O'REILLY"

Programming

TypeScript

Making Your JavaScript
Applications Scale

Boris Cherny

9

O'REILLY"

Programming TypeScript

Any programmer working with a dynamically typed language
will tell you how hard it is to scale to more lines of code and
more engineers. That's why Facebook, Google, and Microsoft
invented gradual static type layers for their dynamically typed

JavaScript and Python code. This practical book shows you how
one such type layer, TypeScript, is unique among them: it makes

programming fun with its powerful static type system.

If you're a programmer with intermediate JavaScript
experience, author Boris Cherny will teach you how to master
the TypeScript language. You'll understand how TypeScript can
help you eliminate bugs in your code and enable you to scale
your code across more engineers than you could before.

In this book, you'll:

e Start with the basics: Learn about TypeScript's different
types and type operators, including what they're for and how
they're used

¢ Explore advanced topics: Understand TypeScript's
sophisticated type system, including how to safely handle
errors and build asynchronous programs

* Divein hands-on: Use TypeScript with your favorite frontend
and backend frameworks, migrate your existing JavaScript
project to TypeScript, and run your TypeScript applicationin
production

Boris Cherny is an engineering and product leader at Facebook.
Previously, he worked in VC, ad tech, and at several startups. He
is interested in programming languages, code synthesis and static
analysis, and building user experiences that people love.

“This is the right book to
help you learn TypeScript
in depth. Programming
TypeScript shows all
the benefits of using a
type system on top of
JavaScript and provides
deepinsight into how to
master the language.”

—Minko Gechev
Engineer, Angular Team at Google

"Programming Typescript
onboarded me to the
TypeScript tooling and
overall ecosystem quickly
and efficiently. Every
usage question | had
was covered by concise,
real-world examples. The
"Advanced Types” chapter
breaks down terminology
| usually stumble over, and
shows how to leverage
TypeScript to create
extremely safe code that's
still pleasant to use.”

—Sean Grove
Cofounder of OneGraph

PROGRAMMING / JAVASCRIPT

US $4999 CAN $65.99
ISBN: 978-1-492-03765-1

NINOR DO i

781492 037651‘

Twitter: @oreillymedia
facebook.com/oreilly

Praise for Programming TypeScript

This is the right book to help you learn TypeScript in depth. Programming TypeScript
shows all the benefits of using a type system on top of JavaScript and provides deep
insight into how to master the language.

—Minko Gechev, Engineer, Angular Team at Google

Programming TypeScript onboarded me to the TypeScript tooling and overall ecosystem
quickly and efficiently. Every usage question I had was covered by concise, real-world
examples. The “Advanced Types” chapter breaks down terminology I usually stumble

over, and shows how to leverage TypeScript to create extremely safe code that’s still
pleasant to use.

—Sean Grove, Cofounder of OneGraph

Boris has provided a comprehensive guide to TypeScript. Read this for the 10,000-foot
view all the way back down to Earth, and then some.

—Blake Embrey, Engineer at Opendoor, author of TypeScript
Node and Typings

Programming TypeScript

Making Your JavaScript Applications Scale

Boris Cherny

Beijing + Boston - Fanham - Sebastopol - Tokyo SYRI=[ANY

Programming TypeScript
by Boris Cherny

Copyright © 2019 Boris Cherny. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institu-
tional sales department: 800-998-9938 or corporate@oreilly.com.

Development Editor: Angela Rufino Indexer: Ellen Troutman
Acquisitions Editor: Jennifer Pollock Interior Designer: David Futato
Production Editor: Katherine Tozer Cover Designer: Karen Montgomery
Copyeditor: Rachel Head lllustrator: Rebecca Demarest

Proofreader: Charles Roumeliotis
May 2019: First Edition

Revision History for the First Edition

2019-04-18: First Release
2019-08-09: Second Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492037651 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Programming TypeScript, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-492-03765-1
[LSI]

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492037651

To Sasha and Michael, who might also fall in love with types, someday.

Table of Contents

Preface. ..o xiii
T INtroduction. ... 1
2. TypeScript: A10_000 FOOtVieW. .. .vvuvieiiiniineriirineineeneenesnnsnnennns 5
The Compiler 5
The Type System 7
TypeScript Versus JavaScript 8
Code Editor Setup 11
tsconfig.json 11
tslint.json 13
index.ts 13
Exercises 15

3. Al ADOUL TYPOS. o vt etteeeteeetieeteeeneeenneennesenesennsennsssneesnnnens 17
Talking About Types 18
The ABCs of Types 19
any 19
unknown 20
boolean 21
number 22
bigint 23
string 23
symbol 24
Objects 25
Intermission: Type Aliases, Unions, and Intersections 30
Arrays 33

vii

Tuples 35

null, undefined, void, and never 37
Enums 39
Summary 43
Exercises 44
4. FUNCHIONS. ...ttt e 45
Declaring and Invoking Functions 45
Optional and Default Parameters 47
Rest Parameters 48
call, apply, and bind 50
Typing this 50
Generator Functions 52
Iterators 53
Call Signatures 55
Contextual Typing 58
Overloaded Function Types 58
Polymorphism 64
When Are Generics Bound? 68
Where Can You Declare Generics? 69
Generic Type Inference 71
Generic Type Aliases 73
Bounded Polymorphism 74
Generic Type Defaults 78
Type-Driven Development 79
Summary 80
Exercises 81
5. Cassesand Interfaces..........c.ceviiiiiiiiiiiiiiiiiiii 83
Classes and Inheritance 83
super 89
Using this as a Return Type 89
Interfaces 91
Declaration Merging 93
Implementations 94
Implementing Interfaces Versus Extending Abstract Classes 96
Classes Are Structurally Typed 97
Classes Declare Both Values and Types 98
Polymorphism 100
Mixins 101
Decorators 104

viii | Table of Contents

Simulating final Classes

Design Patterns
Factory Pattern
Builder Pattern

Summary

Exercises

B U017 T -

Relationships Between Types
Subtypes and Supertypes
Variance
Assignability
Type Widening
Refinement

Totality

Advanced Object Types
Type Operators for Object Types
The Record Type
Mapped Types
Companion Object Pattern

Advanced Function Types
Improving Type Inference for Tuples
User-Defined Type Guards

Conditional Types
Distributive Conditionals
The infer Keyword
Built-in Conditional Types

Escape Hatches
Type Assertions
Nonnull Assertions
Definite Assignment Assertions

Simulating Nominal Types

Safely Extending the Prototype

Summary

Exercises

Handling Errors. . ..cveeeeei e i i e e

Returning null
Throwing Exceptions
Returning Exceptions
The Option Type

107
107
108
109
110
110

113
114
114
115
121
122
126
130
132
132
137
137
140
141
141
142
143
144
145
146
147
148
149
151
152
154
156
157

159
160
161
163
165

Table of Contents

ix

10.

1.

Summary
Exercises

. Asynchronous Programming, Concurrency, and Parallelism

JavaScript’s Event Loop
Working with Callbacks
Regaining Sanity with Promises
async and await
Async Streams
Event Emitters
Typesafe Multithreading
In the Browser: With Web Workers
In NodeJS: With Child Processes
Summary
Exercises

. Frontend and Backend Frameworks............ccvvvnvnn.n.

Frontend Frameworks
React
Angular
Typesafe APIs
Backend Frameworks
Summary

Namespaces.Modules.coviviiiiiiiiennnnnnn.

A Brief History of JavaScript Modules
import, export
Dynamic Imports
Using Common]S and AMD Code
Module Mode Versus Script Mode
Namespaces
Collisions
Compiled Output
Declaration Merging
Summary
Exercise

Interoperating with JavaScript.............cooiiiiilt

Type Declarations
Ambient Variable Declarations
Ambient Type Declarations

171
172

173
174
176
178
183
184
184
187
187
196
197
198

199
199
201
207
210
212
213

215
216
218
219
221
222
222
225
225
226
228
228

229
230
233
234

X

Table of Contents

Ambient Module Declarations 235

Gradually Migrating from JavaScript to TypeScript 236
Step 1: Add TSC 237

Step 2a: Enable Typechecking for JavaScript (Optional) 238

Step 2b: Add JSDoc Annotations (Optional) 239

Step 3: Rename Your Files to .ts 240

Step 4: Make It strict 241
Type Lookup for JavaScript 242
Using Third-Party JavaScript 244
JavaScript That Comes with Type Declarations 245
JavaScript That Has Type Declarations on DefinitelyTyped 245
JavaScript That Doesn’t Have Type Declarations on DefinitelyTyped 246
Summary 247

12. Building and Running TypeScript.covvvriiiiiiiii i iiieiieennnens 249
Building Your TypeScript Project 249
Project Layout 249
Artifacts 250
Dialing In Your Compile Target 251
Enabling Source Maps 255
Project References 255
Error Monitoring 258
Running TypeScript on the Server 258
Running TypeScript in the Browser 259
Publishing Your TypeScript Code to NPM 261
Triple-Slash Directives 262
The types Directive 262

The amd-module Directive 264
Summary 265

13, CoNAUSION. ...vvvveeee i 267
U T 1] 1 (03 269
B. TypeUtilities........oovvirniiiiiii i 271
C. Scoped Declarations.ovueeenieenieeiiereiereiieetieetiereeeenaeennes 273
D. Recipes for Writing Declaration Files for Third-Party JavaScript Modules. 275
E. Triple-Slash Directives.oovvniiiiiiiii it iiieiiieienenes 283

Table of Contents | xi

xii | Tableof Contents

Preface

This is a book for programmers of all walks: professional JavaScript engineers, C#
people, Java sympathizers, Python lovers, Ruby aficionados, Haskell nerds. Whatever
language(s) you write in, so long as you have some experience programming and
know the basics of functions, variables, classes, and errors, this book is for you. Some
experience with JavaScript, including a basic knowledge of the Document Object
Model (DOM) and the network, will help you along the way—while we don’t dive
deep into these concepts, they are a wellspring of excellent examples, and if you're
not familiar with them the examples might not make as much sense.

Regardless of what programming languages you've used in the past, what unites all of
us is our shared experience of tracking down exceptions, tracing through code line by
line to figure out what went wrong and how we can fix it. This is the experience that
TypeScript helps prevent by examining your code automatically and pointing out the
mistakes you may have missed.

It's OK if you haven’t worked with a statically typed language before. I'll teach you
about types and how to use them effectively to make your programs crash less, docu-
ment your code better, and scale your applications across more users, engineers, and
servers. I'll try to avoid big words when I can, and explain ideas in a way that’s intu-
itive, memorable, and practical, using lots of examples along the way to help keep
things concrete.

That’s the thing about TypeScript: unlike a lot of other typed languages, TypeScript is
intensely practical. It invents completely new concepts so you can speak more con-
cisely and precisely, letting you write applications in a way that’s fun, modern, and
safe.

Preface | xiii

How This Book Is Organized

This book has two aims: to give you a deep understanding of how the TypeScript lan-
guage works (theory) and provide bucketfuls of pragmatic advice about how to write
production TypeScript code (practice).

Because TypeScript is such a practical language, theory quickly turns to practice, and
most of this book ends up being a mix of the two, with the first couple of chapters
almost entirely theory, and the last few almost completely practice.

I’ll start with the basics of what compilers, typecheckers, and types are. I'll then give a
broad overview of the different types and type operators in TypeScript, what they’re
for, and how you use them. Using what we’ve learned, I'll cover some advanced top-
ics like TypeScript’s most sophisticated type system features, error handling, and
asynchronous programming. Finally, I'll wrap up with how to use TypeScript with
your favorite frameworks (frontend and backend), migrating your existing JavaScript
project to TypeScript, and running your TypeScript application in production.

Most chapters come with a set of exercises at the end. Try to do these yourself—
they’ll give you a deeper intuition for what we cover than just reading would.
Answers for chapter exercises are available online, at https://github.com/bcherny/
programming-typescript-answers.

Style

Throughout this book, I tried to stick to a single code style. Some aspects of this style
are deeply personal—for example:

« I only use semicolons when necessary.
o Iindent with two spaces.

« I use short variable names like a, f, or _ where the program is a quick snippet, or
where the structure of the program is more important than the details.

Some aspects of the code style, however, are things that I think you should do too. A
few of these are:

* You should use the latest JavaScript syntax and features (the latest JavaScript ver-
sion is usually just called “esnext”). This will keep your code in line with the lat-
est standards, improving interoperability and Googleability, and it can help
reduce ramp-up time for new hires. It also lets you take advantage of powerful,
modern JavaScript features like arrow functions, promises, and generators.

xiv | Preface

https://github.com/bcherny/programming-typescript-answers
https://github.com/bcherny/programming-typescript-answers

+ You should keep your data structures immutable with spreads (. ..) most of the
time.'

 You should make sure everything has a type, inferred when possible. Be careful
not to abuse explicit types; this will help keep your code clear and terse, and
improve safety by surfacing incorrect types rather than bandaiding over them.

 You should keep your code reusable and generic. Polymorphism (see “Polymor-
phism” on page 64) is your best friend.

Of course, these ideas are hardly new. But TypeScript works especially well when you
stick to them. TypeScript’s built-in downlevel compiler, support for read-only types,
powerful type inference, deep support for polymorphism, and completely structural
type system encourage good coding style, while the language remains incredibly
expressive and true to the underlying JavaScript.

A couple more notes before we begin.

JavaScript doesn’t expose pointers and references; instead it has value and reference
types. Values are immutable, and include things like strings, numbers, and booleans,
while references point to often-mutable data structures like arrays, objects, and func-
tions. When I use the word “value” in this book, I usually mean it loosely to refer to
either a JavaScript value or a reference.

Lastly, you might find yourself writing less-than-ideal TypeScript code in the wild
when interoperating with JavaScript, or incorrectly typed third-party libraries, or leg-
acy code, or if you’re in a rush. This book largely presents how you should write
TypeScript, and makes an argument for why you should try really hard not to make
compromises. But in practice, how correct your code is is up to you and your team.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, data types, environment variables,
statements, and keywords.

1 If you’re not coming from JavaScript, here’s an example: if you have an object o, and you want to add a prop-
erty k to it with the value 3, you can either mutate o directly—o.k = 3—or you can apply your change to o,
creating a new object as a result—let p = {...0, k: 3}.

Preface | xv

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

N

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/bcherny/programming-typescript-answers.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi-
cant amount of example code from this book into your product’s documentation
does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Programming TypeScript by Boris
Cherny (O’Reilly). Copyright 2019 Boris Cherny, 978-1-492-03765-1.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

xvi | Preface

https://github.com/bcherny/programming-typescript-answers
mailto:permissions@oreilly.com

0'Reilly Online Learning

o » For almost 40 years, O’Reilly Media has provided technology
O RE I LLY and business training, knowledge, and insight to help compa-

nies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/programming-typescript.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xvii

http://oreilly.com
http://oreilly.com
https://oreil.ly/programming-typescript
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments

This book is the product of years’ worth of snippets and doodles, followed by a year’s
worth of early mornings and nights and weekends and holidays spent writing.

Thank you to O’Reilly for the opportunity to work on this book, and to my editor

Angela Rufino for the support throughout the process. Thank you to Nick Nance for

his contribution in “Typesafe APIs” on page 210, and to Shyam Seshadri for his contri-
bution in “Angular” on page 207. Thanks to my technical editors: Daniel Rosenwasser

of the TypeScript team, who spent an unreasonable amount of time reading through

this manuscript and guiding me through the nuances of TypeScript’s type system,

and Jonathan Creamer, Yakov Fain, and Paul Buying, and Rachel Head for technical

edits and feedback. Thanks to my family—Liza and Ilya, Vadim, Roza and Alik, Faina

and Yosif—for encouraging me to pursue this project.

Most of all, thanks to my partner Sara Gilford, who supported me throughout the
writing process, even when it meant calling off weekend plans, late nights writing and
coding, and far too many unprompted conversations about the ins and outs of type
systems. I couldn’t have done it without you, and I'm forever grateful for your
support.

xviii | Preface

CHAPTER1
Introduction

So, you decided to buy a book about TypeScript. Why?

Maybe it’s because you're sick of those weird cannot read property blah of
undefined JavaScript errors. Or maybe you heard TypeScript can help your code
scale better, and wanted to see what all the fuss is about. Or you're a C# person, and
have been thinking of trying out this whole JavaScript thing. Or you're a functional
programmer, and decided it was time to take your chops to the next level. Or your
boss was so fed up with your code causing production issues that they gave you this
book as a Christmas present (stop me if I'm getting warm).

Whatever your reasons are, what you've heard is true. TypeScript is the language that
will power the next generation of web apps, mobile apps, NodeJS projects, and Inter-
net of Things (IoT) devices. It will make your programs safer by checking for com-
mon mistakes, serve as documentation for yourself and future engineers, make
refactoring painless, and make, like, half of your unit tests unnecessary (“What unit
tests?”). TypeScript will double your productivity as a programmer, and it will land
you a date with that cute barista across the street.

But before you go rushing across the street, let’s unpack all of that a little bit, starting
with this: what exactly do I mean when I say “safer”? What I am talking about, of
course, is type safety.

Type safety

Using types to prevent programs from doing invalid things.!

1 Depending on which statically typed language you use, “invalid” can mean a range of things, from programs
that will crash when you run them to things that won’t crash but are clearly nonsensical.

Here are a few examples of things that are invalid:

 Multiplying a number and a list
« Calling a function with a list of strings when it actually needs a list of objects

o Calling a method on an object when that method doesn’t actually exist on that
object

« Importing a module that was recently moved
There are some programming languages that try to make the most of mistakes like

these. They try to figure out what you really meant when you did something invalid,
because hey, you do what you can, right? Take JavaScript, for example:

3+ [// Evaluates to the string "3"
let obj = {}
obj.foo // Evaluates to undefined

function a(b) {
return b/2

}

a("z") // Evaluates to NaN
Notice that instead of throwing exceptions when you try to do things that are obvi-
ously invalid, JavaScript tries to make the best of it and avoids exceptions whenever it
can. Is JavaScript being helpful? Certainly. Does it make it easier for you to catch
bugs quickly? Probably not.

Now imagine if JavaScript threw more exceptions instead of quietly making the best
of what we gave it. We might get feedback like this instead:

3+ [1 // Error: Did you really mean to add a number and an array?
let obj = {}
obj.foo // Error: You forgot to define the property "foo" on obj.

function a(b) {
return b/2

}
a("z") // Error: The function "a" expects a number,
// but you gave it a string.

Don’t get me wrong: trying to fix our mistakes for us is a neat feature for a program-
ming language to have (if only it worked for more than just programs!). But for Java-
Script, this feature creates a disconnect between when you make a mistake in your
code, and when you find out that you made a mistake in your code. Often, that means
that the first time you hear about your mistake will be from someone else.

So here’s a question: when exactly does JavaScript tell you that you made a mistake?

2 | Chapter1:Introduction

Right: when you actually run your program. Your program might get run when you
test it in a browser, or when a user visits your website, or when you run a unit test. If
you're disciplined and write plenty of unit tests and end-to-end tests, smoke test your
code before pushing it, and test it internally for a while before shipping it to users,
you will hopefully find out about your error before your users do. But what if you
don’t?

That’s where TypeScript comes in. Even cooler than the fact that TypeScript gives
you helpful error messages is when it gives them to you: TypeScript gives you error
messages in your text editor, as you type. That means you don’t have to rely on unit
tests or smoke tests or coworkers to catch these sorts of issues: TypeScript will catch
them for you and warn you about them as you write your program. Let’s see what
TypeScript says about our previous example:

3+ [1] // Error TS2365: Operator '+' cannot be applied to types '3’
// and 'never[]'.

let obj = {3}
obj.foo // Error TS2339: Property 'foo' does not exist on type '{}'.

function a(b: number) {
return b / 2

}
a("z") // Error TS2345: Argument of type '"z"' is not assignable to

// parameter of type 'number'.
In addition to eliminating entire classes of type-related bugs, this will actually change
the way you write code. You will find yourself sketching out a program at the type
level before you fill it in at the value level;* you will think about edge cases as you
design your program, not as an afterthought; and you will design programs that are
simpler, faster, easier to understand, and easier to maintain.

Are you ready to begin the journey? Let’s go!

2 If you’re not sure what “type level” means here, don’t worry. We’ll go over it in depth in later chapters.

Introduction | 3

CHAPTER 2
TypeScript: A 10_000 Foot View

Over the next few chapters, I'll introduce the TypeScript language, give you an over-
view of how the TypeScript Compiler (TSC) works, and take you on a tour of Type-
Script’s features and the patterns you can develop with them. We’ll start with the
compiler.

The Compiler

Depending on what programming languages you worked with in the past (that is,
before you decided to buy this book and commit to a life of type safety), you'll have a
different understanding of how programs work. The way TypeScript works is
unusual compared to other mainstream languages like JavaScript or Java, so it’s
important that we’re on the same page before we go any further.

Let’s start broad: programs are files that contain a bunch of text written by you, the
programmer. That text is parsed by a special program called a compiler, which trans-
forms it into an abstract syntax tree (AST), a data structure that ignores things like
whitespace, comments, and where you stand on the tabs versus spaces debate. The
compiler then converts that AST to a lower-level representation called bytecode. You
can feed that bytecode into another program called a runtime to evaluate it and get a
result. So when you run a program, what you're really doing is telling the runtime to
evaluate the bytecode generated by the compiler from the AST parsed from your
source code. The details vary, but for most languages this is an accurate high-level
view.

Once again, the steps are:

1. Program is parsed into an AST.

2. AST is compiled to bytecode.

3. Bytecode is evaluated by the runtime.

Where TypeScript is special is that instead of compiling straight to bytecode, Type-
Script compiles to... JavaScript code! You then run that JavaScript code like you nor-
mally would—in your browser, or with NodeJS, or by hand with a paper and pen (for
anyone reading this after the machine uprising has begun).

At this point you may be thinking: “Wait! In the last chapter you said TypeScript
makes my code safer! When does that happen?”

Great question. I actually skipped over a crucial step: after the TypeScript Compiler
generates an AST for your program—but before it emits code—it typechecks your
code.

Typechecker

A special program that verifies that your code is typesafe.

This typechecking is the magic behind TypeScript. It’s how TypeScript makes sure
that your program works as you expect, that there aren’t obvious mistakes, and that
the cute barista across the street really will call you back when they said they would.
(Don’t worry, they’re probably just busy.)

So if we include typechecking and JavaScript emission, the process of compiling
TypeScript now looks roughly like Figure 2-1:

1. TypeScript source -> TypeScript AST
TS| 2. ASTis checked by typechecker
3. TypeScript AST -> JavaScript source

4. JavaScript source -> JavaScript AST
JS | 5.AST-> bytecode
6. Bytecode is evaluated by runtime

Figure 2-1. Compiling and running TypeScript

Steps 1-3 are done by TSC, and steps 4-6 are done by the JavaScript runtime that
lives in your browser, Node]JS, or whatever JavaScript engine you're using.

JavaScript compilers and runtimes tend to be smushed into a single
program called an engine; as a programmer, this is what you’ll nor-
mally interact with. It’'s how V8 (the engine powering Node]S,
Chrome, and Opera), SpiderMonkey (Firefox), JSCore (Safari), and
Chakra (Edge) work, and it’s what gives JavaScript the appearance
of being an interpreted language.

6 | Chapter2: TypeScript: A 10_000 Foot View

In this process, steps 1-2 use your program’s types; step 3 does not. That’s worth reit-
erating: when TSC compiles your code from TypeScript to JavaScript, it won’t look at
your types. That means your program’s types will never affect your program’s gener-
ated output, and are only used for typechecking. This feature makes it foolproof to
play around with, update, and improve your program’s types, without risking break-
ing your application.

The Type System

Modern languages have all sorts of different type systems.

Type system

A set of rules that a typechecker uses to assign types to your
program.

There are generally two kinds of type systems: type systems in which you have to tell
the compiler what type everything is with explicit syntax, and type systems that infer
the types of things for you automatically. Both approaches have trade-offs.!

TypeScript is inspired by both kinds of type systems: you can explicitly annotate your
types, or you can let TypeScript infer most of them for you.

To explicitly signal to TypeScript what your types are, use annotations. Annotations
take the form value: type and tell the typechecker, “Hey! You see this value here? Its
type is type.” Let’s look at a few examples (the comments following each line are the
actual types inferred by TypeScript):

let a: number = 1 // a is a number

let b: string = 'hello’ // b is a string

let c: boolean[] = [true, false] // ¢ is an array of booleans
And if you want TypeScript to infer your types for you, just leave them off and let
TypeScript get to work:

let a =1 // a is a number
let b = 'hello' // b is a string
let ¢ = [true, false] // ¢ is an array of booleans

Right away, you’ll notice how good TypeScript is at inferring types for you. If you
leave off the annotations, the types are the same! Throughout this book, we will use

1 There are languages all over this spectrum: JavaScript, Python, and Ruby infer types at runtime; Haskell and
OCaml infer and check missing types at compile time; Scala and TypeScript require some explicit types and
infer and check the rest at compile time; and Java and C need explicit annotations for almost everything,
which they check at compile time.

The Type System | 7

annotations only when necessary, and let TypeScript work its inference magic for us
whenever possible.

In general, it is good style to let TypeScript infer as many types as it
can for you, keeping explicitly typed code to a minimum.

TypeScript Versus JavaScript

Let’s take a deeper look at TypeScript’s type system, and how it compares to Java-
Script’s type system. Table 2-1 presents an overview. A good understanding of the
differences is key to building a mental model of how TypeScript works.

Table 2-1. Comparing JavaScript’s and TypeScript’s type systems

Type system feature JavaScript TypeScript

How are types bound? Dynamically Statically

Are types automatically converted? Yes No (mostly)

When are types checked? At runtime At compile time

When are errors surfaced? At runtime (mostly) At compile time (mostly)
How are types bound?

Dynamic type binding means that JavaScript needs to actually run your program to
know the types of things in it. JavaScript doesn’t know your types before running
your program.

TypeScript is a gradually typed language. That means that TypeScript works best
when it knows the types of everything in your program at compile time, but it doesn’t
have to know every type in order to compile your program. Even in an untyped pro-
gram TypeScript can infer some types for you and catch some mistakes, but without
knowing the types for everything, it will let a lot of mistakes slip through to your
users.

This gradual typing is really useful for migrating legacy codebases from untyped Java-
Script to typed TypeScript (more on that in “Gradually Migrating from JavaScript to
TypeScript” on page 236), but unless you're in the middle of migrating your codebase,
you should aim for 100% type coverage. That is the approach this book takes, except
where explicitly noted.

Are types automatically converted?

JavaScript is weakly typed, meaning if you do something invalid like add a number
and an array (like we did in Chapter 1), it will apply a bunch of rules to figure out

8 | Chapter2: TypeScript: A 10_000 Foot View

what you really meant so it can do the best it can with what you gave it. Let’s walk
through the specific example of how JavaScript evaluates 3 + [1]:

. JavaScript notices that 3 is a number and [1] is an array.

. Because we’re using +, it assumes we want to concatenate the two.

1

2

3. It implicitly converts 3 to a string, yielding "3".
4. It implicitly converts [1] to a string, yielding "1".
5

. It concatenates the results, yielding "31".

We could do this more explicitly too (so JavaScript avoids doing steps 1, 3, and 4):

3+ [1]; // evaluates to "31"

(3).toString() + [1].toString() // evaluates to "31"

While JavaScript tries to be helpful by doing clever type conversions for you, Type-
Script complains as soon as you do something invalid. When you run that same Java-
Script code through TSC, you’ll get an error:

3+ [11; // Error TS2365: Operator '+' cannot be applied
// types '3' and 'number[]'.

(3).toString() + [1].toString() // evaluates to "31"

If you do something that doesn’t seem right, TypeScript complains, and if you're
explicit about your intentions, TypeScript gets out of your way. This behavior makes
sense: who in their right mind would try to add a number and an array, expecting the
result to be a string (of course, besides Bavmorda the JavaScript witch who spends
her time coding by candlelight in your startup’s basement)?

The kind of implicit conversion that JavaScript does can be a really hard-to-track-
down source of errors, and is the bane of many JavaScript programmers. It makes it
hard for individual engineers to get their jobs done, and it makes it even harder to
scale code across a large team, since every engineer needs to understand the implicit
assumptions your code makes.

In short, if you must convert types, do it explicitly.

When are types checked?

In most places JavaScript doesn’t care what types you give it, and it instead tries to do
its best to convert what you gave it to what it expects.

TypeScript, on the other hand, typechecks your code at compile time (remember step
2 in the list at the beginning of this chapter?), so you don’t need to actually run your
code to see the Error from the previous example. TypeScript statically analyzes your
code for errors like these, and shows them to you before you run it. If your code

The Type System | 9

doesn’t compile, that’s a really good sign that you made a mistake and you should fix
it before you try to run the code.

Figure 2-2 shows what happens when I type the last code example into VSCode (my
code editor of choice).

301

[ts] Operator '+' cannot be applied to types

'3' and 'number[]'. [2365]

Figure 2-2. TypeError reported by VSCode

With a good TypeScript extension for your preferred code editor, the error will show
up as a red squiggly line under your code as you type it. This dramatically speeds up
the feedback loop between writing code, realizing that you made a mistake, and
updating the code to fix that mistake.

When are errors surfaced?

When JavaScript throws exceptions or performs implicit type conversions, it does so
at runtime.” This means you have to actually run your program to get a useful signal
back that you did something invalid. In the best case, that means as part of a unit test;
in the worst case, it means an angry email from a user.

TypeScript throws both syntax-related errors and type-related errors at compile time.
In practice, that means those kinds of errors will show up in your code editor, right as
you type—it’s an amazing experience if you've never worked with an incrementally
compiled statically typed language before.’

That said, there are lots of errors that TypeScript can’t catch for you at compile time
—things like stack overflows, broken network connections, and malformed user
inputs—that will still result in runtime exceptions. What TypeScript does is make
compile-time errors out of most errors that would have otherwise been runtime
errors in a pure JavaScript world.

2 To be sure, JavaScript surfaces syntax errors and a few select bugs (like multiple const declarations with the
same name in the same scope) after it parses your program, but before it runs it. If you parse your JavaScript
as part of your build process (e.g., with Babel), you can surface these errors at build time.

3 Incrementally compiled languages can be quickly recompiled when you make a small change, rather than
having to recompile your whole program (including the parts you didn’t touch).

10 | Chapter2: TypeScript: A 10_000 Foot View

Code Editor Setup

Now that you have some intuition for how the TypeScript Compiler and type system
work, let’s get your code editor set up so we can start diving into some real code.

Start by downloading a code editor to write your code in. I like VSCode because it
provides a particularly nice TypeScript editing experience, but you can also use Sub-
lime Text, Atom, Vim, WebStorm, or whatever editor you like. Engineers tend to be
really picky about IDEs, so I'll leave it to you to decide. If you do want to use
VSCode, follow the instructions on the website to get it set up.

TSC is itself a command-line application written in TypeScript,* which means you
need NodeJS to run it. Follow the instructions on the official Node]S website to get
Node]S up and running on your machine.

Node]S comes with NPM, a package manager that you will use to manage your
project’s dependencies and orchestrate your build. We’ll start by using it to install
TSC and TSLint (a linter for TypeScript). Start by opening your terminal and creating
a new folder, then initializing a new NPM project in it:

Create a new folder
mkdir chapter-2
cd chapter-2

Initialize a new NPM project (follow the prompts)
npm init

Install TSC, TSLint, and type declarations for NodeJS
npm install --save-dev typescript tslint @types/node

tsconfig.json

Every TypeScript project should include a file called tsconfig.json in its root directory.
This tsconfig.json is where TypeScript projects define things like which files should be
compiled, which directory to compile them to, and which version of JavaScript to
emit.

4 This puts TSC in the mystical class of compilers known as self-hosting compilers, or compilers that compile
themselves.

Code Editor Setup | 11

https://code.visualstudio.com/
https://nodejs.org

Create a new file called ftsconfig.json in your root folder (touch tsconfig.json),
then pop it open in your code editor and give it the following contents:

{

"compilerOptions": {
"lib": ["es2015"],
"module": "commonjs",
"outDir": "dist",
"sourceMap": true,
"strict": true,
"target": "es2015"

1,

"include": [

"src"

1

}

Let’s briefly go over some of those options and what they mean (Table 2-2):

Table 2-2. tsconfig.json options

Option Description

include Which folders should TSC look in to find your TypeScript files?

1ib Which APIs should TSC assume exist in the environment you'll be running your code in? This includes
things like ES5's Function.prototype.bind, ES2015's Object.assign, and the DOM’s
document.querySelector.

module Which module system should TSC compile your code to (CommonJS, SystemJS, ES2015, etc.)?

outDir Which folder should TSC put your generated JavaScript code in?

strict Be as strict as possible when checking for invalid code. This option enforces that all of your code is properly
typed. We'll be using it for all of the examples in the book, and you should use it for your TypeScript
project too.

target Which JavaScript version should TSC compile your code to (ES3, ES5, ES2015, ES2016, etc.)?

These are just a few of the available options—tsconfig.json supports dozens of
options, and new ones are added all the time. You won’t find yourself changing these
much in practice, besides dialing in the module and target settings when switching
to a new module bundler, adding "dom" to lib when writing TypeScript for the
browser (youll learn more about this in Chapter 12), or adjusting your level of
strictness when migrating your existing JavaScript code to TypeScript (see “Gradu-
ally Migrating from JavaScript to TypeScript” on page 236). For a complete and up-to-
date list of supported options, head over to the official documentation on the
TypeScript website.

5 For this exercise, we’re creating a tsconfig.json manually. When you set up TypeScript projects in the future,
you can use TSC’s built-in initialize command to generate one for you: . /node_modules/.bin/tsc --init.

12 | Chapter2: TypeScript: A 10_000 Foot View

http://bit.ly/2JWfsgY

Note that while using a tsconfig.json file to configure TSC is handy because it lets us
check that configuration into source control, you can set most of TSC’s options from
the command line too. Run . /node_modules/.bin/tsc --help for a list of available
command-line options.

tslint.json

Your project should also have a tslint.json file containing your TSLint configuration,
codifying whatever stylistic conventions you want for your code (tabs versus spaces,
etc.).

Using TSLint is optional, but it’s strongly recommend for all Type-
Script projects to enforce a consistent coding style. Most impor-
tantly, it will save you from arguing over code style with coworkers
during code reviews.

The following command will generate a tslint.json file with a default TSLint
configuration:

./node_modules/.bin/tslint --init

You can then add overrides to this to conform with your own coding style. For exam-
ple, my tslint.json looks like this:

{

"defaultSeverity": "error",

"extends": [
"tslint:recommended"

1,

"rules": {
"semicolon": false,
"trailing-comma": false

}

}

For the full list of available rules, head over to the TSLint documentation. You can
also add custom rules, or install extra presets (like for React]S).

index.ts

Now that you’ve set up your tsconfig.json and tslint.json, create a src folder containing
your first TypeScript file:

mkdir src
touch src/index.ts

index.ts | 13

https://palantir.github.io/tslint/rules/
https://www.npmjs.com/package/tslint-react

Your project’s folder structure should now look this:

chapter-2/
F—node_modules/
b—src/

| “—index.ts

}—package. json
—tsconfig. json
L—tslint.json

Pop open src/index.ts in your code editor, and enter the following TypeScript code:
console.log('Hello TypeScript!')
Then, compile and run your TypeScript code:

Compile your TypeScript with TSC
. /node_modules/.bin/tsc

Run your code with NodeJS
node ./dist/index.]js

If you’ve followed all the steps here, your code should run and you should see a single
log in your console:

Hello TypeScript!

That’s it—you just set up and ran your first TypeScript project from scratch. Nice
work!

Since this might have been your first time setting up a TypeScript
project from scratch, I wanted to walk through each step so you
have a sense for all the moving pieces. There are a couple of short-
cuts you can take to do this faster next time:

o Install ts-node, and use it to compile and run your TypeScript
with a single command.

o Use a scaffolding tool like typescript-node-starter to
quickly generate your folder structure for you.

14 | Chapter2: TypeScript: A 10_000 Foot View

https://npmjs.org/package/ts-node
https://github.com/Microsoft/TypeScript-Node-Starter

Exercises

Now that your environment is set up, open up src/index.ts in your code editor. Enter
the following code:

leta=1+2

letb=2a+3

let c = {
apple: a,
banana: b

}

let d = c.apple * 4

Now hover over a, b, ¢, and d, and notice how TypeScript infers the types of all your
variables for you: a is a number, b is a number, c is an object with a specific shape, and
d is also a number (Figure 2-3).

let a 1+ 2

let b a+ 3

let ¢ = {
apple: a,
banana: b

} let d: number

let d = c.apple * 4

Figure 2-3. TypeScript inferring types for you
Play around with your code a bit. See if you can:

o Get TypeScript to show a red squiggly when you do something invalid (we call
this “throwing a TypeError®).

+ Read the TypeError, and try to understand what it means.

« Fix the TypeError and see the red squiggly disappear.

If you’re ambitious, try to write a piece of code that TypeScript is unable to infer the

type for.

Exercises | 15

CHAPTER 3
All About Types

In the last chapter I introduced the idea of type systems, but I never defined what the
type in type system really means.

Type

A set of values and the things you can do with them.

If that sounds confusing, let me give a few familiar examples:

o The boolean type is the set of all booleans (there are just two: true and false)
and the operations you can perform on them (like | |, &&, and !).

« The number type is the set of all numbers and the operations you can perform on
them (like +, -, %, /, %, | |, &, and ?), including the methods you can call on them
like .toFixed, .toPrecision, .toString, and so on.

» The string type is the set of all strings and the operations you can perform on
them (like +, ||, and &8&), including the methods you can call on them
like .concat and . toUpperCase.

When you see that something is of type T, not only do you know that it’s a T, but you
also know exactly what you can do with that T (and what you can’t). Remember, the
whole point is to use the typechecker to stop you from doing invalid things. And the
way the typechecker knows what’s valid and what’s not is by looking at the types
you're using and how you’re using them.

In this chapter we’ll take a tour of the types available in TypeScript and cover the
basics of what you can do with each of them. Figure 3-1 gives an overview.

17

|undeﬁned|<—| void I<—| any |——>| null |
|

N

|number| | bigint I |boolean| | string | |symbo|| | Object types I

\ 4 A\ 4 A\ 4 A\ 4 I l
Number String unique Array Function| [Constructor
enums enums symbol types types types

Tuple types

Figure 3-1. TypeScript’s type hierarchy

Talking About Types

When programmers talk about types, they share a precise, common vocabulary to
describe what they mean. We’re going to use this vocabulary throughout this book.

Say you have a function that takes some value and returns that value multiplied by
itself:

function squareOf(n) {
return n * n

}
squareOf(2) // evaluates to 4
squareOf('z') // evaluates to NaN

Clearly, this function will only work for numbers—if you pass anything besides a

number to squareOf, the result will be invalid. So what we do is explicitly annotate
the parameter’s type:

function squareOf(n: number) {
return n * n

}

squareOf(2) // evaluates to 4

squareOf('z') // Error TS2345: Argument of type '"z"' is not assignable to
// parameter of type 'number'.

Now if we call square0Of with anything but a number, TypeScript will know to com-
plain right away. This is a trivial example (we’ll talk a lot more about functions in the
next chapter), but it’s enough to introduce a couple of concepts that are key to talking

18 | Chapter3: All About Types

about types in TypeScript. We can say the following things about the last code exam-
ple:

1. squareOf’s parameter n is constrained to number.

2. The type of the value 2 is assignable to (equivalently: compatible with) number.

Without a type annotation, squareOf is unconstrained in its parameter, and you can
pass any type of argument to it. Once we constrain it, TypeScript goes to work for us
verifying that every place we call our function, we call it with a compatible argument.
In this example the type of 2 is number, which is assignable to squareOf’s annotation
number, so TypeScript accepts our code; but 'z' is a string, which is not assignable
to number, so TypeScript complains.

You can also think of it in terms of bounds: we told TypeScript that n’s upper bound is
number, so any value we pass to squareOf has to be at most a number. If it’s anything
more than a number (like, if it’s a value that might be a number or might be a string),
then it’s not assignable to n.

I'll define assignability, bounds, and constraints more formally in Chapter 6. For
now, all you need to know is this is the language that we use to talk about whether or
not a type can be used in a place where we require a certain type.

The ABCs of Types

Let’s take a tour of the types TypeScript supports, what values they contain, and what
you can do with them. We’ll also cover a few basic language features for working with
types: type aliases, union types, and intersection types.

any

any is the Godfather of types. It does anything for a price, but you don’t want to ask
any for a favor unless you're completely out of options. In TypeScript everything
needs to have a type at compile time, and any is the default type when you (the pro-
grammer) and TypeScript (the typechecker) can’t figure out what type something is.
It’s a last resort type, and you should avoid it when possible.

Why should you avoid it? Remember what a type is? (It’s a set of values and the
things you can do with them.) any is the set of all values, and you can do anything
with any. That means that if you have a value of type any you can add to it, multiply
by it, call .pizza() on it—anything.

any makes your value behave like it would in regular JavaScript, and totally prevents
the typechecker from working its magic. When you allow any into your code you're
flying blind. Avoid any like fire, and use it only as a very, very last resort.

The ABCsof Types | 19

On the rare occasion that you do need to use it, you do it like this:

let a: any = 666 // any
let b: any = ['danger'] // any
letc=a+b // any

Notice how the third type should report an error (why are you trying to add a num-
ber and an array?), but doesn’t because you told TypeScript that you're adding two
anys. If you want to use any, you have to be explicit about it. When TypeScript infers
that some value is of type any (for example, if you forgot to annotate a function’s
parameter, or if you imported an untyped JavaScript module), it will throw a
compile-time exception and toss a red squiggly at you in your editor. By explicitly
annotating a and b with the any type (: any), you avoid the exception—it’s your way
of telling TypeScript that you know what you’re doing.

TSC Flag: nolmplicitAny

By default, TypeScript is permissive, and won’t complain about
values that it infers as any. To get TypeScript to complain about
implicit anys, be sure to enable the noImplicitAny flag in your
tsconfig.json.

noImplicitAny is part of the strict family of TSC flags, so if you
already enabled strict in your tsconfig.json (as we did in “tscon-
fig.json” on page 11), you're good to go.

unknown

If any is the Godfather, then unknown is Keanu Reeves as undercover FBI agent
Johnny Utah in Point Break: laid back, fits right in with the bad guys, but deep down
has a respect for the law and is on the side of the good guys. For the few cases where
you have a value whose type you really don’t know ahead of time, don’t use any, and
instead reach for unknown. Like any, it represents any value, but TypeScript won’t let
you use an unknown type until you refine it by checking what it is (see “Refinement”
on page 126).

What operations does unknown support? You can compare unknown values (with ==,
===, ||, &&, and ?), negate them (with !), and refine them (like you can any other
type) with JavaScript’s typeof and instanceof operators. Use unknown like this:

let a: unknown = 30 // unknown
let b = a === 123 // boolean
let c = a + 10 // Error TS2571: Object is of type 'unknown'.
if (typeof a === 'number') {
letd =a+ 10 // number
}

20 | Chapter3:All About Types

This example should give you a rough idea of how to use unknown:
1. TypeScript will never infer something as unknown—you have to explicitly anno-
tate it (a).!
2. You can compare values to values that are of type unknown (b).

3. But, you can’t do things that assume an unknown value is of a specific type (c);
you have to prove to TypeScript that the value really is of that type first (d).

boolean

The boolean type has two values: true and false. You can compare them (with ==,
===, | |, &&, and ?), negate them (with !), and not much else. Use boolean like this:

let a = true // boolean

var b = false // boolean

const c = true // true

let d: boolean = true // boolean

let e: true = true // true

let f: true = false // Error TS2322: Type 'false' is not assignable

// to type 'true'.

This example shows a few ways to tell TypeScript that something is a boolean:

1. You can let TypeScript infer that your value is a boolean (a and b).

2. You can let TypeScript infer that your value is a specific boolean (c).

3. You can tell TypeScript explicitly that your value is a boolean (d).

4. You can tell TypeScript explicitly that your value is a specific boolean (e and f).

In general, you will use the first or second way in your programs. Very rarely, you'll
use the fourth way—only when it buys you extra type safety (I'll show you examples
of that throughout this book). You will almost never use the third way.

