same is true with those extra
six dimensions. In everyday life they are way too tiny to see; they are too
small to detect even with the most powerful equipment that we could
possibly manufacture in the near future.

What do these six extra dimensions mean? Nothing, really. They don’t
measure anything that we are accustomed to, like length, breadth, width, or
time. They are simply mathematical constructs that make the mathematical
operations in string theory work in the manner that they have to. Like
imaginary numbers, we can’t see them or feel them or smell them, even
though they are necessary for doing calculations. Though it is a strange
concept physically, it is the predictive power of the equations that interests
scientists, rather than their comprehensibility—and an extra six dimensions
do not constitute an insurmountable problem, mathematically. Spotting
them might. (Ten seems small nowadays. In the past few years physicists
realized that the many competing varieties of string theory are actually, in a
sense, the same thing. Scientists realize now that these theories are dual to
each other just as Poncelet realized that lines and points were dual to each
other. Scientists now believe that there is a monster theory that underlies all
of these competing theories: the so-called M-theory, which lives in 11
dimensions, not 10.)

Strings (or their more general counterparts, branes, a term for
multidimensional membranes) are so tiny that no instrument can hope to
spot them—at least until our civilization becomes much more advanced.
Particle physicists look at the subatomic realm with particle accelerators:
they use magnetic fields or other means to get tiny particles moving very
fast; when these particles collide with one another, they spit off fragments.
Particle accelerators are the microscopes of the subatomic world, and the
more energy you put into those particles—the more powerful the
microscope—the smaller the objects you can see.

The Superconducting Super Collider, a multibillion dollar project that
was contemplated until the early 1990s, was going to be the most powerful
particle accelerator ever built. It was to have more than 10,000 magnets



arranged in a loop 54 miles around, about the size of the beltway highway
that circles Washington, D.C. This is still not nearly powerful enough to see
strings or curled-up dimensions—viewing strings would require a particle
accelerator about 6,000,000,000,000,000 miles around. Even traveling at
the speed of light, a particle would take 1,000 years to make the circuit.

No instrument currently imaginable will give scientists the power to
observe strings directly; nobody can think of an experiment that will give
physicists evidence about whether black holes and particles are, indeed,
strings. This is the chief objection to string theory. Because science is based
upon observation and experiment, some critics argue that string theory is
not science but philosophy. (A recent set of theories proposes that some of
these rolled-up dimensions might be 10-19 centimeters or even larger, which
would put them within the realm of experimentation. But at the moment,
these theories are considered rogues—interesting ideas, but very long shots
at best.)

Newton’s laws of motion and gravitation gave physicists an explanation
for the way planets and objects move through the universe. Whenever a
new comet was discovered, it gave additional support to Newton’s
calculations. There were a few problems. Mercury’s orbit, for instance,
wobbled in a way that disagreed with what Newton predicted, but on the
whole, Newton’s theories were tested again and again, and they usually
passed.

Einstein’s theories corrected Newton’s errors; they explained Mercury’s
wobble, for instance. These theories also made testable predictions about
the way gravity works. Eddington observed the bending of starlight during
a solar eclipse, confirming one of those predictions.

String theory, on the other hand, ties together a number of existing
theories in a very pretty way, and makes a number of predictions about the
way black holes and particles behave, but none of those predictions are
testable or observable. While string theory might be mathematically
consistent, and even beautiful, it is not yet science.*

For the foreseeable future, banishing zero from the universe with string
theory is a philosophical idea rather than a scientific one. String theory



might well be correct, but we may never have the means to find out. Zero
has not yet been banished; indeed, zero seems to be what created the
cosmos.

The Zeroth Hour: The Big Bang

Hubble’s observations suggested that there was a time, called the
big bang, when the universe was infinitesimally small and infinitely
dense. Under such conditions all the laws of science, and therefore
all ability to predict the future, would break down.

—STEPHEN HAWKING, A BRIEF HISTORY OF TIME

The universe was born in zero.

Out of the void, out of nothing at all, came a cataclysmic explosion that
created all the matter and energy that the entire universe is made of. This
event—the big bang—was a horrible idea to many scientists and
philosophers. It took a long time before astrophysicists came to agree that
our universe was finite—that it did, in fact, have a beginning.