The second and fourth cases are particularly interesting because while they do some-
thing intuitive, they’re supported by surprisingly few programming languages and so
might be new to you. What I did in that example was say, “Hey TypeScript! See this
variable e here? e isn’t just any old boolean—it’s the specific boolean true.” By using
a value as a type, I essentially limited the possible values for e and f from all booleans
to one specific boolean each. This feature is called type literals.

1 Almost. When unknown is part of a union type, the result of the union will be unknown. You’ll read more about
union types in “Union and intersection types” on page 32.

The ABCsof Types | 21

Type literal

A type that represents a single value and nothing else.

In the fourth case I explicitly annotated my variables with type literals, and in the sec-
ond case TypeScript inferred a literal type for me because I used const instead of let
or var. Because TypeScript knows that once a primitive is assigned with const its
value will never change, it infers the most narrow type it can for that variable. That’s
why in the second case TypeScript inferred c’s type as true instead of as boolean. To
learn more about why TypeScript infers different types for let and const, jump
ahead to “Type Widening” on page 122.

We will revisit type literals throughout this book. They are a powerful language fea-
ture that lets you squeeze out extra safety all over the place. Type literals make Type-
Script unique in the language world and are something you should lord over your
Java friends.

number

number is the set of all numbers: integers, floats, positives, negatives, Infinity, NaN,
and so on. Numbers can do, well, numbery things, like addition (+), subtraction (-),
modulo (%), and comparison (<). Let’s look at a few examples:

let a = 1234 // number

var b = Infinity * 0.10 // number

const c = 5678 // 5678

letd=a<b // boolean

let e: number = 100 // number

let f: 26.218 = 26.218 // 26.218

let g: 26.218 = 10 // Error TS2322: Type '10' is not assignable

// to type '26.218'.

Like in the boolean example, there are four ways to type something as a number:

1. You can let TypeScript infer that your value is a number (a and b).

2. You can use const so TypeScript infers that your value is a specific number (c).?
3. You can tell TypeScript explicitly that your value is a number (e).

4. You can tell TypeScript explicitly that your value is a specific number (f and g).

And just like with booleans, you're usually going to let TypeScript infer the type for
you (the first way). Once in a while you’ll do some clever programming that requires

2 At the time of writing, you can’t use NaN, Infinity, or -Infinity as type literals.

22 | Chapter3:All About Types

your number’s type to be restricted to a specific value (the second or fourth way).
There is no good reason to explicitly type something as a number (the third way).

When working with long numbers, use numeric separators to
make those numbers easier to read. You can use numeric separa-
tors in both type and value positions:

let oneMillion = 1_000_000 // Equivalent to 1000000
let twoMillion: 2_000_000 = 2_000_000

bigint

bigint is a newcomer to JavaScript and TypeScript: it lets you work with large inte-
gers without running into rounding errors. While the number type can only represent
whole numbers up to 2%, bigint can represent integers bigger than that too. The
bigint type is the set of all BigInts, and supports things like addition (+), subtraction
(-), multiplication (*), division (/), and comparison (<). Use it like this:

let a = 1234n // bigint

const b = 5678n // 5678n

var c =a+b // bigint

let d = a < 1235 // boolean

let e = 88.5n // Error TS1353: A bigint literal must be an integer.
let f: bigint = 100n // bigint

let g: 100n = 100n // 106n

let h: bigint = 100 // Error TS2322: Type '100' is not assignable

// to type 'bigint'.

Like with boolean and number, there are four ways to declare bigints. Try to let Type-
Script infer your bigint’s type when you can.

At the time of writing, bigint is not yet natively supported by
every JavaScript engine. If your application relies on bigint, be
careful to check whether or not it’s supported by your target plat-
form.

string

string is the set of all strings and the things you can do with them like concatenate
(+), slice (. slice), and so on. Let’s see some examples:

let a = 'hello' // string
var b = 'billy' // string
const c = '!' /7

letd=a+"' "' +b+c // string
let e: string = 'zoom' // string
let f: 'john' = 'john' // 'john'

The ABCsof Types | 23

zoe // Error TS2322: Type "zoe" is not assignable

// to type "john".

let g: 'john' =

Like boolean and number, there are four ways to declare string types, and you
should let TypeScript infer the type for you whenever you can.

symbol

symbol is a relatively new language feature that arrived with one of the latest major
JavaScript revisions (ES2015). Symbols don’t come up often in practice; they are used
as an alternative to string keys in objects and maps, in places where you want to be
extra sure that people are using the right well-known key and didn’t accidentally set
the key—think setting a default iterator for your object (Symbol.iterator), or over-
riding at runtime whether or not your object is an instance of something (Sym
bol.hasInstance). Symbols have the type symbol, and there isn’t all that much you
can do with them:

let a = Symbol('a'") // symbol

let b: symbol = Symbol('b"') // symbol

var c = a === // boolean

letd = a+ 'x' // Error TS2469: The '+' operator cannot be applied

// to type 'symbol'.

The way Symbol('a') works in JavaScript is by creating a new symbol with the given
name; that symbol is unique, and will not be equal (when compared with == or ===
to any other symbol (even if you create a second symbol with the same exact name!).
Similarly to how the value 27 is inferred to be a number when declared with let but
the specific number 27 when you declare it with const, symbols are inferred to be of
type symbol but can be explicitly typed as unique symbol:

const e = Symbol('e") // typeof e

const f: unique symbol = Symbol('f') // typeof f

let g: unique symbol = Symbol('f') // Error T7S1332: A variable whose type is a

// 'unique symbol' type must be 'const'

e === e // boolean

e === f // Error TS2367: This condition will always return
// 'false' since the types 'unique symbol' and
// 'unique symbol' have no overlap.

let h
let 1

This example shows off a few ways to create unique symbols:

1. When you declare a new symbol and assign it to a const variable (not a let or
var variable), TypeScript will infer its type as unique symbol. It will show up as
typeof yourVariableName, not unique symbol, in your code editor.

2. You can explicitly annotate a const variable’s type as unique symbol.

3. A unique symbol is always equal to itself.

24 | Chapter3:All About Types

4. TypeScript knows at compile time that a unique symbol will never be equal to
any other unique symbol.

Think of unique symbols like other literal types, like 1, true, or "literal". They’re a
way to create a type that represents a particular inhabitant of symbol.

Objects

TypeScript’s object types specify the shapes of objects. Notably, they can’t tell the dif-
ference between simple objects (like the kind you make with {}) and more compli-
cated ones (the kind you create with new Blah). This is by design: JavaScript is
generally structurally typed, so TypeScript favors that style of programming over a
nominally typed style.

Structural typing

A style of programming where you just care that an object
has certain properties, and not what its name is (nominal
typing). Also called duck typing in some languages (or, not
judging a book by its cover).

There are a few ways to use types to describe objects in TypeScript. The first is to
declare a value as an object:

let a: object = {
b: 'x'
}

What happens when you access b?
a.b // Error TS2339: Property 'b' does not exist on type 'object'.

Wait, that’s not very useful! What’s the point of typing something as an object if you
can’t do anything with it?

Why, that’s a great point, aspiring TypeScripter! In fact, object is a little narrower
than any, but not by much. object doesn’t tell you a lot about the value it describes,
just that the value is a JavaScript object (and that it’s not null).

What if we leave off the explicit annotation, and let TypeScript do its thing?

let a = {
b: 'x'
} // {b: string}
a.b // string
let b = {
c: {

The ABCsof Types | 25

} // {c: {d: string}}
Voila! You’ve just discovered the second way to type an object: object literal syntax
(not to be confused with type literals). You can either let TypeScript infer your
object’s shape for you, or explicitly describe it inside curly braces({}):

let a: {b: number} = {

b: 12
} // {b: number}

Type Inference When Declaring Objects with const
What would have happened if we’d used const to declare the object instead?

const a: {b: number} = {
b: 12
} // Still {b: number}
You might be surprised that TypeScript inferred b as a number, and not as the literal
12. After all, we learned that when declaring numbers or strings, our choice of const
or let affects how TypeScript infers our types.

Unlike the primitive types we’ve looked at so far—boolean, number, bigint, string,
and symbol—declaring an object with const won’t hint to TypeScript to infer its type
more narrowly. That’s because JavaScript objects are mutable, and for all TypeScript
knows you might update their fields after you create them.

We explore this idea more deeply—including how to opt into narrower inference—in
“Type Widening” on page 122.

Object literal syntax says, “Here is a thing that has this shape.” The thing might be an
object literal, or it might be a class:

let c: {
firstName: string
lastName: string
}=A
firstName: 'john',
lastName: 'barrowman'

}

class Person {
constructor(
public firstName: string, // public is shorthand for
// this. firstName = firstName
public lastName: string
) {}

}
c = new Person('matt', 'smith') // 0K

26 | Chapter3:All About Types

{firstName: string, lastName: string} describes the shape of an object, and
both the object literal and the class instance from the last example satisfy that shape,
so TypeScript lets us assign a Person to c.

Let’s explore what happens when we add extra properties, or leave out required ones:

let a: {b: number}

a={} // Error TS2741: Property 'b' is missing in type '{}'
// but required in type '{b: number}'.

{

1)

2 // Error TS2322: Type '{b: number; c: number}' is not assignable
} // to type '{b: number}'. Object literal may only specify known
// properties, and 'c' does not exist in type '{b: number}'.

N o

Definite Assignment

This is the first example we’ve looked at where we first declare a variable (a), then
initialize it with values ({} and {b: 1, c: 2}). This is a common JavaScript pattern,
and it’s supported by TypeScript too.

When you declare a variable in one place and initialize it later, TypeScript will make
sure that your variable is definitely assigned a value by the time you use it:

let i1: number
let j =1*3 // Error TS2454: Variable 'i' is used
// before being assigned.

And don’t worry, TypeScript enforces this for you even if you leave off the explicit
type annotation:

let 1
let j =1 *3 // Error TS2532: Object is possibly
// ‘'undefined’.

By default, TypeScript is pretty strict about object properties—if you say the object
should have a property called b that’s a number, TypeScript expects b and only b. If b
is missing, or if there are extra properties, TypeScript will complain.

Can you tell TypeScript that something is optional, or that there might be more prop-
erties than you planned for? You bet:

let a: {

b: number @

c?: string (2]

[key: number]: boolean (3]
}

The ABCsof Types | 27

© ahasa property b that’s a number.
® 2 might have a property c that’s a string. And if c is set, it might be undefined.

©® 3 might have any number of numeric properties that are booleans.

Let’s see what types of objects we can assign to a:

= {b: 1}
= {b: 1, c: undefined}
={b: 1, c: 'd'}

= {b: 1, 10: true}

= {b: 1, 10: true, 20: false}

= {10: true} // Error TS2741: Property 'b' is missing in type
// '{10: true}'.

a={b: 1, 33: 'red'} // Error TS2741: Type 'string' is not assignable

// to type 'boolean'.

[T I« VA« VI s VIR« VIR o V)

Index Signatures

The [key: T]: U syntax is called an index signature, and this is the way you tell
TypeScript that the given object might contain more keys. The way to read it is, “For
this object, all keys of type T must have values of type U.” Index signatures let you
safely add more keys to an object, in addition to any keys that you explicitly declared.

There is one rule to keep in mind for index signatures: the index signature key’s type
(T) must be assignable to either number or string.?

Also note that you can use any word for the index signature key’s name—it doesn’t
have to be key:

let airplaneSeatingAssignments: {
[seatNumber: string]: string
}={
'34D': 'Boris Cherny',
'34E': 'Bill Gates'
}

Optional (?) isn’t the only modifier you can use when declaring object types. You can
also mark fields as read-only (that is, you can declare that a field can’t be modified
after it’s assigned an initial value—kind of like const for object properties) with the
readonly modifier:

3 Objects in JavaScript use strings for keys; arrays are special kinds of objects that use numerical keys.

28 | Chapter3:All About Types

let user: {

readonly firstName: string
}=A

firstName: 'abby'
}

user.firstName // string
user.firstName =
'abbey with an e' // Error TS2540: Cannot assign to 'firstName' because it
// 1s a read-only property.

Object literal notation has one special case: empty object types ({}). Every type—
except null and undefined—is assignable to an empty object type, which can make it
tricky to use. Try to avoid empty object types when possible:

let danger: {}

danger = {}
danger = {x: 1}
danger = []
danger = 2

As a final note on objects, it’s worth mentioning one last way of typing something as
an object: Object. This is pretty much the same as using {}, and is best avoided. *

To summarize, there are four ways to declare objects in TypeScript:

1. Object literal notation (like {a: string}), also called a shape. Use this when you
know which fields your object could have, or when all of your object’s values will
have the same type.

2. Empty object literal notation ({}). Try to avoid this.

3. The object type. Use this when you just want an object, and don’t care about
which fields it has.

4. The Object type. Try to avoid this.

In your TypeScript programs, you should almost always stick to the first way and the
third way. Be careful to avoid the second and fourth ways—use a linter to warn about
them, complain about them in code reviews, print posters—use your team’s preferred
tool to keep them far away from your codebase.

4 There’s one minor technical difference: {} lets you define whatever types you want for built-in methods on
the Object prototype, like . toString and .hasOwnProperty (head over to MDN to learn more about proto-
types), while Object enforces that the types you declare are assignable to those on Object’s prototype. For
example, this code typechecks: let a: {} = {toString() { return 3 }}. Butif you change the type anno-
tation to Object, TypeScript complains: let b: Object = {toString() { return 3 }} resultsin Error
TS2322: Type 'number' is not assignable to type 'string'.

The ABCsof Types | 29

https://mzl.la/2VSuDJz

Table 3-1 is a handy reference for options 2-4 in the previous list.

Table 3-1. Is the value a valid object?

Value {} object Object

{3 Yes Yes Yes
['a'] Yes Yes Yes
function () {3 VYes Yes Yes
new String('a') VYes Yes Yes
'a' Yes No Yes
1 Yes No Yes
Symbol('a') Yes No Yes
null No No No
undefined No No No

Intermission: Type Aliases, Unions, and Intersections

You are quickly becoming a grizzled TypeScript programmer. You have seen several
types and how they work, and are now familiar with the concepts of type systems,
types, and safety. It’s time we go deeper.

As you know, if you have a value, you can perform certain operations on it, depend-
ing on what its type permits. For example, you can use + to add two numbers,
or . toUpperCase to uppercase a string.

If you have a type, you can perform some operations on it too. I'm going to introduce
a few type-level operations here—there are more to come later in the book, but these
are so common that I want to introduce them as early as possible.

Type aliases

Just like you can use variable declarations (let, const, and var) to declare a variable
that aliases a value, you can declare a type alias that points to a type. It looks like this:

type Age = number

type Person = {
name: string
age: Age

}

30 | Chapter3:All About Types

Age is but a number. It can also help make the definition of the Person shape easier to
understand. Aliases are never inferred by TypeScript, so you have to type them
explicitly:

let age: Age = 55

let driver: Person = {
name: 'James May'
age: age
}
Because Age is just an alias for number, that means it’s also assignable to number, so we
can rewrite this as:

let age = 55

let driver: Person = {
name: 'James May'
age: age
}
Wherever you see a type alias used, you can substitute in the type it aliases without
changing the meaning of your program.

Like JavaScript variable declarations (let, const, and var), you can’t declare a type
twice:

type Color 'red'
type Color = 'blue' // Error TS2300: Duplicate identifier 'Color'.

And like let and const, type aliases are block-scoped. Every block and every func-
tion has its own scope, and inner type alias declarations shadow outer ones:

type Color = 'red'
let x = Math.random() < .5

if (x) {
type Color = 'blue' // This shadows the Color declared above.
let b: Color = 'blue'

} else {
let c: Color = 'red'

}

Type aliases are useful for DRYing up repeated complex types,” and for making it
clear what a variable is used for (some people prefer descriptive type names to
descriptive variable names!). When deciding whether or not to alias a type, use the

5 The acronym DRY stands for “Don’t Repeat Yourself”—the idea that code shouldn’t be repetitive. It was
introduced by Andrew Hunt and David Thomas in their book The Pragmatic Programmer: From Journeyman
to Master (Addison-Wesley).

The ABCsof Types | 31

same judgment as when deciding whether or not to pull a value out into its own
variable.

Union and intersection types

If you have two things A and B, the union of those things is their sum (everything in A
or B or both), and the intersection is what they have in common (everything in both A
and B). The easiest way to think about this is with sets. In Figure 3-2 I represent sets
as circles. On the left is the union, or sum, of the two sets; on the right is their inter-
section, or product.

Union Intersection

Figure 3-2. Union (|) and intersection (¢)

TypeScript gives us special type operators to describe unions and intersections of
types: | for union and & for intersection. Since types are a lot like sets, we can think of
them in the same way:

type Cat = {name: string, purrs: boolean}

type Dog = {name: string, barks: boolean, wags: boolean}
type CatOrDogOrBoth = Cat | Dog

type CatAndDog = Cat & Dog

If something is a CatOrDogOrBoth, what do you know about it? You know that it has
a name property that’s a string, and not much else. On the flip side, what can you
assign to a CatOrDogOrBoth? Well, a Cat, a Dog, or both:

// Cat

let a: CatOrDogOrBoth = {

name: 'Bonkers',
purrs: true

}
// Dog
a={

name: 'Domino’',
barks: true,
wags: true

}

// Both

a={
name: 'Donkers',
barks: true,
purrs: true,

32 | Chapter3:All About Types

wags: true
}
This is worth reiterating: a value with a union type (|) isn’t necessarily one specific
member of your union; in fact, it can be both members at once!®

On the other hand, what do you know about CatAndDog? Not only does your canine-
feline hybrid super-pet have a name, but it can purr, bark, and wag:

let b: CatAndDog = {
name: 'Domino’',
barks: true,
purrs: true,
wags: true

}
Unions come up naturally a lot more often than intersections do. Take this function,
for example:
function trueOrNull(isTrue: boolean) {
if (isTrue) {

return 'true'

}

return null

}

What is the type of the value this function returns? Well, it might be a string, or it
might be null. We can express its return type as:

type Returns = string | null
How about this one?

function(a: string, b: number) {
return a || b

}

If a is truthy then the return type is string, and otherwise it’s number: in other words,
string | number.

The last place where unions come up naturally is in arrays (specifically the heteroge-
neous kind), which we’ll talk about next.

Arrays

Like in JavaScript, TypeScript arrays are special kinds of objects that support things
like concatenation, pushing, searching, and slicing. It’s example time:

6 Jump ahead to “Discriminated union types” on page 128 to learn how to hint to TypeScript that your union is
disjoint and a value of that union’s type has to be one or the other, and not both.

The ABCsof Types | 33

let a = [1, 2, 3] // number[]
var b = ['a"', 'b'] // string[]
let c: string[] = ['a'] // string[]
let d = [1, 'a'] // (string | number)[]
const e = [2, 'b'] // (string | number)[]

let f = ['red']

f.push('blue")

f.push(true) // Error TS2345: Argument of type 'true' is not
// assignable to parameter of type 'string'.

let g = [] // any[]

g.push(1) // number([]

g.push('red") // (string | number)[]

let h: number[] = [] // number[]

h.push(1) // number([]

h.push('red') // Error TS2345: Argument of type '"red"' is not

// assignable to parameter of type 'number'.

TypeScript supports two syntaxes for arrays: T[] and Array<T>.
They are identical both in meaning and in performance. This book
uses T[] syntax for its terseness, but you should pick whichever
style you like for your own code.

As you read through these examples, notice that everything but c and h is implicitly
typed. You’'ll also notice that TypeScript has rules about what you can and can’t put
in an array.

The general rule of thumb is to keep arrays homogeneous. That is, don’t mix apples
and oranges and numbers in a single array—try to design your programs so that
every element of your array has the same type. The reason is that otherwise, you're
going to have to do more work to prove to TypeScript that what you’re doing is safe.

To see why things are easier when your arrays are homogeneous, take a look at exam-
ple f. I initialized an array with the string 'red' (at the point when I declared the
array it contained just strings, so TypeScript inferred that it must be an array of
strings). I then pushed 'blue' onto it; 'blue’ is a string, so TypeScript let it pass.
Then I tried to push true onto the array, but that failed! Why? Because f is an array
of strings, and true is not a string.

On the other hand, when I initialized d I gave it a number and a string, so TypeScript
inferred that it must be an array of type number | string. Because each element
might be either a number or a string, you have to check which it is before using it.
For example, say you want to map over that array, converting every letter to upper-
case and tripling every number:

34 | Chapter3:All About Types

let d = [1, 'a']

d.map(_ => {
if (typeof _ === 'number') {
return _ * 3
}
return _.toUpperCase()
b

You have to query the type of each item with typeof, checking if it’s a number or a
string before you can do anything with it.

Like with objects, creating arrays with const won’t hint to TypeScript to infer their
types more narrowly. That’s why TypeScript inferred both d and e to be arrays of
number | string.

g is the special case: when you initialize an empty array, TypeScript doesn’t know
what type the array’s elements should be, so it gives you the benefit of the doubt and
makes them any. As you manipulate the array and add elements to it, TypeScript
starts to piece together your array’s type. Once your array leaves the scope it was
defined in (for example, if you declared it in a function, then returned it), TypeScript
will assign it a final type that can’t be expanded anymore:

function buildArray() {

let a = [] // any[]

a.push(1) // number([]
a.push('x") // (string | number)[]
return a

}

let myArray = buildArray() // (string | number)[]
myArray.push(true) // Error 2345: Argument of type 'true' is not
// assignable to parameter of type 'string | number'.

So as far as uses of any go, this one shouldn’t make you sweat too much.

Tuples

Tuples are subtypes of array. Theyre a special way to type arrays that have fixed
lengths, where the values at each index have specific, known types. Unlike most other
types, tuples have to be explicitly typed when you declare them. That’s because the
JavaScript syntax is the same for tuples and arrays (both use square brackets), and
TypeScript already has rules for inferring array types from square brackets:

let a: [number] = [1]

// A tuple of [first name, last name, birth year]
let b: [string, string, number] = ['malcolm', 'gladwell', 1963]

b = ['queen', 'elizabeth', 'ii', 1926] // Error TS2322: Type 'string' is not
// assignable to type 'number'.

The ABCsof Types | 35

Tuples support optional elements too. Just like in object types, ? means “optional”:

// An array of train fares, which sometimes vary depending on direction
let trainFares: [number, number?][] = [

[3.75],

[8.25, 7.70],

[10.50]
1

// Equivalently:
let moreTrainFares: ([number] | [number, number])[] = [
/).
1
Tuples also support rest elements, which you can use to type tuples with minimum
lengths:

// A list of strings with at least 1 element
let friends: [string, ...string[]] = ['Sara', 'Tali', 'Chloe', 'Claire']

// A heterogeneous list

let list: [number, boolean, ...string[]] = [1, false, 'a', 'b', 'c']
Not only do tuple types safely encode heterogeneous lists, but they also capture the
length of the list they type. These features buy you significantly more safety than
plain old arrays—use them often.

Read-only arrays and tuples

While regular arrays are mutable (meaning you can .push onto them, .splice them,
and update them in place), which is probably what you want most of the time, some-
times you want an immutable array—one that you can update to produce a new
array, leaving the original unchanged.

TypeScript comes with a readonly array type out of the box, which you can use to
create immutable arrays. Read-only arrays are just like regular arrays, but you can’t
update them in place. To create a read-only array, use an explicit type annotation; to
update a read-only array, use nonmutating methods like .concat and .slice instead
of mutating ones like . push and .splice:

let as: readonly number[] = [1, 2, 3] // readonly number[]
let bs: readonly number[] = as.concat(4) // readonly number[]
let three = bs[2] // number
as[4] = 5 // Error TS2542: Index signature in type

// 'readonly number[]' only permits reading.
as.push(6) // Error TS2339: Property 'push' does not

// exist on type 'readonly number[]'.

Like Array, TypeScript comes with a couple of longer-form ways to declare read-only
arrays and tuples:

36 | Chapter3:All About Types

type A = readonly string[] // readonly string[]
type B = ReadonlyArray<string> // readonly string[]
type C = Readonly<string[]> // readonly string[]

type D = readonly [number, string] // readonly [number, string]
type E = Readonly<[number, string]l> // readonly [number, string]

Which syntax you use—the terser readonly modifier, or the longer-form Readonly
or ReadonlyArray utilities—is a matter of taste.

Note that while read-only arrays can make your code easier to reason about in some
cases by avoiding mutability, they are backed by regular JavaScript arrays. That
means even small updates to an array result in having to copy the original array first,
which can hurt your application’s runtime performance if you're not careful. For
small arrays this overhead is rarely noticeable, but for bigger arrays, the overhead can
become significant.

If you plan to make heavy use of immutable arrays, consider reach-
ing for a more efficient implementation, like Lee Byron’s excellent
immutable.

null, undefined, void, and never

JavaScript has two values to represent an absence of something: null and undefined.
TypeScript supports both of these as values, and it also has types for them—any guess
what they’re called? You got it, the types are called null and undefined too.

They’re both special types, because in TypeScript the only thing of type undefined is
the value undefined, and the only thing of type null is the value null.

JavaScript programmers usually use the two interchangeably, though there is a subtle
semantic difference worth mentioning: undefined means that something hasn’t been
defined yet, and null means an absence of a value (like if you tried to compute a
value, but ran into an error along the way). These are just conventions and Type-
Script doesn’t hold you to them, but it can be a useful distinction to make.

In addition to null and undefined, TypeScript also has void and never. These are
really specific, special-purpose types that draw even finer lines between the different
kinds of things that don’t exist: void is the return type of a function that doesn’t
explicitly return anything (for example, console.log), and never is the type of a
function that never returns at all (like a function that throws an exception, or one
that runs forever):

// (a) A function that returns a number or null
function a(x: number) {
if (x < 10) {

The ABCsof Types | 37

https://www.npmjs.com/package/immutable

return x

}

return null

}

// (b) A function that returns undefined
function b() {
return undefined

}

// (c) A function that returns void
function c() {

leta=2+2

letb=a* a
}

// (d) A function that returns never
function d() {
throw TypeError('I always error')

}

// (e) Another function that returns never
function e() {
while (true) {
doSomething()
}
}

(a) and (b) explicitly return null and undefined, respectively. (c) returns undefined,
but it doesn’t do so with an explicit return statement, so we say it returns void. (d)
throws an exception, and (e) runs forever—neither will ever return, so we say their
return type is never.

If unknown is the supertype of every other type, then never is the subtype of every
other type. We call it a bottom type. That means it’s assignable to every other type,
and a value of type never can be used anywhere safely. This has mostly theoretical
significance,” but is something that will come up when you talk about TypeScript
with other language nerds.

Table 3-2 summarizes how the four absence types are used.

7 The way to think about a bottom type is as a type that has no values. A bottom type corresponds to a mathe-
matical proposition that’s always false.

38 | Chapter3:All About Types

Table 3-2. Types that mean an absence of something
null Absence of a value
undefined Variable that has not been assigned a value yet
void Function that doesn't have a return statement

never Function that never returns

Strict null Checking

In older versions of TypeScript (or with TSC’s strictNullChecks option set to
false), null behaves a little differently: it is a subtype of all types, except never. That
means every type is nullable, and you can never really trust the type of anything
without first checking if it’s null or not. For example, if someone passes the variable
pizza to your function and you want to call the method .addAnchovies on it, you
first have to check if your pizza is null before you can add delicious tiny fish to it. In
practice this is really tedious to do with every single variable, so people often forget to
actually check first. Then, when something really is null, you get a dreaded null
pointer exception at runtime:

function addDeliciousFish(pizza: Pizza) {
return pizza.addAnchovies() // Uncaught TypeError: Cannot read
} // property 'addAnchovies' of null

// TypeScript lets this fly with strictNullChecks = false
addDeliciousFish(null)

null has been called the “billion dollar mistake” by the guy that introduced it in the
1960s. The problem with null is it’s something that most languages’ type systems
can’t express and don’t check for; so when a programmer tries to do something with a
variable that they thought was defined but it actually turns out to be null at runtime,
the code throws a runtime exception!

Why? Don’t ask me, 'm just the guy writing this book. But languages are coming
around to encoding null in their type systems, and TypeScript is a great example of
how to do it right. If the goal is to catch as many bugs as possible at compile time
before your users encounter them, then being able to check for null in the type sys-
tem is indispensable.

Enums

Enums are a way to enumerate the possible values for a type. They are unordered data
structures that map keys to values. Think of them like objects where the keys are

The ABCsof Types | 39

http://bit.ly/2WEdZNO

fixed at compile time, so TypeScript can check that the given key actually exists when
you access it.

There are two kinds of enums: enums that map from strings to strings, and enums
that map from strings to numbers. They look like this:

enum Language {
English,
Spanish,
Russian

}

By convention, enum names are uppercase and singular. Their keys
are also uppercase.

TypeScript will automatically infer a number as the value for each member of your
enum, but you can also set values explicitly. Let’s make explicit what TypeScript
inferred in the previous example:

enum Language {

English = 0,

Spanish = 1,

Russian = 2
}

To retrieve a value from an enum, you access it with either dot or bracket notation—
just like you would to get a value from a regular object:

let myFirstlLanguage = Language.Russian // Language

let mySecondLanguage = Language['English'] // Language
You can split your enum across multiple declarations, and TypeScript will automati-
cally merge them for you (to learn more, jump ahead to “Declaration Merging” on
page 226). Beware that when you do split your enum, TypeScript can only infer values
for one of those declarations, so it’s good practice to explicitly assign a value to each
enum member:

enum Language {
English = 0,
Spanish = 1

}

enum Language {
Russian = 2

}

40 | Chapter3:All About Types

You can use computed values, and you don’t have to define all of them (TypeScript
will do its best to infer what’s missing):

enum Language {

English = 100,

Spanish = 200 + 300,

Russian // TypeScript infers 501 (the next number after 500)
}

You can also use string values for enums, or even mix string and number values:

enum Color {
Red = '#c10000',
Blue = '#007acl',

Pink = 0xc10050, // A hexadecimal literal
White = 255 // A decimal literal

}

let red = Color.Red // Color

let pink = Color.Pink // Color

TypeScript lets you access enums both by value and by key for convenience, but this
can get unsafe quickly:

let a = Color.Red // Color

let b = Color.Green // Error TS2339: Property 'Green' does not exist
// on type 'typeof Color'.

let ¢ = Color[0] // string

let d = Color[6] // string (!!!)

You shouldn’t be able to get Color[6], but TypeScript doesn’t stop you! We can ask
TypeScript to prevent this kind of unsafe access by opting into a safer subset of enum
behavior with const enum instead. Let’s rewrite our Language enum from earlier:

const enum Language {
English,
Spanish,
Russian

}

// Accessing a valid enum key
let a = Language.English // Language

// Accessing an invalid enum key

let b = Language.Tagalog // Error TS2339: Property 'Tagalog' does not exist
// on type 'typeof Language'.

// Accessing a valid enum value

let ¢ = Language[0] // Error TS2476: A const enum member can only be

// accessed using a string literal.

// Accessing an invalid enum value

The ABCsof Types | 41

let d = Language[6] // Error TS2476: A const enum member can only be
// accessed using a string literal.

A const enum doesn’t let you do reverse lookups, and so behaves a lot like a regular
JavaScript object. It also doesn’t generate any JavaScript code by default, and instead
inlines the enum member’s value wherever it’s used (for example, TypeScript will

replace every occurrence of Language. Spanish with its value, 1).

TSC Flag: preserveConstEnums

const enum inlining can lead to safety issues when you import a
const enum from someone else’s TypeScript code: if the enum
author updates their const enum after you’ve compiled your Type-
Script code, then your version of the enum and their version might
point to different values at runtime, and TypeScript will be none
the wiser.

If you use const enums, be careful to avoid inlining them and to
only use them in TypeScript programs that you control: avoid
using them in programs that you’re planning to publish to NPM,
or to make available for others to use as a library.

To enable runtime code generation for const enums, switch the
preserveConstEnums TSC setting to true in your tsconfig.json:

{
"compilerOptions": {
"preserveConstEnums": true
}
}

Let’s see how we use const enums:

const enum Flippable {
Burger,
Chair,
Cup,
Skateboard,
Table

}

function flip(f: Flippable) {
return 'flipped it'

}

flip(Flippable.Chair) // 'flipped it'
flip(Flippable.Cup) // 'flipped it'
flip(12) // 'flipped it' (!!1!)

Everything looks great—Chairs and Cups work exactly as you expect... until you
realize that all numbers are also assignable to enums! That behavior is an unfortunate

42 | Chapter3:All About Types

consequence of TypeScript’s assignability rules, and to fix it you have to be extra
careful to only use string-valued enums:

const enum Flippable {

Burger = 'Burger’,
Chair = 'Chair',
Cup = 'Cup',

Skateboard = 'Skateboard',
Table = 'Table'
}

function flip(f: Flippable) {
return 'flipped it'

}

flip(Flippable.Chair) // 'flipped it'

flip(Flippable.Cup) // 'flipped it'

flip(12) // Error TS2345: Argument of type '12' is not
// assignable to parameter of type 'Flippable'.

flip('Hat") // Error TS2345: Argument of type '"Hat"' is not

// assignable to parameter of type 'Flippable'.

All it takes is one pesky numeric value in your enum to make the whole enum unsafe.

Because of all the pitfalls that come with using enums safely, I rec-
ommend you stay away from them—there are plenty of better ways
to express yourself in TypeScript.

\

And if a coworker insists on using enums and there’s nothing you
can do to change their mind, be sure to ninja-merge a few TSLint
rules while they’re out to warn about numeric values and non-
const enums.

Summary

In short, TypeScript comes with a bunch of built-in types. You can let TypeScript
infer types for you from your values, or you can explicitly type your values. const will
infer more specific types, let and var more general ones. Most types have general
and more specific counterparts, the latter subtypes of the former (see Table 3-3).

Table 3-3. Types and their more specific subtypes
Type Subtype

boolean Boolean literal

bigint Bigint literal

number Number literal

string String literal

Summary | 43

Type Subtype

symbol unique symbol

object Object literal

Array Tuple
enum const enum
Exercises
1. For each of these values, what type will TypeScript infer?
a. let a = 1042
b. let b = 'apples and oranges'
c. const ¢ = 'pineapples’
d. let d = [true, true, false]
e. let e = {type: 'ficus'}
f. let f = [1, false]
g. const g = [3]
h. let h = null (try this out in your code editor, then jump ahead to “Type

Widening” on page 122 if the result surprises you!)
2. Why does each of these throw the error it does?

a.

let 1: 3 =3

i1 =4 // Error TS2322: Type '4' is not assignable to type '3'.
b.

let j = [1, 2, 3]

j.push(4)

j.push('5") // Error TS2345: Argument of type '"5"' is not

// assignable to parameter of type 'number'.

c.

let k: never = 4 // Error TSTS2322: Type '4' is not assignable

// to type 'never'.

d.

let 1: unknown = 4
letm=1%*2// Error TS2571: Object is of type 'unknown'.

44 | Chapter3:All About Types

CHAPTER 4
Functions

In the last chapter we covered the basics of TypeScript’s type system: primitive types,
objects, arrays, tuples, and enums, as well as the basics of TypeScript’s type inference
and how type assignability works. You are now ready for TypeScript’s piece de résist-
ance (or raison d’étre, if you're a functional programmer): functions. A few of the
topics we'll cover in this chapter are:

o The different ways to declare and invoke functions in TypeScript
« Signature overloading
« Polymorphic functions

« Polymorphic type aliases

Declaring and Invoking Functions

In JavaScript, functions are first-class objects. That means you can use them exactly
like you would any other object: assign them to variables, pass them to other func-
tions, return them from functions, assign them to objects and prototypes, write prop-
erties to them, read those properties back, and so on. There is a lot you can do with
functions in JavaScript, and TypeScript models all of those things with its rich type
system.

Here’s what a function looks like in TypeScript (this should look familiar from the
last chapter):

function add(a: number, b: number) {
return a + b

}

45

You will usually explicitly annotate function parameters (a and b in this example)—
TypeScript will always infer types throughout the body of your function, but in most
cases it won’t infer types for your parameters, except for a few special cases where it
can infer types from context (more on that in “Contextual Typing” on page 58). The
return type is inferred, but you can explicitly annotate it too if you want:

function add(a: number, b: number): number {
return a + b

}

Throughout this book I'll explicitly annotate return types where it
helps you, the reader, understand what the function does. Other-
wise T'll leave the annotations off because TypeScript already infers
them for us, and why would we want to repeat work?

The last example used named function syntax to declare the function, but JavaScript
and TypeScript support at least five ways to do this:

// Named function
function greet(name: string) {
return 'hello ' + name

}

// Function expression
let greet2 = function(name: string) {
return 'hello ' + name

}

// Arrow function expression
let greet3 = (name: string) => {
return 'hello ' + name

}

// Shorthand arrow function expression
let greet4 = (name: string) =>
'"hello ' + name

// Function constructor
let greet5 = new Function('name', 'return "hello

"

+ name')

Besides function constructors (which you shouldn’t use unless you are being chased
by bees because they are totally unsafe),' all of these syntaxes are supported by Type-

—_

Why are they unsafe? If you enter that last example into your code editor, you’ll see that its type is Function.
What is this Function type? It’s an object that is callable (you know, by putting () after it) and has all the
prototype methods from Function.prototype. But its parameters and return type are untyped, so you can
call the function with any arguments you want, and TypeScript will stand idly by, watching you do something
that by all means should be illegal in whatever town you live in.

46 | Chapter4: Functions

Script in a typesafe way, and they all follow the same rules around usually mandatory
type annotations for parameters and optional annotations for return types.

A quick refresher on terminology:

o A parameter is a piece of data that a function needs to run,
declared as part of a function declaration. Also called a formal
parameter.

o An argument is a piece of data that you passed to a function
when invoking it. Also called an actual parameter.

When you invoke a function in TypeScript, you don’t need to provide any additional
type information—just pass in some arguments, and TypeScript will go to work
checking that your arguments are compatible with the types of your function’s
parameters:

add(1, 2) // evaluates to 3
greet('Crystal') // evaluates to 'hello Crystal'

Of course, if you forgot an argument, or passed an argument of the wrong type,
TypeScript will be quick to point it out:

add(1) // Error TS2554: Expected 2 arguments, but got 1.
add(1, 'a') // Error TS2345: Argument of type '"a"' is not assignable
// to parameter of type 'number’.

Optional and Default Parameters

Like in object and tuple types, you can use ? to mark parameters as optional. When
declaring your function’s parameters, required parameters have to come first, fol-
lowed by optional parameters:

function log(message: string, userId?: string) {
let time = new Date().toLocaleTimeString()
console.log(time, message, userId || 'Not signed in')

}

log('Page loaded') // Logs "12:38:31 PM Page loaded Not signed in"
log('User signed in', 'da763be') // Logs "12:38:31 PM User signed in da763be"

Like in JavaScript, you can provide default values for optional parameters. Semanti-
cally it’s similar to making a parameter optional, in that callers no longer have to pass
it in (a difference is that default parameters don’t have to be at the end of your list of
parameters, while optional parameters do).

Declaring and Invoking Functions | 47

For example, we can rewrite log as:

function log(message: string, userId = 'Not signed in') {
let time = new Date().toISOString()
console.log(time, message, userId)

}

log('User clicked on a button', 'da763be')
log('User signed out')

Notice how when we give userId a default value, we remove its optional annota-
tion, ?. We also don’t have to type it anymore. TypeScript is smart enough to infer
the parameter’s type from its default value, keeping our code terse and easy to read.

Of course, you can also add explicit type annotations to your default parameters, the
same way you can for parameters without defaults:

type Context = {
appId?: string
userId?: string

}

function log(message: string, context: Context = {}) {
let time = new Date().toISOString()
console.log(time, message, context.userId)

}

You'll find yourself using default parameters over optional parameters often.

Rest Parameters

If a function takes a list of arguments, you can of course simply pass the list in as an
array:
function sum(numbers: number[]): number {

return numbers.reduce((total, n) => total + n, 0)

}

sum([1, 2, 3]) // evaluates to 6

Sometimes, you might opt for a variadic function API—one that takes a variable
number of arguments—instead of a fixed-arity API that takes a fixed number of argu-
ments. Traditionally, that required using JavaScript’s magic arguments object.

arguments is “magic” because your JavaScript runtime automatically defines it for
you in functions, and assigns to it the list of arguments you passed to your function.
Because arguments is only array-like, and not a true array, you first have to convert it
to an array before you can call the built-in . reduce on it:

function sumVariadic(): number {

return Array
.from(arguments)

48 | Chapter4: Functions

.reduce((total, n) => total + n, 0)
}

sumVariadic(1, 2, 3) // evaluates to 6

But there’s one big problem with using arguments: it’s totally unsafe! If you hover
over total or n in your text editor, you'll see output similar to that shown in
Figure 4-1.

.reduce((total, n) = total + n, 0)

function sum() { }
return Array
.from(arguments) (parameter) n: any

.reduce((total, n) = total + n, 0)

Figure 4-1. arguments is unsafe

This means TypeScript inferred that both n and total are of type any, and silently let
it pass—that is, until you try to use sumVariadic:

sumVariadic(1l, 2, 3) // Error TS2554: Expected O arguments, but got 3.

Since we didn’t declare that sumvariadic takes arguments, from TypeScript’s point of
view it doesn’t take any arguments, so we get a TypeError when we try to use it.

So, how can we safely type variadic functions?

Rest parameters to the rescue! Instead of resorting to the unsafe arguments magic
variable, we can instead use rest parameters to safely make our sum function accept
any number of arguments:

function sumVariadicSafe(...numbers: number[]): number {
return numbers.reduce((total, n) => total + n, 0)

}

sumVariadicSafe(1, 2, 3) // evaluates to 6

That’s it! Notice that the only change between this variadic sum and our original
single-parameter sum function is the extra ... in the parameter list—nothing else has
to change, and it’s totally typesafe.

A function can have at most one rest parameter, and that parameter has to be the last
one in the function’s parameter list. For example, take a look at TypeScript’s built-in
declaration for console. log (if you don’t know what an interface is, don’t worry—
we’ll cover it in Chapter 5). console. log takes an optional message, and any number
of additional arguments to log:

Declaring and Invoking Functions | 49

interface Console {
log(message?: any, ...optionalParams: any[]): void

}

call, apply, and bind

In addition to invoking a function with parentheses (), JavaScript supports at least
two other ways to call a function. Take add from earlier in the chapter:

function add(a: number, b: number): number {
return a + b

}

add(10, 20) // evaluates to 30
add.apply(null, [10, 20]) // evaluates to 30
add.call(null, 10, 20) // evaluates to 30

add.bind(null, 10, 20)() // evaluates to 30

apply binds a value to this within your function (in this example, we bind this to
null), and spreads its second argument over your function’s parameters. call does
the same, but applies its arguments in order instead of spreading.

bind() is similar, in that it binds a this-argument and a list of arguments to your
function. The difference is that bind does not invoke your function; instead, it
returns a new function that you can then invoke with (), .call, or .apply, passing
more arguments in to be bound to the so far unbound parameters if you want.

TSC Flag: strictBindCallApply

To safely use .call, .apply, and .bind in your code, be sure to
enable the strictBindCallApply option in your tsconfig.json (it’s
automatically enabled if you already enabled strict mode).

Typing this

If you’re not coming from JavaScript, you may be surprised to learn that in JavaScript
the this variable is defined for every function, not just for those functions that live as
methods on classes. this has a different value depending on how you called your
function, which can make it notoriously fragile and hard to reason about.

For this reason, a lot of teams ban this everywhere except in class
methods—to do this for your codebase too, enable the no-
invalid-this TSLint rule.

50 | Chapter4:Functions

The reason that this is fragile has to do with the way it’s assigned. The general rule is
that this will take the value of the thing to the left of the dot when invoking a
method. For example:

let x = {
a() {

return this

}
}
x.a() // this is the object x in the body of a()

But if at some point you reassign a before calling it, the result will change!

let a = x.a
a() // now, this is undefined in the body of a()

Say you have a utility function for formatting dates that looks like this:

function fancyDate() {
return ‘${this.getDate()}/${this.getMonth}/${this.getFullYear()}"
}
You designed this API in your early days as a programmer (before you learned about
function parameters). To use fancyDate, you have to call it with a Date bound to
this:

fancyDate.call(new Date) // evaluates to "4/14/2005"
If you forget to bind a Date to this, you'll get a runtime exception!
fancyDate() // Uncaught TypeError: this.getDate is not a function

Though exploring all of the semantics of this is beyond the scope of this book,? this
behavior—that this depends on the way you called a function, and not on the way
that you declared it—can be surprising to say the least.

Thankfully, TypeScript has your back. If your function uses this, be sure to declare
your expected this type as your function’s first parameter (before any additional
parameters), and TypeScript will enforce that this really is what you say it is at every
call site. this isn’t treated like other parameters—it’s a reserved word when used as
part of a function signature:

function fancyDate(this: Date) {
return '${this.getDate()}/${this.getMonth()}/${this.getFullYear()}"
}

2 For a deep dive into thtis, check out Kyle Simpson’s You Don’t Know JS series from O’Reilly.

Declaring and Invoking Functions | 51

http://shop.oreilly.com/product/0636920033738.do

Now here’s what happens when we call fancyDate:

fancyDate.call(new Date) // evaluates to "6/13/2008"

fancyDate() // Error TS2684: The 'this' context of type 'void' is
// not assignable to method's 'this' of type 'Date’.
We took a runtime error, and gave TypeScript enough information to warn about the
error at compile time instead.

TSC Flag: nolmplicitThis

To enforce that this types are always explicitly annotated in func-
tions, enable the noImplicitThis setting in your tsconfig.json.
strict mode includes noImplicitThis, so if you already have that
enabled you’re good to go.

Note that noImplicitThis doesn’t enforce this-annotations for
classes, or for functions on objects.

Generator Functions

Generator functions (generators for short) are a convenient way to, well, generate a
bunch of values. They give the generator’s consumer fine control over the pace at
which values are produced. Because they’re lazy—that is, they only compute the next
value when a consumer asks for it—they can do things that can be hard to do other-
wise, like generate infinite lists.

They work like this:

function* createFibonacciGenerator() { (1]
leta =0
letb=1
while (true) { @
yield a; (3]
[a, bl =[b, a+b] @
}
}

let fibonacciGenerator = createFibonacciGenerator() // IterableIterator<number>
fibonacciGenerator.next() // evaluates to {value: 0, done: false}
fibonacciGenerator.next() // evaluates to {value: 1, done: false}
fibonacciGenerator.next() // evaluates to {value: done: false}
fibonacciGenerator.next() // evaluates to {value: done: false}
fibonacciGenerator.next() // evaluates to {value: done: false}
fibonacciGenerator.next() // evaluates to {value: done: false}

- M

Lﬁw:\)NH

-

© The asterisk (*) before a function’s name makes that function a generator. Call-
ing a generator returns an iterable iterator.

52 | Chapter4: Functions

® Our generator can generate values forever.

© Generators use the yield keyword to, well, yield values. When a consumer asks
for the generator’s next value (for example, by calling next), yield sends a result
back to the consumer and pauses execution until the consumer asks for the next
value. In this way the while(true) loop doesn’t immediately cause the program
to run forever and crash.

O To compute the next Fibonacci number, we reassign atobandbtoa + bina
single step.

We called createFibonacciGenerator, and that returned an Iterablelterator.
Every time we call next, the iterator computes the next Fibonacci number and yields
it back to us. Notice how TypeScript is able to infer the type of our iterator from the
type of the value we yielded.

You can also explicitly annotate a generator, wrapping the type it yields in an Itera
bleIterator:

function* createNumbers(): Iterablelterator<number> {

let n =20
while (1) {
yield n++

}
}
let numbers = createNumbers()
numbers.next() // evaluates to {value: 0, done: false}
numbers.next() // evaluates to {value: 1, done: false}
numbers.next() // evaluates to {value: 2, done: false}

We won’t delve deeper into generators in this book—they’re a big topic, and since
this book is about TypeScript, I don’t want to get sidetracked with JavaScript features.
The short of it is they’re a super cool JavaScript language feature that TypeScript sup-
ports too. To learn more about generators, head to their page on MDN.

Iterators

Iterators are the flip side to generators: while generators are a way to produce a
stream of values, iterators are a way to consume those values. The terminology can
get pretty confusing, so let’s start with a couple of definitions.

Iterable

Any object that contains a property called Symbol.itera
tor, whose value is a function that returns an iterator.

Declaring and Invoking Functions | 53

https://mzl.la/2UitIk4

Iterator

Any object that defines a method called next, which returns
an object with the properties value and done.

When you create a generator (say, by calling createFibonacciGenerator), you get a
value back that’s both an iterable and an iterator—an iterable iterator—because it
defines both a Symbol.iterator property and a next method.

You can manually define an iterator or an iterable by creating an object (or a class)
that implements Symbol.1iterator or next, respectively. For example, let’s define an
iterator that returns the numbers 1 through 10:

let numbers = {
*[Symbol.iterator]() {
for (let n = 1; n <= 10; n++) {
yield n
}
}
}

If you type that iterator into your code editor and hover over it, you’ll see what Type-
Script infers as its type (Figure 4-2).

let numbers: {
[Symbol.iterator](): IterableIterator<num
ber>;
}
let numbers = {
*[Symbol.iterator]() {
for (let n =1; n < 10; n+) {
yield n
}
}
}

Figure 4-2. Manually defining an iterator

In other words, numbers is an iterable, and calling the generator function num
bers[Symbol.iterator]() returns an iterable iterator.

Not only can you define your own iterators, but you can use JavaScript’s built-in iter-
ators for common collection types—Array, Map, Set, String,’ and so on—to do
things like:

// Iterate over an iterator with for-of
for (let a of numbers) {

3 Notably, Object and Number are not iterators.

54 | Chapter4: Functions

// 1, 2, 3, etc.
}

// Spread an iterator
let allNumbers = [...numbers] // number[]

// Destructure an iterator
let [one, two, ...rest] = numbers // [number, number, number[]]

Again, we won’t go more deeply into iterators in this book. You can read more about
iterators and async iterators on MDN.

TSCFlag: downlevellteration

If you’re compiling your TypeScript to a JavaScript version older
than ES2015, you can enable custom iterators with the
downlevellteration flag in your tsconfig.json.

You may want to keep downlevelIteration disabled if your appli-
cation is especially sensitive to bundle size: it takes a lot of code to
get custom iterators working in older environments. For example,
the previous numbers example generates nearly 1 KB of code

(gzipped).

Call Signatures

So far, we’ve learned to type functions’ parameters and return types. Now, let’s switch
gears and talk about how we can express the full types of functions themselves.

Let’s revisit sum from the top of this chapter. As a reminder, it looks like this:

function sum(a: number, b: number): number {
return a + b

}
What is the type of sum? Well, sum is a function, so its type is:
Function

The Function type, as you may have guessed, is not what you want to use most of the
time. Like object describes all objects, Function is a catchall type for all functions,
and doesn’t tell you anything about the specific function that it types.

How else can we type sum? sum is a function that takes two numbers and returns a
number. In TypeScript we can express its type as:

(a: number, b: number) => number

This is TypeScript’s syntax for a function’s type, or call signature (also called a type
signature). You'll notice it looks remarkably similar to an arrow function—this is

Declaring and Invoking Functions | 55

https://mzl.la/2OAoy1o

intentional! When you pass functions around as arguments, or return them from
other functions, this is the syntax you'll use to type them.

The parameter names a and b just serve as documentation, and
don’t affect the assignability of a function with that type.

Function call signatures only contain type-level code—that is, types only, no values.
That means function call signatures can express parameter types, this types (see
“Typing this” on page 50), return types, rest types, and optional types, and they can-
not express default values (since a default value is a value, not a type). And because
they have no body for TypeScript to infer from, call signatures require explicit return
type annotations.

Type Level and Value Level Code

People use the terms “type-level” and “value-level” a lot when talking about program-
ming with static types, and it helps to have a common vocabulary.

Throughout this book, when I use the term type-level code, what 'm referring to is
code that consists exclusively of types and type operators. Contrast that with value-
level code, which is everything else. A rule of thumb is: if it’s valid JavaScript code,
then it’s value-level; if it’s valid TypeScript but not valid JavaScript, then it’s type-
level.*

To be extra sure that we’re on the same page, let’s look at an example—the bold terms
here are type-level, and everything else is value-level:

function area(radius: number): number | null {
if (radius < 0) {
return null
}
return Math.PI * (radius ** 2)
}

let r: number = 3

let a = area(r)

if (a !'== null) {
console.info('result:', a)

}

4 The exceptions to this rule of thumb are enums, classes, and namespaces. Enums and classes each generate
both a type and a value, and namespaces exist just at the value level. See Appendix C for a complete reference.

56 | Chapter4:Functions

The bold type-level terms are type annotations and the union type operator, |; every-
thing else is a value-level term.

Let’s go through a few of the examples of functions we’ve seen so far in this chapter,
and pull out their types into standalone call signatures that we’ll bind to type aliases:

// function greet(name: string)
type Greet = (name: string) => string

// function log(message: string, userId?: string)
type Log = (message: string, userId?: string) => void

// function sumVariadicSafe(...numbers: number[]): number

type SumVariadicSafe = (...numbers: number[]) => number
Getting the hang of it? The functions’ call signatures look remarkably similar to their
implementations. This is intentional, and is a language design choice that makes call
signatures easier to reason about.

Let’s make the relationship between call signatures and their implementations more
concrete. If you have a call signature, how can you declare a function that imple-
ments that signature? You simply combine the call signature with a function expres-
sion that implements it. For example, let’s rewrite Log to use its shiny new signature:

type Log = (message: string, userId?: string) => void

let log: Log = ((1]
message,
userId = 'Not signed in' (3]
):>{0
let time = new Date().toISOString()
console.log(time, message, userld)

}

We declare a function expression log, and explicitly type it as type Log.

We don’t need to annotate our parameters twice. Since message is already anno-
tated as a string as part of the definition for Log, we don’t need to type it again
here. Instead, we let TypeScript infer it for us from Log.

©® We add a default value for userId, since we captured userId’s type in our signa-
ture for Log, but we couldn’t capture the default value as part of Log because Log
is a type and can’t contain values.

O We don’t need to annotate our return type again, since we already declared it as
void in our Log type.

Declaring and Invoking Functions | 57

Contextual Typing

Notice that the last example was the first example we’ve seen where we didn’t have to
explicitly annotate our function parameter types. Because we already declared that
log is of type Log, TypeScript is able to infer from context that message has to be of
type string. This is a powerful feature of TypeScript’s type inference called contex-
tual typing.

Earlier in this chapter, we touched on one other place where contextual typing comes
up: callback functions.®

Let’s declare a function times that calls its callback f some number of times n, pass-
ing the current index to f each time:

function times(
f: (index: number) => void,
n: number

) {
for (let 1 = 0; 1 < n; 1++) {
(1)
}
}
When you call times, you don’t have to explicitly annotate the function you pass to
times if you declare that function inline:

times(n => console.log(n), 4)

TypeScript infers from context that n is a number—we declared that f’s argument
index is a number in times’s signature, and TypeScript is smart enough to infer that n
is that argument, so it must be a number.

Note that if we didn’t declare f inline, TypeScript wouldn’t have been able to infer its
type:

function f(n) { // Error TS7006: Parameter 'n' implicitly has an 'any' type.
console.log(n)

}

times(f, 4)

Overloaded Function Types

The function type syntax we used in the last section—type Fn = (...) => ...—isa
shorthand call signature. We can instead write it out more explicitly. Again taking the
example of Log:

5 If you haven’t heard the term “callback” before, all it is is a function that you passed as an argument to
another function.

58 | Chapter4: Functions

// Shorthand call signature
type Log = (message: string, userId?: string) => void

// Full call signature
type Log = {
(message: string, userId?: string): void

}
The two are completely equivalent in every way, and differ only in syntax.
Would you ever want to use a full call signature over the shorthand? For simple cases

like our Log function, you should prefer the shorthand; but for more complicated
functions, there are a few good use cases for full signatures.

The first of these is overloading a function type. But first, what does it even mean to
overload a function?

Overloaded function

A function with multiple call signatures.

In most programming languages, once you declare a function that takes some set of
parameters and yields some return type, you can call that function with exactly that
set of parameters, and you will always get that same return type back. Not so in Java-
Script. Because JavaScript is such a dynamic language, it’s a common pattern for
there to be multiple ways to call a given function; not only that, but sometimes the
output type will actually depend on the input type for an argument!

TypeScript models this dynamism—overloaded function declarations, and a func-
tion’s output type depending on its input type—with its static type system. We might
take this language feature for granted, but it’s a really advanced feature for a type sys-
tem to have!

You can use overloaded function signatures to design really expressive APIs. For
example, let’s design an API to book a vacation—we’ll call it Reserve. Let’s start by
sketching out its types (with a full type signature this time):

type Reserve = {

(from: Date, to: Date, destination: string): Reservation

}

Let’s then stub out an implementation for Reserve:

let reserve: Reserve = (from, to, destination) => {
Y7
}
So a user who wants to book a trip to Bali has to call our reserve API with a from
date, a to date, and "Bali" as a destination.

Declaring and Invoking Functions | 59

We might repurpose our API to support one-way trips too:

type Reserve = {
(from: Date, to: Date, destination: string): Reservation
(from: Date, destination: string): Reservation

}

You’'ll notice that when you try to run this code, TypeScript will give you an error at
the point where you implement Reserve (see Figure 4-3).

let reserve: Reserve = (from, to, destination) = {

type }

f . N
E{ [ts] Type '(from: any, to: any, destination: any) = v
} oid' is not assignable to type 'Reserve'.

let reserve: Reserve
let reserve: Reserve = (from, to, destination) = {

}

Figure 4-3. TypeError when missing a combined overload signature

This is because of the way call signature overloading works in TypeScript. If you
declare a set of overload signatures for a function f, from a caller’s point of view f’s
type is the union of those overload signatures. But from f’s implementation’s point of
view, there needs to be a single, combined type that can actually be implemented.
You need to manually declare this combined call signature when implementing f—it
won’t be inferred for you. For our Reserve example, we can update our reserve
function like this:

type Reserve = {
(from: Date, to: Date, destination: string): Reservation
(from: Date, destination: string): Reservation

1 ©

let reserve: Reserve = (
from: Date,
toOrDestination: Date | string,
destination?: string
)=>{ O
Y/
}

We declare two overloaded function signatures.

The implementation’s signature is the result of us manually combining the two
overload signatures (in other words, we computed Signaturel | Signature2 by
hand). Note that the combined signature isn’t visible to functions that call
reserve; from a consumer’s point of view, Reserve’s signature is:

60

| Chapter 4: Functions

type Reserve = {
(from: Date, to: Date, destination: string): Reservation
(from: Date, destination: string): Reservation

}

Notably, this doesn’t include the combined signature we created:

// Wrong!
type Reserve = {
(from: Date, to: Date, destination: string): Reservation
(from: Date, destination: string): Reservation
(from: Date, toOrDestination: Date | string,
destination?: string): Reservation

}

Since reserve might be called in either of two ways, when you implement reserve
you have to prove to TypeScript that you checked how it was called:*

let reserve: Reserve = (
from: Date,
toOrDestination: Date | string,
destination?: string

) = {
if (toOrDestination instanceof Date && destination !== undefined) {
// Book a one-way trip
} else if (typeof toOrDestination === 'string') {
// Book a round trip
}
}

Keeping Overload Signatures Specific

In general, each overload signature (e.g., Reserve) has to be assignable to the imple-
mentation’s signature (e.g., reserve) when declaring an overloaded function type.
That means you can be overly general when declaring the implementation’s signa-
ture, so long as all of your overloads are assignable to it. For example, this works:

let reserve: Reserve = (
from: any,
toOrDestination: any,
destination?: any

) =>{
/] ...

}

6 To learn more, jump ahead to “Refinement” on page 126.

Declaring and Invoking Functions | 61

When using overloads, try to keep your implementation’s signature as specific as pos-
sible to make it easier to implement the function. That means preferring Date over
any, and a union of Date | string over any in our example.

Why does keeping types narrow make it easier to implement a function with a given
signature? If you type a parameter as any and want to use it as a Date, you have to
prove to TypeScript that it’s actually a date to use it safely, and to get the benefit of
autocomplete:

function getMonth(date: any): number | undefined {
if (date instanceof Date) {
return date.getMonth()
}
}

But if you typed the parameter as a Date upfront, you don’t need to do extra work in
the implementation:

function getMonth(date: Date): number {
return date.getMonth()

}

Overloads come up naturally in browser DOM APIs. The createElement DOM API,
for example, is used to create a new HTML element. It takes a string corresponding
to an HTML tag and returns a new HTML element of that tag’s type. TypeScript
comes with built-in types for each HTML element. These include:

o HTMLAnchorElement for <a> elements
e HTMLCanvasElement for <canvas> elements

e HTMLTableElement for <table> elements

Overloaded call signatures are a natural way to model how createElement works.
Think about how you might type createElement (try to answer this by yourself
before you read on!).

The answer:

type CreateElement = {
(tag: 'a'): HTMLAnchorElement (1]
(tag: 'canvas'): HTMLCanvasElement
(tag: 'table'): HTMLTableElement
(tag: string): HTMLElement (2]

}

let createElement: CreateElement = (tag: string): HTMLElement => { (3]
/) ...
}

62 | Chapter4: Functions

©® We overload on the parameter’s type, matching on it with string literal types.

® We add a catchall case: if the user passed a custom tag name, or a cutting-edge
experimental tag name that hasn’t made its way into TypeScript’s built-in type
declarations yet, we return a generic HTMLElement. Since TypeScript resolves
overloads in the order they were declared,” when you call createElement with a
string that doesn’t have a specific overload defined (e.g., createEle
ment('foo')), TypeScript will fall back to HTMLElement.

© To type the implementation’s parameter, we combine all the types that parame-

ter might have in createElement’s overload signatures, resulting in 'a' | 'can
" | 'table' | string. Since the three string literal types are all subtypes of
string, the type reduces to just string.

vas

In all of the examples in this section we overloaded function
expressions. But what if we want to overload a function declara-
tion? As always, TypeScript has your back, with an equivalent syn-
tax for function declarations. Let’s rewrite our createElement
overloads:

function createElement(tag: 'a'): HTMLAnchorElement

function createElement(tag: 'canvas'): HTMLCanvasElement

function createElement(tag: 'table'): HTMLTableElement

function createElement(tag: string): HTMLElement {
Y/

}

Which syntax you use is up to you, and depends on what kind of
function you're overloading (function expression or function
declarations).

Full type signatures aren’t limited to overloading how you call a function. You can
also use them to model properties on functions. Since JavaScript functions are just
callable objects, you can assign properties to them to do things like:

function warnUser(warning) {
if (warnUser.wasCalled) {
return
}
warnUser.wasCalled = true
alert(warning)

7 Mostly—TypeScript hoists literal overloads above nonliteral ones, before resolving them in order. You might
not want to depend on this feature, though, since it can make your overloads hard to understand for other
engineers who aren’t familiar with this behavior.

Declaring and Invoking Functions | 63

}

warnUser.wasCalled = false

That is, we show the user a warning, and we don’t show a warning more than once.
Let’s use TypeScript to type warnUser’s full signature:

type WarnUser = {
(warning: string): void
wasCalled: boolean

}

Not only is warnUser a function that can be called, but it also has a property wasCal
Lled that’s a boolean.

Polymorphism

So far in this book, we’ve been talking about the hows and whys of concrete types,
and functions that use concrete types. What’s a concrete type? It so happens that every
type we’ve seen so far is concrete:

« boolean

e string

e Date[]

e {a: number} | {b: string}

e (numbers: number[]) => number

Concrete types are useful when you know precisely what type you're expecting, and
want to verify that type was actually passed. But sometimes, you don’t know what
type to expect beforehand, and you don’t want to restrict your function’s behavior to
a specific type!

As an example of what I mean, let’s implement filter. You use filter to iterate
over an array and refine it; in JavaScript, it might look like this:

function filter(array, f) {

let result = []

for (let 1 = 0; 1 < array.length; i++) {
let item = array[i]
if (f(item)) {

result.push(item)

}

}

return result

}

filter([1, 2, 3, 4], _ => _ < 3) // evaluates to [1, 2]

64 | Chapter4:Functions

Let’s start by pulling out filter’s full type signature, and adding some placeholder
unknowns for the types:
type Filter = {

(array: unknown, f: unknown) => unknown[]

}
Now, let’s try to fill in the types with, say, number:

type Filter = {
(array: number[], f: (item: number) => boolean): number[]

}

Typing the array’s elements as number works well for this example, but filter is
meant to be a generic function—you can filter arrays of numbers, strings, objects,
other arrays, anything. The signature we wrote works for arrays of numbers, but it
doesn’t work for arrays of other types of elements. Let’s try to use an overload to
extend it to work on arrays of strings too:

type Filter = {
(array: number[], f: (item: number) => boolean): number[]
(array: string[], f: (item: string) => boolean): string[]

}

So far so good (though it might get messy to write out an overload for every type).
What about arrays of objects?

type Filter = {
(array: number[], f: (item: number) => boolean): number[]
(array: string[], f: (item: string) => boolean): string[]
(array: object[], f: (item: object) => boolean): object[]
}

This might look fine at first glance, but let’s try to use it to see where it breaks down.

If you implement a filter function with that signature (that is, filter: Filter),
and try to use it, you'll get:

let names = [
{firstName: 'beth'},
{firstName: 'caitlyn'},
{firstName: 'xin'}

]

let result = filter(
names,
_ => _.firstName.startsWith('b")
) // Error TS2339: Property 'firstName' does not exist on type 'object'.

result[0].firstName // Error TS2339: Property 'firstName' does not exist
// on type 'object'.
At this point, it should make sense why TypeScript is throwing this error. We told
TypeScript that we might pass an array of numbers, strings, or objects to filter. We

Polymorphism | 65

passed an array of objects, but remember that object doesn’t tell you anything about
the shape of the object. So each time we try to access a property on an object in the
array, TypeScript throws an error, because we didn’t tell it what specific shape the
object has.

What to do?

If you come from a language that supports generic types, then by now you are rolling
your eyes and shouting, “THAT’S WHAT GENERICS ARE FOR!” The good news is,
youre spot on (the bad news is, you just woke up the neighbors’ kid with your
shouting).

In case you haven’t worked with generic types before, I'll define them first, then give
an example with our filter function.

Generic type parameter

A placeholder type used to enforce a type-level constraint in
multiple places. Also known as polymorphic type parameter.

Going back to our filter example, here is what its type looks like when we rewrite it
with a generic type parameter T:

type Filter = {

<T>(array: T[], f: (item: T) => boolean): T[]

}
What we’ve done here is say: “This function filter uses a generic type parameter T;
we don’t know what this type will be ahead of time, so TypeScript if you can infer
what it is each time we call filter that would be swell.” TypeScript infers T from the
type we pass in for array. Once TypeScript infers what T is for a given call to filter,
it substitutes that type in for every T it sees. T is like a placeholder type, to be filled in
by the typechecker from context; it parameterizes Filter’s type, which is why we call
it a generic type parameter.

Because it’s such a mouthful to say “generic type parameter” every
time, people often shorten it to just “generic type,” or simply
“generic.” T'll use the terms interchangeably throughout this book.

The funny-looking angle brackets, <>, are how you declare generic type parameters
(think of them like the type keyword, but for generic types); where you place the
angle brackets scopes the generics (there are just a few places you can put them), and
TypeScript makes sure that within their scope, all instances of the generic type
parameters are eventually bound to the same concrete types. Because of where the

66 | Chapter4: Functions

angle brackets are in this example, TypeScript will bind concrete types to our generic
T when we call filter. And it will decide which concrete type to bind to T depending
on what we called filter with. You can declare as many comma-separated generic
type parameters as you want between a pair of angle brackets.

T is just a type name, and we could have used any other name
instead: A, Zebra, or 133t. By convention, people use uppercase
single-letter names starting with the letter T and continuing to U, V,
W, and so on depending on how many generics they need.

If you're declaring a lot of generics in a row or are using them in a
complicated way, consider deviating from this convention and
using more descriptive names like Value or WidgetType instead.

Some people prefer to start at A instead of T. Different program-
ming language communities prefer one or the other, depending on
their heritage: functional language users prefer A, B, C, and so on
because of their likeness to the Greek letters a, B, and y that you
might find in math proofs; object-oriented language users tend to
use T for “Type.” TypeScript, though it supports both program-
ming styles, uses the latter convention.

Like a function’s parameter gets re-bound every time you call that function, so each
call to filter gets its own binding for T:

type Filter = {
<T>(array: T[], f: (item: T) => boolean): T[]
}

let filter: Filter = (array, f) => // ...

// (a) T is bound to number
filter([1, 2, 3], _=> _ > 2)

// (b) T is bound to string
filter(['a', 'b'], _ => _ !=="b")

// (c) T is bound to {firstName: string}
let names = [
{firstName: 'beth'},
{firstName: 'caitlyn'},
{firstName: 'xin'}
1
filter(names, _ => _.firstName.startsWith('b'))

TypeScript infers these generic bindings from the types of the arguments we passed
in. Let’s walk through how TypeScript binds T for (a):

Polymorphism | 67

1. From the type signature for filter, TypeScript knows that array is an array of
elements of some type T.

2. TypeScript notices that we passed in the array [1, 2, 3], so T must be number.

3. Wherever TypeScript sees a T, it substitutes in the number type. So the parameter
f: (item: T) => boolean becomes f: (item: number) => boolean, and the
return type T[] becomes number[].

4. TypeScript checks that the types all satisfy assignability, and that the function we
passed in as f is assignable to its freshly inferred signature.

Generics are a powerful way to say what your function does in a more general way
than what concrete types allow. The way to think about generics is as constraints. Just
like annotating a function parameter as n: number constrains the value of the param-
eter n to the type number, so using a generic T constrains the type of whatever type
you bind to T to be the same type everywhere that T shows up.

Generic types can also be used in type aliases, classes, and inter-
faces—we’ll use them copiously throughout this book. I'll intro-
duce them in context as we cover more topics.

Use generics whenever you can. They will help keep your code gen-
eral, reusable, and terse.

When Are Generics Bound?

The place where you declare a generic type doesn’t just scope the type, but also dic-
tates when TypeScript will bind a concrete type to your generic. From the last
example:

type Filter = {

<T>(array: T[], f: (item: T) => boolean): T[]
}

let filter: Filter = (array, f) =>
/).
Because we declared <T> as part of a call signature (right before the signature’s open-
ing parenthesis, (), TypeScript will bind a concrete type to T when we actually call a
function of type Filter.

If we’d instead scoped T to the type alias Filter, TypeScript would have required us
to bind a type explicitly when we used Filter:
type Filter<T> = {

(array: T[], f: (item: T) => boolean): T[]
}

68 | Chapter4: Functions

let filter: Filter = (array, f) => // Error TS2314: Generic type 'Filter'
Y/ // requires 1 type argument(s).

type OtherFilter = Filter // Error TS2314: Generic type 'Filter'
// requires 1 type argument(s).

let filter: Filter<number> = (array, f) =>

// ...

type StringFilter = Filter<string>
let stringFilter: StringFilter = (array, f) =>
/) ...
Generally, TypeScript will bind concrete types to your generic when you use the
generic: for functions, it’s when you call them; for classes, it’s when you instantiate
them (more on that in “Polymorphism” on page 100); and for type aliases and inter-
faces (see “Interfaces” on page 91), it’s when you use or implement them.

Where Can You Declare Generics?

For each of TypeScript’s ways to declare a call signature, there’s a way to add a
generic type to it:

type Filter = { (1]

<T>(array: T[], f: (item: T) => boolean): T[]
}
let filter: Filter = // ...

type Filter<T> = { (2]

(array: T[], f: (item: T) => boolean): T[]
}
let filter: Filter<number> = // ...

type Filter = <T>(array: T[], f: (item: T) => boolean) => T[] (3]
let filter: Filter = // ...

type Filter<T> = (array: T[], f: (item: T) => boolean) => T[] (4]
let filter: Filter<string> = // ...

function filter<T>(array: T[], f: (item: T) => boolean): T[] { (5)
/) ...
}

O A full call signature, with T scoped to an individual signature. Because T is scoped
to a single signature, TypeScript will bind the T in this signature to a concrete
type when you call a function of type filter. Each call to filter will get its own
binding for T.

Polymorphism | 69

© A full call signature, with T scoped to all of the signatures. Because T is declared
as part of Filter’s type (and not part of a specific signature’s type), TypeScript
will bind T when you declare a function of type Filter.

Like @, but a shorthand call signature instead of a full one.
Like @, but a shorthand call signature instead of a full one.

A named function call signature, with T scoped to the signature. TypeScript will
bind a concrete type to T when you call filter, and each call to filter will get
its own binding for T.

As a second example, let’s write a map function. map is pretty similar to filter, but
instead of removing items from an array, it transforms each item with a mapping
function. We'll start by sketching out the implementation:

function map(array: unknown[], f: (item: unknown) => unknown): unknown[] {
let result = []
for (let 1 = 0; 1 < array.length; i++) {
result[i] = f(array[i])
}

return result

}

Before you go on, try to think through how you’d make map generic, replacing each
unknown with some type. How many generics do you need? How do you declare your
generics, and scope them to the map function? What should the types of array, f, and
the return value be?

Ready? If you didn’t try to do it yourself first, I encourage you to give it a shot. You
can do it. Really!

OK, no more nagging. Here’s the answer:

function map<T, U>(array: T[], f: (item: T) => U): U[] {
let result = []
for (let 1 = 0; 1 < array.length; i++) {
result[i] = f(array[i])
}

return result

}

70 | Chapter4: Functions

We need exactly two generic types: T for the type of the array members going in, and
U for the type of the array members going out. We pass in an array of Ts, and a map-
ping function that takes a T and maps it to a U. Finally, we return an array of Us.

filter and map in the Standard Library

Our definitions for filter and map are awfully similar to the ones that ship with
TypeScript:
interface Array<T> {
filter(
callbackfn: (value: T, index: number, array: T[]) => any,
thisArg?: any
) T[]
map<U>(
callbackfn: (value: T, index: number, array: T[]) => U,
thisArg?: any
): UL
}
We haven’t covered interfaces yet, but this definition says that filter and map are
functions on an array of type T. They both take a function callbackfn, and a type for
this inside of the function.

filter uses the generic T that’s scoped to the entire Array interface. map uses T too,
and adds a second generic U that’s scoped just to the map function. That means Type-
Script will bind a concrete type to T when you create an array, and every call to fil
ter and map on that array will share that concrete type. Every time you call map, that
call will get its own binding for U, in addition to having access to the already-bound T.

Many functions in the JavaScript standard library are generic, especially those on
Array’s prototype. Arrays can contain values of any type, so we call that type T and
can say things like ". push takes an argument of type T,” or ".map maps from an array
of Ts to an array of Us”.

Generic Type Inference

In most cases, TypeScript does a great job of inferring generic types for you. When
you call the map function we wrote earlier, TypeScript infers that T is string and U is
boolean:

function map<T, U>(array: T[], f: (item: T) => U): U[] {

/...
}

map(
['a', 'b', 'c']l, // An array of T

Polymorphism | 71

= _ === "'a // A function that returns a U

You can, however, explicitly annotate your generics too. Explicit annotations for

generics are all-or-nothing; either annotate every required generic type, or none of
them:

map <string, boolean>(
[|al’ lb|, ‘C'],
_ = _ === "3'
)
map <string>(// Error TS2558: Expected 2 type arguments, but got 1.
[|al’ lb|, ‘C'],
_ = _ === 'a'
)

TypeScript will check that each inferred generic type is assignable to its correspond-
ing explicitly bound generic; if it’s not assignable, you’ll get an error:

// OK, because boolean is assignable to boolean | string
map<string, boolean | string>(
[|al’ lb|’ ‘C'],
=> === '3'

)

map<string, number>(
[|al’ lb|’ ‘C'],

=>==="a' // Error TS2322: Type 'boolean' is not assignable
) // to type 'number'.

Since TypeScript infers concrete types for your generics from the arguments you pass
into your generic function, sometimes youll hit a case like this:

let promise = new Promise(resolve =>
resolve(45)
)
promise.then(result => // Inferred as {}
result * 4 // Error TS2362: The left-hand side of an arithmetic operation must
) // be of type 'any', 'number', 'bigint', or an enum type.

What gives? Why did TypeScript infer result to be {}? Because we didn’t give it

enough information to work with—since TypeScript only uses the types of a generic
function’s arguments to infer a generic’s type, it defaulted T to {}!

To fix this, we have to explicitly annotate Promises generic type parameter:

let promise = new Promise<number>(resolve =>
resolve(45)

)

promise.then(result => // number
result * 4

)

72 | Chapter4: Functions

Generic Type Aliases

We already touched on generic type aliases with our Filter example from earlier in
the chapter. And if you recall the Array and ReadonlyArray types from the last chap-
ter (see “Read-only arrays and tuples” on page 36), those are generic type aliases too!
Let’s take a deeper dive into using generics in type aliases by working through a brief
example.

Let’s define a MyEvent type that describes a DOM event, like a click or a mousedown:

type MyEvent<T> = {
target: T
type: string
}
Note that this is the only valid place to declare a generic type in a type alias: right
after the type alias’s name, before its assignment (=).

MyEvent’s target property points to the element the event happened on: a
<button />, a <div />, and so on. For example, you might describe a button event
like this:

type ButtonEvent = MyEvent<HTMLButtonElement>

When you use a generic type like MyEvent, you have to explicitly bind its type param-
eters when you use the type; they won’t be inferred for you:

let myEvent: MyEvent<HTMLButtonElement | null> = {
target: document.querySelector('#myButton'),
type: 'click'

}

You can use MyEvent to build another type—say, TimedEvent. When the generic T in
TimedEvent is bound, TypeScript will also bind it to MyEvent:

type TimedEvent<T> = {
event: MyEvent<T>
from: Date
to: Date

}

You can use a generic type alias in a function’s signature, too. When TypeScript
binds a type to T, it’'ll also bind it to MyEvent for you:

function triggerEvent<T>(event: MyEvent<T>): void {

/...
}

triggerEvent({ // T is Element | null
target: document.querySelector('#myButton'),
type: 'mouseover'

b

Polymorphism | 73

Let’s walk through what’s happening here step by step:

1. We call triggerEvent with an object.

2. TypeScript sees that according to our function’s signature, the argument we
passed has to have the type MyEvent<T>. It also notices that we defined MyE
vent<T> as {target: T, type: string}.

3. TypeScript notices that the target field of the object we passed is
document.querySelector('#myButton'). That implies that T must be whatever
type document.querySelector('#myButton') is: Element | null. So T is now
bound to Element | null.

4. TypeScript goes through and replaces every occurrence of T with Element |
null.

5. TypeScript checks that all of our types satisty assignability. They do, so our code
typechecks.

Bounded Polymorphism

In this section I'm going to use a binary tree as an example. If you
haven’t worked with binary trees before, don’t worry. For our pur-
poses, the basics are:

« A binary tree is a kind of data structure.
« A binary tree consists of nodes.
A node holds a value, and can point to up to two child nodes.

A node can be one of two types: a leaf node (meaning it has no
children) or an inner node (meaning it has at least one child).

Sometimes, saying “this thing is of some generic type T and that thing has to have the
same type T" just isn’t enough. Sometimes you also want to say “the type U should be
at least T.” We call this putting an upper bound on U.

Why might we want to do this? Let’s say we’re implementing a binary tree, and have
three types of nodes:

1. Regular TreeNodes
2. LeafNodes, which are TreeNodes that don’t have children

3. InnerNodes, which are TreeNodes that do have children

Let’s start by declaring types for our nodes:

74 | Chapter4: Functions

type TreeNode = {
value: string

}
type LeafNode = TreeNode & {
isLeaf: true

}
type InnerNode = TreeNode & {
children: [TreeNode] | [TreeNode, TreeNode]

}
What we’re saying is: a TreeNode is an object with a single property, value. The
LeafNode type has all the properties TreeNode has, plus a property isLeaf that’s

always true. InnerNode also has all of TreeNode’s properties, plus a children prop-
erty that points to either one or two children.

Next, let’s write a mapNode function that takes a TreeNode and maps over its value,
returning a new TreeNode. We want to come up with a mapNode function that we can
use like this:

let a: TreeNode = {value: 'a'}
let b: LeafNode = {value: 'b', isLeaf: true}
let c: InnerNode = {value: 'c', children: [b]}

let a1l = mapNode(a, _ => _.toUpperCase()) // TreeNode
let bl = mapNode(b, _ => _.toUpperCase()) // LeafNode
let c1 = mapNode(c, _ => _.toUpperCase()) // InnerNode

Now pause, and think about how you might write a mapNode function that takes a
subtype of TreeNode and returns that same subtype. Passing in a LeafNode should
return a LeafNode, an InnerNode should return an InnerNode, and a TreeNode should
return a TreeNode. Consider how you’d do this before you move on. Is it possible?

Here’s the answer:

function mapNode<T extends TreeNode>((1]
node: T, (2]
f: (value: string) => string
:T{©
return {
...node,
value: f(node.value)
}
}

© mapNode is a function that defines a single generic type parameter, T. T has an
upper bound of TreeNode. That is, T can be either a TreeNode, or a subtype of
TreeNode.

® mapNode takes two parameters, the first of which is a node of type T. Because in @
we said node extends TreeNode, if we passed in something that’s not a TreeNode

Polymorphism | 75

—say, an empty object {}, null, or an array of TreeNodes—that would be an
instant red squiggly. node has to be either a TreeNode or a subtype of TreeNode.

© mapNode returns a value of type T. Remember that T might be a TreeNode, or any
subtype of TreeNode.

Why did we have to declare T that way?

o If we had typed T as just T (leaving off extends TreeNode), then mapNode would
have thrown a compile-time error, because you can’t safely read node.value on
an unbounded node of type T (what if a user passes in a number?).

o If we had left off the T entirely and declared mapNode as (node: TreeNode, f:
(value: string) => string) => TreeNode, then we would have lost informa-
tion after mapping a node: a1, b1, and c1 would all just be TreeNodes.

By saying that T extends TreeNode, we get to preserve the input node’s specific type
(TreeNode, LeafNode, or InnerNode), even after mapping it.

Bounded polymorphism with multiple constraints

In the last example, we put a single type constraint on T: T has to be at least a
TreeNode. But what if you want multiple type constraints?

Just extend the intersection (&) of those constraints:

type HasSides = {numberOfSides: number}
type SidesHavelLength = {sideLength: number}

function logPerimeter< (1)
Shape extends HasSides & SidesHavelength (2]
>(s: Shape): Shape { (3]
console.log(s.number0fSides * s.sidelLength)
return s

}

type Square = HasSides & SidesHavelength
let square: Square = {numberOfSides: 4, sidelLength: 3}
logPerimeter(square) // Square, logs "12"

logPerimeter is a function that takes a single argument s of type Shape.

Shape is a generic type that extends both the HasSides type and the
SidesHavelength type. In other words, a Shape has to at least have sides with
lengths.

© logPerimeter returns a value of the exact same type you gave it.

76 | Chapter4: Functions

Using bounded polymorphism to model arity

Another place where you’ll find yourself using bounded polymorphism is to model
variadic functions (functions that take any number of arguments). For example, let’s
implement our own version of JavaScript’s built-in call function (as a reminder,
call is a function that takes a function and a variable number of arguments, and
applies those arguments to the function).®! We'll define and use it like this, using
unknown for the types we'll fill in later:

function call(
f: (...args: unknown[]) => unknown,
...args: unknown[]

): unknown {
return f(...args)

}

function fill(length: number, value: string): string[] {
return Array.from({length}, () => value)

}

call(fill, 10, 'a') // evaluates to an array of 10 'a's

Now let’s fill in the unknowns. The constraints we want to express are:

o f should be a function that takes some set of arguments T, and returns some type
R. We don’t know how many arguments it’ll have ahead of time.

o call takes f, along with the same set of arguments T that f itself takes. Again, we
don’t know exactly how many arguments to expect ahead of time.

o callreturns the same type R that f returns.

We'll need two type parameters: T, which is an array of arguments, and R, which is an
arbitrary return value. Let’s fill in the types:

function call<T extends unknown[], R>((1)
f: (...args: T) => R, (2]
...args: T

:R{O
return f(...args)

}
How exactly does this work? Let’s walk through it step by step:

8 To simplify our implementation a little, we’re going to design our call function to not take this into
account.

Polymorphism | 77

@ call is a variadic function (as a reminder, a variadic function is a function that
accepts any number of arguments) that has two type parameters: T and R. T is a
subtype of unknown[]; that is, T is an array or tuple of any type.

® call’s first parameter is a function f. f is also variadic, and its arguments share a
type with args: whatever type args is, f arguments have the same exact type.

© [n addition to a function f, call has a variable number of additional parame-
ters ...args. args is a rest parameter—that is, a parameter that describes a vari-
able number of arguments. args’s type is T, and T has to be an array type (in fact,
if we forgot to say that T extends an array type, TypeScript would throw a squig-
gly at us), so TypeScript will infer a tuple type for T based on the specific argu-
ments we passed in for args.

O callreturns a value of type R (R is bound to whatever type f returns).

Now when we call call, TypeScript will know exactly what the return type is, and it
will complain when we pass the wrong number of arguments:

let a = call(fill, 10, 'a') // string[]
let b = call(fill, 10) // Error TS2554: Expected 3 arguments; got 2.
let c = call(fill, 10, 'a', 'z"') // Error TS2554: Expected 3 arguments; got 4.

We use a similar technique to take advantage of the way TypeScript infers tuple types
for rest parameters to improve type inference for tuples in “Improving Type Infer-
ence for Tuples” on page 141.

Generic Type Defaults

Just like you can give function parameters default values, you can give generic type
parameters default types. For example, let’s revisit the MyEvent type from “Generic
Type Aliases” on page 73. As a reminder, we used the type to model DOM events,
and it looks like this:

type MyEvent<T> = {
target: T
type: string

}

To create a new event, we have to explicitly bind a generic type to MyEvent, represent-
ing the type of HTML element that the event was dispatched on:

let buttonEvent: MyEvent<HTMLButtonElement> = {
target: myButton,
type: string

}

78 | Chapter4: Functions

As a convenience for when we don’t know the specific element type that MyEvent will
be bound to beforehand, we can add a default for MyEvent’s generic:

type MyEvent<T = HTMLElement> = {
target: T
type: string

}

We can also use this opportunity to apply what we learned in the last few sections
and add a bound to T, to make sure that T is an HTML element:

type MyEvent<T extends HTMLElement = HTMLElement> = {
target: T
type: string

}

Now, we can easily create an event that’s not specific to a particular HTML element

type, and we don’t have to manually bind MyEvents T to HTMLElement when we create
the event:

let myEvent: MyEvent = {
target: myElement,
type: string

}

Note that like optional parameters in functions, generic types with defaults have to
appear after generic types without defaults:

// Good
type MyEvent2<
Type extends string,
Target extends HTMLElement = HTMLElement,

> ={
target: Target
type: Type

}

// Bad

type MyEvent3<
Target extends HTMLElement = HTMLElement,
Type extends string // Error TS2706: Required type parameters may

>={ // not follow optional type parameters.
target: Target
type: Type

}

Type-Driven Development

With a powerful type system comes great power. When you write in TypeScript, you
will often find yourself “leading with the types.” This, of course, refers to type-driven
development.

Type-Driven Development | 79

Type-driven development

A style of programming where you sketch out type signa-
tures first, and fill in values later.

The point of static type systems is to constrain the types of values an expression can
hold. The more expressive the type system, the more it tells you about the value con-
tained in that expression. When you apply an expressive type system to a function,
the function’s type signature might end up telling you most of what you need to
know about that function.