The prejudice against a finite universe is ancient. Aristotle rejected the
creation of the universe out of the void because he believed that the void
could never exist. But this caused a paradox. If the universe could not
spring forth from the void, then something had to be floating about before
the birth of the universe; there had to be a universe before the universe was
born. To Aristotle, the only possible way out of this quandary was to
assume that the universe was eternal. It had always existed in the past, and
would always exist.

Western civilization eventually had to make a choice between Aristotle
and the Bible, which says that the finite universe sprang forth from the void
and prophesies its ultimate destruction. Though the Semitic biblical cosmos
toppled the Aristotelian one, the idea of an eternal, unchanging universe
was not expunged completely, enduring even to the twentieth century. It led
Einstein to what he called the greatest mistake of his career.



To Einstein, the general theory of relativity had a crucial flaw. It
foretold the end of the universe. According to the equations of general
relativity, the universe was unstable. There were only two choices, and both
were equally unpleasant.

One possibility was that the universe would collapse under its own
gravity. As the universe gets smaller and smaller, it heats up more and
more. It burns brightly with radiation, destroying all life and eventually
destroying the atoms that make up matter. It would be death by fire.
Eventually, the universe would crunch itself into a zero-dimensional point
—like a black hole—and would disappear forever.

The other possibility is, if anything, more grim. The universe would
expand forever. Galaxies would become ever more distant from one
another, and the star stuff that drives all the energetic reactions in the
universe would become more rarefied. Stars would burn out as they
exhausted their fuel, and galaxies would become darker and darker—and
then cold and silent. The cold, dead matter of the stars would decay away,
leaving nothing but a smear of radiation that spreads equally throughout the
universe. The cosmos would be a cold soup of dimming light. It would be
death by ice.

To Einstein, these ideas were abhorrent. Like Aristotle, he implicitly
assumed that the universe was static, constant, and eternal. The only way
out was to “correct” his equations of general relativity to stave off the
impending destruction. He did this by adding a cosmological constant, an as
yet undetected force that counteracts the force of gravity. The cosmological
constant’s push would balance out gravity’s pull; instead of collapsing, the
universe could stay in a steady balance, neither collapsing nor expanding.
Postulating the existence of such a mysterious force was a desperate act. “I
have…again perpetrated something about gravitation theory which
somewhat exposes me to the danger of being confined in a madhouse,”
wrote Einstein, but he was so worried about the impending destruction of
the universe that he was forced to take such a dramatic step.

Einstein wasn’t bundled off to an asylum. Einstein had proposed
stranger things and had been entirely right. However, this time he was not



so lucky. The stars themselves destroyed Einstein’s vision of a static, eternal
cosmos.

In 1900 the Milky Way was the known universe. Astronomers had little
idea that anything lay beyond our own dusty little disk of stars. Though
astronomers had spotted some glowing, swirly clouds, there was little
reason to believe that they were anything but glowing gas inside our galaxy.
In the 1920s that all changed, thanks to an American astronomer named
Edwin Hubble.

A special type of star, called a Cepheid variable, had a property that
allowed Hubble to measure the distance to faraway objects. Cepheid stars
pulsate, getting brighter and dimmer in a very predictable way; the way
they pulsate is closely related to how much light they put out. They are
standard candles, objects of known brightness, and became a key tool for
Hubble. They were like the headlights of a train.

If you watch a train coming at you, you will see that its headlight gets
brighter and brighter as it approaches. If you know how much light the
headlight puts out—if the headlight is a standard candle—you can tell how
bright the headlight will appear at any given distance. The closer it gets, the
brighter it seems. The same logic works in reverse; if you know how much
light a train’s headlight emits, you can measure its apparent brightness and
calculate the train’s distance from you.

Hubble did the exact same thing with Cepheid stars. Most stars he saw
were tens or hundreds or thousands of light-years away. But when he found
a Cepheid blinking in one of these swirly clouds—the Andromeda nebula,
as it was then called—he measured the light and calculated that the nebula
was a million light-years away, far beyond the outer reaches of our galaxy.
Andromeda was not a cloud of glowing gas; it was a cloud of stars so
distant that they looked like a smear rather than individual points of light.
Other swirly galaxies were even more distant. Today, astronomers suspect
that the universe is about 15 billion light-years across and peppered
everywhere with clusters of galaxies.

This was an astounding discovery; the universe was millions of times
bigger than previously suspected. As amazing as this observation was, it



was not what Hubble is best remembered for. Hubble’s second discovery
was what shattered Einstein’s eternal universe.