Let’s look at the type signature for the map function from earlier in this chapter:

function map<T, U>(array: T[], f: (item: T) => U): U[] {
// ...
}
Just looking at that signature—even if you’ve never seen map before—you should have
some intuition for what map does: it takes an array of T and a function that maps from
a T to a U, and returns an array of U. Notice that you didn’t have to see the function’s
implementation to know that!’

When you write a TypeScript program, start by defining your functions’ type signa-
tures—in other words, lead with the types—filling in the implementations later. By
sketching out your program out at the type level first, you make sure that everything
makes sense at a high level before you get down to your implementations.

You’ll notice that so far, we’ve been doing the opposite: leading with the implementa-
tion, then deducing the types. Now that you have a grasp of writing and typing func-
tions in TypeScript, we’re going to switch modes, sketching out the types first, and
filling in the details later.

Summary

In this chapter we talked about how to declare and call functions, how to type param-
eters, and how to express common JavaScript function features like default parame-
ters, rest parameters, generator functions, and iterators in TypeScript. We talked
about the difference between functions’ call signatures and implementations, contex-
tual typing, and the different ways to overload functions. Finally, we covered poly-
morphism for functions and type aliases in depth: why it’s useful, how and where to
declare generic types, how TypeScript infers generic types, and how to declare and

9 There are a few programming languages (like the Haskell-like language Idris) that have built-in constraint
solvers with the ability to automatically implement function bodies for you from the signatures you write!

80 | Chapter4: Functions

add bounds and defaults to your generics. We finished off with a short note on type-
driven development: what it is, and how you can use your newfound knowledge of
function types to do it.

Exercises

1. Which parts of a function’s type signature does TypeScript infer: the parameters,
the return type, or both?

2. Is JavaScript’s arguments object typesafe? If not, what can you use instead?

3. You want the ability to book a vacation that starts immediately. Update the over-
loaded reserve function from earlier in this chapter (“Overloaded Function
Types” on page 58) with a third call signature that takes just a destination,
without an explicit start date. Update reserve’s implementation to support this
new overloaded signature.

4. [Hard] Update our call implementation from earlier in the chapter (“Using
bounded polymorphism to model arity” on page 77) to only work for functions
whose second argument is a string. For all other functions, your implementa-
tion should fail at compile time.

5. Implement a small typesafe assertion library, is. Start by sketching out your
types. When you’re done, you should be able to use it like this:

// Compare a string and a string
is('string', 'otherstring') // false

// Compare a boolean and a boolean
is(true, false) // false

// Compare a number and a number
is(42, 42) // true

// Comparing two different types should give a compile-time error
i1s(10, 'foo') // Error TS2345: Argument of type '"foo"' is not assignable
// to parameter of type 'number'.

// [Hard] I should be able to pass any number of arguments
is([1], [1, 21, [1, 2, 31) // false

Exercises | 81

CHAPTER 5
Classes and Interfaces

If you're like most programmers coming from an object-oriented programming lan-
guage, classes are your bread and butter. Classes are how you organize and think
about your code, and they serve as your primary unit of encapsulation. You’ll be
pleased to learn that TypeScript classes borrow heavily from C#, and support things
like visibility modifiers, property initializers, polymorphism, decorators, and inter-
faces. But because TypeScript classes compile down to regular JavaScript classes, you
can also express JavaScript idioms like mixins in a typesafe way.

Some of TypeScript’s class features, like property initializers and decorators, are sup-
ported by JavaScript classes too,' and so generate runtime code. Other features, like
visibility modifiers, interfaces, and generics, are TypeScript-only features that just
exist at compile time, and don’t generate any code when you compile your applica-
tion to JavaScript.

In this chapter I'll guide you through an extended example of how we work with
classes in TypeScript, so that you can gain some intuition not only for TypeScript’s
object-oriented language features, but for how and why we use them. Try to follow
along, entering the code in your code editor as we go.

Classes and Inheritance

We’re going to build a chess engine. Our engine will model a game of chess and pro-
vide an API for two players to take turns making moves.

1 Or are on track to soon be supported by JavaScript classes.

83

We'll start by sketching out the types:

// Represents a chess game
class Game {}

// A chess piece
class Piece {}

// A set of coordinates for a piece
class Position {}

There are six types of pieces:

/) ...

class King extends Piece {}
class Queen extends Piece {}
class Bishop extends Piece {}
class Knight extends Piece {}
class Rook extends Piece {}
class Pawn extends Piece {}

Every piece has a color and a current position. In chess, positions are modeled as (let-
ter, number) coordinate pairs; letters run from left to right along the x-axis, numbers
from bottom to top along the y-axis (Figure 5-1).

- N W AU SN

AB CD E F G H

Figure 5-1. Standard algebraic notation in chess: A-H (the x-axis) are called “files” and
1-8 (the inverted y-axis) “ranks”

84 | Chapter5: Classes and Interfaces

Let’s add color and position to our Piece class:

type Color = 'Black' | 'White'
type F.'L'Le = |Al I IBI I lcl I lDl I |El I lFl I lGl I IHI
typeRank =1 | 2 [3| 45|67]|8@

class Position {
constructor(
private file: File, (2]
private rank: Rank
) {}
}

class Piece {
protected position: Position (3]
constructor(
private readonly color: Color, (4]
file: File,
rank: Rank

) {

this.position = new Position(file, rank)
}
}

© Since there are relatively few colors, ranks, and files, we can manually enumerate
their possible values as type literals. This will let us squeeze out some extra safety
by constraining these types’ domains from all strings and all numbers to a hand-
ful of very specific strings and numbers.

©® The private access modifier in the constructor automatically assigns the parame-
ter to this (this.file and so on), and sets its visibility to private, meaning that
code within a Position instance can read and write to it, but code outside of a
Position instance can’t. Different instances of Position can access each other’s
private members; instances of any other class—even a subclass of Position—
can’t.

©® We declare the instance variable position as protected. Like private, pro
tected assigns the property to this, but unlike private, protected makes the
property visible both to instances of Piece and to instances of any subclass of
Piece. We didn’t assign position a value when declaring it, so we have to assign
a value to it in Piece’s constructor function. If we hadn’t assigned it a value in
the constructor, TypeScript would have told us that the variable is not definitely
assigned, i.e., we said it’s of type T, but it’s actually T | undefined because it’s
not assigned a value in a property initializer or in the constructor—so we would
need to update its signature to indicate that it’s not necessarily a Position, but it
might also be undefined.

(lasses and Inheritance | 85

O new Piece takes three parameters: color, file, and rank. We added two modi-
fiers to color: private, meaning assign it to this and make sure it’s only accessi-
ble from an instance of Piece, and readonly, meaning that after this initial
assignment it can only be read and can’t be written anymore.

TSC Flags: strictNullChecks and strictPropertylnitialization

To opt into definite assignment checks for class instance variables,
enable strictNullChecks and strictPropertyInitialization
flags in your tsconfig.json. If you're already using the strict flag,
you’re good to go.

TypeScript supports three access modifiers for properties and methods on a class:

public
Accessible from anywhere. This is the default access level.

protected
Accessible from instances of this class and its subclasses.

private
Accessible from instances of this class only.

Using access modifiers, you can design classes that don’t expose too much informa-
tion about their implementations, and instead expose well-defined APIs for others to
use.

We've defined a Piece class, but we don’t want users to instantiate a new Piece
directly—we want them to extend it to create a Queen, a Bishop, and so on, and
instantiate that. We can use the type system to enforce that for us, using the abstract
keyword:

/) ...
abstract class Piece {
constructor(

/...
Now if you try to instantiate a Piece directly, TypeScript complains:

new Piece('White', 'E', 1) // Error TS2511: Cannot create an instance
// of an abstract class.

The abstract keyword means that you can’t instantiate the class directly, but it
doesn’t mean you can’t define some methods on it:

/) ...

abstract class Piece {

/...

moveTo(position: Position) {

86 | Chapter5: Classes and Interfaces

this.position = position
}

abstract canMoveTo(position: Position): boolean

}

Our Piece class now:

o Tells its subclasses that they have to implement a method called canMoveTo that
is compatible with the given signature. If a class extends Piece but forgets to
implement the abstract canMoveTo method, that’s a type error at compile time:
when you implement an abstract class, you have to implement its abstract meth-
ods too.

o Comes with a default implementation for moveTo (which its subclasses can over-
ride if they want). We didn’t put an access modifier on moveTo, so it’s public by
default, meaning it’s readable and writable from any other code.

Let’s update King to implement canMoveTo, to satisfy this new requirement. We'll
also implement a distanceFrom function for convenience, so we can easily compute
the distance between two pieces:

/) ...
class Position {
/] ...
distanceFrom(position: Position) {
return {
rank: Math.abs(position.rank - this.rank),
file: Math.abs(position.file.charCodeAt(0) - this.file.charCodeAt(0))
}
}
}

class King extends Piece {
canMoveTo(position: Position) {
let distance = this.position.distanceFrom(position)
return distance.rank < 2 && distance.file < 2
}
}

When we make a new game, we’ll automatically create a board and some pieces:

// ...
class Game {
private pieces = Game.makePieces()

private static makePieces() {
return [

// Kings
new King('White', 'E', 1),
new King('Black', 'E', 8),

// Queens
new Queen('White', 'D', 1),

(lasses and Inheritance | 87

new Queen('Black', 'D', 8),

// Bishops

new Bishop('White', 'C', 1),
new Bishop('White', 'F', 1),
new Bishop('Black', 'C', 8),
new Bishop('Black', 'F', 8),

/] ...
1
}
}

Because of how strictly we typed Rank and File, if we had entered another letter (like
'3") or an out-of-range number (like 12), TypeScript would have given us a compile-
time error (Figure 5-2).

return [

[ts] Argument of type '"J"' is not assignable
new King('White', to parameter of type 'File’.
new King('Black', 3% 12),

Figure 5-2. TypeScript helps us stick to valid ranks and files

This is enough to show off how TypeScript classes work—TI’ll avoid getting into the
nitty-gritty details like how to know when a knight can take a piece, how bishops
move, and so on. If you're ambitious, see if you can use what we’ve done so far as a
starting point to implement the rest of the game yourself.

To sum up:

o Declare classes with the class keyword. Extend them with the extends keyword.

« Classes can be either concrete or abstract. Abstract classes can have abstract
methods and abstract properties.

o Methods can be private, protected, or, by default, public. They can be instance
methods or static methods.

o Classes can have instance properties, which can also be private, protected, or,
by default, public. You can declare them in constructor parameters or as prop-
erty initializers.

» You can mark instance properties as readonly when declaring them.

88 | (Chapter5: Classes and Interfaces

super

Like JavaScript, TypeScript supports super calls. If your child class overrides a
method defined on its parent class (say, if Queen and Piece both implement the take
method), the child instance can make a super call to call its parent’s version of the
method (e.g., super. take). There are two kinds of super calls:

o Method calls, like super . take.

 Constructor calls, which have the special form super() and can only be called
from a constructor function. If your child class has a constructor function, you
must call super() from the child’s constructor to correctly wire up the class
(don’t worry, TypeScript will warn you if you forget; it’s like a cool futuristic
robot elephant in that way).

Note that you can only access a parent class’s methods, and not its properties, with
super.

Using this as a Return Type

Just like you can use this as a value, you can also use it as a type (like we did in
“Typing this” on page 50). When working with classes, the this type can be useful
for annotating methods’ return types.

For example, let’s build a simplified version of ES6’s Set data structure that supports
two operations: adding a number to the set, and checking whether or not a given
number is in the set. You use it like this:

let set = new Set
set.add(1).add(2).add(3)
set.has(2) // true
set.has(4) // false

Let’s define the Set class, starting with the has method:

class Set {
has(value: number): boolean {
/) ...
}
}

How about add? When you call add, you get back an instance of Set. We could type
that as:

class Set {
has(value: number): boolean {
/) ...

}
add(value: number): Set {

super | 89

/) ...
}
}

So far, so good. What happens when we try to subclass Set?

class MutableSet extends Set {
delete(value: number): boolean {
/) ...
}
}

Of course, Set’s add method still returns a Set, which we’ll need to override with
MutableSet for our subclass:

class MutableSet extends Set {
delete(value: number): boolean {

/) ...
}
add(value: number): MutableSet {

/...
}
}

This can get a bit tedious when working with classes that extend other classes—you
have to override the signature for each method that returns this. And if you end up
having to override each method to please the typechecker, what’s the point of inherit-
ing from your base class at all?

Instead, you can use this as a return type annotation to let TypeScript do the work
for you:

class Set {
has(value: number): boolean {
// ...
}

add(value: number): this {
// ...
}
}

Now, you can remove the add override from MutableSet, since this in Set points to
a Set instance, and this in MutableSet points to a MutableSet instance:

class MutableSet extends Set {
delete(value: number): boolean {
/] ...
}
}

This is a really convenient feature for working with chained APIs, like we do in
“Builder Pattern” on page 109.

90 | Chapter5:Classes and Interfaces

Interfaces

When you use classes, you will often find yourself using them with interfaces.

Like type aliases, interfaces are a way to name a type so you don’t have to define it
inline. Type aliases and interfaces are mostly two syntaxes for the same thing (like
function expressions and function declarations), but there are a few small differences.
Let’s start with what they have in common. Consider the following type alias:

type Sushi = {
calories: number
salty: boolean
tasty: boolean

}

It’s easy to rewrite it as an interface:

interface Sushi {
calories: number
salty: boolean
tasty: boolean

}

Everywhere you used your Sushti type alias, you can also use your Sushti interface.
Both declarations define shapes, and those shapes are assignable to one another (in
fact, they’re identical!).

Things get more interesting when you start combining types. Let’s model another
food in addition to Sushti:

type Cake = {
calories: number
sweet: boolean
tasty: boolean

}

A lot of foods have calories and are tasty—not just Sushi and Cake. Let’s pull Food
out into its own type, and redefine our foods in terms of it:

type Food = {
calories: number
tasty: boolean

}
type Sushi = Food & {
salty: boolean

}
type Cake = Food & {
sweet: boolean

}

Nearly equivalently, you can do that with interfaces too:

Interfaces | 91

interface Food {
calories: number
tasty: boolean

}

interface Sushi extends Food {
salty: boolean

}
interface Cake extends Food {
sweet: boolean

}

Interfaces don’t have to extend other interfaces. In fact, an inter-
face can extend any shape: an object type, a class, or another
interface.

What are the differences between types and interfaces? There are three, and they’re
subtle.

The first is that type aliases are more general, in that their righthand side can be any
type, including a type expression (a type, and maybe some type operators like & or |);
for an interface, the righthand side must be a shape. For example, there is no way to
rewrite the following type aliases as interfaces:

type A = number

type B = A | string
The second difference is that when you extend an interface, TypeScript will make
sure that the interface you’re extending is assignable to your extension. For example:

interface A {
good(x: number): string
bad(x: number): string

}

interface B extends A {
good(x: string | number): string
bad(x: string): string // Error T7S2430: Interface 'B' incorrectly extends
} // interface 'A'. Type 'number' is not assignable
// to type 'string'.
This is not the case when you use intersection types: if you turn the interfaces from
the last example into type aliases and the extends into an intersection (&), TypeScript
will do its best to combine your extension with the type it’s extending, resulting in an
overloaded signature for bad instead of a compile-time error (try it in your code
editor!).

When you’re modeling inheritance for object types, the assignability check that Type-
Script does for interfaces can be a helpful tool to catch errors.

92 | Chapter5: Classes and Interfaces

The third difference is that multiple interfaces with the same name in the same scope
are automatically merged; multiple type aliases with the same name in the same scope
will throw a compile-time error. This is a feature called declaration merging.

Declaration Merging

Declaration merging is TypeScript’s way of automatically combining multiple decla-
rations that share the same name. It came up when we introduced enums (“Enums”
on page 39), and it also comes up when working with other features like namespace
declarations (see “Namespaces” on page 222). In this section we’ll briefly introduce dec-
laration merging in the context of interfaces. For a deeper dive, head over to “Decla-
ration Merging” on page 226.

For example, if you declare two identically named User interfaces, then TypeScript
will automatically combine them for you into a single interface:

// User has a single field, name
interface User {
name: string

}

// User now has two fields, name and age
interface User {
age: number

}

let a: User = {
name: 'Ashley’',
age: 30

}

Here’s what happens if you repeat that example with type aliases:

type User = { // Error TS2300: Duplicate identifier 'User'.
name: string

}

type User = { // Error TS2300: Duplicate identifier 'User'.
age: number

}
Note that the two interfaces can’t conflict; if one types property as a T and the other
typesitasaU, and T and U aren’t identical, then you’ll get an error:

interface User {

age: string

}

interface User {
age: number // Error TS2717: Subsequent property declarations must have

Interfaces | 93

} // the same type. Property 'age' must be of type 'string’,
// but here has type 'number'.

And if your interface declares generics (skip ahead to “Polymorphism” on page 100 to
learn more), those generics have to be declared the exact same way for two interfaces
to be mergeable—down to the generic’s name!

interface User<Age extends number> { // Error TS2428: All declarations of 'User'
age: Age // must have identical type parameters.

}

interface User<Age extends string> {
age: Age
}
Interestingly, this is a rare place where TypeScript checks that two types are not only
assignable, but identical.

Implementations

When you declare a class, you can use the implements keyword to say that it satisfies
a particular interface. Like other explicit type annotations, this is a convenient way to
add a type-level constraint that your class is implemented correctly as closely as pos-
sible to the implementation itself, so that the error from an incorrect implementation
doesn’t show up downstream where it’s less clear why it was thrown. It’s also a famil-
iar way to implement common design patterns like adapters, factories, and strategies
(see the end of this chapter for some examples).

Here’s what that looks like:

interface Animal {
eat(food: string): void
sleep(hours: number): void

}

class Cat implements Animal {
eat(food: string) {
console.info('Ate some', food,
}
sleep(hours: number) {
console.info('Slept for', hours, 'hours')
}
}

Cat has to implement every method that Animal declares, and can implement more
methods and properties on top if it wants.

", Mmm!')

Interfaces can declare instance properties, but they can’t declare visibility modifiers
(private, protected, and public) and they can’t use the static keyword. You can

94 | Chapter5: Classes and Interfaces

also mark instance properties as readonly, just like we did for object types in Objects
(in Chapter 3):

interface Animal {
readonly name: string
eat(food: string): void
sleep(hours: number): void

}
You’re not limited to implementing just one interface—you can implement as many
as you want:

interface Animal {
readonly name: string
eat(food: string): void
sleep(hours: number): void

}

interface Feline {
meow(): void

}

class Cat implements Animal, Feline {
name = 'Whiskers'
eat(food: string) {
console.info('Ate some', food, '. Mmm!'")

sleep(hours: number) {
console.info('Slept for', hours, 'hours')

}
meow() {

console.info('Meow')
}
}

All of these features are completely typesafe. If you forget to implement a method or
a property, or implement it incorrectly, TypeScript will come to the rescue (see
Figure 5-3).

Interfaces | 95

[ts]
Class 'Cat' incorrectly implements interface
'Feline'.
Property 'meow' is missing in type 'Cat' bu
t required in type 'Feline'. [2420]

e index.tsx(8, 3): 'meow’ is declared here.

class Cat

class Cat implements Animal, Feline {
name = 'Whiskers'
eat(food: string) {
console.info('Ate some', food, '. Mmm!"')
}
sleep(hours: number) {
console.info('Slept for', hours, 'hours')

}

Figure 5-3. TypeScript throws an error when you forget to implement a required
method

Implementing Interfaces Versus Extending Abstract Classes

Implementing an interface is really similar to extending an abstract class. The differ-
ence is that interfaces are more general and lightweight, and abstract classes are more
special-purpose and feature-rich.

An interface is a way to model a shape. At the value level, that means an object, array,
function, class, or class instance. Interfaces do not emit JavaScript code, and only
exist at compile time.

An abstract class can only model, well, a class. It emits runtime code that is, you
guessed it, a JavaScript class. Abstract classes can have constructors, provide default
implementations, and set access modifiers for properties and methods. Interfaces
can’t do any of those things.

Which one you use depends on your use case. When an implementation is shared
among multiple classes, use an abstract class. When you need a lightweight way to say
“this class is a T,” use an interface.

96 | Chapter5: Classes and Interfaces

Classes Are Structurally Typed

Like every other type in TypeScript, TypeScript compares classes by their structure,
not by their name. A class is compatible with any other type that shares its shape,
including a regular old object that defines the same properties or methods as the
class. This is important to keep in mind for those of you coming from C#, Java, Scala,
and most other languages where classes are typed nominally. It means that if you
have a function that takes a Zebra and you give it a Poodle, TypeScript might not
mind:

class Zebra {
trot() {
/) ...
}
}

class Poodle {
trot() {
/) ...
}
}

function ambleAround(animal: Zebra) {
animal.trot()

}

let zebra = new Zebra
let poodle = new Poodle

ambleAround(zebra) // OK

ambleAround(poodle) // OK
As the phylogeneticists among you know, a zebra is no poodle—but TypeScript
doesn’t mind! As long as Poodle is assignable to Zebra, TypeScript is OK with it
because from our function’s point of view, the two are interchangeable; all that mat-
ters is that they implement . trot. If you were using almost any other language that
types classes nominally, this code would have raised an error; but TypeScript is struc-
turally typed through and through, so this code is perfectly acceptable.

The exception to this rule is classes with private or protected fields: when checking
whether or not a shape is assignable to a class, if the class has any private or pro
tected fields and the shape is not an instance of that class or a subclass of that class,
then the shape is not assignable to the class:

class A {
private x = 1
}
class B extends A {}
function f(a: A) {}

Classes Are Structurally Typed | 97

f(new A) // OK
f(new B) // OK

f({x: 1}) // Error TS2345: Argument of type '{x: number}' is not
// assignable to parameter of type 'A'. Property 'x' 1is
// private in type 'A' but not in type '{x: number}'.

Classes Declare Both Values and Types

Most things that you can express in TypeScript are either values or types:

// values
let a = 1999
function b() {}

// types

type a = number

interface b {
(): void

}

Types and values are namespaced separately in TypeScript. Depending on how you
use a term (a or b in this example), TypeScript knows whether to resolve it to a type
or to a value:

/) ...
if (a + 1 > 3) //... // TypeScript infers from context that you mean the value a
let x: a =3 // TypeScript infers from context that you mean the type a

This contextual term resolution is really nice, and lets us do cool things like imple-
ment companion types (see “Companion Object Pattern” on page 140).

Classes and enums are special. They are unique because they generate both a type in
the type namespace and a value in the value namespace:

class C {}

let c: C @
= new C (2]

enum E {F, G}

let e: E O
=eF O

In this context, C refers to the instance type of our C class.
In this context, C refers to C the value.

In this context, E refers to the type of our E enum.

© o o o

In this context, E refers to E the value.

98 | Chapter5: Classes and Interfaces

When we work with classes, we need a way to say “this variable should be an instance
of this class” and the same goes for enums (“this variable should be a member of this
enum”). Because classes and enums generate types at the type level we're able to
express this “is-a” relationship easily.?

We also need a way to represent a class at runtime, so that we can instantiate it with
new, call static methods on it, do metaprogramming with it, and operate on it with
instanceof—so a class needs to generate a value too.

In the previous example C refers to an instance of the class C. How do you talk about
the C class itself? We use the typeof keyword (a type operator provided by Type-
Script, which is like JavaScript’s value-level typeof but for types).

Let’s create a class StringDatabase—the world’s simplest database:

type State = {
[key: string]: string
}

class StringDatabase {
state: State = {}
get(key: string): string | null {
return key in this.state ? this.state[key] : null
}
set(key: string, value: string): void {
this.state[key] = value
}
static from(state: State) {
let db = new StringDatabase
for (let key in state) {
db.set(key, state[key])
}
return db
}
}

What types does this class declaration generate? The instance type StringDatabase:

interface StringDatabase {
state: State
get(key: string): string | null
set(key: string, value: string): void

}
And the constructor type typeof StringDatabase:

2 Because TypeScript is structurally typed, of course, the relationship for classes is more of a “looks-like”—any
object that implements the same shape as your class will be assignable to the type of your class.

Classes Declare Both Values and Types | 99

interface StringDatabaseConstructor {
new(): StringDatabase
from(state: State): StringDatabase
}

That is, StringDatabaseConstructor has a single method .from, and new-ing the
constructor gives a StringDatabase instance. Combined, these two interfaces model
both the constructor and instance sides of a class.

That new() bit is called a constructor signature, and is TypeScript’'s way of saying that
a given type can be instantiated with the new operator. Because TypeScript is struc-
turally typed, that’s the best we can do to describe what a class is: a class is anything
that can be new-ed.

In this case the constructor doesn’t take any arguments, but you can use it to declare
constructors that take arguments too. For example, say we update StringDatabase to
take an optional initial state:

class StringDatabase {
constructor(public state: State = {}) {}
// ...

}

We could then type StringDatabase’s constructor signature as:

interface StringDatabaseConstructor {
new(state?: State): StringDatabase
from(state: State): StringDatabase
}

So, not only does a class declaration generate terms at the value and type levels, but it
generates two terms at the type level: one representing an instance of the class; one
representing the class constructor itself (reachable with the typeof type operator).

Polymorphism

Like functions and types, classes and interfaces have rich support for generic type
parameters, including defaults and bounds. You can scope a generic to your whole
class or interface, or to a specific method:

class MyMap<K, V> { (1]
constructor(initialKey: K, initialvalue: V) { (2]

// ...

}

get(key: K): VvV { (3)
/] ...

}

set(key: K, value: V): void {
Y/

}

100 | Chapter5: Classes and Interfaces

merge<K1l, Vi>(map: MyMap<K1, V1>): MyMap<K | K1, V | V1> { (4]
// ...

}
static of<K, V>(k: K, v: V): MyMap<K, V> { (5]
/) ...
}
}

© Bind class-scoped generic types when you declare your class. Here, K and V are
available to every instance method and instance property on MyMap.

® Note that you cannot declare generic types in a constructor. Instead, move the
declaration up to your class declaration.

Use class-scoped generic types anywhere inside your class.

Instance methods have access to class-level generics, and can also declare their
own generics on top. .merge makes use of the K and V class-level generics, and
also declares two of its own generics, K1 and V1.

© Static methods do not have access to their class’s generics, just like at the value
level they don’t have access to their class’s instance variables. of does not have
access to the K and V declared in @; instead, it declares its own K and V generics.

You can bind generics to interfaces too:

interface MyMap<K, V> {
get(key: K): V
set(key: K, value: V): void
}
And like with functions, you can bind concrete types to generics explicitly, or let
TypeScript infer the types for you:

let a = new MyMap<string, number>('k', 1) // MyMap<string, number>
let b = new MyMap('k', true) // MyMap<string, boolean>

a.get('k")
b.set('k', false)

Mixins

JavaScript and TypeScript don’t have trait or mixin keywords, but it’s straightfor-
ward to implement them ourselves. Both are ways to simulate multiple inheritance
(classes that extend more than one other class) and do role-oriented programming, a
style of programming where you don’t say things like “this thing is a Shape" but

instead describe properties of a thing, like “it can be measured” or “it has four sides.”
Instead of “is-a” relationships, you describe “can” and “has-a” relationships.

Mixins | 101

Let’s build a mixin implementation.

Mixins are a pattern that allows us to mix behaviors and properties into a class. By
convention, mixins:

o Can have state (i.e., instance properties)
« Can only provide concrete methods (not abstract ones)

o Can have constructors, which are called in the same order as their classes were
mixed in

TypeScript doesn’t have a built-in concept of mixins, but it’s easy to implement them
ourselves. For example, let’s design a debugging library for TypeScript classes. We'll
call it EZDebug. The library works by letting you log out information about whatever
classes use the library, so that you can inspect them at runtime. We'll use it like this:

class User {
// ...
}

User.debug() // evaluates to 'User({"id": 3, "name": "Emma Gluzman"})'

With a standard .debug interface, our users will be able to debug anything! Let’s
build it. We’ll model it with a mixin, which we’ll call withEZDebug. A mixin is just a
function that takes a class constructor and returns a class constructor, so our mixin

might look like this:

type ClassConstructor = new(...args: any[]) => {} @

function withEZDebug<C extends ClassConstructor>(Class: C) { (2]
return class extends Class { (3]
constructor(...args: any[]) { (4]
super(...args)
}
}
}

© We start by declaring a type ClassConstructor, which represents any construc-
tor. Since TypeScript is completely structurally typed, we say that a constructor is
anything that can be new-ed. We don’t know what types of parameters the con-
structor might have, so we say it takes any number of arguments of any type.?

® We declare our withEZDebug mixin with a single type parameter, C. C has to be at
least a class constructor, which we enforce with an extends clause. We let Type-

3 Note that TypeScript is picky here: the type of a constructor type’s arguments has to be any[] (not void,
unknown[], etc.) in order for us to be able to extend it.

102 | Chapter5: Classes and Interfaces

Script infer withEZDebug’s return type, which is the intersection of C and our new
anonymous class.

©® Since a mixin is a function that takes a constructor and returns a constructor, we
return an anonymous class constructor.

O The class constructor has to take at least the arguments that the class you pass in
might take. But remember, since we don’t know what class you might pass in
beforehand, I have to keep it as general as possible, which means any number of
parameters of any type—just like ClassConstructor.

© Finally, since this anonymous class extends another class, to wire everything up
correctly we need to remember to call Class’s constructor too.

Like with regular JavaScript classes, if you don’t have any more logic in the construc
tor, you can omit lines @ and ©. We aren’t going to put any logic into the construc-
tor for this withEZDebug example, so we can omit them.

Now that we’ve set up the boilerplate, it’s time to work some debugging magic. When
we call .debug, we want to log out the class’s constructor name and the instance’s
value:

type ClassConstructor = new(...args: any[]) => {}

function withEZDebug<C extends ClassConstructor>(Class: C) {
return class extends Class {

debug() {
let Name = Class.constructor.name

let value = this.getDebugValue()
return Name + '(' + JSON.stringify(value) + ')’

}
}
}
But wait! How do we make sure the class implements a .getDebugValue method, so
that we can call it? Think about this for a second before you move on—can you figure
it out?

The answer is that instead of accepting any old class, we use a generic type to make
sure the class passed into withEZDebug defines a . getDebugValue method:

type ClassConstructor<T> = new(...args: any[]) => T (1)

function withEZDebug<C extends ClassConstructor<{
getDebugValue(): object (2]

}>>(Class: C) {
/) ...

}

Mixins | 103

© We add a generic type parameter to ClassConstructor.

® We bind a shape type to ClassConstructor, C, enforcing that the constructor we
passed to withEZDebug at least defines the .getDebugValue method.

That’s it! So, how do you use this incredible debugging utility? Like so:

class HardToDebugUser {
constructor(
private id: number,
private firstName: string,
private lastName: string

) {3
getDebugValue() {
return {
id: this.id,
name: this.firstName + ' ' + this.lastName
}
}
}

let User = withEZDebug(HardToDebugUser)
let user = new User(3, 'Emma', 'Gluzman')
user.debug() // evaluates to 'User({"id": 3, "name": "Emma Gluzman"})'

Cool, right? You can apply as many mixins to a class as you want to yield a class with
richer and richer behavior, all in a typesafe way. Mixins help encapsulate behavior,
and are an expressive way to specify reusable behaviors.

Decorators

Decorators are an experimental TypeScript feature that gives us a clean syntax for
metaprogramming with classes, class methods, properties, and method parameters.
They’re just a syntax for calling a function on the thing you’re decorating.

TSC Flag: experimentalDecorators

Because they’re still experimental—meaning they may change in a
backward-incompatible way, or may even be entirely removed in
future TypeScript releases—decorators are hidden behind a TSC
flag. If you're OK with that, and want to play around with the fea-
ture, set "experimentalDecorators": true in your tsconfig.json
and read on.

To get a sense for how decorators work, let’s start with an example:

@serializable
class APIPayload {
getValue(): Payload {

104 | Chapter5: Classes and Interfaces

/) ...
}
}

The @serializable class decorator wraps our APIPayload class, and optionally
returns a new class that replaces it. Without decorators, you might implement the
same thing with:

let APIPayload = serializable(class APIPayload {
getValue(): Payload {
/] ...
}
b

For each type of decorator, TypeScript requires that you have a function in scope
with the given name and the required signature for that type of decorator (see
Table 5-1).

Table 5-1. Expected type signatures for the different kinds of decorator functions

What you're Expected type signature

decorating

Class (Constructor: {new(...any[]) => any}) => any

Method (classPrototype: {}, methodName: string, descriptor:
PropertyDescriptor) => any

Static method (Constructor: {new(...any[]) => any}, methodName: string, descrip
tor: PropertyDescriptor) => any

Method parameter (classPrototype: {3}, paramName: string, index: number) => void

Static method (Constructor: {new(...any[]) => any}, paramName: string, index:

parameter number) => void

Property (classPrototype: {}, propertyName: string) => any

Static property (Constructor: {new(...any[]) => any}, propertyName: string) =>
any

Property getter/setter ~ (classPrototype: {}, propertyName: string, descriptor:
PropertyDescriptor) => any

Static property getter/ (Constructor: {new(...any[]) => any}, propertyName: string,
setter descriptor: PropertyDescriptor) => any

TypeScript doesn’t come with any built-in decorators: whatever decorators you use,
you have to implement yourself (or install from NPM). The implementation for each
kind of decorator—for classes, methods, properties, and function parameters—is a
regular function that satisfies a specific signature, depending on what it’s decorating.
For example, our @serializable decorator might look like this:

type ClassConstructor<T> = new(...args: any[]) => T (1]

function serializable<

Decorators | 105

T extends ClassConstructor<{
getValue(): Payload (2]
}>
>(Constructor: T) { (3]
return class extends Constructor { (4]
serialize() {
return this.getValue().toString()

}
}
}

© Remember, new() is how we structurally type a class constructor in TypeScript.
And for a class constructor that can be extended (with extends), TypeScript
requires that we type its arguments with an any spread: new(...any[]).

® (@serializable can decorate any class whose instances implement the
method .getValue, which returns a Payload.

© Class decorators are functions that take a single argument—the class. If the deco-
rator function returns a class (as in the example) it will replace the class it’s deco-
rating at runtime; otherwise, it will return the original class.

O To decorate the class, we return a class that extends it and adds a .serialize
method along the way.

What happens when we try to call .serialize?

let payload = new APIPayload
let serialized = payload.serialize() // Error T7S2339: Property 'serialize' does
// not exist on type 'APIPayload’.

TypeScript assumes that a decorator doesn’t change the shape of the thing it’s deco-
rating—meaning that you didn’t add or remove methods and properties. It checks at
compile time that the class you returned is assignable to the class you passed in, but
at the time of writing, TypeScript does not keep track of extensions you make in your
decorators.

Until decorators in TypeScript become a more mature feature, I recommend you
avoid using them and stick to regular functions instead:

let DecoratedAPIPayload = serializable(APIPayload)
let payload = new DecoratedAPIPayload
payload.serialize() // string

We won’t delve more deeply into decorators in this book. For more information,
head over to the official documentation.

106 | Chapter5: Classes and Interfaces

http://bit.ly/2IDQd1U

Simulating final Classes

Though TypeScript doesn’t support the final keyword for classes or methods, it’s
easy to simulate it for classes. If you haven’t worked much with object-oriented lan-
guages before, final is the keyword some languages use to mark a class as nonexten-
sible, or a method as nonoverridable.

To simulate final classes in TypeScript, we can take advantage of private construc-
tors:

class MessageQueue {
private constructor(private messages: string[]) {}

}

When a constructor is marked private, you can’t new the class or extend it:

class BadQueue extends MessageQueue {} // Error TS2675: Cannot extend a class
// 'MessageQueue'. Class constructor 1is
// marked as private.

new MessageQueue([]) // Error TS2673: Constructor of class
// 'MessageQueue' 1is private and only
// accessible within the class
// declaration.

As well as preventing you from extending the class—which is what we want—private
constructors also prevent you from directly instantiating it. But for final classes we

do want the ability to instantiate a class, just not to extend it. How do we keep the
first restriction but get rid of the second? Easy:

class MessageQueue {
private constructor(private messages: string[]) {}
static create(messages: string[]) {
return new MessageQueue(messages)

}
}

This changes MessageQueue’s API a bit, but it does a great job of preventing exten-
sions at compile time:

class BadQueue extends MessageQueue {} // Error TS2675: Cannot extend a class
// 'MessageQueue'. Class constructor 1is
// marked as private.

MessageQueue.create([]) // MessageQueue

Design Patterns

This wouldn’t be a chapter on object-oriented programming if we didn’t walk
through implementing a design pattern or two in TypeScript, right?

Simulating final Classes | 107

Factory Pattern

The factory pattern is a way to create objects of some type, leaving the decision of
which concrete object to create to the specific factory that creates that object.

Let’s build a shoe factory. We'll start by defining a Shoe type, and a few kinds of

shoes:

type Shoe = {
purpose: string

}

class BalletFlat implements Shoe {
purpose = 'dancing'

}

class Boot implements Shoe {
purpose = 'woodcutting'

}

class Sneaker implements Shoe {
purpose = 'walking'

}

Note that this example uses a type, but we could have just as well used an interface
instead.

Now, let’s make a shoe factory:

(2]

let Shoe = {
create(type: 'balletFlat' | 'boot' | 'sneaker'): Shoe { (1]
switch (type) { (2]
case 'balletFlat': return new BalletFlat
case 'boot': return new Boot
case 'sneaker': return new Sneaker
}
}
}

Using a union type for type helps make .create as typesafe as possible, prevent-
ing consumers from passing in an invalid type at compile time.

Switching on type makes it easy for TypeScript to enforce that we’ve handled
every type of Shoe.

In this example we use the companion object pattern (see “Companion Object Pat-
tern” on page 140) to declare a type Shoe and a value Shoe with the same name (remem-
ber that TypeScript has separate namespaces for values and for types), as a way to
signal that the value provides methods for operating on the type. To use the factory,
we can just call .create:

108

| Chapter5: Classes and Interfaces

Shoe.create('boot') // Shoe

Voila! We have a factory pattern. Note that we could have gone further and indicated
in Shoe.create’s type signature that passing in 'boot' will give a Boot, 'sneaker"'
will give a Sneaker, and so on, but that would break the abstraction that the factory
pattern gives us (that the consumer shouldn’t know what concrete class they’ll get
back, just that the class satisfies a particular interface).

Builder Pattern

The builder pattern is a way to separate the construction of an object from the way
that object is actually implemented. If you've used JQuery, or ES6 data structures like
Map and Set, this style of API should look familiar. Here’s what it looks like:

new RequestBuilder()
.setURL("' /users')
.setMethod('get')
.setData({firstName: 'Anna'})
.send()

How do we implement RequestBuilder? Easy—we’ll start with a bare class:
class RequestBuilder {}
First we’ll add the .setURL method:

class RequestBuilder {
private url: string | null = null (1)

setURL(url: string): this { (2]
this.url = url
return this
}
}

© We keep track of the URL the user set in a private instance variable url, which
we initialize to null.

© setURL’s return type is this (see “Using this as a Return Type” on page 89), that
is, the specific instance of RequestBuilder that the user called setURL on.
Now let’s add the other methods from our example:

class RequestBuilder {

private data: object | null = null
private method: 'get' | 'post' | null = null
private url: string | null = null

setMethod(method: 'get' | 'post'): this {

Design Patterns | 109

this.method = method
return this

}

setData(data: object): this {
this.data = data
return this

}

setURL(url: string): this {
this.url = url
return this

}

send() {
// ...
}
}

That’s all there is to it.

This traditional builder design is not completely safe: we can
call .send before we set the method, URL, or data, resulting in a
runtime exception (remember, that’s the bad kind of exception).
See Exercise 4 for some ideas about how to improve this design.

Summary

We’ve now explored TypeScript classes from all sides: how to declare classes; how to
inherit from classes and implement interfaces; how to mark classes as abstract so
they can’t be instantiated; how to put a field or method on a class with static and on
an instance without it; how to control access to a field or method with the private,
protected, and public visibility modifiers; and how to mark a field as nonwritable
using the readonly modifier. We've covered how to safely use this and super,
explored what it means for classes to be both values and types at the same time, and
talked about the differences between type aliases and interfaces, the basics of declara-
tion merging, and using generic types in classes. Finally, we covered a few more
advanced patterns for working with classes: mixins, decorators, and simulating final
classes. And to cap the chapter off, we went through and derived a couple of common
patterns for working with classes.

Exercises

1. What are the differences between a class and an interface?

2. When you mark a class’s constructor as private, that means you can’t instantiate
or extend the class. What happens when you mark it as protected instead? Play
around with this in your code editor, and see if you can figure it out.

110 | Chapter5: Classes and Interfaces

3. Extend the implementation we developed “Factory Pattern” on page 108 to make
it safer, at the expense of breaking the abstraction a bit. Update the implementa-
tion so that a consumer knows at compile time that calling Shoe.cre
ate('boot') returns a Boot and calling Shoe.create('balletFlat') returns a
BalletFlat (rather than both returning a Shoe). Hint: think back to “Overloaded
Function Types” on page 58.

4. [Hard] As an exercise, think about how you might design a typesafe builder pat-
tern. Extend the Builder pattern “Builder Pattern” on page 109 to:

a. Guarantee at compile time that someone can’t call . send before setting at least
a URL and a method. Would it be easier to make this guarantee if you also
force the user to call methods in a specific order? (Hint: what can you return
instead of this?)

b. [Harder] How would you change your design if you wanted to make this
guarantee, but still let people call methods in any order? (Hint: what Type-
Script feature can you use to make each method’s return type “add” to the
this type after each method call?)

Exercises | 111

CHAPTER 6
Advanced Types

TypeScript has a world-class type system that supports powerful type-level program-
ming features that might make even the crotchetiest Haskell programmer jealous. As
you by now know, that type system isn’t just incredibly expressive, but also easy to
use, and makes declaring type constraints and relationships simple, terse, and most of
the time, inferred.

We need such an expressive and unusual type system because JavaScript is so
dynamic. Modeling things like prototypes, dynamically bound this, function over-
loads, and always-changing objects requires a rich type system and a utility belt of
type operators that would make Batman do a double-take.

I'll start this chapter with a deep dive into subtyping, assignability, variance, and wid-
ening in TypeScript, giving more definition to the intuitions you've been developing
over the last several chapters. I'll then cover TypeScript’s control-flow-based type-
checking features in more detail, including refinement and totality, and continue
with some advanced type-level programming features: keying into and mapping over
object types, using conditional types, defining your own type guards, and escape
hatches like type assertions and definite assignment assertions. Finally, I'll cover
advanced patterns for squeezing more safety out of your types: the companion object
pattern, improving inference for tuple types, simulating nominal types, and safely
extending the prototype.

113

Relationships Between Types

Let’s begin by taking a closer look at type relations in TypeScript.

Subtypes and Supertypes

We talked a little about assignability in “Talking About Types” on page 18. Now that
you've seen most of the types TypeScript has to offer we can dive deeper, starting
from the top: what’s a subtype?

Subtype

If you have two types A and B, and B is a subtype of A, then
you can safely use a B anywhere an A is required
(Figure 6-1).

Figure 6-1. B is a subtype of A

If you look back at Figure 3-1 at the very beginning of Chapter 3, you’ll see what the
subtype relations built into TypeScript are. For example:

o Array is a subtype of Object.

o Tuple is a subtype of Array.

« Everything is a subtype of any.

« never is a subtype of everything.

o If you have a class Bird that extends Animatl, then Bird is a subtype of Animal.
From the definition I just gave for subtype, that means:

« Anywhere you need an Object you can also use an Array.
o Anywhere you need an Array you can also use a Tuple.

o Anywhere you need an any you can also use an Object.
 You can use a never anywhere.

« Anywhere you need an Animal you can also use a Bird.

114 | Chapter 6: Advanced Types

As you might have guessed, a supertype is the opposite of a subtype.

Supertype

If you have two types A and B, and B is a supertype of A, then
you can safely use an A anywhere a B is required
(Figure 6-2).

B

®

Figure 6-2. B is a supertype of A

Again from the flowchart in Figure 3-1:

o Array is a supertype of Tuple.

o Object is a supertype of Array.

« Any is a supertype of everything.
o Never is a supertype of nothing.

 Animal is a supertype of Bird.

This is just the opposite of how subtypes work, and nothing more.

Variance

For most types it’s pretty easy to intuit whether or not some type A is a subtype of
another type B. For simple types like number, string, and so on, you can just look
them up in the flowchart in Figure 3-1, or reason through it ("number is contained in
the union number | string, so it must be a subtype of it”).

But for parameterized (generic) types and other more complex types, it gets more
complicated. Consider these cases:

o When is Array<A> a subtype of Array?

o When is a shape A a subtype of another shape B?

o When is a function (a: A) => B a subtype of another function (c: C) => D?
Subtyping rules for types that contain other types (i.e., things with type parameters

like Array<A>, shapes with fields like {a: number}, or functions like (a: A) => B)
are harder to reason about, and the answers aren’t as clear-cut. In fact, subtyping

Relationships Between Types | 115

rules for these kinds of complex types are a big point of disagreement among pro-
gramming languages—almost no two languages are alike!

To make the following rules easier to read, I'm going to introduce a few pieces of syn-
tax that let us talk about types a little more precisely and tersely. This syntax is not
valid TypeScript; it’s just a way for you and me to share a common language when we
talk about types. And don’t worry, I swear the syntax isn’t math:

o A <: Bmeans "Ais a subtype of or the same as the type B.”

o A >: Bmeans "Ais a supertype of or the same as the type B.”

Shape and array variance

To get some intuition for why exactly languages disagree on subtyping rules for com-
plex types, let me take you through an example complex type: shapes. Say you have a
shape describing a user in your application. You might represent it with a pair of
types that look something like this:

// An existing user that we got from the server
type ExistingUser = {

id: number

name: string

}

// A new user that hasn't been saved to the server yet
type NewUser = {
name: string
}
Now suppose an intern at your company is tasked with writing some code to delete a
user. They start it like this:
function deleteUser(user: {id?: number, name: string}) {

delete user.id

}

let existingUser: ExistingUser = {
id: 123456,
name: 'Ima User'

}

deleteUser(existingUser)

deleteUser takes an object of type {id?: number, name: string}, and it’s passed
an existingUser of type {id: number, name: string}. Notice that the type of the
id property (number) is a subtype of the expected type (number | undefined). There-
fore the entire object {id: number, name: string} is a subtype of {id?: number,
name: string}, so TypeScript lets it fly.

116 | Chapter 6: Advanced Types

Do you see the safety issue here? It’s a subtle one: after passing an ExistingUser to
deleteUser, TypeScript doesn’t know that the user’s id has been deleted, so if we
read existingUser.id after deleting it with deleteUser(existingUser), TypeScript
still thinks existingUser.1id is of type number!

Clearly, using an object type in a place where something expects its supertype can be
unsafe. So why does TypeScript allow it? In general, TypeScript is not designed to be
perfectly safe; instead, its type system tries to strike a balance between catching real
mistakes and being easy to use, without you needing to get a degree in programming
language theory to understand why something is an error. This specific case of
unsafety is a practical one: since destructive updates (like deleting a property) are rel-
atively rare in practice, TypeScript is lax and lets you assign an object to a place where
its supertype is expected.

What about the opposite direction—can you assign an object to a place where its sub-
type is expected?

Let’s add a new type for a legacy user, then delete a user of that type (imagine you're
adding types to code your coworker wrote before you started using TypeScript):
type LegacyUser = {
1d?: number | string

name: string

}

let legacyUser: LegacyUser = {
id: '793331"',
name: 'Xin Yang'

}

deleteUser(legacyUser) // Error TS2345: Argument of type 'LegacyUser' is not
// assignable to parameter of type '{id?: number |
// undefined, name: string}'. Type 'string' is not
// assignable to type 'number | undefined'.
When we pass a shape with a property whose type is a supertype of the expected type,
TypeScript complains. That’s because id is a string | number | undefined, and
deleteUser only handles the case of an id that’s a number | undefined.

TypeScript’s behavior is as follows: if you expect a shape, you can also pass a type
with property types that are <: their expected types, but you cannot pass a shape with
property types that are supertypes of their expected types. When talking about types,
we say that TypeScript shapes (objects and classes) are covariant in their property
types. That is, for an object A to be assignable to an object B, each of its properties
must be <: its corresponding property in B.

More generally, covariance is just one of four sorts of variance:

Relationships Between Types | 117

Invariance
You want exactly a T.

Covariance
Youwanta«<:T.

Contravariance
You wanta>:T.

Bivariance
You’re OK with either <:T or >:T.

In TypeScript, every complex type is covariant in its members—objects, classes,
arrays, and function return types—with one exception: function parameter types,
which are contravariant.

Not all languages make this same design decision. In some lan-
guages objects are invariant in their property types, because as we
saw, covariant property types can lead to unsafe behavior. Some
languages have different rules for mutable and immutable objects
(try to reason through it yourself!). Some languages—like Scala,
Kotlin, and Flow—even have explicit syntax for programmers to
specify variance for their own data types.

When designing TypeScript, its authors opted for a balance
between ease of use and safety. When you make objects invariant
in their property types, even though it’s safer, it can make a type
system tedious to use because you end up banning things that are
safe in practice (e.g., if we didn’t delete the id in deleteUser, then
it would have been perfectly safe to pass in an object that’s a super-
type of the expected type).

Function variance

Let’s start with a few examples.

A function A is a subtype of function B if A has the same or lower arity (number of
parameters) than B and:

1. A’s this type either isn’t specified, or is >: B’s this type.
2. Each of A’s parameters is >: its corresponding parameter in B.
3. A’sreturn type is <: B’s return type.
Read that over a few times, and make sure you understand what each rule means.

You might have noticed that for a function A to be a subtype of function B, we say
that its this type and parameters must be >: their counterparts in B, while its return

118 | Chapter 6: Advanced Types

type has to be <:! Why does the direction flip like that? Why isn’t it simply <: for
each component (this type, parameter types, and return type), like it is for objects,
arrays, unions, and so on?

To answer this question, let’s derive it ourselves. We’ll start by defining three types
(we’re going to use a class for clarity, but this works for any choice of types where A
<: B <: Q)

class Animal {}
class Bird extends Animal {

chirp() {3}
}

class Crow extends Bird {
caw() {}
}
In this example, Crow is a subtype of Bird, which is a subtype of Animal. That is, Crow
<: Bird <: Animal.

Now, let’s define a function that takes a Bird, and makes it chirp:

function chirp(bird: Bird): Bird {
bird.chirp()
return bird

}
So far, so good. What kinds of things does TypeScript let you pass into chirp?

chirp(new Animal) // Error TS2345: Argument of type 'Animal' is not assignable
chirp(new Bird) // to parameter of type 'Bird'.
chirp(new Crow)

You can pass an instance of Bird (because that’s what chirp’s parameter bird’s type

is) or an instance of Crow (because it’s a subtype of Bird). Great: passing in a subtype
works as expected.

Let’s make a new function. This time, its parameter will be a function:

function clone(f: (b: Bird) => Bird): void {
/) ...
}

clone needs a function f that takes a Bird and returns a Bird. What types of func-
tions can you safely pass for f? Clearly you can pass a function that takes a Bird and
returns a Bird:
function birdToBird(b: Bird): Bird {
/).

}
clone(birdToBird) // 0K

What about a function that takes a Bird and returns a Crow, or an Animal?

Relationships Between Types | 119

function birdToCrow(d: Bird): Crow {
/] ...

}
clone(birdToCrow) // 0K

function birdToAnimal(d: Bird): Animal {
// ...
}
clone(birdToAnimal) // Error TS2345: Argument of type '(d: Bird) => Animal' is
// not assignable to parameter of type '(b: Bird) => Bird'.
// Type 'Animal’' is not assignable to type 'Bird'.

birdToCrow works as expected, but birdToAnimal gives us an error. Why? Imagine
that clone’s implementation looks like this:
function clone(f: (b: Bird) => Bird): void {
let parent = new Bird
let babyBird = f(parent)
babyBird.chirp()
}
If we passed to our clone function an f that returned an Animal, then we couldn’t
call .chirp on it! So TypeScript has to make sure, at compile time, that the function
we passed in returns at least a Bird.

We say that functions are covariant in their return types, which is a fancy way of say-
ing that for a function to be a subtype of another function, its return type has to be <:
the other function’s return type.

OK, what about parameter types?

function animalToBird(a: Animal): Bird {

// ...
}
clone(animalToBird) // OK

function crowToBird(c: Crow): Bird {
/) ...

}
clone(crowToBird) // Error TS2345: Argument of type '(c: Crow) => Bird' is not

// assignable to parameter of type '(b: Bird) => Bird'.
For a function to be assignable to another function, its parameter types (including
this) all have to be >: their corresponding parameter types in the other function. To
see why, think about how a user might have implemented crowToBird before passing
it into clone. What if they did this?

function crowToBird(c: Crow): Bird {
c.caw()
return new Bird

}

120 | Chapter 6: Advanced Types

Now if clone called crowToBird with a new Bird, we’d get an exception because .caw
is only defined on Crows, not on all Birds.

This means functions are contravariant in their parameter and this types. That is,
for a function to be a subtype of another function, each of its parameters and its this
type must be >: its corresponding parameter in the other function.

Thankfully, you don’t have to memorize and recite these rules. Just have them in the
back of your mind when your code editor gives you a red squiggly when you pass an
incorrectly typed function somewhere, so you know why TypeScript is giving you the
error it does.

TSC Flag: strictFunctionTypes

For legacy reasons, functions in TypeScript are actually covariant
in their parameter and this types by default. To opt into the safer,
contravariant behavior we just explored, be sure to enable the
{"strictFunctionTypes": true} flag in your tsconfig.json.

strict mode includes strictFunctionTypes, so if you're already
using {"strict": true}, you're good to go.

Assignability

Subtype and supertype relations are core concepts in any statically typed language.
They’re also important to understanding how assignability works (as a reminder,
assignability refers to TypeScript’s rules for whether or not you can use a type A
where another type B is required).

When TypeScript wants to answer the question “Is type A assignable to type B?” it fol-
lows a few simple rules. For non-enum types—like arrays, booleans, numbers, objects,
functions, classes, class instances, and strings, including literal types—A is assignable
to B if either of the following is true:

1. A <: B.

2. Ais any.
Rule 1 is just the definition of what a subtype is: if A is a subtype of B, then wherever
you need a B you can also use an A.

Rule 2 is the exception to rule 1, and is a convenience for interoperating with Java-
Script code.

For enum types created with the enum or const enum keywords, a type A is assignable
to an enum B if either of these is true:

Relationships Between Types | 121

1. Ais a member of enum B.

2. B has at least one member that’s a number, and A is a number.

Rule 1 is exactly the same as for simple types (if A is a member of enum B, then A’s
type is B, so all we're saying isB <: B).

Rule 2 is a convenience for working with enums. As we talked about in “Enums” on
page 39, rule 2 is a big source of unsafety in TypeScript, and this is one reason I sug-
gest throwing the baby out with the bathwater and avoiding enums entirely.

Type Widening

Type widening is key to understanding how TypeScript’s type inference works. In
general, TypeScript will be lenient when inferring your types, and will err on the side
of inferring a more general type rather than the most specific type possible. This
makes your life as a programmer easier, and means less time spent quelling the type-
checker’s complaints.

In Chapter 3, you already saw a few instances of type widening in action. Let’s look at
a few more examples.

When you declare a variable in a way that allows it to be mutated later (e.g., with let
or var), its type is widened from its literal value to the base type that literal belongs
to:

let a = 'x' // string
let b =3 // number
var c = true // boolean
const d = {x: 3} // {x: number}

enum E {X, Y, Z}
let e = E.X // E

Not so for immutable declarations:

const a = 'x' // 'x'
const b = 3 // 3
const c = true // true

enum E {X, Y, Z}
const e = E.X // E.X

You can use an explicit type annotation to prevent your type from being widened:

let a: 'x' = 'x' // X!
let b: 3 =3 // 3
var c: true = true // true

const d: {x: 3} = {x: 3} // {x: 3}

122 | Chapter 6: Advanced Types

When you reassign a nonwidened type using let or var, TypeScript widens it for
you. To tell TypeScript to keep it narrow, add an explicit type annotation to your
original declaration:

const a = 'x' // 'x'
let b = a // string
const c: 'x' = 'x' // 'x'
letd =c // 'x'

Variables initialized to null or undefined are widened to any:

let a = null // any
a=3 // any
a=">' // any

But when a variable initialized to null or undefined leaves the scope it was declared
in, TypeScript assigns it a definite type:

function x() {

let a = null // any
a=3 // any
a="b // any
return a
}
x() // string
The const type

TypeScript comes with a special const type that you can use to opt out of type widen-
ing a declaration at a time. Use it as a type assertion (read ahead to “Type Assertions”
on page 148):

let a = {x: 3} // {x: number}
let b: {x: 3} // {x: 3}
let ¢ = {x: 3} as const // {readonly x: 3}

const opts your type out of widening and recursively marks its members as
readonly, even for deeply nested data structures:

let d = [1, {x: 2}] // (number | {x: number})[]
let e = [1, {x: 2}] as const // readonly [1, {readonly x: 2}]

Use as const when you want TypeScript to infer your type as narrowly as possible.

Excess property checking

Type widening also comes into the picture when TypeScript checks whether or not
one object type is assignable to another object type.

Relationships Between Types | 123

Recall from “Shape and array variance” on page 116 that object types are covariant in
their members. But if TypeScript stuck to this rule without doing any additional
checks, it could lead to a problem.

For example, consider an Options object you might pass into a class to configure it:

type Options = {
baseURL: string
cacheSize?: number

tier?: 'prod' | 'dev'
}
class API {
constructor(private options: Options) {}
}
new API({

baseURL: 'https://api.mysite.com',
tier: 'prod'

b

Now, what happens if you misspell an option?

new API({

baseURL: 'https://api.mysite.com',

tierr: 'prod' // Error TS52345: Argument of type '{tierr: string}'
b // 1s not assignable to parameter of type 'Options'.

// Object literal may only specify known properties,

// but 'tierr' does not exist in type 'Options’.

// Did you mean to write 'tier'?
This is a common bug when working with JavaScript, so it’s really helpful that Type-
Script helps us catch it. But if object types are covariant in their members, how is it
that TypeScript catches this?

That is:

o We expected the type {baseURL: string, cacheSize?: number, tier?:
'prod' | 'dev'}.
o We passed in the type {baseURL: string, tierr: string}.

« The type we passed in is a subtype of the type we expected, but somehow, Type-
Script knew to report an error.

TypeScript was able to catch this due to its excess property checking, which works like
this: when you try to assign a fresh object literal type T to another type U, and T has
properties that aren’t present in U, TypeScript reports an error.

A fresh object literal type is the type TypeScript infers from an object literal. If that
object literal either uses a type assertion (see “Type Assertions” on page 148) or is

124 | Chapter 6: Advanced Types

assigned to a variable, then the fresh object literal type is widened to a regular object
type, and its freshness disappears.

This definition is dense, so let’s walk through our example again, trying a few more
variations on the theme this time:
type Options = {

baseURL: string
cacheSize?: number

tier?: 'prod' | 'dev'
}
class API {
constructor(private options: Options) {}
}
new API({ (1]
baseURL: 'https://api.mysite.com',
tier: 'prod'
H
new API({ (2]
baseURL: 'https://api.mysite.com',
badTier: 'prod' // Error TS2345: Argument of type '{baseURL: string; badTier:
b // string}' is not assignable to parameter of type 'Options'.
new API({ ©

baseURL: 'https://api.mysite.com',
badTier: 'prod'
} as Options)

let badOptions = { (4)
baseURL: 'https://api.mysite.com',
badTier: 'prod'

}
new API(badOptions)

let options: Options = { (5)

baseURL: 'https://api.mysite.com',

badTier: 'prod' // Error T7S2322: Type '{baseURL: string; badTier: string}'
} // 1s not assignable to type 'Options'.
new API(options)

© We instantiate API with a baseURL and one of our two optional properties, tier.
This works as expected.

® Here, we misspell tier as badTier. The options object we pass to new API is
fresh (because its type is inferred, it isn’t assigned to a variable, and we don’t
make a type assertion about its type), so TypeScript runs an excess property

Relationships Between Types | 125

check on it, revealing the excess badTier property (which is defined in our
options object but not on the Options type).

© We assert that our invalid options object is of type Options. TypeScript no longer
considers it fresh, and bails out of excess property checking: no error. If you're
not familiar with the as T syntax, read ahead to “Type Assertions” on page 148.

O We assign our options object to a variable, badOptions. TypeScript no longer
considers it to be fresh, and bails out of excess property checking: no error.

© When we explicitly type options as Options, the object we assign to options is
fresh, so TypeScript performs excess property checking, catching our bug. Note
that in this case the excess property check doesn’t happen when we pass options
to new API; rather, it happens when we try to assign our options object to the
variable options.

Don’t worry—you don’t need to memorize these rules. They are TypeScript’s internal
heuristics for catching the most bugs possible in a practical way, so as not to be a bur-
den on you, the programmer. Just keep them in mind when you’re wondering how
TypeScript knew to complain about that one bug that even Ivan, the battle-weathered
gatekeeper of your company’s codebase and master code reviewer, didn’t notice.

Refinement

TypeScript performs flow-based type inference, which is a kind of symbolic execution
where the typechecker uses control flow statements like if, 2, | |, and switch, as well
as type queries like typeof, instanceof, and 1in, to refine types as it goes, just like a
programmer reading through the code would.! It’s an incredibly convenient feature
for a typechecker to have, but is another one of those things that remarkably few lan-
guages support.”

—

Symbolic execution is a form of program analysis where you use a special program called a symbolic evalua-
tor to run your program the same way a runtime would, but without assigning definite values to variables;
instead, each variable is modelled as a symbol whose value gets constrained as the program runs. Symbolic
execution lets you say things like “this variable is never used,” or “this function never returns,” or “in the posi-
tive branch of the if statement on line 102, variable x is guaranteed not to be null.”

[

Flow-based type inference is supported by a handful of languages, including TypeScript, Flow, Kotlin, and
Ceylon. It’s a way to refine types within a block of code, and is an alternative to C/Java-style explicit type
annotations and Haskell/OCaml/Scala-style pattern matching. The idea is to take a symbolic execution engine
and embed it right in the typechecker, in order to give feedback to the typechecker and reason through a pro-
gram in a way that is closer to how a human programmer might do it.

126 | Chapter 6: Advanced Types

Let’s walk through an example. Say we’ve built an API for defining CSS rules in Type-
Script, and a coworker wants to use it to set an HTML element’s width. They pass in
the width, which we then want to parse and validate.

We'll first implement a function to parse a CSS string into a value and a unit:

// We use a union of string literals to describe
// the possible values a CSS unit can have
type Unit = 'ecm' | 'px' | '%'

// Enumerate the units
let units: Unit[] = ['em', 'px', '%']

// Check each unit, and return null if there is no match
function parseUnit(value: string): Unit | null {
for (let 1 = 0; 1 < units.length; i++) {
if (value.endsWith(units[i])) {
return units[i]
}
}

return null

}

We can then use parseUnit to parse a width value passed to us by a user. width
might be a number (which we assume is in pixels), or a string with units attached, or
it might be null or undefined.

We take advantage of type refinement a few times in this example:

type Width = {
unit: Unit,
value: number

}

function parseWidth(width: number | string | null | undefined): Width | null {
// If width is null or undefined, return early
if (width == null) { @
return null

}

// If width is a number, default to pixels
if (typeof width === 'number') { (2]
return {unit: 'px', value: width}

}

// Try to parse a unit from width
let unit = parseUnit(width)
if (unit) { ©
return {unit, value: parseFloat(width)}

}

// Otherwise, return null

Relationships Between Types | 127

return null @
}

© TypeScript is smart enough to know that doing a loose equality check against
null will return true for both null and undefined in JavaScript. It knows that if
this check passes then we will return, and if we didn’t return that means the
check didn’t pass, so from then on width’s type is number | string (it can’t be
null or undefined anymore). We say that the type was refined from number |
string | null | undefined to number | string.

® A typeof check queries a value at runtime to see what its type is. TypeScript
takes advantage of typeof at compile time too: in the if branch where the check
passes, TypeScript knows that width is a number; otherwise (since that branch
returns) width must be a string—it’s the only type left.

© Because calling parseUnit might return null, we check if it did by testing
whether its result is truthy.> TypeScript knows that if unit is truthy then it must
be of type Unit in the if branch—otherwise, unit must be falsy, meaning it must
be of type null (refined from Unit | null).

O Finally, we return null. This can only happen if the user passed a string for
width, but that string contained a unit that we don’t support.

I've spelled out exactly what TypeScript was thinking for each of the type refinements
it performed here, but I hope this was already intuitive and obvious for you, the pro-
grammer reading that code. TypeScript does a superb job of taking what’s going
through your mind as you read and write code, and crystallizing it in the form of
typechecking and inference rules.

Discriminated union types

As we just learned, TypeScript has a deep understanding of how JavaScript works,
and is able to follow along as you refine your types, just like you would when you
trace through your program in your head.

For example, say we’re building a custom event system for an application. We start by
defining a couple of event types, along with a function to handle events that come in.
Imagine that UserTextEvent models a keyboard event (e.g., the user typed something
in a text <input />) and UserMouseEvent models a mouse event (e.g., the user moved
their mouse to the coordinates [100, 200]):

3 JavaScript has seven falsy values: null, undefined, NaN, 0, -0, "", and of course, false. Everything else is
truthy.

128 | Chapter 6: Advanced Types

type UserTextEvent = {value: string}
type UserMouseEvent = {value: [number, number]}

type UserEvent = UserTextEvent | UserMouseEvent

function handle(event: UserEvent) {

if (typeof event.value === 'string') {
event.value // string
Y/
return

}

event.value // [number, number]

}

Inside the if block, TypeScript knows that event.value has to be a string (because
of the typeof check), which implies that after the i1f block event.value has to be a
tuple of [number, number] (because of the return in the if block).

What happens if we make this a little more complicated? Let’s add some more infor-
mation to our event types, and see how TypeScript fares when we refine our types:

type UserTextEvent = {value: string, target: HTMLInputElement}
type UserMouseEvent = {value: [number, number], target: HTMLElement}

type UserEvent = UserTextEvent | UserMouseEvent

function handle(event: UserEvent) {
if (typeof event.value === 'string') {
event.value // string
event.target // HTMLInputElement | HTMLElement (!!!)

/] ...
return
}
event.value // [number, number]
event.target // HTMLInputElement | HTMLElement (!!!)

}

While the refinement worked for event.value, it didn’t carry over to event.target.
Why? When handle takes a parameter of type UserEvent, that doesn’t mean we have
to pass a UserTextEvent or UserMouseEvent—in fact, we could pass an argument of
type UserMouseEvent | UserTextEvent. And since members of a union might over-
lap, TypeScript needs a more reliable way to know when we’re in one case of a union
type versus another case.

The way to do this is to use a literal type to tag each case of your union type. A good
tag is:

o On the same place in each case of your union type. That means the same object
field if it’s a union of object types, or the same index if it’s a union of tuple types.
In practice, tagged unions usually use object types.

Relationships Between Types | 129

 Typed as a literal type (a literal string, number, boolean, etc.). You can mix and
match different types of literals, but it’s good practice to stick to a single type;
typically, that’s a string literal type.

« Not generic. Tags should not take any generic type arguments.

o Mutually exclusive (i.e., unique within the union type).

With that in mind, let’s update our event types again:

type UserTextEvent = {type: 'TextEvent', value: string, target: HTMLInputElement}
type UserMouseEvent = {type: 'MouseEvent', value: [number, number],
target: HTMLElement}

type UserEvent = UserTextEvent | UserMouseEvent

function handle(event: UserEvent) {
if (event.type === 'TextEvent') {
event.value // string
event.target // HTMLInputElement

/) ...

return
}
event.value // [number, number]
event.target // HTMLElement

}

Now when we refine event based on the value of its tagged field (event. type), Type-
Script knows that in the 1f branch event has to be a UserTextEvent, and after the if
branch it has to be a UserMouseEvent. Since the tag is unique per union type, Type-
Script knows that the two are mutually exclusive.

Use tagged unions when writing a function that has to handle the different cases of a
union type. For example, they’re invaluable when working with Flux actions, Redux
reducers, or React’s useReducer.

Totality

A programmer puts two glasses on her bedside table before going to sleep: a full
one, in case she gets thirsty, and an empty one, in case she doesn’t.

—Anonymous

Totality, also called exhaustiveness checking, is what allows the typechecker to make
sure you've covered all your cases. It comes to us from Haskell, OCaml, and other
languages that are based around pattern matching.

TypeScript will check for totality in a variety of cases, and give you helpful warnings
when you’ve missed a case. This is an incredibly helpful feature for preventing real
bugs. For example:

130 | Chapter6: Advanced Types

type Weekday = 'Mon' | 'Tue'| 'Wed' | 'Thu' | 'Fri'
type Day = Weekday | 'Sat' | 'Sun'

function getNextDay(w: Weekday): Day {
switch (w) {
case 'Mon': return 'Tue'

}
}

We clearly missed a few days (it’s been a long week). TypeScript comes to the rescue:

Error TS2366: Function lacks ending return statement and
return type does not include 'undefined'.

TSC Flag: nolmplicitReturns

To ask TypeScript to check that all of your functions’ code paths
return a value (and throw the preceding warning if you missed a
spot), enable the noImplicitReturns flag in your tsconfig.json.
Whether you enable this flag or not is up to you: some people pre-
fer a code style with fewer explicit returns, and some people are
fine with a few extra returns in the name of better type safety and
more bugs caught by the typechecker.

This error message is telling us that either we missed some cases and should cover
them with a catchall return statement at the end that returns something like 'Sat'
(that'd be nice, huh), or we should adjust getNextDay’s return type to Day |
undefined. After we add a case for each Day, the error goes away (try it!). Because we
annotated getNextDay’s return type, and not all branches are guaranteed to return a
value of that type, TypeScript warns us.

The implementation details in this example aren’t important: no matter what kind of
control structure you use—switch, if, throw, and so on—TypeScript will watch your
back to make sure you have every case covered.

Here’s another example:

function isBig(n: number) {
if (n >= 100) {
return true
}
}
Maybe a client’s continued voicemails about that missed deadline have you jittery,
and you forgot to handle numbers under 100 in your business-critical 1sBig func-
tion. Again, never fear—TypeScript is watching out for you:

Error TS7030: Not all code paths return a value.

Totality | 131

Or maybe the weekend gave you a chance to clear your mind, and you realized that
you should rewrite that getNextDay example from earlier to be more efficient.
Instead of using a switch, why not a constant-time lookup in an object?

let nextDay = {
Mon: 'Tue'

}

nextDay.Mon // 'Tue'

With your Bichon Frise yapping away in the other room (something about the neigh-
bor’s dog?), you absentmindedly forgot to fill in the other days in your new nextDay
object before you committed your code and moved on to other things.

While TypeScript will give you an error the next time you try to access nextDay. Tue,
you could have been more proactive about it when declaring nextDay in the first
place. There are two ways to do that, as you'll learn in “The Record Type” on page 137
and “Mapped Types” on page 137; but before we get there, let’s take a slight detour into
type operators for object types.

Advanced Object Types

Objects are central to JavaScript, and TypeScript gives you a whole bunch of ways to
express and manipulate them safely.

Type Operators for Object Types

Remember union (|) and intersection (&), the two type operators I introduced in
“Union and intersection types” on page 322 It turns out they’re not the only type
operators TypeScript gives you! Let’s run through a few more type operators that
come in handy for working with shapes.

The keying-in operator

Say you have a complex nested type to model the GraphQL API response you got
back from your social media API of choice:

type APIResponse = {
user: {
userId: string
friendList: {
count: number
friends: {
firstName: string
lastName: string
H1
}

132 | Chapter 6: Advanced Types

}
}

You might fetch that response from the API, then render it:

function getAPIResponse(): Promise<APIResponse> {
// ...
}

function renderFriendList(friendList: unknown) {
// ...
}

let response = await getAPIResponse()
renderFriendList(response.user.friendList)

What should the type of friendList be? (It’s stubbed out as unknown for now.) You
could type it out and reimplement your top-level APIResponse type in terms of it:

type FriendList = {
count: number
friends: {
firstName: string
lastName: string
H1
}

type APIResponse = {
user: {
userId: string
friendList: FriendList
}
}

function renderFriendList(friendList: FriendList) {
/) ...
}

But then you’d have to come up with names for each of your top-level types, which
you don’t always want (e.g., if you used a build tool to generate TypeScript types from
your GraphQL schema). Instead, you can key in to your type:

type APIResponse = {
user: {
userId: string
friendList: {
count: number
friends: {
firstName: string
lastName: string
H1
}
}

Advanced Object Types | 133

}
type FriendList = APIResponse['user']['friendList']

function renderFriendList(friendList: FriendList) {
// ...
}
You can key in to any shape (object, class constructor, or class instance), and any
array. For example, to get the type of an individual friend:

type Friend = FriendList['friends'][number]

number is a way to key in to an array type; for tuples, use 0, 1, or another number
literal type to represent the index you want to key in to.

The syntax for keying in is intentionally similar to how you look up fields in regular
JavaScript objects—just as you might look up a value in an object, so you can look up
a type in a shape. Note that you have to use bracket notation, not dot notation, to
look up property types when keying in.

The keyof operator

Use keyof to get all of an object’s keys as a union of string literal types. Using the
previous APIResponse example:

type ResponseKeys = keyof APIResponse // 'user'
type UserKeys = keyof APIResponse['user'] // 'userId' | 'friendList'
type FriendListKeys =

keyof APIResponse['user']['friendList'] // 'count' | 'friends'

Combining the keying-in and keyof operators, you can implement a typesafe getter
function that looks up the value at the given key in an object:

function get< (1]
0 extends object,
K extends keyof 0 (2]

>(
o: 0,
k: K

): O[K] { ©
return o[k]

}

@ get is a function that takes an object o and a key k.

©® keyof 0is a union of string literal types, representing all of o’s keys. The generic
type K extends—and is a subtype of—that union. For example, if o has the type
{a: number, b: string, c: boolean}, then keyof o is the type 'a' | 'b' |

134 | Chapter 6: Advanced Types

'c', and K (which extends keyof o) could be the type 'a’, 'b', 'a’ 'c', or
any other subtype of keyof o.

© 0[K] is the type you get when you look up K in 0. Continuing the example from
9, ifKis 'a', then we know at compile time that get returns a number. Or, if K is
'b' | 'c', then we know get returns string | boolean.

What’s cool about these type operators is how precisely and safely they let you
describe shape types:

type ActivitylLog = {
lastEvent: Date
events: {
id: string
timestamp: Date
type: 'Read' | 'Write'
H1
}

let activitylLog: Activitylog = // ...
let lastEvent = get(activitylLog, 'lastEvent') // Date

TypeScript goes to work for you, verifying at compile time that the type of lastEvent
is Date. Of course, you could extend this in order to key in to an object more deeply
too. Let’s overload get to accept up to three keys:

type Get = { @
<
0 extends object,
K1 extends keyof 0
>(o: 0, k1: K1): O[K1] @
<
0 extends object,
K1 extends keyof O,
K2 extends keyof O[K1] (3]
>(o: 0, k1: K1, k2: K2): O[K1][K2] @
<
0 extends object,
K1 extends keyof O,
K2 extends keyof O[K1],
K3 extends keyof O[K1][K2]
>(o: 0, ki: K1, k2: K2, k3: K3): O[K1][K2][K3] ©
}

let get: Get = (object: any, ...keys: string[]) => {
let result = object
keys.forEach(k => result = result[k])
return result

}

get(activitylLog, 'events', 0, 'type') // 'Read' | 'Write'

Advanced Object Types | 135

(5]

get(activitylLog, 'bad') // Error TS2345: Argument of type '"bad"'
// 1s not assignable to parameter of type
// '"lastEvent" | "events"'.

We declare an overloaded function signature for get with three cases for when
we call get with one key, two keys, and three keys.

This one-key case is the same as the last example: 0 is a subtype of object, K1isa
subtype of that object’s keys, and the return type is whatever specific type you get
when you key in to 0 with K1.

The two-key case is like the one-key case, but we declare one more generic type,
K2, to model the possible keys on the nested object that results from keying into 0
with K1.

We build on @ by keying in twice—we first get the type of 0[K1], then get the
type of [K2] on the result.

For this example we handle up to three nested keys; if you’re writing a real-world
library, you’ll probably want to handle a few more cases than that.

Cool, huh? If you have a minute, show this example to your Java friends, and be sure
to gloat as you walk them through it.

TSC Flag: keyofStringsOnly

In JavaScript, objects and arrays can have both string and symbol
keys. And by convention, we usually use number keys for arrays,
which are coerced to strings at runtime.

Because of this, keyof in TypeScript returns a value of type number
| string | symbol by default (though if you call it on a more spe-
cific shape, TypeScript can infer a more specific subtype of that
union).

This behavior is correct, but can make working with keyof wordy,
as you may have to prove to TypeScript that the particular key
you’re manipulating is a string, and not a number or a symbol.

To opt into TypeScript’s legacy behavior—where keys must be
strings—enable the keyofStringsOnly tsconfig.json flag.

136

| Chapter 6: Advanced Types

The Record Type

TypeScript’s built-in Record type is a way to describe an object as a map from some-
thing to something.

Recall from the Weekday example in “Totality” on page 130 that there are two ways to
enforce that an object defines a specific set of keys. Record types are the first.

Let’s use Record to build a map from each day of the week to the next day of the
week. With Record, you can put some constraints on the keys and values in nextDay:

type Weekday = 'Mon' | 'Tue'| 'Wed' | 'Thu' | 'Fri'
type Day = Weekday | 'Sat' | 'Sun’

let nextDay: Record<Weekday, Day> = {
Mon: 'Tue'

}

Now, you get a nice, helpful error message right away:

Error TS2739: Type '{Mon: "Tue"}' is missing the following properties
from type 'Record<Weekday, Day>': Tue, Wed, Thu, Fri.

Adding the missing Weekdays to your object, of course, makes the error go away.

Record gives you one extra degree of freedom compared to regular object index sig-
natures: with a regular index signature you can constrain the types of an object’s val-
ues, but the key can only be a regular string, number, or symbol; with Record, you
can also constrain the types of an object’s keys to subtypes of string and number.

Mapped Types

TypeScript gives us a second, more powerful way to declare a safer nextDay type:
mapped types. Let’s use mapped types to say that nextDay is an object with a key for
each Weekday, whose value is a Day:

let nextDay: {[K in Weekday]: Day} = {

Mon: 'Tue'

}

This is another way to get a helpful hint for how to fix what you missed:

Error TS2739: Type '{Mon: "Tue"}' is missing the following properties
from type '{Mon: Weekday; Tue: Weekday; Wed: Weekday; Thu: Weekday;
Fri: Weekday}': Tue, Wed, Thu, Fri.

Mapped types are a language feature unique to TypeScript. Like literal types, they’re a
utility feature that just makes sense for the challenge that is statically typing Java-
Script.

Advanced Object Types | 137

As you saw, mapped types have their own special syntax. And like index signatures,
you can have at most one mapped type per object:

type MyMappedType = {
[Key in UnionType]: ValueType
}

As the name implies, it’s a way to map over an object’s key and value types. In fact,
TypeScript uses mapped types to implement its built-in Record type we used earlier:

type Record<K extends keyof any, T> = {
[Pin K]: T
}

Mapped types give you more power than a mere Record because in addition to letting
you give types to an object’s keys and values, when you combine them with keyed-in
types, they let you put constraints on which value type corresponds to which key
name.

Let’s quickly run through some of the things you can do with mapped types.

type Account = {
id: number
isEmployee: boolean
notes: string[]

}

// Make all fields optional
type OptionalAccount = {

[K in keyof Account]?: Account[K] (1)
}

// Make all fields nullable
type NullableAccount = {

[K in keyof Account]: Account[K] | null (2]
}

// Make all fields read-only
type ReadonlyAccount = {

readonly [K in keyof Account]: Account[K] (3]
}

// Make all fields writable again (equivalent to Account)
type Account2 = {

-readonly [K in keyof ReadonlyAccount]: Account[K] (4]
}

// Make all fields required again (equivalent to Account)
type Account3 = {

[K in keyof OptionalAccount]-?: Account[K] (5]
}

138 | Chapter 6: Advanced Types

We create a new object type OptionalAccount by mapping over Account, mark-
ing each field as optional along the way.

We create a new object type NullableAccount by mapping over Account, adding
null as a possible value for each field along the way.

We create a new object type ReadonlyAccount by taking Account and making
each of its fields read-only (that is, readable but not writable).

We can mark fields as optional (?) or readonly, and we can also unmark them.
With the minus (-) operator—a special type operator only available with mapped
types—we can undo ? and readonly, making fields required and writable again,
respectively. Here we create a new object type Account2, equivalent to our
Account type, by mapping over ReadonlyAccount and removing the readonly
modifier with the minus (-) operator.

We create a new object type Account3, equivalent to our original Account type,
by mapping over OptionalAccount and removing the optional (?) operator with
the minus (-) operator.

Minus (-) has a corresponding plus (+) type operator. You will
probably never use this operator directly, because it’s implied:
within a mapped type, readonly is equivalent to +readonly, and ?
is equivalent to +?. + is just there for completeness.

Built-in mapped types

The mapped types we derived in the last section are so useful that TypeScript ships
with many of them built in:

Record<Keys, Values>

An object with keys of type Keys and values of type Values

Partial<Object>

Marks every field in Object as optional

Required<Object>

Marks every field in Object as nonoptional

Readonly<Object>

Marks every field in Object as read-only

Pick<Object, Keys>

Returns a subtype of Object, with just the given Keys

Advanced Object Types | 139

Companion Object Pattern

The companion object pattern comes to us from Scala, and is a way to pair together
objects and classes that share the same name. In TypeScript, there’s a similar pattern
that’s similarly useful—we’ll also call it the companion object pattern—that we can
use to pair together a type and an object.

It looks like this:

type Currency =
unit: 'EUR' |
value: number

}

{
'GBP' | 'JPY' | 'USD'

let Currency = {
DEFAULT: 'USD',
from(value: number, unit = Currency.DEFAULT): Currency {
return {unit, value}
}
}
Remember that in TypeScript, types and values live in separate namespaces; you'll
read a little more about this in “Declaration Merging” on page 226. That means in the
same scope, you can have the same name (in this example, Currency) bound to both
a type and a value. With the companion object pattern, we exploit this separate
namespacing to declare a name twice: first as a type, then as a value.

This pattern has a few nice properties. It lets you group type and value information
that’s semantically part of a single name (like Currency) together. It also lets consum-
ers import both at once:

import {Currency} from './Currency'

let amountDue: Currency = { (1]
unit: 'JPY',
value: 83733.10

}

let otherAmountDue = Currency.from(330, "EUR') (2]
© Using Currency as a type

® Using Currency as a value

Use the companion object pattern when a type and an object are semantically related,
with the object providing utility methods that operate on the type.

140 | Chapter 6: Advanced Types

http://bit.ly/2I9Nqg2

Advanced Function Types

Let’s take a look at a few more advanced techniques that are often used with function
types.

Improving Type Inference for Tuples

When you declare a tuple in TypeScript, TypeScript will be lenient about inferring
that tuple’s type. It will infer the most general possible type based on what you gave
it, ignoring the length of your tuple and which position holds which type:

let a = [1, true] // (number | boolean)[]

But sometimes you want inference that’s stricter, that would treat a as a fixed-length
tuple and not as an array. You could, of course, use a type assertion to cast your tuple
to a tuple type (more on this in “T'ype Assertions” on page 148). Or, you could use an as
const assertion (“The const type” on page 123) to infer the tuple’s type as narrowly as
possible, marking it as read-only.

What if you want to type your tuple as a tuple, but avoid a type assertion, and avoid
the narrow inference and read-only modifier that as const gives you? To do that,
you can take advantage of the way TypeScript infers types for rest parameters (jump

back to “Using bounded polymorphism to model arity” on page 77 for more about
that):

function tuple< (1]
T extends unknown[] (2]
>(
ts: T O
y: T { (4]
return ts ©
}

let a = tuple(l, true) // [number, boolean]

© We declare a tuple function that we’ll use to construct tuple types (instead of
using the built-in [] syntax).

©® We declare a single type parameter T that’s a subtype of unknown[] (meaning T is
an array of any kind of type).

©® tuple takes a variable number of parameters, ts. Because T describes a rest
parameter, TypeScript will infer a tuple type for it.

O tuple returns a value of the same tuple type that it inferred ts as.

Advanced Function Types | 141

© Our function returns the same argument that we passed it. The magic is all in the
types.

Take advantage of this technique in order to avoid type assertions when your code
uses lots of tuple types.

User-Defined Type Guards

For some kinds of boolean-returning functions, simply saying that your function
returns a boolean may not be enough. For example, let’s write a function that tells
you if you passed it a string or not:

function isString(a: unknown): boolean {

return typeof a === 'string'

}

isString('a') // evaluates to true
isString([7]) // evaluates to false

So far so good. What happens if you try to use isString in some real-world code?

function parseInput(input: string | number) {
let formattedInput: string
if (isString(input)) {
formattedInput = input.toUpperCase() // Error TS2339: Property 'toUpperCase'
} // does not exist on type 'number'.
}
What gives? If typeof works for regular type refinement (see “Refinement” on page
126), why doesn’t it work here?

The thing about type refinement is it’s only powerful enough to refine the type of a
variable in the scope you’re in. As soon as you leave that scope, the refinement
doesn’t carry over to whatever new scope you're in. In our isString implementation,
we refined the input parameter’s type to string using typeof, but because type
refinement doesn’t carry over to new scopes, it got lost—all TypeScript knows is that
isString returned a boolean.

What we can do is tell the typechecker that not only does isString return a boolean,
but whenever that boolean is true, the argument we passed to isString is a string.
To do that, we use something called a user-defined type guard:

function isString(a: unknown): a is string {

return typeof a === 'string'

}
Type guards are a built-in TypeScript feature, and are what lets you refine types with
typeof and instanceof. But sometimes, you need the ability to declare type guards
yourself—that’s what the is operator is for. When you have a function that refines its

142 | Chapter 6: Advanced Types

parameters’ types and returns a boolean, you can use a user-defined type guard to
make sure that refinement is flowed whenever you use that function.

User-defined type guards are limited to a single parameter, but they aren’t limited to
simple types:

type LegacyDialog = // ...
type Dialog = // ...

function isLegacyDialog(
dialog: LegacyDialog | Dialog
): dialog is LegacyDialog {
/) ...
}
You won’t use user-defined type guards often, but when you do, they’re awesome for
writing clean, reusable code. Without them, you’d have to inline all your typeof and
instanceof type guards instead of building functions like isLegacyDialog and
isString to perform those same checks in a better-encapsulated, more readable way.

Conditional Types

Conditional types might be the single most unique feature in all of TypeScript. At a
high level, conditional types let you say, “Declare a type T that depends on types U
and V; ifU <: V, then assign T to A, and otherwise, assign T to B.”

In code it might look like this:

type IsString<T> = T extends string (1)
? true

: false ©

type A = IsString<string> // true
type B = IsString<number> // false

Let’s break that down line by line.

O We declare a new conditional type IsString that takes a generic type T. The
“condition” part of this conditional type is T extends string; thatis, “Is T a
subtype of string?”

® IfTisa subtype of string, we resolve to the type true.

© Otherwise, we resolve to the type false.

Note how the syntax looks just like a regular value-level ternary expression, but at the
type level. And like regular ternary expressions, you can nest them too.

Conditional Types | 143

Conditional types aren’t limited to type aliases. You can use them almost anywhere
you can use a type: in type aliases, interfaces, classes, parameter types, and generic
defaults in functions and methods.