Hubble measured the distance to galaxy after galaxy with his Cepheid
stars, but soon began to notice an alarming pattern: all the galaxies were
fleeing with high speed, shooting away from the Milky Way at speeds of
hundreds of miles a second or more. The galaxies were so distant that even
these great velocities were not directly measurable.

The only way to clock the speed of a galaxy is by using the Doppler
effect—the same principle used in state troopers’ radar guns. You might
have noticed that when a train zooms by, the pitch of its horn changes. As
the train approaches, its horn is high-pitched, but as it passes you, all of a
sudden its pitch drops dramatically. This happens because the motion of the
train crushes the sound waves in front of it (making a higher-frequency,
higher-pitch tone) and stretches out the waves behind it (making a lower-
frequency, lower-pitch tone) (Figure 56). This is the Doppler effect, and it
works with light, too. If a star is moving toward Earth, the light is crushed
and has a higher frequency than normal; it is shifted toward the blue end of
the spectrum, blueshifted. If a star is moving away, the opposite happens;
the light is stretched out and redshifted.

Police can tell how fast a car is going by testing how light—in the form
of radio waves—reflected off the speeding vehicle gets shifted. In the same
way, by looking at how a star’s light spectrum gets shifted, astronomers can
deduce how fast the star is moving—toward us or away.

Hubble combined the distance data with Doppler speed data, and found
something shocking. Not only were galaxies speeding away from us in all
directions, the farther away the galaxies were, the faster they were going
away.



Figure 56: The Doppler effect

How could this be? Imagine a polka-dotted balloon; the polka dots are
like galaxies, while the balloon itself is the fabric of space-time. As the
balloon inflates, the dots get farther and farther apart from one another.
From any one dot’s perspective, the other dots are all rushing away, and the
more distant dots are rushing faster than the close dots (Figure 57). The
universe seemed to be expanding, like a balloon. (The balloon analogy has
one flaw. Unlike the polka dots, which also get bigger as the balloon
expands, the galaxies are staying about the same size, held together by their
own gravity.)



Figure 57: The expanding universe

As time runs forward, the universe expands and expands. Looking at it
another way, if you had a film of the universe’s history and ran the film
backward, the universe would shrink and shrink. At some point the balloon
would shrivel and wither, getting smaller and smaller, and then eventually
disappear as a point—the singularity at the beginning of time and space.
This is the primal zero, the birthplace of the universe: the big bang, a
furious explosion that created the cosmos. It is from this singularity that all
the matter and energy in the universe spewed forth, creating all the galaxies,
stars, and planets that have ever—and will ever—exist. The universe had a
beginning, about 15 billion years in the past, and space has been expanding
ever since. Einstein’s hope for a steady, eternal universe was all but dead.

One glimmer of hope remained, one alternative to the big bang: steady-
state theory. Some astronomers proposed that there were fountains that spat
out matter, and the galaxies moved away from these founts, aging and
dying. Though the individual galaxies zoomed away and died, the entire
universe as a whole never changed. It was always in equilibrium, constantly
replenishing itself. Aristotle’s eternal universe still survived.

For a time, big bang theory and steady-state theory lived side by side,
alternatives that astronomers chose between depending on their philosophy.
In the mid-1960s, that all changed. Steady-state theory was killed by what
scientists had mistaken for pigeon droppings.

In 1965 several astrophysicists at Princeton University were calculating
what would have happened right after the big bang. The entire universe
must have been incredibly hot and dense; it would have been glowing with
bright light. That light would not have disappeared as the balloon universe
expanded; it would instead have gotten stretched out as the rubber fabric of
space-time stretched. A few calculations later, the Princeton physicists
realized that this light had to be in the microwave region of the spectrum,
and had to be coming from all directions. This cosmic background radiation
was the afterglow of the big bang. It would give physicists the first direct
evidence that the big bang was correct and that steady state was wrong.



The Princeton scientists did not have long to wait before their prediction
was confirmed. At Bell Labs in nearby Murray Hill, New Jersey, two
engineers had been testing out sensitive microwave-detecting equipment.
For all their tinkering, they could not get the equipment to work just right.
There was a background hiss of microwave noise—like static on a radio
program—that they could not get rid of. At first they thought that pigeons
defecating in their antenna were to blame, but after chasing away the birds
and cleaning out the droppings, the hiss remained. They tried everything
they could think of to get rid of the noise, but nothing worked. Then when
the engineers heard of the Princeton group’s work, they realized that they
had found the cosmic background radiation. The noise wasn’t pigeon
droppings. It was the scream of light from the big bang, stretched and
distorted into a whisper’s hiss. (For their discovery the engineers, Arno
Penzias and Robert Wilson, got the Nobel Prize. The Princeton physicists,
notably Bob Dicke and P. J. E. “Jim” Peebles, got nothing—hardly fair in
many scientists’ opinions. The Nobel committee tends to reward
painstaking and careful experiments more than important theory.)