Distributive Conditionals

While you can express simple conditions like the examples we just looked at in a vari-
ety of ways in TypeScript—with conditional types, overloaded function signatures,
and mapped types—conditional types let you do more. The reason for this is that
they follow the distributive law (remember, from algebra class?). That means if you
have a conditional type, then the expressions on the right are equivalent to those on
the left in Table 6-1.

Table 6-1. Distributing conditional types

This... Is equivalent to

string extends T 2 A : B string extends T ? A : B

(string | number) extends T ? (string extends T ? A : B) | (number extends
A:B T?2A:B)

(string | number | boolean) (string extends T ? A : B) | (number extends
extends T 2 A : B T?2A :B) | (boolean extends T ? A : B)

I know, I know, you didn’t shell out for this book to learn about math—you’re here
for the types. So let’s get more concrete. Let’s say we have a function that takes some
variable of type T, and lifts it to an array of type T[]. What happens if we pass in a
union type for T?

type ToArray<T> = T[]
type A = ToArray<number> // number[]
type B = ToArray<number | string> // (number | string)[]

Pretty straightforward. Now what happens if we add a conditional type? (Note that
the conditional doesn’t actually do anything here because both its branches resolve to

the same type T[]; it’s just here to tell TypeScript to distribute T over the tuple type.)
Take a look:

type ToArray2<T> = T extends unknown ? T[] : T[]
type A = ToArray2<number> // number[]
type B = ToArray2<number | string> // number[] | string[]

Did you catch that? When you use a conditional type, TypeScript will distribute
union types over the conditional’s branches. It’s like taking the conditional type and
mapping (er, distributing) it over each element in the union.

Why does any of this matter? Well, it lets you safely express a bunch of common
operations.

144 | Chapter 6: Advanced Types

For example, TypeScript comes with & for computing what two types have in com-
mon and | for taking a union of two types. Let’s build Without<T, U>, which com-
putes the types that are in T but not in U.

type Without<T, U> = T extends U ? never : T
You use Without like so:

type A = Without<
boolean | number | string,
boolean

> // number | string

Let’s walk through how TypeScript computes this type:

1. Start with the inputs:
type A = Without<boolean | number | string, boolean>
2. Distribute the condition over the union:

type A = Without<boolean, boolean>
| Without<number, boolean>
| Without<string, boolean>

3. Substitute in Without’s definition and apply T and U:

type A = (boolean extends boolean ? never : boolean)
| (number extends boolean ? never : number)
| (string extends boolean ? never : string)

4. Evaluate the conditions:

type A = never
| number
| string

5. Simplify:
type A = number | string

If it wasn’t for the distributive property of conditional types, we would have ended up
with never (if you’re not sure why, walk through what would happen for yourself!).

The infer Keyword

The final feature of conditional types is the ability to declare generic types as part of a
condition. As a refresher, so far we’ve seen just one way to declare generic type
parameters: using angle brackets (<T>). Conditional types have their own syntax for
declaring generic types inline: the infer keyword.

Let’s declare a conditional type ElementType, which gets the type of an array’s ele-
ments:

Conditional Types | 145

type ElementType<T> = T extends unknown[] ? T[number] : T
type A = ElementType<number[]> // number

Now, let’s rewrite it using infer:

type ElementType2<T> = T extends (infer U)[] 2 U : T

type B = ElementType2<number([]> // number
In this simple example ElementType is equivalent to ElementType2. Notice how the
infer clause declares a new type variable, U—TypeScript will infer the type of U from
context, based on what T you passed to ElementType2.

Also notice why we declared U inline instead of declaring it up front, alongside T.
What would have happened if we did declare it up front?

type ElementUgly<T, U> = T extends U[] 2 U : T

type C = ElementUgly<number[]> // Error TS2314: Generic type 'ElementUgly'

// requires 2 type argument(s).

Uh-oh. Because ElementUgly defines two generic types, T and U, we have to pass both
of them in when instantiating ElementUgly. But if we do that, that defeats the point
of having an ElementUgly type in the first place; it puts the burden of computing U on
the caller, when we wanted ElementUgly to compute the type itself.

Honestly, this was a bit of a silly example because we already have the keying-in oper-
ator ([1) to look up the type of an array’s elements. What about a more complicated
example?

type SecondArg<F> = F extends (a: any, b: infer B) => any ? B : never

// Get the type of Array.slice
type F = typeof Array['prototype']['slice']

type A = SecondArg<F> // number | undefined

So, [1.slice’s second argument is a number | undefined. And we know this at
compile time—try doing that in Java.

Built-in Conditional Types

Conditional types let you express some really powerful operations at the type level.
That’s why TypeScript ships with a few globally available conditional types out of the
box:

Exclude<T, U>
Like our Without type from before, computes those types in T that are not in U:
type A = number | string

type B = string
type C = Exclude<A, B> // number

146 | Chapter 6: Advanced Types

Extract<T, U>
Computes the types in T that you can assign to U:
type A = number | string

type B = string
type C = Extract<A, B> // string

NonNullable<T>
Computes a version of T that excludes null and undefined:
type A = {a?: number | null}
type B = NonNullable<A['a']> // number
ReturnType<F>

Computes a function’s return type (note that this doesn’t work as you’d expect
for generic and overloaded functions):

type F = (a: number) => string
type R = ReturnType<F> // string

InstanceType<C>
Computes the instance type of a class constructor:

type A = {new(): B}
type B = {b: number}
type I = InstanceType<A> // {b: number}

Escape Hatches

Sometimes you don’t have time to type something perfectly, and you just want Type-
Script to trust that what you're doing is safe. Maybe a type declaration for a third
party module you're using is wrong and you want to test your code before contribu-
ting the fix back to DefinitelyTyped,* or maybe you’re getting data from an API and
you haven’t regenerated type declarations with Apollo yet.

Luckily, TypeScript knows that we’re only human, and gives us a few escape hatches
for when we just want to do something and don’t have time to prove to TypeScript
that it’s safe.

In case it’s not obvious, you should use the following TypeScript
features as little as possible. If you find yourself relying on them,
you might be doing something wrong.

4 DefinitelyTyped is the open source repository for type declarations for third-party JavaScript. To learn more,
jump ahead to “JavaScript That Has Type Declarations on DefinitelyTyped” on page 245.

Escape Hatches | 147

https://github.com/DefinitelyTyped/DefinitelyTyped

Type Assertions

If you have a typeBand A <: B <: C, then you can assert to the typechecker that B is
actually an A or a C. Notably, you can only assert that a type is a supertype or a sub-
type of itself—you can’t, for example, assert that a number is a string, because those
types aren’t related.

TypeScript gives us two syntaxes for type assertions:

function formatInput(input: string) {
Y72
}

function getUserInput(): string | number {
/...
}

let input = getUserInput()

// Assert that input is a string
formatInput(input as string) (1)

// This 1is equivalent to
formatInput(<string>input) (2]

© We use a type assertion (as) to tell TypeScript that input is a string, not a
string | number as the types would have us believe. You might do this, for
example, if you want to quickly test out your formatInput function and you
know for sure that getUserInput returns a string for your test.

@ The legacy syntax for type assertions uses angle brackets. The two syntaxes are
functionally equivalent.

Prefer as syntax for type assertions over angle bracket (<>) syntax.
The former is unambiguous, but the latter can clash with TSX syn-
tax (see “ISX = JSX + TypeScript” on page 202). Use TSLint’s no-
angle-bracket-type-assertion rule to automatically enforce this
for your codebase.

Sometimes, two types might not be sufficiently related, so you can’t assert that one is
the other. To get around this, simply assert as any (remember from “Assignability”
on page 121 that any is assignable to anything), then spend a few minutes in the cor-
ner thinking about what you’ve done:

function addTolList(list: string[], item: string) {
/) ...
}

148 | Chapter 6: Advanced Types

http://bit.ly/2WEGGKe
http://bit.ly/2WEGGKe

addToList('this is really,' as any, 'really unsafe')

Clearly, type assertions are unsafe, and you should avoid using them when possible.

Nonnull Assertions

For the special case of nullable types—that is, a type that’s T | nullor T | null |
undefined—TypeScript has special syntax for asserting that a value of that typeisa T,
and not null or undefined. This comes up in a few places.

For example, say we’ve written a framework for showing and hiding dialogs in a web
app. Each dialog gets a unique ID, which we use to get a reference to the dialog’s
DOM node. Once a dialog is removed from the DOM, we delete its ID, indicating
that it’s no longer live in the DOM:

type Dialog = {
id?: string

}

function closeDialog(dialog: Dialog) {
if (!dialog.id) { ©@

return
}
setTimeout(() => (2]
removeFromDOM(
dialog,
document.getElementById(dialog.id) // Error TS2345: Argument of type
// 'string | undefined' is not assignable
// to parameter of type 'string'. (3]
)
)
}

function removeFromDOM(dialog: Dialog, element: Element) {
element.parentNode.removeChild(element) // Error TS2531: Object is possibly

/) null'. @
delete dialog.id

}

O If the dialog is already deleted (so it has no id), we return early.

©® We remove the dialog from the DOM on the next turn of the event loop, so that
any other code that depends on dialog has a chance to finish running.

© Because we're inside the arrow function, we’re now in a new scope. TypeScript
doesn’t know if some code mutated dialog between @ and ©, so it invalidates
the refinement we made in @. On top of that, while we know that if dialog.id is
defined then an element with that ID definitely exists in the DOM (because we

Escape Hatches | 149

designed our framework that way), all TypeScript knows is that calling docu
ment.getElementById returns an HTMLElement | null. We know it’ll always be
a nonnullable HTMLElement, but TypeScript doesn’t know that—it only knows
about the types we gave it.

O Similarly, while we know that the dialog is definitely in the DOM and it definitely
has a parent DOM node, all TypeScript knows is that the type of ele
ment.parentNode is Node | null.

One way to fix this is to add a bunch of if (_ === null) checks everywhere. While
that’s the right way to do it if you're unsure if something is null or not, TypeScript
comes with special syntax for when you'’re sure it’s not null | undefined:

type Dialog = {
1d?: string

}

function closeDialog(dialog: Dialog) {
if (!dialog.id) {
return
}
setTimeout(() =>
removeFromDOM(
dialog,
document.getElementById(dialog.id!)!
)
)
}

function removeFromDOM(dialog: Dialog, element: Element) {
element.parentNode!.removeChild(element)
delete dialog.id

}

Notice the sprinkling of nonnull assertion operators (!) that tell TypeScript that
we’re sure dialog.id, the result of our document.getElementById call, and ele
ment.parentNode are defined. When a nonnull assertion follows a type that might be
null or undefined, TypeScript will assume that the type is defined: T | null | unde
fined becomes a T, number | string | null becomes number | string, and so on.

When you find yourself using nonnull assertions a lot, it’s often a sign that you
should refactor your code. For example, we could get rid of an assertion by splitting
Dialog into a union of two types:

type VisibleDialog = {id: string}

type DestroyedDialog = {}
type Dialog = VisibleDialog | DestroyedDialog

We can then update closeDialog to take advantage of the union:

150 | Chapter 6: Advanced Types

function closeDialog(dialog: Dialog) {
if (!('id' in dialog)) {
return
}
setTimeout(() =>
removeFromDOM(
dialog,
document.getElementById(dialog.id)!
)
)
}

function removeFromDOM(dialog: VisibleDialog, element: Element) {
element.parentNode!.removeChild(element)
delete dialog.id

}

After we check that dialog has an id property defined—implying that it’s a Visti
bleDialog—even inside the arrow function TypeScript knows that the reference to
dialog hasn’t changed: the dialog inside the arrow function is the same dialog out-

side the function, so the refinement carries over instead of being invalidated like it
was in the last example.

Definite Assignment Assertions

TypeScript has special syntax for the special case of nonnull assertions for definite
assignment checks (as a reminder, a definite assignment check is TypeScript’s way of
making sure that by the time you use a variable, that variable has been assigned a
value). For example:

let userlId: string

userld.toUpperCase() // Error TS2454: Variable 'userId' is used
// before being assigned.
Clearly, TypeScript just did us a great service by catching this error. We declared the
variable userId, but forgot to assign a value to it before we tried to convert it to
uppercase. This would have been a runtime error if TypeScript hadn’t noticed it!

But, what if our code looks more like this?

let userlId: string
fetchUser()

userld.toUpperCase() // Error TS2454: Variable 'userId' is used
// before being assigned.

function fetchUser() {
userId = globalCache.get('userId’)
}

Escape Hatches | 151

We happen to have the world’s greatest cache, and when we query this cache we get a
cache hit 100% of of the time. So after the call to fetchUser, userId is guaranteed to
be defined. But TypeScript isn’t able to statically detect that, so it still throws the same
error as before. We can use a definite assignment assertion to tell TypeScript that
userId will definitely be assigned by the time we read it (notice the exclamation
mark):

let userId!: string
fetchUser()

userId.toUpperCase() // OK

function fetchUser() {
userId = globalCache.get('userId')
}

As with type assertions and nonnull assertions, if you find yourself using definite
assignment assertions often, you might be doing something wrong.

Simulating Nominal Types

By this point in the book, if I were to shake you awake at three in the morning and
yell “IS TYPESCRIPT’S TYPE SYSTEM STRUCTURAL OR NOMINAL?!” you'd yell
back “OF COURSE IT’S STRUCTURAL! NOW GET OUT OF MY HOUSE ORT'LL
CALL THE POLICE!” That would be a fair response to me breaking in for early
morning type system questions.

Laws aside, the reality is that sometimes nominal types really are useful. For example,
let’s say you have a few ID types in your application, representing unique ways of
addressing the different types of objects in your system:

type CompanyID = string

type OrderID = string

type UserID = string

type ID = CompanyID | OrderID | UserID
A value of type UserID might be a simple hash that looks like "d21b1dbf". So while
you might alias it as UserID, under the hood it’s of course just a regular string. A
function that takes a User ID might look like this:

function queryForUser(id: UserID) {
Y72
}
This is great documentation, and it helps other engineers on your team know for sure
which type of ID they should pass in. But since UserID is just an alias for string, this
approach does little to prevent bugs. An engineer might accidentally pass in the
wrong type of ID, and the types system will be none the wiser!

152 | Chapter 6: Advanced Types

let id: CompanyID = 'b4843361'

queryForUser(id) // OK (!!!)
This is where nominal types come in handy.” While TypeScript doesn’t support nomi-
nal types out of the box, we can simulate them with a technique called type branding.
Type branding takes a little work to set up, and using it in TypeScript is not as
smooth an experience as it is in languages that have built-in support for nominal type
aliases. That said, branded types can make your program significantly safer.

Depending on your application and the size of your engineering
team (the larger your team, the more likely this technique will
come in handy for preventing mistakes), you may not need to do
this.

Start by creating a synthetic type brand for each of your nominal types:

type CompanyID = string & {readonly brand: unique symbol}
type OrderID = string & {readonly brand: unique symbol}
type UserID = string & {readonly brand: unique symbol}
type ID = CompanyID | OrderID | UserID

An intersection of string and {readonly brand: unique symbol} is, of course, gib-
berish. I chose it because it’s impossible to naturally construct that type, and the only
way to create a value of that type is with an assertion. That’s the crucial property of
branded types: they make it hard to accidentally use a wrong type in their place. I
used unique symbol as the “brand” because it’s one of two truly nominal kinds of
types in TypeScript (the other is enum); I took an intersection of that brand with
string so that we can assert that a given string is a given branded type.

We now need a way to create values of type CompanyID, OrderID, and UserID. To do
that, we’ll use the companion object pattern (introduced in “Companion Object Pat-
tern” on page 140). We'll make a constructor for each branded type, using a type
assertion to construct a value of each of our gibberish types:

function CompanyID(id: string) {
return i1d as CompanyID

}

function OrderID(id: string) {
return id as OrderID

}

function UserID(id: string) {
return id as UserID

}

5 In some languages, these are also called opaque types.

Simulating Nominal Types | 153

Finally, let’s see what it feels like to use these types:

function queryForUser(id: UserID) {
/) ...
}

let companyId = CompanyID('8a6076cf")
let orderId = OrderID('9994accl')
let userId = UserID('d21bidbf"')

queryForUser (userId) // OK
queryForUser(companyld) // Error TS2345: Argument of type 'CompanyID' is not
// assignable to parameter of type 'UserID’.
What’s nice about this approach is how little runtime overhead it has: just one func-
tion call per ID construction, which will probably be inlined by your JavaScript VM
anyway. At runtime, each ID is simply a string—the brand is purely a compile-time
construct.

Again, for most applications this approach is overkill. But for large applications, and
when working with easily confused types like different kinds of IDs, branded types
can be a killer safety feature.

Safely Extending the Prototype

When building JavaScript applications, tradition holds that it’s unsafe to extend pro-
totypes for built-in types. This rule of thumb goes back to before the days of jQuery,
when wise JavaScript mages built libraries like MooTools that extended and over-
wrote built-in prototype methods directly. But when too many mages augmented
prototypes at once, conflicts arose. And without static type systems, you'd only find
out about these conflicts from angry users at runtime.

If you’re not coming from JavaScript, you may be surprised to learn that in Java-
Script, you can modify any built-in method (like [].push, 'abc'.toUpperCase, or
Object.assign) at runtime. Because it’s such a dynamic language, JavaScript gives
you direct access to prototypes for every built-in object—Array.prototype, Func
tion.prototype, Object.prototype, and so on.

While back in the day extending these prototypes was unsafe, if your code is covered
by a static type system like TypeScript, then you can now do it safely.®

6 There are other reasons why you might want to avoid extending the prototype, like code portability, making
your dependency graphs more explicit, or improving performance by only loading those methods that you
actually use. However, safety is no longer one of those reasons.

154 | Chapter 6: Advanced Types

https://mootools.net

For example, we’ll add a zip method to the Array prototype. It takes two things to
safely extend the prototype. First, in a .ts file (say, zip.ts), we extend the type of
Array’s prototype; then, we augment the prototype with our new zip method:

// Tell TypeScript about .zip
interface Array<T> { @

zip<U>(list: U[]): [T, U][]
}

// Implement .zip
Array.prototype.zip = function<T, U>(
this: T[], ©
list: U[]
) [T, VIl {
return this.map((v, k) =>
tuple(v, list[k]) ©
)
}

O We start by telling TypeScript that we’re adding zip to Array. We take advantage
of interface merging (“Declaration Merging” on page 93) to augment the global
Array<T> interface, adding our own zip method to the already globally defined
interface.

Since our file doesn’t have any explicit imports or exports—meaning it’s in script
mode, as described in “Module Mode Versus Script Mode” on page 222—we were
able to augment the global Array interface directly by declaring an interface with
the exact same name as the existing Array<T> interface, and letting TypeScript
take care of merging the two for us. If our file were in module mode (which
might be the case if, for example, we needed to import something for our zip
implementation), we’d have to wrap our global extension in a declare global
type declaration (see “T'ype Declarations” on page 230):

declare global {
interface Array<T> {
zip<U>(list: U[]): [T, UI[]
}
}

global is a special namespace containing all the globally defined values (any-
thing that you can use in a module-mode file without importing it first; see
Chapter 10) that lets you augment names in the global scope from a file in mod-
ule mode.

©® We then implement the zip method on Array’s prototype. We use a this type so
that TypeScript correctly infers the T type of the array we’re calling . zip on.

Safely Extending the Prototype | 155

© Because TypeScript infers the mapping function’s return type as (T | U)[]
(TypeScript isn’t smart enough to realize that it’s in fact always a tuple with T in
the zeroth index and U in the first), we use our tuple utility (from “Improving
Type Inference for Tuples” on page 141) to create a tuple type without resorting
to a type assertion.

Notice that when we declare interface Array<T> we augment the global Array
namespace for our whole TypeScript project—meaning even if we don’t import zip.ts
from our file, TypeScript will think that [].zip is available. But in order to augment
Array.prototype, we have to be sure that whatever file uses zip loads zip.ts first, in
order to install the zip method on Array.prototype. How do we make sure that any
file that uses zip loads zip.ts first?

Easy: we update our tsconfig.json to explicitly exclude zip.ts from our project, so that
consumers have to explicitly import it first:

{

exclude: [

".[zip.ts"

]

}
Now we can use zip as we please, with total safety:

import './zip'
[1, 2, 3]

.map(n => n * 2) // number[]

.zip(['a', 'b', 'c']) // [number, string][]

Running this gives us the result of first mapping, then zipping the array:

[2, 'a'l,
[4, 'b'1,
6, 'c'l
1
Summary

In this chapter we covered the most advanced features of TypeScript’s type system:
from the ins and outs of variance to flow-based type inference, refinement, type wid-
ening, totality, and mapped and conditional types. We then derived a few advanced
patterns for working with types: type branding to simulate nominal types, taking
advantage of the distributive property of conditional types to operate on types at the
type level, and safely extending prototypes.

156 | Chapter 6: Advanced Types

If you didn’t understand or don’t remember everything, that's OK—come back to
this chapter later, and use it as a reference when you’re struggling with how to
express something more safely.

Exercises

1. For each of the following pairs of types, decide if the first type is assignable to the
second type, and why or why not. Think about these in terms of subtyping and
variance, and refer to the rules at the start of the chapter if you're unsure (if
you're still unsure, just type it into your code editor to check!):

a.

=3

/& 0

—-

[

S L

1 and number

number and 1

string and number | string

boolean and number

number[] and (number | string)[]

(number | string)[] and number[]

{a: true} and {a: boolean}

{a: {b: [string]}}and {a: {b: [number | string]}}

(a: number) => stringand (b: number) => string

(a: number) => stringand (a: string) => string

(a: number | string) => stringand (a: string) => string

E.X (defined in an enum enum E {X = 'X'}) and F.X (defined in an enum

enum F {X = 'X'})

2. If you have an object type type 0 = {a: {b: {c: string}}}, what’s the type of
keyof 0? What aboutO['a']['b']?

3. Write an Exclusive<T, U> type that computes the types that are in either T or U,
but not both. For example, Exclusive<l | 2 | 3, 2 | 3 | 4> should resolve
to 1 | 4. Write out step by step how the typechecker evaluates Exclusive<1 |
2, 2| 4>

4. Rewrite the example (from “Definite Assignment Assertions” on page 151) to
avoid the definite assignment assertion.

Exercises | 157

CHAPTER7
Handling Errors

A physicist, a structural engineer, and a programmer were in a car driving over a steep
alpine pass when the brakes failed. The car went faster and faster, they were struggling
to get around the corners, and once or twice the flimsy crash barrier saved them from
tumbling down the side of the mountain. They were sure they were all going to die,
when suddenly they spotted an escape lane. They pulled into the escape lane, and came
safely to a halt.

The physicist said, “We need to model the friction in the brake pads and the resultant
temperature rise, and see if we can work out why they failed.”

The structural engineer said, “I think I've got a few spanners in the back. I'll take a look
and see if I can work out what’s wrong.”

The programmer said, “Why don’t we see if it’s reproducible?”

—Anonymous

TypeScript does everything it can to move runtime exceptions to compile time: from
the rich type system it provides to the powerful static and symbolic analyses it per-
forms, it works hard so you don’t have to spend your Friday nights debugging mis-
spelled variables and null pointer exceptions (and so your on-call coworker doesn’t
have to be late to their great aunt’s birthday party because of it).

Unfortunately, regardless of what language you write in, sometimes runtime excep-
tions do sneak through. TypeScript is really good about preventing them, but even it
can’t prevent things like network and filesystem failures, errors parsing user input,
stack overflows, and out of memory errors. What it does do—thanks to its lush type
system—is give you lots of ways to deal with the runtime errors that end up making it
through.

159

In this chapter I'll walk you through the most common patterns for representing and
handling errors in TypeScript:

Returning null
Throwing exceptions
Returning exceptions

The Option type

Which mechanism you use is up to you, and depends on your application. As I cover
each error-handling mechanism, I'll talk about its pros and cons so you can make the
right choice for yourself.

Returning null

We’re going to write a program that asks a user for their birthday, which we will then
parse into a Date object:

function ask() {
return prompt('When is your birthday?')

}

function parse(birthday: string): Date {
return new Date(birthday)

}

let date = parse(ask())
console.info('Date is', date.toISOString())

We should probably validate the date the user entered—it’s just a text prompt, after

all:

/) ...
function parse(birthday: string): Date | null {
let date = new Date(birthday)
if (!isvalid(date)) {
return null
}

return date

}

// Checks if the given date is valid
function isValid(date: Date) {
return Object.prototype.toString.call(date) === '[object Date]'
&& !Number.isNaN(date.getTime())
}

When we consume this, we’re forced to first check if the result is null before we can
use it:

160

| Chapter7: Handling Errors

/.
let date = parse(ask())

if (date) {

console.info('Date is', date.toISOString())
} else {

console.error('Error parsing date for some reason')
}

Returning null is the most lightweight way to handle errors in a typesafe way. Valid
user input results in a Date, invalid user input in a null, and the type system checks
for us that we handled both.

However, we lose some information doing it this way parse doesn’t tell us why
exactly the operation failed, which stinks for whatever engineer has to comb through
our logs to debug this, as well as the user who gets a pop up saying that there was an
“Error parsing date for some reason” rather than a specific, actionable error like
“Enter a date in the form YYYY/MM/DD.”

Returning null is also difficult to compose: having to check for null after every oper-
ation can become verbose as you start to nest and chain operations.

Throwing Exceptions

Let’s throw an exception instead of returning null, so that we can handle specific fail-
ure modes and have some metadata about the failure so we can debug it more easily.

// ...
function parse(birthday: string): Date {
let date = new Date(birthday)
if (!isValid(date)) {
throw new RangeError('Enter a date in the form YYYY/MM/DD')

}

return date

}

Now when we consume this code, we need to be careful to catch the exception so that
we can handle it gracefully without crashing our whole application:

// ...
try {

let date = parse(ask())

console.info('Date is', date.toISOString())
} catch (e) {

console.error(e.message)

}

We probably want to be careful to rethrow other exceptions, so we don’t silently
swallow every possible error:

/] ...
try {

Throwing Exceptions | 161

let date = parse(ask())
console.info('Date is', date.toISOString())
} catch (e) {
if (e instanceof RangeError) {
console.error(e.message)
} else {
throw e
}
}

We might want to subclass the error for something more specific, so that when
another engineer changes parse or ask to throw other RangeErrors, we can differen-
tiate between our error and the one they added:

/] ...

// Custom error types
class InvalidDateFormatError extends RangeError {}
class DateIsInTheFutureError extends RangeError {}

function parse(birthday: string): Date {
let date = new Date(birthday)
if (!isValid(date)) {
throw new InvalidDateFormatError('Enter a date in the form YYYY/MM/DD')
}
if (date.getTime() > Date.now()) {
throw new DateIsInTheFutureError('Are you a timelord?')
}
return date

}

try {
let date = parse(ask())
console.info('Date is', date.toISOString())
} catch (e) {
if (e instanceof InvalidDateFormatError) {
console.error(e.message)
} else if (e instanceof DateIsInTheFutureError) {
console.info(e.message)
} else {
throw e
}
}

Looking good. We can now do more than just signal that something failed: we can
use a custom error to indicate why it failed. These errors might come in handy when
combing through our server logs to debug an issue, or we can map them to specific
error dialogs to give our users actionable feedback about what they did wrong and
how they can fix it. We can also effectively chain and nest operations by wrapping

162 | Chapter7: Handling Errors

any number of operations in a single try/catch (we don’t have to check each opera-
tion for failure, like we did when returning null).

What does it feel like to use this code? Say the big try/catch is in one file, and the
rest of the code is in a library being imported from somewhere else. How would an
engineer know to catch those specific types of errors (InvalidDateFormatError and
DateIsInTheFutureError), or to even just check for a regular old RangeError?
(Remember that TypeScript doesn’t encode exceptions as part of a function’s signa-

ture.) We could indicate it in our function’s name (parseThrows), or include it in a
docblock:

/**
* @throws {InvalidDateFormatError} The user entered their birthday incorrectly.
* @throws {DateIsInTheFutureError} The user entered a birthday in the future.
*/

function parse(birthday: string): Date {
/) ...

But in practice, an engineer probably wouldn’t wrap this code in a try/catch and
check for exceptions at all, because engineers are lazy (at least, I am), and the type
system isn’t telling them that they missed a case and should handle it. Sometimes,
though—Ilike in this example—errors are so expected that downstream code really
should handle them, lest they cause the program to crash.

How else can we indicate to consumers that they should handle both the success and
the error cases?

Returning Exceptions

TypeScript isn’t Java, and doesn’t support throws clauses.! But we can achieve some-
thing similar with union types:

/) ...
function parse(
birthday: string
): Date | InvalidDateFormatError | DateIsInTheFutureError {
let date = new Date(birthday)
if (!isValid(date)) {
return new InvalidDateFormatError('Enter a date in the form YYYY/MM/DD')
}
if (date.getTime() > Date.now()) {
return new DateIsInTheFutureError('Are you a timelord?')

}

1 If you haven’t worked with Java before, a throws clause indicates which types of runtime exceptions a method
might throw, so a consumer has to handle those exceptions.

Returning Exceptions | 163

return date

}

Now a consumer is forced to handle all three cases—InvalidDateFormatError,
DateIsInTheFutureError, and successful parse—or they’ll get a TypeError at com-
pile time:
Y/
let result = parse(ask()) // Either a date or an error
if (result instanceof InvalidDateFormatError) {
console.error(result.message)
} else if (result instanceof DateIsInTheFutureError) {
console.info(result.message)
} else {

console.info('Date is', result.toISOString())
}

Here, we successfully took advantage of TypeScript’s type system to:

+ Encode likely exceptions in parse’s signature.
» Communicate to consumers which specific exceptions might be thrown.

o Force consumers to handle (or rethrow) each of the exceptions.

A lazy consumer can avoid handling each error individually. But they have to do so
explicitly:
/) ...
let result = parse(ask()) // Either a date or an error
if (result instanceof Error) {
console.error(result.message)
} else {
console.info('Date is', result.toISOString())

}

Of course, your program might still crash due to an out of memory error or a stack
overflow exception, but there’s not much we can do to recover from those.

This approach is lightweight and doesn’t require fancy data structures, but it’s also
informative enough that consumers will know what type of failure an error repre-
sents and what to search for to find more information.

A downside is that chaining and nesting error-giving operations can quickly get ver-
bose. If a function returns T | Errori, then any function that consumes that func-
tion has two options:

1. Explicitly handle Errori.

2. Handle T (the success case) and pass Errori through to its consumers to handle.
If you do this enough, the list of possible errors that a consumer has to handle
grows quickly:

164 | Chapter7: Handling Errors

function x(): T | Errorl {

/) ...
}
function y(): U | Errorl | Error2 {
let a = x()
if (a instanceof Error) {
return a
}
// Do something with a
}
function z(): U | Errorl | Error2 | Error3 {
let a = y()
if (a instanceof Error) {
return a
}
// Do something with a
}

This approach is verbose, but gives us excellent safety.

The Option Type

You can also describe exceptions using special-purpose data types. This approach has
some downsides compared to returning unions of values and errors (notably, intero-
perability with code that doesn’t use these data types), but it does give you the ability
to chain operations over possibly errored computations. Three of the most popular
options (heh!) are the Try, Option,? and Either types. In this chapter, we’ll just cover
the Option type;® the other two are similar in spirit.

Note that the Try, Option, and Either data types don’t come built
into JavaScript environments the same way that Array, Error, Map,
or Promise are. If you want to use these types, you’ll have to find
implementations on NPM, or write them yourself.

The Option type comes to us from languages like Haskell, OCaml, Scala, and Rust.
The idea is that instead of returning a value, you return a container that may or may
not have a value in it. The container has a few methods defined on it, which lets you
chain operations even though there may not actually be a value inside. The container
can be pretty much any data structure, so long as it can hold a value. For example,
you could use an array as the container:

2 Also called the Maybe type.

3 Google “try type” or “either type” for more information on those types.

The OptionType | 165

// ...
function parse(birthday: string): Date[] {
let date = new Date(birthday)
if (!isValid(date)) {
return []

}

return [date]

}

let date = parse(ask())
date
.map(_ => _.toIS0String())
.forEach(_ => console.info('Date is', _))

As you may have noticed, a downside of Option is that, much like
our original null-returning approach, it doesn’t tell the consumer
why the error happened; it just signals that something went wrong.

Where Option really shines is when you need to do multiple operations in a row,
each of which might fail.

For example, before we assumed that prompt always succeeds, and parse might fail.
But what if prompt can fail too? That might happen if the user cancelled out of the
birthday prompt—that’s an error and we shouldn’t continue our computation. We
can model that with... another Option!

function ask() {
let result = prompt('When is your birthday?')
if (result === null) {
return []
}
return [result]
}
/) ...
ask()
.map(parse)
.map(date => date.toISOString())
// Error TS2339: Property 'toISOString' does not exist on type 'Date[]'.
.forEach(date => console.info('Date is', date))

Yikes—that didn’t work. Since we mapped an array of Dates (Date[]) to an array of
arrays of Dates (Date[][]), we need to flatten it back to an array of Dates before we
can keep going:

flatten(ask()

.map(parse))
.map(date => date.toISOString())
.forEach(date => console.info('Date is', date))

166 | Chapter7: Handling Errors

// Flattens an array of arrays into an array
function flatten<T>(array: T[1[1): T[] {
return Array.prototype.concat.apply([], array)

}
This is all getting a bit unwieldy. Because the types don’t tell you much (everything is
a regular array), it’s hard to understand what’s going on in that code at a glance. To
fix this, let’s wrap what we’re doing—putting a value in a container, exposing a way
to operate on that value, and exposing a way to get a result back from the container—
in a special data type that helps document our approach. Once we’re done imple-
menting it, you’ll be able to use the data type like this:
ask()
.flatMap(parse)
.flatMap(date => new Some(date.toISOString()))

.flatMap(date => new Some('Date is ' + date))
.getOrElse('Error parsing date for some reason')

We'll define our Option type like this:

« Option is an interface that’s implemented by two classes: Some<T> and None (see
Figure 7-1). They are the two kinds of Options. Some<T> is an Option that con-
tains a value of type T, and None is an Option without a value, which represents a
failure.

« Option is both a type and a function. Its type is an interface that simply serves as
the supertype of Some and None. Its function is the way to create a new value of
type Option.

Option <T>

Some <T> None

Figure 7-1. Option<T> has two cases: Some<T> and None

Let’s start by sketching out the types:

interface Option<T> {} (1)
class Some<T> implements Option<T> { (2]
constructor(private value: T) {}

}

class None implements Option<never> {} ©

Option<T> is an interface that we’ll share between Some<T> and None.

Some<T> represents a successful operation that resulted in a value. Like the array
we used before, Some<T> is a container for that value.

The OptionType | 167

© None represents an operation that failed, and does not contain a value.

These types are equivalent to the following in our array-based Option
implementation:

e Option<T>is [T] | [].
e Some<T>is [T].

e Noneis[].

What can you do with an Option? For our bare-bones implementation, we’ll define
just two operations:

flatMap
A way to chain operations on a possibly empty Option

getOrElse
A way to retrieve a value from an Option

We'll start by defining these operations on our Option interface, meaning that
Some<T> and None will need to provide concrete implementations for them:

interface Option<T> {
flatMap<U>(f: (value: T) => Option<U>): Option<U>
getOrElse(value: T): T

}

class Some<T> extends Option<T> {
constructor(private value: T) {}

}

class None extends Option<never> {}

That is:

o flatMap takes a function f that takes a value of type T (the type of the value the
Option contains) and returns an Option of U. flatMap calls f with the Option’s
value, and returns a new Option<U>.

o getOrElse takes a default value of the same type T as the value that the Option
contains, and returns either that default value (if the Option is an empty None) or
the Option’s value (if the Option is a Some<T>).

Guided by the types, let’s implement these methods for Some<T> and None:

interface Option<T> {
flatMap<U>(f: (value: T) => Option<U>): Option<U>
getOrElse(value: T): T

}

class Some<T> implements Option<T> {
constructor(private value: T) {}

168 | Chapter7: Handling Errors

flatMap<U>(f: (value: T) => Option<U>): Option<U> { (1)
return f(this.value)

}
getOrElse(): T { (2]
return this.value

}
}
class None implements Option<never> {
flatMap<U>(): Option<U> { ©
return this

}
getOrElse<U>(value: U): U { (4)
return value

}
}

© When we call flatMap on a Some<T>, we pass in a function f, which flatMap calls
with the Some<T>’s value to yield a new Option of a new type.

Calling getOrElse on a Some<T> just returns the Some<T>’s value.

Since a None represents a failed computation, calling flatMap on it always returns
a None: once a computation fails, we can’t recover from that failure (at least not
with our particular Option implementation).

O (Calling getOrElse on a None always returns the value we passed into getOrElse.

We can actually go a step beyond this naive implementation, and specify our types
better. If all you know is that you have an Option and a function from T to
Option<U>, then an Option<T> always flatMaps to an Option<U>. But when you
know you have a Some<T> or a None, you can be more specific.

Table 7-1 shows the result types we want when calling flatMap on the two types of
Options.

Table 7-1. Result of calling .flatMap(f) on Some<T> and None

From Some<T> From None

To Some<U> Some<U> None

To None None None

That is, we know that mapping over a None always results in a None, and mapping
over a Some<T> results in either a Some<T> or a None, depending on what calling f
returns. We'll exploit this and use overloaded signatures to give flatMap more spe-
cific types:

The OptionType | 169

interface Option<T> {
flatMap<U>(f: (value: T) => None): None
flatMap<U>(f: (value: T) => Option<U>): Option<U>
getOrElse(value: T): T
}
class Some<T> implements Option<T> {
constructor(private value: T) {}
flatMap<U>(f: (value: T) => None): None
flatMap<U>(f: (value: T) => Some<U>): Some<U>
flatMap<U>(f: (value: T) => Option<U>): Option<U> {
return f(this.value)
}
getOrElse(): T {
return this.value
}
}
class None implements Option<never> {
flatMap(): None {
return this
}
getOrElse<U>(value: U): U {
return value
}
}

We're almost done. All that’s left to do is implement the Option function, which we’ll
use to create new Options. We already implemented the Option type as an interface;
now we’re going to implement a function with the same name (remember that Type-
Script has two separate namespaces for types and for values) as a way to create a new
Option, similar to what we did in “Companion Object Pattern” on page 140. If a user
passes in null or undefined, we’ll give them back a None; otherwise, we’ll return a
Some. Once again, we’ll overload the signature to do that:

function Option<T>(value: null | undefined): None (1)
function Option<T>(value: T): Some<T> (2]
function Option<T>(value: T): Option<T> { (3]
if (value == null) {
return new None

}

return new Some(value)

}
If the consumer calls Option with null or undefined, we return a None.
Otherwise, we return a Some<T>, where T is the type of value the user passed in.

Finally, we manually calculate an upper bound for the two overloaded signatures.
The upper bound of null | undefined and Tis T | null | undefined, which

170

| Chapter7: Handling Errors

simplifies to T. The upper bound of None and Some<T> is None | Some<T>, which
we already have a name for: Option<T>.

That’s it. We've derived a fully working, minimal Option type that lets us safely per-
form operations over maybe-null values. We use it like this:

let result = Option(6) // Some<number>
.flatMap(n => Option(n * 3)) // Some<number>
.flatMap(n => new None) // None
.getOrElse(7) /7

Getting back to our birthday prompt example, our code now works as we’d expect:

ask() // Option<string>
.flatMap(parse) // Option<Date>
.flatMap(date => new Some(date.toISOString())) // Option<string>
.flatMap(date => new Some('Date is ' + date)) // Option<string>
.getOrElse('Error parsing date for some reason') // string

Options are a powerful way to work with series of operations that may or may not
succeed. They give you excellent type safety, and signal to consumers via the type sys-
tem that a given operation might fail.

However, Options aren’t without their downsides. They signal failure with a None, so
you don’t get more details about what failed and why. They also don’t interoperate
with code that doesn’t use Options (youll have to explicitly wrap those APIs to return
Options).

Still, what you did there was pretty neat. The overloads you added let you do some-
thing that you can’t express in most languages, even those that rely on the Option
type for working with nullable values. By restricting Option to just Some or None
where possible via overloaded call signatures, you made your code a whole lot safer,
and a whole lot of Haskell programmers very jealous. Now go grab yourself a cold
one—you deserve it.

Summary

In this chapter we covered the different ways to signal and recover from errors in
TypeScript: returning null, throwing exceptions, returning exceptions, and the
Option type. You now have an arsenal of approaches for safely working with things
that might fail. Which approach you choose is up to you, and depends on:

o Whether you want to simply signal that something failed (null, Option), or give
more information about why it failed (throwing and returning exceptions).

o Whether you want to force consumers to explicitly handle every possible excep-
tion (returning exceptions), or write less error-handling boilerplate (throwing
exceptions).

Summary | 171

o Whether you need a way to compose errors (Option), or simply handle them
when they come up (null, exceptions).

Exercises

1. Design a way to handle errors for the following API, using one of the patterns
from this chapter. In this API, every operation might fail—feel free to update the
APP’s method signatures to allow for failures (or don’t, if you prefer). Think
about how you might perform a sequence of actions while handling errors that
come up (e.g., getting the logged-in user’s ID, then getting their list of friends,
then getting each friend’s name):

class API {
getlLoggedInUserID(): UserID
getFriendIDs(userID: UserID): UserID[]
getUserName(userID: UserID): string

}

172 | Chapter7: Handling Errors

CHAPTER 8

Asynchronous Programming,
Concurrency, and Parallelism

So far in this book, we’ve dealt mostly with synchronous programs—programs that
take some input, do some stuff, and run to completion in a single pass. But the really
interesting programs—the building blocks of real-world applications that make net-
work requests, interact with databases and filesystems, respond to user interaction,
offload CPU-intensive work to separate threads—all make use of asynchronous APIs
like callbacks, promises, and streams.

These asynchronous tasks are where JavaScript really shines and sets itself apart from
other mainstream multithreaded languages like Java and C++. Popular JavaScript
engines like V8 and SpiderMonkey do with one thread what traditionally required
many threads, by being clever and multiplexing tasks over a single thread while other
tasks are idling. This event loop is the standard threading model for JavaScript
engines, and the one that we’ll assume you’re using. From an end user’s perspective,
it usually doesn’t matter whether your engine uses an event looped model or a multi-
threaded one, but it does affect the explanations I'll be giving for how things work
and why we design things the way we do.

This event-looped concurrency model is how JavaScript avoids all the common foot-
guns endemic to multithreaded programming, along with the overhead of synchron-
ized data types, mutexes, semaphores, and all the other bits of multithreading jargon.
And when you do run JavaScript over multiple threads, it’s rare to use shared mem-
ory; the typical pattern is to use message passing and to serialize data when sending it
between threads. It’s a design reminiscent of Erlang, actor systems, and other purely
functional concurrency models, and is what makes multithreaded programming in
JavaScript foolproof.

173

That said, asynchronous programming does make programs harder to reason about,
because you can no longer mentally trace through a program line by line; you have to
know when to pause and move execution elsewhere, and when to resume again.

TypeScript gives us the tools to reason about asynchronous programs: types let us
trace through asynchronous work, and built-in support for async/await let us apply
familiar synchronous thinking to asynchronous programs. We can also use Type-
Script to specify strict message-passing protocols for multithreaded programs (it’s a
lot simpler than it sounds). If all else fails, TypeScript can give you a back rub when
your coworker’s asynchronous code gets too complicated and you have to stay late
debugging it (behind a compiler flag, of course).

But before we get to working with asynchronous programs, let’s talk a bit more about
how asynchronicity actually works in modern JavaScript engines—how is it that we
can suspend and resume execution on what seems to be a single thread?

JavaScript’s Event Loop

Let’s start with an example. We'll set a couple of timers, one that fires after one milli-
second, and the other after two:

setTimeout(() => console.info('A'), 1)

setTimeout(() => console.info('B'), 2)
console.info('C")

Now, what will get logged to the console? Is it A, B, C?