The big bang had been spotted; the myth of the static universe was
dead. As unappealing as the idea of a finite universe was, physicists
gradually accepted the big bang and agreed that the universe had a
beginning. However, there were still problems with the theory. For one
thing, the universe is somewhat lumpy. Knots of dense galaxies are
separated by vast voids. At the same time, the universe is not too lumpy; it
looks roughly the same in all directions, so all the matter did not wind up in
one huge glob. If the universe had come from a singularity, with all
probability the energy from the big bang should have covered the entire
balloon fairly evenly or wound up in one big lump; the balloon should be
evenly shaded or it should have one giant spot, rather than being polka-
dotted. Something had to account for that just-right amount of lumpiness.
More troubling still, where did the singularity of the big bang come from?
Zero holds the secret.

The zero of the vacuum might explain the lumpiness of the universe.
Since the vacuum everywhere in the universe is seething with a quantum
foam of virtual particles, the fabric of the universe is filled with infinite



zero-point energy. Under the right conditions this energy is able to push
objects around; in the early universe it might have pushed objects apart.

In the 1980s physicists suggested that the zero-point energy in the early
universe was greater than it is today. That extra energy would try to expand
in all directions, pushing the fabric of space and time outward with great
speed. It would inflate the balloon with a huge burst of power, smoothing
out the lumpiness of the universe in the same way a breath of air smooths
out the wrinkles of a balloon. This explains why the universe is relatively
smooth. But the vacuum of the first few moments is a false vacuum; its
zero-point energy is unnaturally large. The higher energy state of the zero-
point energy makes it inherently unstable, and very quickly—in less than a
millionth of a millionth of a millionth of a millionth of a second—the false
vacuum would collapse, reverting to the true vacuum, with its everyday
zero-point energy that we observe in our universe. It was like a pot of water
that was instantly flash heated to a huge temperature. Little bubbles of
“true” vacuum would have formed and expanded at the speed of light. Our
observable universe sits inside one of these bubbles—or several of them
that got linked together. The asymmetry of the universe could be explained
by the asymmetrical nature of these expanding bubbles that formed and
merged. According to this theory of inflation, it is the nonzero zero-point
energy that created the stars and galaxies.

Zero might also hold the secret of what created the cosmos. Just as the
nothingness of the vacuum and the zero-point energy spawn particles, they
might spawn universes. The froth of quantum foam, the spontaneous birth
and death of particles, might explain the origin of the cosmos. Perhaps the
universe is just a quantum fluctuation on a grand scale—an enormous
singular particle that came into existence out of the ultimate vacuum. This
cosmic egg would explode, inflate, and create the space-time of our
universe. It may be that our universe is simply one of many fluctuations.
Some physicists believe that the singularities at the center of black holes are
windows into the primordial quantum foam before the big bang—and the
froth of foam at the center of a black hole, where time and space have no
meaning, is constantly creating countless numbers of new universes that
bubble off, inflate, and create their own stars and galaxies. Zero might hold



the secret to our existence—and the existence of an infinite number of other
universes.

Zero is so powerful because it unhinges the laws of physics. It is at the
zero hour of the big bang and the ground zero of the black hole that the
mathematical equations that describe our world stop making sense.
However, zero cannot be ignored. Not only does zero hold the secret to our
existence, it will also be responsible for the end of the universe.



Chapter 9
Zero’s Final Victory

[END TIME]

This is the way the world ends

Not with a bang but a whimper.
—T. S. ELIOT, “THE HOLLOW MEN”

While some physicists are trying to eliminate zero from their equations,
others are showing that zero may have the last laugh. Even though scientists
might never unlock the secrets of the universe’s birth, they are on the brink
of understanding its death. The ultimate fate of the cosmos lies with zero.