If you’re a JavaScript programmer, you know intuitively the answer is no—the actual
firing order is C, A, then B. If you haven’t worked with JavaScript or TypeScript
before, this behavior might seem mysterious and unintuitive. In reality, it’s pretty
straightforward; it just doesn’t follow the same concurrency model as a sleep would
in C, or scheduling work in another thread would in Java.

At a high level, the JavaScript VM simulates concurrency like this (see Figure 8-1):

o The main JavaScript thread calls into native asynchronous APIs like
XMLHTTPRequest (for AJAX requests), setTimeout (for sleeping), readFile (for
reading a file from disk), and so on. These APIs are provided by the JavaScript
platform—you can’t create them yourself.!

« Once you call into a native asynchronous API, control returns to the main thread
and execution continues as if the API was never called.

1 Well, you can if you fork your browser platform, or build a C++ Node]S extension.

174 | Chapter 8: Asynchronous Programming, Concurrency, and Parallelism

 Once the asynchronous operation is done, the platform puts a task in its event

queue. Each thread has its own queue, used for relaying the results of asynchro-
nous operations back to the main thread. A task includes some metainformation
about the call, and a reference to a callback function from the main thread.

Whenever the main thread’s call stack is emptied, the platform will check its
event queue for pending tasks. If there’s a task waiting, the platform runs it; that
triggers a function call, and control returns to that main thread function. When
the call stack resulting from that function call is once again empty, the platform
again checks the event queue for tasks that are ready to go. This loop repeats
until both the call stack and the event queue are empty, and all asynchronous
native API calls have completed.

JS Thread Platform
setlimeout() o

IR * Seta
. Timeout

(all stack Event queue

Figure 8-1. JavaScript’s event loop: what happens when you call an asynchronous API

Armed with this information, it’s time to go back to our setTimeout example. Here’s
what happens:

1.

We call setTimeout, which calls a native timeout API with a reference to the call-
back we passed in and the argument 1.

. We call setTimeout again, which calls the native timeout API again with a refer-

ence to the second callback we passed in and the argument 2.

3. Welog C to the console.

. In the background, after at least one millisecond, our JavaScript platform adds a

task to its event queue indicating that the timeout for the first setTimeout has
elapsed, and that its callback is now ready to be called.

. After another millisecond, the platform adds a second task to the event queue for

the second setTimeout’s callback.

. Since the call stack is empty, after step 3 is done the platform looks at its event

queue to see if there are any tasks in it. If steps 4 and/or 5 are done, then it will
find some tasks. For each task, it will call the corresponding callback function.

JavaScript’sEventLoop | 175

7. Once both timers have elapsed and the event queue and call stack are empty, the
program exits.

That’s why we logged C, A, B, and not A, B, C. With this baseline out of the way, we can
start talking about how to type asynchronous code safely.

Working with Callbacks

The basic unit of the asynchronous JavaScript program is the callback. A callback is a
plain old function that you pass as an argument to another function. As in a synchro-
nous program, that other function invokes your function when it’s done doing what-
ever it does (making a network request, etc.). Callbacks invoked by asynchronous
code are just functions, and there’s no giveaway in their type signatures that they are
invoked asynchronously.

For Node]S native APIs like fs.readFile (used to asynchronously read the contents
of a file from disk) and dns.resolveCname (used to asynchronously resolve CNAME
records), the convention for callbacks is that the first parameter is an error or null,
and the second parameter is a result or null.

Here’s what readFile’s type signature looks like:

function readFile(
path: string,
options: {encoding: string, flag?: string},
callback: (err: Error | null, data: string | null) => void
): void
Notice that there’s nothing special about either readFile’s type or callback’s type:
both are regular JavaScript functions. Looking at the signature, there’s no indication
that readFile is asynchronous and that control will be passed to the next line right
after readFile is called (not waiting for its result).

To run the following example yourself, be sure to first install type
declarations for NodeJS:

npm install @types/node --save-dev

To learn more about third-party type declarations, jump ahead to
“JavaScript That Has Type Declarations on DefinitelyTyped” on
page 245.

176 | Chapter 8: Asynchronous Programming, Concurrency, and Parallelism

For example, let’s write a NodeJS program that reads and writes to your Apache
access log:

import * as fs from 'fs'

// Read data from an Apache server's access log
fs.readFile(
' /var/log/apache2/access_log',
{encoding: 'utf8'},
(error, data) => {
if (error) {
console.error('error reading!', error)
return

}

console.info('success reading!', data)
}
)

// Concurrently, write data to the same access log
fs.appendFile(
' /var /log/apache2/access_log',
'New access log entry',
error => {
if (error) {
console.error('error writing!', error)
}
b

Unless you’re a TypeScript or JavaScript engineer and are familiar with how Node]S’s
built-in APIs work, and know that theyre asynchronous and you can’t rely on the
order in which API calls appear in your code to dictate in which order filesystem
operations actually happen, you wouldn’t know that we just introduced a subtle bug
where the first readFile call may or may not return the access log with our new line
appended, depending on how busy the filesystem is at the time this code runs.

You might know that readFile is asynchronous from experience, or because you saw
it in NodeJS’s documentation, or because you know that NodeJS generally sticks to
the convention that if a function’s last argument is a function that takes two argu-
ments—an Error | nullanda T | null, in that order—then the function is usually
asynchronous, or because you ran across the hall to your neighbor for a cup of sugar
and ended up staying for a while to chit-chat, then you somehow got on the topic of
asynchronous programming in NodeJS and they told you about that time they had a
similar issue a couple of months ago and how they fixed it.

Whatever it was, the types certainly didn’t help you get there.

Besides the fact that you can’t use types to help guide your intuition about the nature
of a function’s synchronicity, callbacks are also difficult to sequence—which can lead
to what some people call “callback pyramids”™:

Working with Callbacks | 177

asynci((errl, resl) => {
if (res1) {
async2(resl, (err2, res2) => {
if (res2) {
async3(res2, (err3, res3) => {
/] ...
H
}
b
}
D
When sequencing operations, you usually want to continue down the chain when an
operation succeeds, bailing out as soon as you hit an error. With callbacks, you have
to do this manually; when you start accounting for synchronous errors too (e.g., the
Node]S convention is to throw when you give it a badly typed argument, rather than
calling your provided callback with an Error object), properly sequencing callbacks

can get error-prone.

And sequencing is just one kind of operation you might want to run over asynchro-
nous tasks—you might also want to run functions in parallel to know when they’re all
done, race them to get the result of the first one that finishes, and so on.

This is a limitation of plain old callbacks. Without more sophisticated abstractions
for operating on asynchronous tasks, working with multiple callbacks that depend on
each other in some way can get messy fast.

To recap:

« Use callbacks to do simple asynchronous tasks.

o While callbacks are great for modeling simple tasks, they quickly get hairy as you
try to do things with lots of asynchronous tasks.

Regaining Sanity with Promises

Luckily, we’re not the first programmers to run into these limitations. In this section
we’ll develop the concept of promises, which are a way to abstract over asynchronous
work so that we can compose it, sequence it, and so on. Even if you’ve worked with
promises or futures before, this will be a helpful exercise to understand how they
work.

178 | Chapter 8: Asynchronous Programming, Concurrency, and Parallelism

Most modern JavaScript platforms include built-in support for
promises. In this section we’ll develop our own partial Promise
implementation as an exercise, but in practice, you should use a
built-in or off-the-shelf implementation instead. Check whether or
not your favorite platform supports promises here, or jump ahead
to “lib” on page 254 to learn more about polyfilling promises on plat-
forms they’re not natively supported on.

We'll start with an example of how we want to use Promise to first append to a file,
then read back the result:

function appendAndReadPromise(path: string, data: string): Promise<string> {
return appendPromise(path, data)
.then(() => readPromise(path))
.catch(error => console.error(error))

}

Notice how there’s no callback pyramid here—we’ve effectively linearized what we
want to do into a single, easy-to-understand chain of asynchronous tasks. When one
succeeds, the next one runs; if it fails, we skip to the catch clause. With a callback-
based API, this might have looked more like:

function appendAndRead(
path: string,
data: string
cb: (error: Error | null, result: string | null) => void
) {
appendFile(path, data, error => {
if (error) {
return cb(error, null)
}
readFile(path, (error, result) => {
if (error) {
return cb(error, null)
}
cb(null, result)
b
b
}

Let’s design a Promise API that lets us do this.
Promise starts from humble beginnings:

class Promise {

}

A new Promise takes a function we call an executor, which the Promise implementa-
tion will call with two arguments, a resolve function and a reject function:

Regaining Sanity with Promises | 179

http://bit.ly/2uMxkk5

type Executor = (
resolve: Function,
reject: Function

) => void

class Promise {
constructor(f: Executor) {}

}
How do resolve and reject work? Let’s demonstrate it by thinking about how we

would manually wrap a callback-based NodeJS API like fs.readFile in a Promise-
based API. We use Node]JS’s built-in fs.readFile API like this:

import {readfFile} from 'fs'

readFile(path, (error, result) => {
/) ...
b

Wrapping that API in our Promise implementation, it now looks like this:

import {readFile} from 'fs'

function readFilePromise(path: string): Promise<string> {
return new Promise((resolve, reject) => {
readFile(path, (error, result) => {
if (error) {
reject(error)
} else {
resolve(result)
}
b
b
}

So, the type of resolve’s parameter depends on which specific API we’re using (in
this case, its parameter’s type would be whatever result’s type is), and the type of
reject’s parameter is always some type of Error. Back to our implementation, let’s
update our code by replacing our unsafe Function types with more specific types:
type Executor<T, E extends Error> = (
resolve: (result: T) => void,
reject: (error: E) => void
) => void
/] ..
Because we want to be able to get a sense for what type a Promise will resolve to just
by looking at the Promise (for example, Promise<number> represents an asynchro-
nous task that results in a number), we’ll make Promise generic, and pass its type
parameters down to the Executor type in its constructor:

180 | Chapter 8: Asynchronous Programming, Concurrency, and Parallelism

/) ...

class Promise<T, E extends Error> {
constructor(f: Executor<T, E>) {}

}
So far, so good. We defined Promise’s constructor API and understand what the
types at play are. Now, let’s think about chaining—what are the operations we want
to expose to run a sequence of Promises, propagate their results, and catch their
exceptions? If you look back to the initial code example at the start of this section,
that’s what then and catch are for. Let’s add them to our Promise type:

/) ...

class Promise<T, E extends Error> {
constructor(f: Executor<T, E>) {}
then<U, F extends Error>(g: (result: T) => Promise<U, F>): Promise<U, F>
catch<U, F extends Error>(g: (error: E) => Promise<U, F>): Promise<U, F>

}
then and catch are two ways to sequence Promises: then maps a successful result of a
Promise to a new Promise,” and catch recovers from a rejection by mapping an error
to a new Promise.

Using then looks like this:

let a: () => Promise<string, TypeError> = // ...
let b: (s: string) => Promise<number, never> = // ...
let c: () => Promise<boolean, RangeError> = // ...

a()
.then(b)
.catch(e => c()) // b won't error, so this is if a errors
.then(result => console.info('Done', result))
.catch(e => console.error('Error', e))

Because the type of b’s second type argument is never (meaning b will never throw
an error), the first catch clause will only get called if a errors. But notice that when
we use a Promise, we don’t have to care about the fact that a might throw but b won’t
—if a succeeds then we map the Promise to b, and otherwise we jump to the first
catch clause and map the Promise to c. If c succeeds then we log Done, and if it
rejects then we catch again. This mimics how regular old try/catch statements
work, and does for asynchronous tasks what try/catch does for synchronous ones
(see Figure 8-2).

2 Eagle-eyed readers will notice how similar this API is to the flatMap API we developed in “The Option Type”
on page 165. That similarity is no accident! Both Promise and Option are inspired by the Monad design pat-
tern popularized by the functional programming language Haskell.

Regaining Sanity with Promises | 181

@ b0 Resolved] "Done"
e
&
a) Rejected @e\
Ab@@ad v

« Rejected »| "Error’

Figure 8-2. The Promise state machine

We also have to handle the case of Promises that throw actual exceptions (as in,
throw Error('foo')). When we implement then and catch, we’ll do this by wrap-
ping code in try/catches and rejecting in the catch clause. This does have a few
implications, though. It means that:

1. Every Promise has the potential to reject, and we can’t statically check for this
(because TypeScript doesn’t support indicating in a function’s signature which
exceptions the function might throw).

2. A Promise won’t always be rejected with an Error. Because TypeScript has no
choice but to inherit JavaScript’s behavior, and in JavaScript when you throw you
can throw anything—a string, a function, an array, a Promise, and not necessar-
ily an Error—we can’t assume that a rejection will be a subtype of Error. It’s
unfortunate, but this is a sacrifice we’ll make in the name of not having to force
consumers to try/catch every promise chain (which might be spread across
multiple files or modules!).

Taking that into account, let’s loosen our Promise type a bit by not typing errors:

type Executor<T> = (
resolve: (result: T) => void,
reject: (error: unknown) => void
) => void

class Promise<T> {
constructor(f: Executor<T>) {}
then<U>(g: (result: T) => Promise<U>): Promise<U> {
Y72
}
catch<U>(g: (error: unknown) => Promise<U>): Promise<U> {
/) ...
}
}

We now have a fully baked Promise interface.

182 | Chapter 8: Asynchronous Programming, Concurrency, and Parallelism

I'll leave it as an exercise for you to hook it all together with implementations for
then and catch. The implementation for Promise is notoriously tricky to write cor-
rectly—if you’re ambitious and have a couple of hours free, head over to the ES2015
specification for a walkthrough of how Promise’s state machine should work under
the hood.

async and await

Promises are a really powerful abstraction for working with asynchronous code.
They’re such a popular pattern that they even have their own JavaScript (and there-
fore, TypeScript) syntax: async and await. This syntax lets you interact with asyn-
chronous operations the same way you do with synchronous ones.

Think of awatit as language-level syntax sugar for . then. When you
await a Promise, you have to do so in an async block. And instead
of .catch, you can wrap your awatit in a regular try/catch block.

Let’s say you have the following promise (we didn’t cover finally in the previous
section, but it behaves the way you think it would, firing after both then and catch
have a chance to fire):

function getUser() {
getUserID(18)
.then(user => getLocation(user))
.then(location => console.info('got location', location))
.catch(error => console.error(error))
.finally(() => console.info('done getting location'))

}

To convert this code to async and awatit, first put it in an async function, then await
the promise’s result:

async function getUser() {
try {
let user = awailt getUserID(18)
let location = await getlLocation(user)
console.info('got location', user)
} catch(error) {
console.error(error)
} finally {
console.info('done getting location')
}
}

Since async and awatit are JavaScript features, we won’t go into them in depth here—
suffice it to say that TypeScript has full support for them, and they are completely

asyncand await | 183

http://bit.ly/2JT3KUh
http://bit.ly/2JT3KUh

typesafe. Use them whenever you work with promises, to make it easier to reason
about chained operations and avoid lots of thens. To learn more about async and
awalt, head over to their documentation on MDN.

Async Streams

While promises are fantastic for modeling, sequencing, and composing future values,
what if you have multiple values, which will become available at multiple points in
the future? This is less exotic than it sounds—think bits of a file being read from the
filesystem, pixels of a video streaming over the internet from the Netflix server to
your laptop, a bunch of keystrokes as you fill out a form, some friends coming over to
your house for a dinner party, or votes being deposited into a ballot box throughout
the course of Super Tuesday. While these things may sound pretty different on the
surface, you can look at them all as asynchronous streams; they are all lists of things
where each thing comes in at some point in the future.

There are a few ways to model this, the most common being with an event emitter
(like Node]S’s EventEmitter) or with a reactive programming library like RxJS.* The
difference between the two is like the difference between callbacks and promises:
events are quick and lightweight, while reactive programming libraries are more
powerful, and give you the ability to compose and sequence streams of events.

We'll go over event emitters in the following section. To learn more about reactive
programming, head over to the documentation for your favorite reactive program-
ming library—for example, RxJS, Most]S, or xstream.

Event Emitters

At a high level, event emitters offer APIs that support emitting events on a channel
and listening for events on that channel:

interface Emitter {

// Send an event
emit(channel: string, value: unknown): void

// Do something when an event is sent
on(channel: string, f: (value: unknown) => void): void

3 Observables are the basic building block of reactive programming’s approach to doing things to values over
time. There’s an in-progress proposal to standardize Observables in the Observable proposal. Look forward
to a deeper dive into Observables in a future edition of this book, once the proposal is more broadly adopted
by JavaScript engines.

184 | Chapter 8: Asynchronous Programming, Concurrency, and Parallelism

https://tc39.github.io/proposal-observable/
https://mzl.la/2TJLFYt
https://www.npmjs.com/package/@reactivex/rxjs
https://www.npmjs.com/package/@reactivex/rxjs
https://github.com/mostjs/core
https://www.npmjs.com/package/xstream

Event emitters are a popular design pattern in JavaScript. You might have encoun-
tered them when using DOM events, JQuery events, or Node]JS’s EventEmitter
module.

In most languages, event emitters like this one are unsafe. That’s because the type of
value depends on the specific channel, and in most languages you can’t use types to
represent that relationship. Unless your language supports both overloaded function
signatures and literal types, you're going to have trouble saying “this is the type of
event emitted on this channel.” Macros that generate methods to emit events and lis-
ten on each channel are a common workaround to this problem, but in TypeScript,
you can express this naturally and safely using the type system.

For example, say we’re using the NodeRedis client, a Node API for the popular Redis
in-memory datastore. It works like this:

import Redis from 'redis’

// Create a new instance of a Redis client
let client = redis.createClient()

// Listen for a few events emitted by the client
client.on('ready', () => console.info('Client is ready'))
client.on('error', e => console.error('An error occurred!', e))
client.on('reconnecting', params => console.info('Reconnecting...

, params))

As programmers using the Redis library, we want to know what types of arguments
to expect in our callbacks when we use the on API. But because the type of each argu-
ment depends on the channel that Redis emits on, a single type won’t cut it. If we
were the authors of this library, the simplest way to achieve safety would be with an
overloaded type:

type RedisClient = {
on(event: 'ready', f: () => void): void
on(event: 'error', f: (e: Error) => void): void
on(event: 'reconnecting',
f: (params: {attempt: number, delay: number}) => void): void

}

This works pretty well, but it’s a bit wordy. Let’s express it in terms of a mapped type
(see “Mapped Types” on page 137), pulling out the event definitions into their own
type, Events:

type Events = { (1)
ready: void
error: Error
reconnecting: {attempt: number, delay: number}

}

type RedisClient = { (2]
on<E extends keyof Events>(
event: E,

AsyncStreams | 185

https://github.com/NodeRedis/node_redis

f: (arg: Events[E]) => void
): void

}

© We start by defining a single object type that enumerates every event the Redis
client might emit, along with the arguments for that event.

©® We map over our Events type, telling TypeScript that on can be called with any
of the events we defined.

We can then use this type to make the Node-Redis library safer, by typing both of its
methods—emit and on—as safely as possible:

/2
type RedisClient = {
on<E extends keyof Events>(
event: E,
f: (arg: Events[E]) => void
): void
emit<E extends keyof Events>(
event: E,
arg: Events[E]
): void
}
This pattern of pulling out event names and arguments into a shape and mapping
over that shape to generate listeners and emitters is common in real-world Type-
Script code. It’s also terse, and very safe. When an emitter is typed this way you can’t
misspell a key, mistype an argument, or forget to pass in an argument. It also serves
as documentation for engineers using your code, as their code editors will suggest to
them the possible events they might listen on and the types of parameters in those
events’ callbacks.

Emitters in the Wild

Using mapped types to build typesafe event emitters is a popular pattern. For exam-
ple, it’'s how DOM events are typed in TypeScript’s standard library. WindowEventMap
is a mapping from event name to event type, which the .addEventListener
and .removeEventListener APIs map over to produce better, more specific event
types than the default Event type:

// lib.dom. ts
interface WindowEventMap extends GlobalEventHandlersEventMap {
Y/
contextmenu: PointerEvent
dblclick: MouseEvent
devicelight: DevicelLightEvent
devicemotion: DeviceMotionEvent
deviceorientation: DeviceOrientationEvent

186 | Chapter 8: Asynchronous Programming, Concurrency, and Parallelism

drag: DragEvent
/) ..
}

interface Window extends EventTarget, WindowTimers, WindowSessionStorage,
WindowLocalStorage, WindowConsole, GlobalEventHandlers, IDBEnvironment,
WindowBase64, GlobalFetch {
/) ...
addEventListener<K extends keyof WindowEventMap>(
type: K,
listener: (this: Window, ev: WindowEventMap[K]) => any,
options?: boolean | AddEventListenerOptions
): void
removeEventListener<K extends keyof WindowEventMap>(
type: K,
listener: (this: Window, ev: WindowEventMap[K]) => any,
options?: boolean | EventListenerOptions
): void

}

Typesafe Multithreading

So far, we’ve been talking about asynchronous programs that you might run on a sin-
gle CPU thread, a class of programs that most JavaScript and TypeScript programs
you’ll write will likely fall into. But sometimes, when doing CPU-intensive tasks, you
might opt for true parallelism: the ability to split out work across multiple threads, in
order to do it faster or to keep your main thread idle and responsive. In this section,
we’ll explore a few patterns for writing safe, parallel programs in the browser and on
the server.

In the Browser: With Web Workers

Web Workers are a widely supported way to do multithreading in the browser. You
spin up some workers—special restricted background threads—from the main Java-
Script thread, and use them to do things that would have otherwise blocked the main
thread and made the UTI unresponsive (i.e., CPU-bound tasks). Web Workers are a
way to run code in the browser in a truly parallel way; while asynchronous APIs like
Promise and setTimeout run code concurrently, Workers give you the ability to run
code in parallel, on another CPU thread. Web Workers can send network requests,
write to the filesystem, and so on, with a few minor restrictions.

Because Web Workers are a browser-provided AP, its designers put a lot of empha-
sis on safety—not type safety like we know and love, but memory safety. Anyone
that’s written C, C++, Objective C, or multithreaded Java or Scala knows the pitfalls
of concurrently manipulating shared memory. When you have multiple threads read-

Typesafe Multithreading | 187

ing from and writing to the same piece of memory, it’s really easy to run into all sorts
of concurrency issues like nondeterminism, deadlocks, and so on.

Because browser code must be particularly safe, and minimize the chances of crash-
ing the browser and causing a poor user experience, the primary way to communi-
cate between the main thread and Web Workers, and between Web Workers and
other Web Workers, is with message passing.

To follow along with the examples in this section, be sure to tell
TSC that you’re planning to run this code in a browser by enabling
the dom lib in your tsconfig.json:

"compilerOptions": {
"lib": ["dom", "es2015"]
}
}

And for the code that you’re running in a Web Worker, use the
webworker lib:

"compilerOptions": {
"lib": ["webworker", "es2015"]
}
}

If you're using a single tsconfig.json for both your Web Worker
script and your main thread, enable both at once.

The message passing API works like this. You first spawn a web worker from a
thread:

// MainThread. ts
let worker = new Worker('WorkerScript.js')

Then, you pass messages to that worker:

// MainThread. ts
let worker = new Worker('WorkerScript.js')

worker.postMessage('some data')

You can pass almost any kind of data to another thread with the postMessage APIL.*

4 Except for functions, errors, DOM nodes, property descriptors, getters and setters, and prototype methods
and properties. For more information, head over to the HTMLS5 specification.

188 | Chapter 8: Asynchronous Programming, Concurrency, and Parallelism

http://w3c.github.io/html/infrastructure.html#safe-passing-of-structured-data

The main thread will clone the data you pass before handing it off to the worker
thread.> On the Web Worker side, you listen to incoming events with the globally
available onmessage API:

// WorkerScript.ts
onmessage = e => {
console.log(e.data) // Logs out 'some data'

}

To communicate in the opposite direction—from the worker back to the main thread
—you use the globally available postMessage to send a message to the main thread,
and the .onmessage method in the main thread to listen for incoming messages. To
put it all together:

// MainThread. ts
let worker = new Worker('WorkerScript.js"')
worker.onmessage = e => {

console.log(e.data) // Logs out 'Ack: "some data"'

}

worker.postMessage('some data')

// WorkerScript.ts

onmessage = e => {
console.log(e.data) // Logs out 'some data'
postMessage(Ack: "${e.data}")

}

This API is a lot like the event emitter API we looked at in “Event Emitters” on page
184. It’s a simple way to pass messages around, but without types, we don’t know that
we’ve correctly handled all the possible types of messages that might be sent.

Since this API is really just an event emitter, we can apply the same techniques as for
regular event emitters to type it. For example, let’s build a simple messaging layer for
a chat client, which we’ll run in a worker thread. The messaging layer will push
updates to the main thread, and we won’t worry about things like error handling,
permissions, and so on. We’ll start by defining some incoming and outgoing message
types (the main thread sends Commands to the worker thread, and the worker thread
send Events back to the main thread):

// MainThread. ts

type Message = string

type ThreadID = number

type UserID = number

type Participants = UserID[]

5 You can also use the Transferable API to pass certain types of data (like ArrayBuffer) between threads by
reference. In this section we won’t be using Transferable to explicitly transfer object ownership across
threads, but that’s an implementation detail. If you use Transferable for your use case, the approach is iden-
tical from a type safety point of view.

Typesafe Multithreading | 189

type Commands = {
sendMessageToThread: [ThreadID, Message]
createThread: [Participants]
addUserToThread: [ThreadID, UserID]
removeUserFromThread: [ThreadID, UserID]
}

type Events = {
receivedMessage: [ThreadID, UserID, Message]
createdThread: [ThreadID, Participants]
addedUserToThread: [ThreadID, UserID]
removedUserFromThread: [ThreadID, UserID]

}

How could we apply these types to the Web Worker messaging API? The simplest
way might be to define a union of all possible message types, then switch on the Mes
sage type. But this can get pretty tedious. For our Command type, it might look some-
thing like this:

// WorkerScript.ts
type Command = (1]
| {type: 'sendMessageToThread', data: [ThreadID, Message]} (2]
| {type: 'createThread', data: [Participants]}
| {type: 'addUserToThread', data: [ThreadID, UserID]}
| {type: 'removeUserFromThread', data: [ThreadID, UserID]}

onmessage = e => (3]
processCommandFromMainThread(e.data)

function processCommandFromMainThread((4]
command: Command
) o
switch (command.type) { (5]
case 'sendMessageToThread':
let [threadID, message] = command.data
console.log(message)

/...
}

}

© We define a union of all possible commands that the main thread might send to
a worker thread, along with the arguments for each command.

® This is just a regular union type. When defining long union types, leading with
pipes (|) can make those types easier to read.

©® We take messages sent over the untyped onmessage API, and delegate handling
them to our typed processCommandFromMainThread APL

190 | Chapter 8: Asynchronous Programming, Concurrency, and Parallelism

o

(5]

processCommandFromMainThread takes care of handling all incoming messages
from the main thread. It’s a safe, typed wrapper for the untyped onmessage API.

Since the Command type is a discriminated union type (see “Discriminated union
types” on page 128), we use a switch to exhaustively handle every possible type
of message the main thread might send our way.

Let’s abstract Web Workers’ snowflake API behind a familiar EventEmitter-based
API. That way we can cut down on the verbosity of our incoming and outgoing mes-

sage types.

We'll start by constructing a typesafe wrapper for Node]S’s EventEmitter API
(which is available for the browser under the events package on NPM):

import EventEmitter from 'events'

class SafeEmitter<
Events extends Record<PropertyKey, unknown[]> (1)
> {
private emitter = new EventEmitter (2]
emit<K extends keyof Events>(
channel: K,
...data: Events[K]
) {

return this.emitter.emit(channel, ...data)

}
on<K extends keyof Events>((4]
channel: K,
listener: (...data: Events[K]) => void

) {

return this.emitter.on(channel, listener)
}
}

SafeEmitter declares a generic type Events, a Record mapping from Property
Key (TypeScript’s built-in type for valid object keys: string, number, or Symbol)
to a list of parameters.

We declare emitter as a private member on SafeEmitter. We do this instead of
extending SafeEmitter because our signatures for emit and on are more restric-
tive than their overloaded counterparts in EventEmitter, and since functions are
contravariant in their parameters (remember, for a function a to be assignable to
another function b its parameters have to be supertypes of their counterparts in
b) TypeScript won’t let us declare these overloads.

emit takes a channel plus arguments corresponding to the list of parameters we
defined in the Events type.

Typesafe Multithreading | 191

https://www.npmjs.com/package/events

(4] Similarly, on takes a channel and a listener. listener takes a variable number
of arguments corresponding to the list of parameters we defined in the Events

type.

We can use SafeEmitter to dramatically cut down on the boilerplate it takes to safely
implement a listening layer. On the worker side, we delegate all onmessage calls to
our emitter and expose a convenient and safe listener API to consumers:

// WorkerScript.ts

type Commands = {
sendMessageToThread: [ThreadID, Message]
createThread: [Participants]
addUserToThread: [ThreadID, UserID]
removeUserFromThread: [ThreadID, UserID]

}

type Events = {
receivedMessage: [ThreadID, UserID, Message]
createdThread: [ThreadID, Participants]
addedUserToThread: [ThreadID, UserID]
removedUserFromThread: [ThreadID, UserID]

}

// Listen for events coming from the main thread
let commandEmitter = new SafeEmitter <Commands>()

// Emit events back to the main thread
let eventEmitter = new SafeEmitter <Events>()

// Wrap incoming commands from the main thread
// using our typesafe event emitter
onmessage = command =>
commandEmitter.emit(
command.data.type,
...command.data.data
)

// Listen for events issued by the worker, and send them to the main thread
eventEmitter.on('receivediMessage', data =>
postMessage({type: 'receivedMessage', data})

eventEmitter.on('createdThread', data =>
postMessage({type: 'createdThread', data})

)

// etc.

// Respond to a sendMessageToThread command from the main thread
commandEmitter.on('sendMessageToThread', (threadID, message) =>

console.log(0K, I will send a message to threadID ${threadID})
)

// Send an event back to the main thread
eventEmitter.emit('createdThread', 123, [456, 789])

192 | Chapter 8: Asynchronous Programming, Concurrency, and Parallelism

On the flip side, we can also use an EventEmitter-based API to send commands back
from the main thread to the worker thread. Note that if you use this pattern in your
own code, you might consider using a more full-featured emitter (like Paolo Frago-
meni’s excellent EventEmitter2) that supports wildcard listeners, so you don’t have
to manually add a listener for each type of event:

// MainThread. ts

type Commands = {
sendMessageToThread: [ThreadID, Message]
createThread: [Participants]
addUserToThread: [ThreadID, UserID]
removeUserFromThread: [ThreadID, UserID]

}

type Events = {
receivedMessage: [ThreadID, UserID, Message]
createdThread: [ThreadID, Participants]
addedUserToThread: [ThreadID, UserID]
removedUserFromThread: [ThreadID, UserID]

}
let commandEmitter = new SafeEmitter <Commands>()
let eventEmitter = new SafeEmitter <Events>()

let worker = new Worker('WorkerScript.js')

// Listen for events coming from our worker,
// and re-emit them using our typesafe event emitter
worker.onmessage = event =>
eventEmitter.emit(
event.data.type,
...event.data.data
)

// Listen for commands issues by this thread, and send them to our worker

commandEmitter.on('sendMessageToThread', data =>
worker.postMessage({type: 'sendMessageToThread', data})

)

commandEmitter.on('createThread', data =>
worker.postMessage({type: 'createThread', data})

)

// etc.

// Do something when the worker tells us a new thread was created
eventEmitter.on('createdThread', (threadID, participants) =>
console.log('Created a new chat thread!', threadID, participants)

)

// Send a command to our worker

commandEmitter.emit('createThread', [123, 456])
That’s it! We've created a simple typesafe wrapper for the familiar event emitter
abstraction that we can use in a variety of settings, from cursor events in a browser to
communication across threads, making passing messages between threads safe. This

Typesafe Multithreading | 193

https://www.npmjs.com/package/eventemitter2

is a common pattern in TypeScript: even if something is unsafe, you can usually wrap
it in a typesafe APL

Typesafe protocols

So far, we've looked at passing messages back and forth between two threads. What
would it take to extend the technique to say that a particular command always
receives a specific event as a response?

Let’s build a simple call-response protocol, which we can use to move function evalu-
ation across threads. We can’t easily pass functions between threads, but we can
define functions in a worker thread and send arguments to them, then send results
back. For example, let’s say we’re building a matrix math engine that supports three
operations: finding the determinant of a matrix, computing the dot product of two
matrices, and inverting a matrix.

You know the drill—let’s start by sketching out the types for these three operations:

type Matrix = number[][]

type MatrixProtocol = {
determinant: {
in: [Matrix]
out: number

}

"dot-product': {
in: [Matrix, Matrix]
out: Matrix

}

invert: {
in: [Matrix]
out: Matrix

}

}

We define matrices in our main thread, and run all computations in workers. Once
again, the idea is to wrap an unsafe operation (sending and receiving untyped mes-
sages from a worker) with a safe one, exposing a well-defined, typed API for consum-
ers to use. In this naive implementation, we start by defining a simple request-
response protocol Protocol, which lists out the operations a worker can perform
along with their expected input and output types.® We then define a generic
createProtocol function that takes a Protocol and a file path to a Worker, and
returns a function that takes a command in that protocol and returns a final function

6 This implementation is naive because it spawns a new worker every time we issue a command; in the real
world, you probably want to have a pooling mechanism that keeps a warm pool of workers around, and recy-
cles freed workers.

194 | Chapter 8: Asynchronous Programming, Concurrency, and Parallelism

that we can call to actually evaluate that command for a specific set of arguments. OK,
here we go:

type Protocol = { @
[command: string]: {
in: unknown[]
out: unknown
}
}

function createProtocol<P extends Protocol>(script: string) { (2]
return <K extends keyof P>(command: K) => (3)
(...args: P[K]['in']) => (4]
new Promise<P[K]['out']>((resolve, reject) => { ©@
let worker = new Worker(script)
worker.onerror = reject
worker.onmessage = event => resolve(event.data.data)
worker.postMessage({command, args})
b
}

@ We start by defining a general-purpose Protocol type that is not specific to our
MatrixProtocol.

©® When we call createProtocol, we pass in a file path to a worker script, along
with a specific Protocol.

© createProtocol returns an anonymous function that we can then invoke with a
command, which is a key in the Protocol we bound in ©.

O We then call that function with whatever the specific in type is for the command
we passed in in ©.

© This gives us back a Promise for the specific out type for that command, as
defined in our particular protocol. Note that we have to explicitly bind a type
parameter to Promise, otherwise it defaults to {3.

Now let’s apply our MatrixProtocol type plus the path to our Web Worker script to
createProtocol (we won’t get into the nitty-gritty of how to compute a determinant,
and T'll assume that you've implemented it in MatrixWorkerScript.ts). We'll get back
a function that we can use to run a specific command in that protocol:

let runWithMatrixProtocol = createProtocol<MatrixProtocol>(
'"MatrixWorkerScript.js'

)

let parallelDeterminant = runWithMatrixProtocol('determinant"')

parallelDeterminant([[1, 2], [3, 411)

Typesafe Multithreading | 195

.then(determinant =>
console.log(determinant) // -2

)
Cool, huh? We've taken something totally unsafe—untyped message passing between
threads—and abstracted over it with a fully typesafe request-response protocol. All
the commands you can run using that protocol live in one place (MatrixProtocol),
and our core logic (createProtocol) lives separately from our concrete protocol
implementation (runWithMatrixProtocol).

Anytime you need to communicate between two processes—whether on the same
machine or between multiple computers on a network—typesafe protocols are a great
tool to make that communication safe. While this section helped develop some intu-
ition for what problems protocols solve, for a real-world application you’ll likely want
to reach for an existing tool like Swagger, gRPC, Thrift, or GraphQL—for an over-
view, head over to “Typesafe APIs” on page 210.

In NodeJS: With Child Processes

To follow along with the examples in this section, be sure to install
type declarations for NodeJS from NPM:

npm install @types/node --save-dev

To learn more about using type declarations, jump ahead to “Java-
Script That Has Type Declarations on DefinitelyTyped” on page 245.

Typesafe parallelism in NodeJS works the same way as it does for Web Worker
threads in the browser (see “Typesafe protocols” on page 194). While the message-
passing layer itself is unsafe, it’s easy to build a typesafe API over it. NodeJS’s child
process API looks like this:

// MainThread. ts
import {fork} from 'child_process'

let child = fork('./ChildThread.js') (1]
child.on('message', data => (2]
console.info('Child process sent a message', data)

)

child.send({type: 'syn', data: [3]}) (3]
We use Node]S’s fork API to spawn a new child process.

We listen to incoming messages from a child process using the on API. There are
a few messages that a Node]JS child process might send to its parent; here, we just
care about the 'message' message.

196 | Chapter 8: Asynchronous Programming, Concurrency, and Parallelism

© We use the send API to send messages to a child process.

In our child thread, we listen to messages coming in from the main thread using the
process.on API and send messages back with process.send:

// ChildThread. ts

process.on('message', data => (1)

console.info('Parent process sent a message', data)

)

process.send({type: 'ack', data: [3]}) (2]

© We use the on API on the globally defined process to listen for incoming mes-
sages from a parent thread.

® We use the send API on process to send messages to the parent process.

Because the mechanics are so similar to Web Workers, I'll leave it as an exercise to

implement a typesafe protocol to abstract over interprocess communication in
NodeJS.

Summary

In this chapter we started with the basics of JavaScript’s event loop, and continued on
to a discussion of the building blocks of asynchronous code in JavaScript and how to
safely express them in TypeScript: callbacks, promises, async/await, and event emit-
ters. We then covered multithreading, exploring passing messages between threads
(in the browser and on the server) and building full protocols for communicating
between threads.

As with Chapter 7, which technique you use is up to you:

o For simple asynchronous tasks, callbacks are as straightforward as it gets.

o For more complex tasks that need to be sequenced and parallelized, promises
and async/await are your friend.

o When a promise doesn’t cut it (e.g., if you're firing an event multiple times),
reach for event emitters or a reactive streams library like Rx]S.

o To extend these techniques to multiple threads, use event emitters, typesafe pro-
tocols, or typesafe APIs (see “Typesafe APIs” on page 210).

Summary | 197

Exercises

. Implement a general-purpose promisify function, which takes any function that

takes exactly one argument and a callback and wraps it in a function that returns
a promise. When you’re done, you should be able to use promisify like this
(install type declarations for Node]S first, with npm install @types/node --
save-dev):

import {readFile} from 'fs'

let readFilePromise = promisify(readFile)

readFilePromise('./myfile.ts")
.then(result => console.log('success reading file', result.toString()))
.catch(error => console.error('error reading file', error))

. In the section on “Typesafe protocols” on page 194 we derived one half of a pro-

tocol for typesafe matrix math. Given this half of the protocol that runs in the
main thread, implement the other half that runs in a Web Worker thread.

. Use a mapped type (as in “In the Browser: With Web Workers” on page 187) to

implement a typesafe message-passing protocol for Node]S’s child_process.

198

| Chapter 8: Asynchronous Programming, Concurrency, and Parallelism

CHAPTER9
Frontend and Backend Frameworks

While you could build every part of your application yourself from the ground up—
the networking and database layers on the server, a user interface framework and
state management solution on the frontend—you probably shouldn’t. It’s hard to get
the details right, and luckily for us, lots of these hard problems on the frontend and
backend have already been solved by other engineers. By taking advantage of existing
tools, libraries, and frameworks to build things both on the frontend and the back-
end, we can iterate quickly and on stable ground when building our own
applications.

In this chapter, we’ll go through some of the most popular tools and frameworks that
solve common problems on both the client and the server. We’ll talk about what you
might use each framework for, and how to safely integrate it into your TypeScript
application.

Frontend Frameworks

TypeScript is a natural fit for the world of frontend applications. With its rich sup-
port for JSX and its ability to safely model mutability, TypeScript lends structure and
safety to your application and makes it easier to write correct, maintainable code in
the fast-paced environment that is frontend development.

Of course, all of the built-in DOM APIs are typesafe. To use them from TypeScript,
just include their type declarations in your project’s tsconfig.json:

{
"compilerOptions": {
"lib": ["dom", "es2015"]
}
}

199

That will tell TypeScript to include lib.dom.d.ts—its built-in browser and DOM type
declarations—when typechecking your code.

The 11b tsconfig.json option just tells TypeScript to include a set of
specific type declarations when processing the code in your project;
it won’t emit any extra code, or generate any JavaScript that will
exist at runtime. It won’t, for example, make the DOM magically
work in a Node]S environment (your code will compile, but it will
fail at runtime)—it’s on you to make sure that your type declara-
tions match up to what your JavaScript environment actually sup-
ports at runtime. Jump ahead to “Building Your TypeScript
Project” on page 249 to learn more.

With DOM type declarations enabled, you'll be able to safely consume DOM and
browser APIs to do things like:

// Read properties from the global window object
let model = {
url: window.location.href

}

// Create an <input /> element
let input = document.createElement('input')

// Give it some CSS classes
input.classList.add('Input', 'URLInput')

// When the user types, update the model
input.addEventListener('change', () =>
model.url = input.value.toUpperCase()

)

// Inject the <input /> into the DOM
document.body.appendChild(input)

Of course, all of that code is typechecked and comes with the normal goodies like in-
editor autocompletion. For example, consider something like this:

document.querySelector('.Element').innerHTML // Error TS2531: Object is
// possibly 'null'.

TypeScript will throw an error because the return type of querySelector is nullable.

While for simple frontend applications these low-level DOM APIs are enough and
will give you what you need to do safe, type-guided programming for the browser,
most real-world frontend applications use a framework to abstract away how DOM
rendering and rerendering, data binding, and events work. The following sections
will give some pointers on how to effectively use TypeScript with a few of the most
popular browser frameworks.

200 | Chapter9:Frontend and Backend Frameworks

React

React is among the most popular frontend frameworks today, and is a great choice
when it comes to type safety.

The reason React is so safe is because React components—the basic building blocks
of React applications—are both defined and consumed in TypeScript. This property
is hard to find among frontend frameworks, and means that both component defini-
tions and consumers are typechecked. You can use types to say things like “this com-
ponent takes a user ID and a color” or “this component can only have list items as
children.” These constraints are then enforced by TypeScript, verifying that your
components do what they say they do.

This safety around component definitions and consumers—the view layer of a front-
end application—is killer. The view is traditionally the place where typos, missed
attributes, mistyped parameters, and improperly nested elements cause programmers
to collectively spend thousands of hours tearing their hair out and indignantly
refreshing their browsers. The day you start typing your views with TypeScript and
React is the day you double your and your team’s productivity on the frontend.

A JSX primer

When using React, you define your views using a special DSL called JavaScript XML
(JSX) that you embed straight into your JavaScript code. It sort of looks like HTML in
your JavaScript. You then run your JavaScript through a JSX compiler that rewrites
that funky JSX syntax into regular JavaScript function calls.

The process looks something like this. Say youre building a menu app for your
friend’s restaurant, and you list out a few items on the brunch menu with the follow-
ing JSX:

<ul class='list'>
Homemade granola with yogurt
Fantastic french toast with fruit
<lis>Tortilla Espanola with salad

After running that code through a JSX compiler like Babel’s transform-react-jsx
plugin, you’ll get the following output:

React.createElement(
'ul',
{'class': 'list'},
React.createElement(
",
null,
'Homemade granola with yogurt'
)J
React.createElement(
",

Frontend Frameworks | 201

http://bit.ly/2uENY4M
http://bit.ly/2uENY4M

null,
'Fantastic French toast with fruit'
),
React.createElement(
",
null,
'Tortilla Espanola with salad'
)
);

TSCFlag: esModulelnterop

Because JSX compiles to a call to React.createElement, be sure to
import the React library into each file where you use JSX so that

you have a variable named React in scope:

import React from 'react'
Don’t worry—if you forget, TypeScript will warn you:

 // Error TS2304: Cannot find name 'React’.
Also note that I've set {"esModuleInterop": true} in my tscon-
fig.json to support importing React without a wildcard (*) import.
If you're following along, either enable esModuleInterop in your
own tsconfig.json, or use a wildcard import instead:

import * as React from 'react'’

The nice thing about JSX is you can write what looks a lot like normal HTML, then
compile it automatically to a JavaScript engine-friendly format. As an engineer you
only use a familiar, high-level, declarative DSL, and you don’t have to deal with the
implementation details.