Einstein’s gravitational equations didn’t allow for a static, unchanging
universe. They did, however, allow for several other fates, which depend on
the amount of mass in the cosmos. In the case of a light universe, the
balloon of space-time could expand forever, getting bigger and bigger. The
stars and galaxies would wink out, one by one. The universe grows cold and
dies a heat death. However, if there is enough mass—galaxies, galaxy
clusters, and unseen dark matter—the initial push given by the big bang
wouldn’t be enough to allow the balloon to inflate forever. The galaxies
would tug on one another, eventually pulling the fabric of space-time
together; the balloon would begin to deflate. The deflation would get faster



and faster, the universe would get hotter and hotter, and it would eventually
end in a backward big bang: the big crunch. Which will be our fate: big
crunch or heat death? The answer is at hand.

When astronomers peer at a distant galaxy, they are looking backward
in time. A nearby galaxy might be a million light-years away. A light beam
leaving that galaxy now will take a million years to make its trip to Earth;
the light reaching our eyes now left that galaxy a million years ago. The
more distant the objects that astronomers look at, the farther back they are
looking in time.

The universe’s fate hinges on how well our space-time balloon is
expanding. If the expansion is slowing down rapidly, then it’s a good sign
that the energy from the big bang is nearly spent; our universe would be
heading for a big crunch. On the other hand, if the universe’s expansion
isn’t slowing down very much, the energy of the big bang might have given
the fabric of space-time enough of a kick to let it expand for eternity.

Astronomers have begun to measure the change in the universe’s
expansion. A certain type of supernova (exploding star), called a type Ia, is
a standard candle like Hubble’s Cepheid stars. The Ia supernovas explode in
roughly the same way and with the same brightness. But unlike Hubble’s
dim Cepheids, supernovas are visible halfway across the universe.

In late 1997 astronomers announced that they had used these
supernovas to measure the distance to some very dim and ancient galaxies.
The distance of the galaxy yields its age—and its Doppler shift yields its
velocity. By comparing how fast galaxies were receding at different eras in
the past, the astronomers were able to track how fast space-time was
expanding. The answer they got was an odd one.

The expansion of the universe isn’t slowing down. It might even be
speeding up. The supernova data imply that the universe is getting bigger
and bigger, faster and faster. If this is the case, there is little chance of a big
crunch, because something is opposing the force of gravity. Once again
physicists are talking about the cosmological constant—the mysterious term
that Einstein added to his equations to balance the push of gravity.
Einstein’s biggest blunder might not have been a blunder after all.



The mysterious force, once again, might be the force of the vacuum.
The tiny particles that seethe through space-time exert a gentle outward
push, stretching the fabric of space-time imperceptibly. Over billions of
years, that stretch adds up, and the universe inflates faster and faster. The
fate of our universe will not be a big crunch but an eternal expansion,
cooling, and heat death, thanks to the zero-point energy, a zero in the
equations of quantum mechanics that imbues the vacuum with an infinity of
particles.

Astronomers are still cautious. These supernova results are preliminary,
but they are getting more solid with each observation. Other studies, which
analyze plumes of gas or the number of gravitational lenses in a given field
of view, also support the supernova results, implying that the cosmos will
expand forever. The universe will die a cold death, not a hot one.

The answer is ice, not fire, thanks to the power of zero.

To Infinity and Beyond

However, if we do discover a complete theory, it should in time be
understandable in broad principle by everyone, not just a few
scientists. Then we shall all, philosophers, scientists, and just
ordinary people, be able to take part in the discussion of the
question of why it is that we and the universe exist. If we find the
answer to that, it would be the ultimate triumph of human reason—
for we would know the mind of God.

—STEPHEN HAWKING

Zero is behind all of the big puzzles in physics. The infinite density of the
black hole is a division by zero. The big bang creation from the void is a
division by zero. The infinite energy of the vacuum is a division by zero.
Yet dividing by zero destroys the fabric of mathematics and the framework
of logic—and threatens to undermine the very basis of science.

In Pythagoras’s day, before the age of zero, pure logic reigned supreme.
The universe was predictable and orderly. It was built upon rational



numbers and implied the existence of God. Zeno’s troubling paradox was
explained away by banishing infinity and zero from the realm of numbers.

With the scientific revolution, the purely logical world gave way to an
empirical one, based upon observation rather than philosophy. For Newton
to explain the laws of the universe, he had to ignore the illogic within his
calculus—an illogic caused by a division by zero.

Just as mathematicians and physicists managed to overcome the
divison-by-zero problem in the calculus and set it once more upon a logical
framework, zero returned in the equations of quantum mechanics and
general relativity and, once again, tainted science with the infinite. At the
zeros of the universe, logic fails. Quantum theory and relativity fall apart.
To solve the problem, scientists set out to banish zero yet once more and
unify the rules that govern the cosmos.

If scientists succeed, they will understand the laws of the universe. We
would know the physical laws that dictate everything to the edges of space
and time, from the beginning of the cosmos to its end. Humans would
understand the cosmic whim that created the big bang. We would know the
mind of God. But this time, zero might not be so easy to defeat.

The theories that unify quantum mechanics and general relativity, that
describe the centers of black holes and explain the singularity of the big
bang, are so far removed from experiment that it might be impossible to
determine which are correct and which are not. The arguments of string
theorists and cosmologists might be mathematically precise and at the same
time be as useless as the philosophy of Pythagoras. Their mathematical
theories might be beautiful and consistent and might seem to explain the
nature of the universe—and be utterly wrong.

All that scientists know is the cosmos was spawned from nothing, and
will return to the nothing from whence it came.

The universe begins and ends with zero.



Appendix A
Animal, Vegetable, or Minister?

Let a and b each be equal to 1. Since a and b are equal,

b2 = ab (eq. 1)

Since a equals itself, it is obvious that

a2 = a2 (eq. 2)

Subtract equation 1 from equation 2. This yields

a2 - b2 = a2 - ab (eq. 3)

We can factor both sides of the equation; a2 - ab equals a(a - b). Likewise,
a2 - b2 equals (a + b)(a - b). (Nothing fishy is going on here. This statement
is perfectly true. Plug in numbers and see for yourself!) Substituting into
equation 3, we get

(a + b)(a - b) = a(a - b) (eq. 4)

So far, so good. Now divide both sides of the equation by (a - b) and we get

a + b = a (eq. 5)



Subtract a from both sides and we get

b = 0 (eq. 6)

But we set b to 1 at the very beginning of this proof, so this means that

1 = 0 (eq. 7)

This is an important result. Going further, we know that Winston Churchill
has one head. But one equals zero by equation 7, so that means that
Winston has no head. Likewise, Churchill has zero leafy tops, therefore he
has one leafy top. Multiplying both sides of equation 7 by 2, we see that

2 = 0 (eq. 8)

Churchill has two legs, therefore he has no legs. Churchill has two arms,
therefore he has no arms. Now multiply equation 7 by Winston Churchill’s
waist size in inches. This means that

(Winston’s waist size) = 0 (eq. 9)

This means that Winston Churchill tapers to a point. Now, what color is
Winston Churchill? Take any beam of light that comes from him and select
a photon. Multiply equation 7 by the wavelength, and we see that

(Winston’s photon’s wavelength) = 0 (eq. 10)

But multiplying equation 7 by 640 nanometers, we see that

640 = 0 (eq. 11)

Combining equations 10 and 11, we see that

(Winston’s photon’s wavelength) = 640 nanometers

This means that this photon—or any other photon that comes from Mr.
Churchill—is orange. Therefore Winston Churchill is a bright shade of
orange.



To sum up, we have proved, mathematically, that Winston Churchill has
no arms and no legs; instead of a head, he has a leafy top; he tapers to a
point; and he is bright orange. Clearly, Winston Churchill is a carrot. (There
is a simpler way to prove this. Adding 1 to both sides of equation 7 gives
the equation

2 = 1

Winston Churchill and a carrot are two different things, therefore they are
one thing. But that’s not nearly as satisfying.)

What is wrong with this proof? There is only one step that is flawed,
and that is the one where we go from equation 4 to equation 5. We divide
by a - b. But look out. Since a and b are both equal to 1, a - b = 1 - 1 = 0.
We have divided by zero, and we get the ridiculous statement that 1 = 0.
From there we can prove any statement in the universe, whether it is true or
false. The whole framework of mathematics has exploded in our faces.

Used unwisely, zero has the power to destroy logic.



Appendix B
The Golden Ratio

Divide a line in two, such that the ratio of the small part to the large part is
equal to the ratio of the large part to the whole line. For the sake of
simplicity, let’s say that the small part is 1 foot long.

If the small part is 1 foot long, and the large part is x feet long, then the
length of the whole line is obviously 1 + x feet long. Putting our
relationship into algebra, we find that the ratio of the small part to the large
part is

1/x

while the ratio of the large part to the whole thing is

x/(1 + x)

Since the ratio of the small to the large is equal to the ratio of the large to
the whole, we can set the two ratios equal to each other, yielding the
equation

x/(1 + x) = 1/x

We wish to solve the equation for x, which is the golden ratio. The first step
is to multiply both sides by x, which yields



x2/(1 + x) = 1

We then multiply by (1 + x), which gives us the equation

x2 = 1 + x

Subtract 1 + x from both sides, yielding

x2 - x - 1 = 0

Now we can solve the quadratic equation. This gives us two solutions:

Only the first one, with a value of about 1.618, is positive, thus it is the only
one that made sense to the Greeks. Thus the golden ratio is approximately
1.618.



Appendix C
The Modern Definition of a Derivative

Nowadays, the derivative is on firm logical grounds, because we define it in
terms of limits. The formal definition of a derivative of a function f(x)
[which we denote as f'(x)] is

To see how this gets rid of Newton’s dirty trick, let’s look at the same
function we used for demonstrating Newton’s fluxions: f(x) = x2 + x + 1.
The derivative of this function is equal to

Multiplying out, we get

Now the x2 cancels out the - x2, the x cancels out the - x, and the 1 cancels
the - 1, leaving us with



Dividing through by ?—remember, ? is always nonzero because we haven’t
taken the limit yet—we get

f'(x) = limit
(as ? goes to 0) of 2x + 1 + ?

Now we take the limit and let ? approach zero. We get

f'(x) = 2x + 1 + 0 = 2x + 1

which is the answer we desired.

It’s a small shift in thinking, but it makes all the difference in the world.



Appendix D
Cantor Enumerates the Rational Numbers

To show that the rational numbers are the same size as the natural numbers,
all Cantor had to do was come up with a clever seating pattern. This is
precisely what he did.

As you may recall, the rationals are the set of numbers that can be
expressed as a/b for some integers a and b (with b nonzero, of course). To
start with, let us consider the positive rational numbers.

Imagine a grid of numbers—two number lines crossed at zero, just like
the Cartesian coordinate system. Let’s put zero at the origin, and at every
other point on that grid, let’s associate with the rational number x/y where x
is the point’s x-coordinate and y is the point’s y-coordinate. Since the
number lines go off to infinity, every positive combination of xs and ys has
a spot on that grid (Figure 58).

Now let’s create a seating chart for the positive rational numbers. For
seat one, let’s start at 0 on the grid. Then let’s move to 1/1: that’s seat two.
Next, wander over to ½: seat three. Then to 2/1 (which, of course, is the
same thing as 2): seat four. Then to 3/1: seat five. We can wander back and
forth along the grid, counting off numbers as we go. This yields a seating
chart:



Figure 58: An enumeration of the rational numbers

Eventually, all the numbers have a seat; some, in fact, have two seats. It’s
easy to remove the duplicates—just skip over them when making the
seating chart. The next step is to double the list, adding the negative



rationals after the corresponding positive rational. This gives us a seating
chart:

Now all the rational numbers—positives, negatives, and zero—have a seat.
Since nobody is left standing and no seats are open, this means that the
rationals are the same size as the counting numbers.



Appendix E
Make Your Own Wormhole Time Machine

It’s easy—just follow these four simple steps.

 

Step 1: Build a small wormhole. Both ends will be in the same point in
time:

Step 2: Attach one end of the wormhole to something very heavy and the
other end to a spaceship that’s going at 90 percent of the speed of light.
Every spaceship year is equivalent to 2.3 years on Earth; clocks at either
end of the wormhole will go at different speeds.



Step 3: Wait for a while. After 46 years of Earth time, bring the wormhole
to a friendly planet. Traveling through the wormhole can take you from the
year 2046 on Earth to the year 2020 on Zeelox or vice versa.

Step 4: If you were really smart, you could have started planning the
mission far in advance. You could have sent a message to Zeelox long
before you started, arranging for a spaceship from Zeelox to do the reverse
process, beginning in 1974 (Zeelox time). Then in the year 2020 (Zeelox
time), the other wormhole could transport you to Earth in the year 1994
(Earth time). If you use both wormholes, you can jump from 2046 (Earth
time) to 2020 (Zeelox time) to 1994 (Earth time): you’ve traveled back in
time more than half a century!
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* The Greek word for ratio was (logos), which is also the term for word. This translation is even more rational than the traditional
one.



* The early Babylonians were apparently unaware of the difficulty in trisecting an angle. In the Epic of Gilgamesh, the narrator
states that Gilgamesh was two-thirds god and one-third man. This is as impossible as trisecting an angle with a straightedge and
compasses—unless gods and mortals are allowed to have an infinite amount of sex.



* This is a necessary, but not sufficient, condition. If the terms go to zero too slowly, then the sum of the terms doesn’t converge to
a finite number.



* One dating system had the year 1 based upon the founding of the city of Rome, and the other was based on the accession of the
emperor Diocletian. To the Christian monk, the birth of his Savior was a more important event than the foundation of a city that
had been sacked by Vandals and Goths a few times—or, for that matter, the beginning of the reign of an emperor who had an
unfortunate penchant for maintaining his menagerie of exotic animals on a diet of Christians.



* When a computer programmer makes a program do something over and over, he’ll more than likely make the computer count
from, say, zero to nine to make the computer take ten steps. A forgetful programmer might make it count from one to nine,
yielding only nine steps instead of ten. More than likely a bug like this was what ruined an Arizona lottery in 1998. In drawing
after drawing, a nine never appeared. “They hadn’t programmed it in,” admitted a spokeswoman sheepishly.



* Tally sticks caused no end of trouble. The English Exchequer used to keep accounts on a variant of the tally stick until 1826.
Charles Dickens told of the outcome of that long-outdated practice: “In 1834, it was found that there was a considerable
accumulation of them; and the question then arose, what was to be done with such worn-out, worm-eaten, rotten old bits of wood?
The sticks were housed in Westminster, and it would naturally occur to any intelligent person that nothing could be easier than to
allow them to be carried away for firewood by the miserable people who lived in that neighborhood. However, they never had
been useful, and official routine required that they should never be, and so the order went out that they were to be privately and
confidentially burned. It came to pass that they were burned in a stove in the House of Lords. The stove, over-gorged with these
preposterous sticks, set fire to the panelling; the panelling set fire to the House of Commons; the two houses were reduced to
ashes; architects were called in to build others; and we are now in the second million of the cost thereof.”



* When Newton was three, his mother remarried and moved. Newton didn’t accompany his mother and stepfather. As a result, he
had little contact with his parents after that, unless you count the time he threatened to come over and burn their house down with
them inside.



* If you multiply two numbers together and get zero, then one or the other must equal zero. (In mathematical terms, if ab = 0, then
a = 0 or b = 0.) This means that if a2 = 0, then aa = 0, thus a = 0.



* Poncelet’s projective geometry brought about one of the oddest concepts in mathematics: the principle of duality. In high school
geometry, you are taught that two points determine a line. But if you accept the idea of a point at infinity, two lines always
determine a point. Points and lines are dual to each other. Every theorem in Euclidean geometry can be dualized in projective
geometry, setting up a whole set of new theorems in the parallel universe of projective geometry.



* One thing that sometimes helps is thinking of the wave function (technically, the square of the wave function) as a measure of
the probability about where a particle will be. An electron, say, is smeared out across space, but when you make a measurement to
determine where it is, the wave function determines how likely you are to spot the electron at any given point in space. This very
smeariness of nature was what Einstein objected to. His famous statement, “God does not play dice with the universe,” was a
rejection of the probabilistic way that quantum mechanics works. Unfortunately for Einstein, the laws of quantum mechanics work
incredibly well, and you can’t successfully explain quantum effects with traditional classical physics.



* To be precise, the Heisenberg uncertainty principle deals not with a particle’s velocity but with momentum, which combines
speed, direction, and information about the particle’s mass. However, in this context, momentum, velocity, and even energy can be
used almost interchangeably.



* Yes, mathematics can be “beautiful” or “ugly.” Just as it’s hard to describe what makes a piece of music or a painting
aesthetically pleasing, it’s equally difficult to describe what makes a mathematical theorem or a physical theory beautiful. A
beautiful theory will be simple, compact, and spare; it will give a sense of completeness and often an eerie sense of symmetry.
Einstein’s theories are particularly beautiful, as are Maxwell’s equations. But for many mathematicians, an equation discovered by
Euler, ei? + 1 = 0, is the paragon of mathematical beauty, because this extremely simple, compact formula relates all the most
important numbers in mathematics in a totally unexpected way.
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