You don’t need JSX to work with React (you can write that compiled code directly
and it’ll work fine), and you can use JSX without React (the specific function call that
JSX tags compile to—React.createElement in the previous example—is configura-
ble), but the combination of React with JSX is magical, and makes writing views
really fun, and really, really safe.

TSX = JSX + TypeScript

Files that contain JSX use the file extension .jsx. And TypeScript files that contain JSX
use the .tsx extension. TSX is to JSX what TypeScript is to JavaScript—a compile-time
safety and assistance layer to help you be more productive and produce code with
fewer mistakes. To enable TSX support for your project, add the following line to
your tsconfig.json:

{

"compilerOptions": {
"jSX": wreactu

202 | Chapter9: Frontend and Backend Frameworks

}
}

The jsx directive has three modes at the time of writing:

react
Compile JSX to a js file using the JSX pragma (by default, React.createEle
ment).

react-native
Preserve JSX without compiling it, but do emit a file with a .js extension.

preserve
Typecheck JSX but don’t compile it away, and emit a file with a .jsx extension.

Under the hood, TypeScript exposes a few hooks for typing TSX in a pluggable way.
These are special types on the global.JSX namespace that TypeScript looks at as the
source of truth for TSX types throughout your program. If you're just using React,
you don’t need to go that low-level; but if you're building your own TypeScript
library that uses TSX (and doesn’t use React)—or if you're curious how the React
type declarations do it—head over to Appendix G.

Using TSX with React

React lets us declare two kinds of components: function components and class com-
ponents. Both kinds of components take some properties and render some TSX.
From a consumer’s point of view, they are identical.

Declaring and rendering a function component looks like this:

import React from 'react' (1)

type Props = { (2]
isDisabled?: boolean
size: 'Big' | 'Small'
text: string
onClick(event: React.MouseEvent<HTMLButtonElement>): void (3]

}

export function FancyButton(props: Props) { (4]
const [toggled, setToggled] = React.useState(false) (5]
return <button

className={"'Size-' + props.size}

disabled={props.isDisabled || false}

onClick={event => {
setToggled(!toggled)
props.onClick(event)

1}

>{props.text}</button>
}

Frontend Frameworks | 203

let button = <FancyButton (6]

size="Big'

text="Sign Up Now'

onClick={() => console.log('Clicked!')}
/>

We have to bring the React variable into the current scope in order to use TSX
with React. Since TSX is compiled to React.createElement function calls, that
means we need to import React so that it’s defined at runtime.

We start by declaring the specific set of props we can pass to our FancyButton
component. Props is always an object type, and is named Props by convention.
For our FancyButton component, isDisabled is optional, while the rest of our
props are required.

React has its own set of wrapper types for DOM events. When using React
events, be sure to use React’s event types rather than regular DOM event types.

A function component is just a regular function that has up to one parameter
(the props object) and returns a React-renderable type. React is permissive and
can render a wide range of types: TSX, strings, numbers, booleans, null, and
undefined.

We use React’s useState hook to declare local state for a function component.
useState is one of a handful of hooks available in React, which you can combine
to create your own custom hooks. Note that because we passed the initial value
false to useState, TypeScript was able to infer that the piece of state is a
boolean; if we’d instead used a type that TypeScript wasn’t able to infer—for
example, an array—we would have bound the type explicitly (e.g., with useS
tate<number[]>([1])).

We use TSX syntax to create an instance of FancyButton. The <FancyButton />
syntax is almost identical to calling FancyButton, but it lets React manage the
lifecycle of FancyButton for us.

That’s it. TypeScript enforces that:

o JSX is well formed. Tags are closed and properly nested, and tag names aren’t

misspelled.

+ When we instantiate a <FancyButton /> we pass all required—plus any optional

—props to FancyButton (size, text, and onClick), and that the props are all
correctly typed.

204

| Chapter9: Frontend and Backend Frameworks

« We don’t pass any extraneous props to FancyButton, just the ones that are
required.

A class component is similar:

import React from 'react' (1]
import {FancyButton} from './FancyButton'

type Props = { (2]
firstName: string
userId: string

}

type State = { (3]
isLoading: boolean

}

class SignupForm extends React.Component<Props, State> { (4]
state = { ()
isLoading: false
}
render() { (6]
return <>
<h2>Sign up for a 7-day supply of our tasty
toothpaste now, {this.props.firstName}.</h2>
<FancyButton
isDisabled={this.state.isLoading}
size='Big'
text="'Sign Up Now'
onClick={this.signUp}
/>
</>
}
private signUp = async () => { (&)
this.setState({isLoading: true})

try {

await fetch('/api/signup?userld=' + this.props.userld)
} finally {

this.setState({isLoading: false})
}

}
}

let form = <SignupForm firstName='Albert' userId='13ab9g3' /> (9]

Like before, we import React to bring it into scope.

Like before, we declare a Props type to define what data we need to pass in when
creating an instance of <SignupForm />.

Frontend Frameworks | 205

© 0 0 ©o

We declare a State type to model our component’s local state.
To declare a class component, we extend the React.Component base class.
We use a property initializer to declare default values for local state.

Like with function components, a class component’s render method returns
something renderable by React: TSX, a string, a number, a boolean, null, or
undefined.

TSX supports fragments using the special <>...</> syntax. A fragment is a
nameless TSX element that wraps other TSX, and is a way to avoid rendering
extra DOM elements in places where you need to return a single TSX element.
For example, a React component’s render method needs to return a single TSX
element; to do that, we could have wrapped our code with a <div> or any other
element, but that would have incurred unnecessary overhead during rendering.

We define signUp using an arrow function, to make sure that this in the func-
tion doesn’t get re-bound.

Finally, we instantiate our SignupForm. Like when instantiating function compo-
nents, we could have directly new-ed it with new SignupForm({firstName:
'"Albert', userId: '13ab9g3'}) instead, but that would mean that React
couldn’t manage the SignupForm instance’s lifecycle for us.

Notice how we mix and match value-based (FancyButton, SignupForm) and intrinsic
(section, h2) components in this example. We put TypeScript to work to verify
things like:

That all required state fields were defined either in the state initializer, or in the
constructor

That whatever we access on props and state actually exists, and is of the type we
think it is

That we don’t write to this.state directly, because in React, state updates have
to go through the setState API

That calling render really returns some JSX

With TypeScript you can make your React code safer, and become a better, happier
person as a result.

206

| Chapter9: Frontend and Backend Frameworks

We didn’t use React’s PropTypes feature, which is a way to declare
and check props’ types at runtime. Since TypeScript is already
checking types for us at compile time, we don’t need to do it again.

Angular
Contributed by Shyam Seshadri

Angular is a more fully featured frontend framework than React, and comes with
support not just for rendering views but also for sending and managing network
requests, routing, and dependency injection. It’s built from the ground up to work
with TypeScript (in fact, the framework itself is written in TypeScript!).

Central to the way Angular works is the Ahead-of-Time (AoT) compiler built into
Angular CLI, Angular’s command-line utility, that grabs the type information you
gave it with your TypeScript annotations and uses that information to compile your
code down to regular JavaScript. Instead of calling TypeScript directly, Angular
applies a whole bunch of optimizations and transformations to your code before ulti-
mately delegating to TypeScript and compiling it down to JavaScript.

Let’s see how Angular uses TypeScript and its AoT compiler to make writing front-
end applications safe.

Scaffolding

To initialize a new Angular project, start by globally installing Angular CLI using
NPM:

npm install @angular/cli --global
Then, use Angular CLI to initialize a new Angular application:
ng new my-angular-app

Follow the prompts, and Angular CLI will set up a bare-bones Angular application
for you.

In this book we won’t go into depth on how an Angular application is structured, or
how to configure and run it. For detailed information, head over to the official Angu-
lar documentation.

Components

Let’s build an Angular component. Angular components are like React components,
and include a way to describe a component’s DOM structure, styling, and controller.
With Angular, you generate component boilerplate with Angular CLI, then fill in the
details by hand. An Angular component consists of a few different files:

Frontend Frameworks | 207

https://angular.io/docs
https://angular.io/docs

o A template, which describes the DOM a component renders
o A set of CSS styles

o A component class, which is a TypeScript class that dictates your components’
business logic

Let’s start with the component class:

import {Component, OnInit} from '@angular/core’

@Component({
selector: 'simple-message',
styleUrls: ['./simple-message.component.css'],
templateUrl: './simple-message.component.html'

b

export class SimpleMessageComponent implements OnInit {
message: string
ngonInit() {
this.message = 'No messages, yet'

}
}
For the most part, this is a pretty standard TypeScript class, with just a few differ-
ences that bring out how Angular leverages TypeScript. Namely:

o Angular’s lifecycle hooks are available as TypeScript interfaces—just declare
which ones you implement (ngOnChanges, ngOnInit, etc.). TypeScript then
enforces that you implement methods that comply with the lifecycle hooks you
want. In this example we implemented the OnInit interface, which requires that
we implement the ngOnInit method.

o Angular makes heavy use of TypeScript decorators (see “Decorators” on page
104) to declare metadata related to your Angular components, services, and
modules. In this example, we used a selector to declare how people can con-
sume our component, and we used templateUrls and styleUrl to link an
HTML template and CSS stylesheet to our component.

208 | Chapter9: Frontend and Backend Frameworks

TSC Flag: fullTemplateTypeCheck

To enable typechecking for your Angular templates (you should!),
be sure to enable fullTemplateTypeCheck in your tsconfig.json:

{
"angularCompilerOptions": {
"fullTemplateTypeCheck": true
}
}

Note that angularCompilerOptions isn’t specifying options for

TSC. Rather, it defines compiler flags specific to Angular’s AoT
compiler.

Services

Angular comes with a built-in dependency injector (DI), which is a way for the
framework to take care of instantiating services and passing them in as arguments to
components and services that depend on them. This can make it easier to instantiate
and test services and components.

Let’s update SimpleMessageComponent to inject a dependency, MessageService,
responsible for fetching messages from the server:

import {Component, OnInit} from '@angular/core'
import {MessageService} from '../services/message.service'

@Component({
selector: 'simple-message',
templateUrl: './simple-message.component.html',
styleUrls: ['./simple-message.component.css']
b
export class SimpleMessageComponent implements OnInit {
message: string
constructor(
private messageService: MessageService
) {3}
ngoOnInit() {
this.messageService.getMessage().subscribe(response =>
this.message = response.message
)
}
}

Angular’s AoT compiler looks at the parameters that your component’s constructor
takes, plucks out their types (e.g., MessageService), and searches the relevant

dependency injector’s dependency map for a dependency of that specific type. It then
instantiates that dependency (new-ing it) if it hasn’t been instantiated yet, and passes
it into the SimpleMessageComponent instance’s constructor. All of this DI stuff is
pretty complicated, but it can be convenient as your application grows and you have

Frontend Frameworks | 209

multiple dependencies you might use depending on how the app is configured (e.g.,
ProductionAPIService versus DevelopmentAPIService) or when testing it (MockAPI
Service).

Now let’s take a quick look at how to define a service:

import {Injectable} from '@angular/core'’
import {HttpClient} from '@angular/common/http'

@Injectable({
providedIn: 'root'
b
export class MessageService {
constructor(private http: HttpClient) {}
getMessage() {
return this.http.get('/api/message')
}
}

Whenever we create a service in Angular, we again use TypeScript decorators to reg-
ister it as something that is Injectable, and we define whether it is provided at the
root level of the application or in a submodule. Here, we registered the service
MessageService, allowing us to inject it anywhere in our application. In the con-
structor of any component or service, we can just ask for a MessageService and
Angular will magically take care of passing it in.

With how to safely use these two popular frontend frameworks out of the way, let’s
move on to typing the interface between your frontend and your backend.

Typesafe APIs
Contributed by Nick Nance

Regardless of which frontend and backend frameworks you decide to use, you’ll want
a way to safely communicate across machines—from client to server, server to client,
server to server, and client to client.

There are a few competing tools and standards in this space. But before we explore
what they are and how they work, let’s think about how we might build our own sol-
ution, and what benefits and drawbacks it might have (we are engineers, after all).

The problem we want to solve is this: though our clients and servers might be 100%
typesafe—bastions of safety—at some point they’ll need to talk to each other over
untyped network protocols like HTTP, TCP, or some other socket-based protocols.
How might we make this communication typesafe?

A good starting point could be a typesafe protocol like the one we developed in
“Typesafe protocols” on page 194. It might look something like this:

210 | Chapter9: Frontend and Backend Frameworks

type Request =
| {entity: 'user', data: User}
| {entity: 'location', data: Location}

// client.ts
async function get<R extends Request>(entity: R['entity']): Promise<R['data']> {
let res = await fetch(/api/${entity})
let json = await res.json()
if (!json) {
throw ReferenceError('Empty response')

}

return json

}

// app.ts
async function startApp() {
let user = await get('user') // User

}

You could build corresponding post and put functions to write back to your REST
API, and add a type for each entity your server supports. On the backend, you’d then
implement a corresponding set of handlers for each type of entity, reading from your
database to return to the client whatever entity it asked for.

But what happens if your server isn’t written in TypeScript, or if you aren’t able to
share your Request type between the client and server (leading to the two getting out
of sync over time), or if you don’t use REST (maybe you use GraphQL instead)? Or
what if you have other clients to support, like Swift clients on iOS or Java clients on
Android?

That’s where typed, code-generated APIs come in. They come in a lot of flavors, each
with libraries available in a bunch of languages (including TypeScript)—for example:

o Swagger for RESTful APIs
« Apollo and Relay for GraphQL
« gRPC and Apache Thrift for RPC

These tools rely on a common source of truth for both server and clients—data mod-
els for Swagger, GraphQL schemas for Apollo, Protocol Buffers for gRPC—which are
then compiled into language-specific bindings for whatever language you might be
using (in our case, that’s TypeScript).

This code generation is what prevents your client and server (or multiple clients)
from getting out of sync with each other; since every platform shares a common
schema, you won’t run into the case where you updated your iOS app to support a
field, but forgot to press Merge on your pull request to add server support for it.

Typesafe APls | 211

https://github.com/swagger-api/swagger-codegen
https://www.npmjs.com/package/apollo
https://facebook.github.io/relay/
https://grpc.io/
https://thrift.apache.org/

Diving into the details of each framework is out of scope for this book. Pick one for
your project, and head over to its documentation to learn more.

Backend Frameworks

When you build an application that interacts with a database, you might start with
raw SQL or API calls, which are inherently untyped:

// PostgreSQL, using node-postgres

let client = new Client

let res = await client.query(
"SELECT name FROM users where id = $1°',
[739311]

) // any

// MongoDB, using node-mongodb-native
db.collection('users")
.find({id: 739311})
.toArray((err, user) =>
// user is any
)
With a bit of manual typing you can make these APIs safer and get rid of most of

your anys:

db.collection('users")
.find({id: 739311})
.toArray((err, user: User) =>
// user is any

)

However, raw SQL APIs are still fairly low-level, and it’s still easy to use the wrong
type, or forget a type and accidentally end up with anys.

That’s where object-relational mappers (ORMs) come in. ORMs generate code from
your database schema, giving you high-level APIs to express queries, updates, dele-
tions, and so on. In statically typed languages, these APIs are typesafe, so you don’t
have to worry about typing things correctly and manually binding generic type
parameters.

When accessing your database from TypeScript, consider using an ORM. At the time
of writing, Umed Khudoiberdiev’s excellent TypeORM is the most complete ORM
for TypeScript, and supports MySQL, PostgreSQL, Microsoft SQL Server, Oracle, and
even MongoDB. Using TypeORM, your query to get a user’s first name might look
like this:

let user = awailt UserRepository
.findOne({id: 739311}) // User | undefined

212 | Chapter9: Frontend and Backend Frameworks

https://www.npmjs.com/package/typeorm

Notice the high-level API, which is both safe (in that it prevents things like SQL
injection attacks) and typesafe by default (in that we know what type findOne returns
without having to manually annotate it). Always use an ORM when working with
databases—it’s more convenient, and it will save you from getting woken up at four
in the morning because the saleAmount field is null because you updated it to
orderAmount the night before and your coworker decided to run your database
migration for you in anticipation of your pull request landing while you were out, but
then around midnight your pull request failed even though the migration succeeded,
and your sales team in New York woke up to realize that all your clients’ orders were
for exactly null dollars (this happened to... a friend).

Summary

In this chapter we've covered a lot: directly manipulating the DOM; using React and
Angular; adding type safety to your APIs with tools like Swagger, gRPC, and
GraphQL; and using TypeORM to safely interact with your database.

JavaScript frameworks change at a rapid pace, and by the time you read this, the spe-
cific APIs and frameworks described here may be on their way to becoming museum
exhibits. Use your newfound intuition for what problems typesafe frameworks solve to
identify places where you can take advantage of someone else’s work to make your
code safer, more abstract, and more modular. The big idea to take away from this
chapter isn’t what the best framework to use in the year 2019 is, but what sorts of
problems can be better solved with frameworks.

With the combination of typesafe UI code, a typed API layer, and a typesafe backend,
you can eliminate entire classes of bugs from your application, and sleep better at
night as a result.

Summary | 213

CHAPTER 10
Namespaces.Modules

When you write a program, you can express encapsulation at several levels. At the
lowest level, functions encapsulate behaviors, and data structures like objects and lists
encapsulate data. You might then group functions and data into classes, or keep them
separate as namespaced utilities with a separate database or store for your data. A sin-
gle class or a set of utilities per file is typical. Going up, you might group a few classes
or utilities into a package, which you publish to NPM.

When we talk about modules, it’s important to make a distinction between how the
compiler (TSC) resolves modules, how your build system (Webpack, Gulp, etc.)
resolves modules, and how modules are actually loaded into your application at run-
time (<script /> tags, System]S, etc.). In the JavaScript world there is usually a sepa-
rate program that does each of these jobs, which can make modules hard to reason
about. The Common]JS and ES2015 module standards make it easier to interoperate
the three programs, and powerful bundlers like Webpack help abstract away the three
kinds of resolution happening under the hood.

In this chapter we’ll focus on the first of these three kinds of programs: how Type-
Script resolves and compiles modules. We'll leave a discussion of how the build sys-
tem and runtime loaders work with modules to Chapter 12 and talk here about:

o The different ways to namespace and modularize your code
o The different ways to import and export code
« Scaling these approaches as your codebase grows

o Module mode versus script mode

o What declaration merging is, and what you can do with it

But first, a bit of background.

215

A Brief History of JavaScript Modules

Because TypeScript compiles to and interoperates with JavaScript, it has to support
the various module standards that JavaScript programmers use.

In the beginning (in 1995), JavaScript didn’t support any sort of module system.
Without modules, everything was declared in a global namespace, which made it
really hard to build and scale applications. You could quickly run out of variable
names, and run into collisions between variable names; and without exposing explicit
APIs for each module, it’s hard to know which parts of a module you’re supposed to
use, and which parts are private implementation details.

To help solve these problems, people simulated modules with either objects or Imme-
diately Invoked Function Expressions (IIFEs), which they assigned to the global win
dow, making them available to other modules in their application (and in other
applications hosted on the same web page). It looked something like this:

window.emailListModule = {
renderList() {}
/) ...

}

window.emailComposerModule = {
renderComposer() {}
/) ...

}

window.appModule = {
renderApp() {
window.emailListModule.renderList()
window.emailComposerModule.renderComposer()

}
}

Because loading and running JavaScript blocks the browser’s U, as a web application
grows and includes more and more lines of code, the user’s browser gets slower and
slower. For this reason, clever programmers started dynamically loading JavaScript
after the page loaded, rather than loading it all in one shot. Nearly 10 years after Java-
Script was first released, Dojo (Alex Russell, 2004), YUI (Thomas Sha, 2005), and
LABjs (Kyle Simpson, 2009) shipped module loaders—ways to lazily (and often asyn-
chronously) load JavaScript code after the initial page load has happened. Lazy and
asynchronous module loading meant three things:

1. Modules needed to be well encapsulated. Otherwise, a page might be broken
while dependencies are streaming in.

2. Dependencies between modules needed to be explicit. Otherwise, we don’t know
which modules need to be loaded and in what order.

216 | Chapter 10: Namespaces.Modules

3. Every module needed a unique identifier within the app. Otherwise, there’s no
reliable way to specify what modules need to be loaded.

Loading a module with LABjs looked like this:

SLAB
.script('/emailBaseModule.js").walt()
.script('/emailListModule.js")
.script('/emailComposerModule.js')

Around the same time, Node]S (Ryan Dahl, 2009) was being developed, and its crea-
tors took a lesson from JavaScript’s growing pains and from other languages and
decided to build a module system right into the platform. Like any good module sys-
tem, it needed to satisfy the same three criteria as LABjs and YUI’s loaders. Node]S
did that with the Common]JS module standard, which looked like this:

// emailBaseModule. js
var emaillList = require('emailListModule')
var emailComposer = require('emailComposerModule')

module.exports.renderBase = function() {
Y7
}
In the meantime, on the web the AMD module standard (James Burke, 2008)—
pushed by Dojo and Require]S—was taking off. It supported an equivalent set of
functionality, and came with its own build system for bundling up JavaScript code:

define('emailBaseModule',
['require', 'exports', 'emailListModule', 'emailComposerModule'],
function(require, exports, emailListModule, emailComposerModule) {
exports.renderBase = function() {
/] ...
}
}
)
A few years after that, Browserify came out (James Halliday, 2011), giving frontend
engineers the ability to use Common]JS on the frontend, too. Common]JS became the
de facto standard for module bundling and import/export syntax.

There were a few problems with the Common]JS way of doing things. Among them,
require calls are necessarily synchronous, and the CommonJS module resolution
algorithm is not ideal for use on the web. On top of that, code that uses it isn’t stati-
cally analyzable in some cases (as a TypeScript programmer, this should perk your
ears up), because module.exports can appear anywhere (even in dead code branches
that are never actually reached) and require calls can appear anywhere and contain
arbitrary strings and expressions, making it impossible to statically link a JavaScript
program, and verify that all referenced files really exist and export what they say they
export.

A Brief History of JavaScript Modules | 217

Against this backdrop, ES2015—the sixth edition of the ECMAScript language—
introduced a new standard for imports and exports that had a clean syntax and was
statically analyzable. It looks like this:

// emailBaseModule. js
import emaillList from 'emailListModule'
import emailComposer from 'emailComposerModule'

export function renderBase() {
/...
}
This is the standard we use in JavaScript and TypeScript code today. However, at the
time of writing the standard isn’t yet natively supported in every JavaScript runtime,
so we have to compile it down to a format that is supported (Common]JS for Node]S
environments, globals or a module-loadable format for browser environments).

TypeScript gives us a few ways to consume and export code in a module: with global
declarations, with standard ES2015 imports and exports, and with backward-
compatible imports from Common]S modules. On top of that, TSC’s build system
lets us compile modules for a variety of environments: globals, ES2015, Common]S,
AMD, System]S, or UMD (a mix of Common]S, AMD, and globals—whichever hap-
pens to be available in the consumer’s environment).

import, export

Unless you’re being chased by wolves, you should use ES2015 imports and exports in
your TypeScript code, rather than using Common]S, global, or namespaced modules.
They look like this—the same as plain old JavaScript:

// a.ts
export function foo() {}
export function bar() {}

// b.ts

import {foo, bar} from './a'
foo()

export let result = bar()

The ES2015 module standard supports default exports:
// c.ts

export default function meow(loudness: number) {}

// d.ts
import meow from './c' // Note the lack of {curlies}
meow(11)

218 | Chapter 10: Namespaces.Modules

It also supports importing everything from a module using a wildcard import (*):

// e.ts
import * as a from './a'
a.foo()
a.bar()

And reexporting some (or all) exports from a module:

// f.ts

export * from './a'

export {result} from './b'
export meow from './c'

Because we’re writing TypeScript, not JavaScript, we can of course export types and
interfaces as well as values. And because types and values live in separate namespaces,
it’s perfectly fine to export two things—one at the value level and one at the type level
—that share the same name. Like for any other code, TypeScript will infer whether
you meant the type or the value when you actually use it:

// g.ts
export let X = 3
export type X = {y: string}

// h.ts
import {X} from './g'

leta =X+ 1 // X refers to the value X
let b: X = {y: 'z'} // X refers to the type X

Module paths are filenames on the filesystem. This couples modules with the way

they’re laid out in the filesystem, but is an important feature for module loaders that
need to be aware of that layout so they can resolve modules names to files.

Dynamic Imports

As your application gets bigger, its time to initial render will get worse and worse.
This is especially a problem for frontend applications where the network can be a
bottleneck, but it also applies to backend applications that take more time to start up
as you import more code at the top level—code that needs to be loaded from the file-
system, parsed, compiled, and evaluated, all while blocking other code from running.

On the frontend, one way to deal with this problem (besides writing less code!) is
with code splitting: chunking your code up into a bunch of generated JavaScript files,
instead of shipping everything in a single large file. With splitting you get the benefit
of loading multiple chunks in parallel, which eases the toll of large network requests
(see Figure 10-1).

import, export | 219

Name Status | Type Initiator Size Time Waterfall 500.00 ms 1.00 s 1.50s

_ | QRISTk--LMf.js 200 script (index) 195KB 297 ms I

| HYUhGIiP2NS.js 200 script (index) 1.4 KB 232 ms 1

__| GXV1S0CvpIB.js 200 script (index) 595 B 233 ms i

hUbIKLhy1j0.js 200 script (index) 284KB 321ms J |

| Au3aOP1wGd4x.js 200 script (index) 17.6 KB 279 ms I

_ | INn5JWMWDNB8.js 200 script (index) 35.4 KB 337 ms /1
__| 18rvByEMIi4.js 200 script (index) 12.0 KB 283 ms]

| UjQOVUVT4UOjs 200 script (index) 126KB 279ms —

_ | UdB94moa6Eu.js 200 script (index) 13.8 KB 280 ms |

_ | g4ZNCtvuodm.js 200 script (index) 11.5 KB 279 ms 1

Figure 10-1. Network waterfall for JavaScript loaded from facebook.com

A further optimization is to lazy-load chunks of code when they’re actually needed.
Really large frontend applications—like those at Facebook and Google—use this type
of optimization as a matter of course. Without it, clients might be loading gigabytes
of JavaScript code on the initial page load, which could take minutes or hours (not to

mention that people would probably stop using those services once they received
their mobile bills).

Lazy loading is also useful for other reasons. For example, the popular Moment.js
date manipulation library comes with packages to support every date format used
around the world, split up by locale. Each packages weighs in at around 3 KB. Load-
ing all of these locales for each user might be an unacceptable performance and band-
width hit; instead, you might want to detect the user’s locale, then load just the
relevant date package.

LABjs and its siblings introduced the concept of lazy-loading code when you actually
need it, and the concept was formalized in dynamic imports. It looks like this:

let locale = await import('locale_us-en')

You can use import either as a statement to statically pull in code (as we’ve used it up
to this point), or as a function that returns a Promise for your module (as we did in
this example).

While you can pass an arbitrary expression that evaluates to a string to import, you
lose type safety when you do. To safely use dynamic imports, be sure to either:
1. Pass a string literal directly to import, without assigning the string to a variable
first.
2. Pass an expression to import and manually annotate the module’s signature.
If using the second option, a common pattern is to statically import the module, but

use it only in a type position, so that TypeScript compiles away the static import (to
learn more, see “The types Directive” on page 262). For example:

220 | Chapter 10: Namespaces.Modules

https://momentjs.com

import {locale} from './locales/locale-us'

async function main() {
let userLocale = await getUserlLocale()
let path = ./locales/locale-${userLocale}
let localeUS: typeof locale = await import(path)

}

We imported locale from ./locales/locale-us, but we only used it for its type, which
we retrieved with typeof locale. We needed to do that because TypeScript couldn’t
statically look up the type of import(path), because path is a computed variable and
not a static string. Because we never used locale as a value, and instead just scav-
enged it for its type, TypeScript compiled away the static import (in this example,
TypeScript doesn’t generate any top-level exports at all), leaving us with both excel-
lent type safety and a dynamically computed import.

TSC Setting: module

TypeScript supports dynamic imports in esnext module mode
only. To use dynamic imports, set {"module": "esnext"} in your
tsconfig.json’s compilerOptions. Jump ahead to “Running Type-
Script on the Server” on page 258 and “Running TypeScript in the
Browser” on page 259 to learn more.

Using CommonJS and AMD Code

When consuming a JavaScript module that uses the Common]JS or AMD standard,
you can simply import names from it, just like for ES2015 modules:

import {something} from './a/legacy/commonjs/module’

By default, Common]S default exports don’t interoperate with ES2015 default
imports; to use a default export, you have to use a wildcard import:

import * as fs from 'fs'
fs.readFile('some/file.txt")

To interoperate more smoothly, set {"esModuleInterop": true} in your tscon-
fig.json’s compilerOptions. Now, you can leave out the wildcard:

import fs from 'fs'
fs.readFile('some/file.txt")

import, export | 221

As I mentioned at the top of the chapter, even though this code
compiles, that doesn’t mean it’ll work at runtime. Whichever mod-
ule standard you use—import/export, CommonJS, AMD, UMD,
or browser globals—your module bundler and module loader have
to be aware of that format so they can package up and split your
code correctly at compile time, and load your code correctly at
runtime. Head over to Chapter 12 to learn more.

Module Mode Versus Script Mode

TypeScript parses each of your TypeScript files in one of two modes: module mode or
script mode. It decides which mode to use based on a single heuristic: does your file
have any imports or exports? If so, it uses module mode; otherwise, it uses script
mode.

Module mode is what we’ve used up to this point, and what you’ll use most of the
time. In module mode, you use import and import() to require code from other files,
and export to make code available to other files. If you use any third-party UMD
modules (as a reminder, UMD modules try to use Common]S, RequireJS, or browser
globals, whichever the environment supports), you have to import them first, and
can’t use their global exports directly.

In script mode, any top-level variables you declare will be available to other files in
your project without an explicit import, and you can safely consume global exports
from third-party UMD modules without explicitly importing them first. A couple of
use cases for script mode are:

o To quickly prototype browser code that you plan to compile to no module sys-
tem at all ({"module": "none"} in your tsconfig.json) and include as raw
<script /> tags in your HTML file.

o To create type declarations (see “Type Declarations” on page 230)

You’ll almost always want to stick to module mode, which TypeScript will choose for
you automatically as you write real-world code that imports other code and exports
things for other files to use.

Namespaces

TypeScript gives us another way to encapsulate code: the namespace keyword. Name-
spaces will feel familiar to a lot of Java, C#, C++, PHP, and Python programmers.

222 | Chapter 10: Namespaces.Modules

If you're coming from a language with namespaces, note that
although namespaces are supported by TypeScript, they’re not the
preferred way to encapsulate code; if you're not sure whether to use
namespaces or modules, choose modules.

Namespaces abstract away the nitty-gritty details of how files are laid out in the file-
system; you don’t have to know that your .mine function lives in the schemes/scams/
bitcoin/apps folder, and instead you can access it with a short, convenient name-
space like Schemes.Scams.Bitcoin.Apps.mine.!

Say we have two files—a module to make HTTP GET requests, and a consumer that
uses that module to make requests:

// Get.ts
namespace Network {
export function get<T>(url: string): Promise<T> {
/) ...
}
}

// App.ts

namespace App {
Network.get<GitRepo>('https://api.github.com/repos/Microsoft/typescript')

}

A namespace must have a name (like Network), and it can export functions, variables,
types, interfaces, or other namespaces. Any code in a namespace block that’s not
explicitly exported is private to the block. Because namespaces can export namespa-
ces, you can easily model nested namespaces. Let’s say our Network module is getting
big, and we want to split it up into a few submodules. We can use namespaces to do
that:

namespace Network {
export namespace HTTP {
export function get <T>(url: string): Promise<T> {
// ...
}
}

export namespace TCP {
listenOn(port: number): Connection {
Y/
}
/) ..
}
export namespace UDP {
/] ..
}

1 Ireally hope this joke ages well, and I don’t end up regretting not investing in Bitcoin.

Namespaces | 223

export namespace IP {
Y/
}
}

Now, all of our network-related utilities are in subnamespaces under Network. For
example, we can now call Network.HTTP.get and Network.TCP.listenOn from any
file. Like interfaces, namespaces can be augmented, making it convenient to split
them across files. TypeScript will recursively merge identically named namespaces for

us:

// HTTP.ts
namespace Network {
export namespace HTTP {
export function get<T>(url: string): Promise<T> {
/) ...
}
}
}

// UDP.ts
namespace Network {
export namespace UDP {
export function send(url: string, packets: Buffer): Promise<void> {
Y/
}
}
}

// MyApp.ts
Network.HTTP.get<Dog[]>('http://url.com/dogs")
Network.UDP.send('http://url.com/cats', new Buffer(123))

If you end up with long namespace hierarchies, you can use aliases to shorten them
for convenience. Note that despite the similar syntax, destructuring (like you do
when importing ES2015 modules) is not supported for aliases:

// A.ts
namespace A {
export namespace B {
export namespace C {
export let d = 3
}
}
}

// MyApp.ts
import d = A.B.C.d

lete=d* 3

224

| Chapter 10: Namespaces.Modules

Collisions

Collisions between identically named exports are not allowed:

// HTTP.ts
namespace Network {
export function request<T>(url: string): T {
/) ..
}
}

// HTTP2.ts
namespace Network {
// Error TS2393: Duplicate function implementation.
export function request<T>(url: string): T {
/) ...
}
}

The exception to the no-collisions rule is overloaded ambient function declarations,
which you can use to refine function types:

// HTTP.ts
namespace Network {
export function request<T>(url: string): T

}

// HTTP2.ts
namespace Network {
export function request<T>(url: string, priority: number): T

}

// HTTPS.ts
namespace Network {

export function request<T>(url: string, algo: 'SHA1' | 'SHA256'): T
}

Compiled Output

Unlike imports and exports, namespaces don’t respect your tsconfig.json’s module set-
ting, and always compile to global variables. Let’s peek behind the veil to see what the
generated output looks like. Say we have the following module:

// Flowers.ts
namespace Flowers {
export function give(count: number) {
return count + ' flowers'
}
}

Running it through TSC, the generated JavaScript output looks like this:

Namespaces | 225

let Flowers
(function (Flowers) { @
function give(count) {
return count + ' flowers'

}

Flowers.give = give (2]

})(Flowers || (Flowers = {})) ©

Flowers is declared within an IIFE—a function that calls itself immediately—to
create a closure and prevent variables that weren’t explicitly exported from leak-
ing out of the Flowers module.

TypeScript assigns the give function that we exported to the Flowers name-
space.

If the Flowers namespace is already globally defined, then TypeScript augments
it (Flowers); otherwise, TypeScript creates and augments that newly created
namespace (Flowers = {3}).

Prefer Modules over Namespaces When Possible

Prefer regular modules (the import and export kind) over namespaces as a way to
more closely stick to JavaScript standards and make your dependencies more explicit.

Explicit dependencies have lots of benefits for readability, enforcing module isolation
(because namespaces are automatically merged, but modules are not), and static anal-
ysis, which matters for big frontend projects where stripping out dead code and split-
ting your compiled code into multiple files is crucial for performance.

When running TypeScript programs in a NodeJS environment, modules are also the
clear choice because of Node]S’s built-in support for Common]S. In browser envi-
ronments, some programmers prefer namespaces for simplicity, but for medium- to
large-sized projects, try to stick to modules over namespaces.

Declaration Merging

So far we’ve touched on three types of merging that TypeScript does for us:

« Merging values and types, so that the same name can refer to either a value or a

type depending how we use it (see “Companion Object Pattern” on page 140)

o Merging multiple namespaces into one

o Merging multiple interfaces into one (see “Declaration Merging” on page 93)

226

| Chapter 10: Namespaces.Modules

As you might have intuited, these are three special cases of a much more general
TypeScript behavior. TypeScript has a rich set of behavior for merging different kinds

of names, unlocking all sorts of patterns that can otherwise be difficult to express (see
Table 10-1).

Table 10-1. Can the declaration be merged?

To
Value Class Enum Function Typesalias Interface Namespace Module
Value No No No No Yes Yes No —
Class — No No No No Yes Yes —
Enum — — Yes No No No Yes —
From Function — — — No Yes Yes Yes —
Typealas — — — — No No Yes —
Interface —_- = = = — Yes Yes —
Namespace — — — — — — Yes —
Module _- = = — — — — Yes

This means that if, for example, you declare a value and a type alias in the same
scope, TypeScript will allow it, and infer which one you meant—the type or the value
—from whether you use the name in a value or a type position. This is what lets us
implement the pattern described in “Companion Object Pattern” on page 140. It also
means that you can use an interface and a namespace to implement companion
objects—you’re not limited to just a value and a type alias. Or you can take advantage
of module merging to augment a third-party module declaration (more on this in

“Extending a Module” on page 278). Or you can add static methods to an enum by
merging that enum with a namespace (try it!).

The moduleResolution Flag

Eagle-eyed readers may notice the moduleResolution flag available in their tscon-
fig.json. This flag controls the algorithm TypeScript uses to resolve module names in
your application. The flag supports two modes:

« node: Always use this mode. It resolves modules using the same algorithm that
Node]S uses. Modules prefixed with a ., /, or ~ (like ./my/file) are resolved
from the local filesystem, either relative to the current file, or using an absolute
path (relative to your / directory, or whatever your tsconfig.json’s baseUrl is set
to), depending on the prefix you use. TypeScript loads module paths that don’t
have a prefix from your node modules folder, the same as NodeJS. TypeScript
builds on Node]S’s resolution strategy in two ways:

Declaration Merging | 227

1. In addition to the main field in a package’s package.json that Node]S looks at to
find the default importable file in a directory, TypeScript also looks at the
TypeScript-specific types property (more on that in “Type Lookup for Java-
Script” on page 242).

2. When importing a file with an unspecified extension, TypeScript first looks for
a file with that name and a .ts extension, followed by .tsx, .d.ts, and finally .js.

o classic: You should never use this mode. In this mode, relative paths are
resolved like in node mode, but for unprefixed names, TypeScript will look for a
file with the given name in the current folder, then walk up the directory tree a
folder at a time until it finds a matching file. This is really surprising behavior for
anyone coming from the NodeJS or JavaScript world, and does not interoperate
well with other build tools.

Summary

In this chapter we covered TypeScript’s module system, starting with a brief history
of JavaScript module systems, ES2015 modules and safely lazy-loading code with
dynamic imports, interoperating with Common]S and AMD modules, and module
mode versus script mode. We then covered namespaces, namespace merging, and
how TypeScript’s declaration merging works.

As you develop applications in TypeScript, try hard to stick to ES2015 modules.
TypeScript doesn’t care which module system you use, but it will make it easier to
integrate with build tooling (see Chapter 12 to learn more).

Exercise

1. Play around with declaration merging, to:

a. Reimplement companion objects (from “Companion Object Pattern” on page
140) using namespaces and interfaces, instead of values and types.

b. Add static methods to an enum.

228 | Chapter 10: Namespaces.Modules

CHAPTER 11
Interoperating with JavaScript

We don’t live in a perfect world. Your coffee can be too hot and burn your mouth a
little when you drink it, your parents might call and leave you voicemails a little too
often, that pothole by your driveway is still there no matter how many times you call
the city, and your code might not be completely covered with static types.

Most of us are in this boat: though once in a while you’ll have the leeway to start a
greenfield project in TypeScript, most of the time it will start as a little island of
safety, embedded in a larger, less safe codebase. Maybe you have a well-isolated com-
ponent that you want to try TypeScript on even though your company uses regular
ES6 JavaScript everywhere else, or maybe you're fed up with getting paged at 6 A.M.
because you refactored some code and forgot to update a call site (it's now 7 AM,,
and you’re ninja-merging TSC into your codebase before your coworkers wake up).
Either way, you will probably start with an island of TypeScript in a type-less sea.

So far in this book I've been teaching you to write TypeScript the right way. This
chapter is about writing TypeScript the practical way, in real codebases that are in the
process of migrating away from untyped languages, that use third-party JavaScript
libraries, that at times sacrifice type safety for a quick hot patch to unbreak prod. This
chapter is dedicated to working with JavaScript. We’ll explore:

« Using type declarations
o Gradually migrating from JavaScript to TypeScript
o Using third-party JavaScript and TypeScript

229

Type Declarations

A type declaration is a file with the extension .d.ts. Along with JSDoc annotations (see
“Step 2b: Add JSDoc Annotations (Optional)” on page 239), it’s a way to attach Type-
Script types to JavaScript code that would otherwise be untyped.

Type declarations have a similar syntax to regular TypeScript, with a few differences:

o Type declarations can only contain types, and can’t contain values. That means
no function, class, object, or variable implementations, and no default values for
parameters.

« While type declarations can’t define values, they can declare that there exists a
value defined somewhere in your JavaScript. We use the special declare key-
word for this.

o Type declarations only declare types for things that are visible to consumers. We
don’t include things like types that aren’t exported, or types for local variables
inside of function bodies.

Let’s jump into an example, and take a look at a piece of TypeScript (.ts) code and its
equivalent type declaration (.d.ts). This example is a fairly involved piece of code
from the popular RxJS library; feel free to gloss over the details of what it’s doing, and
instead pay attention to which language features it’s using (imports, classes, inter-
faces, class fields, function overloads, and so on):

import {Subscriber} from './Subscriber'
import {Subscription} from './Subscription’
import {PartialObserver, Subscribable, TeardownLogic} from './types'

export class Observable<T> implements Subscribable<T> {
public _1isScalar: boolean = false
constructor(
subscribe?: (
this: Observable<T>,
subscriber: Subscriber<T>
) => TeardownlLogic
) {
if (subscribe) {
this._subscribe = subscribe
}
}
static create<T>(subscribe?: (subscriber: Subscriber<T>) => TeardownLogic) {
return new Observable<T>(subscribe)
}
subscribe(observer?: PartialObserver<T>): Subscription
subscribe(
next?: (value: T) => void,
error?: (error: any) => void,
complete?: () => void

230 | Chapter 11: Interoperating with JavaScript

): Subscription

subscribe(
observerOrNext?: PartialObserver<T> | ((value: T) => void),
error?: (error: any) => void,
complete?: () => void

): Subscription {
/] ...

}

}

Running this code through TSC with the declarations flag enabled (tsc -d Observ
able. ts) yields the following Observable.d.ts type declaration:

import {Subscriber} from './Subscriber'
import {Subscription} from './Subscription'
import {PartialObserver, Subscribable, TeardownLogic} from './types'

export declare class Observable<T> implements Subscribable<T> { (1]
_1isScalar: boolean
constructor(
subscribe?: (
this: Observable<T>,
subscriber: Subscriber<T>
) => TeardownlLogic
)5
static create<T>(
subscribe?: (subscriber: Subscriber<T>) => TeardownlLogic
): Observable<T>
subscribe(observer?: PartialObserver<T>): Subscription
subscribe(
next?: (value: T) => void,
error?: (error: any) => void,
complete?: () => void
): Subscription (2]

}

© Notice the declare keyword before class. We can’t actually define a class in a
type declaration, but we can declare that we defined a class in the .d.ts file’s corre-
sponding JavaScript file. Think of declare like an affirmation: “I swear that my
JavaScript exports a class of this type.”

©® Because type declarations don’t contain implementations, we only keep the two
overloads for subscribe, and not the signature for its implementation.

Notice how Observable.d.ts is just Observable.ts, minus the implementations. In other
words, it’s just the types from Observable.ts.

This type declaration isn’t useful to other files in the Rx]JS library that use Observa-
ble.ts, since they have access to the Observable.ts source TypeScript file itself and can

Type Dedlarations | 231

use it directly. It is useful, however, if you consume RxJS in your TypeScript
application.

Think about it: if the authors of RxJS wanted to package in typing information on
NPM for their TypeScript-wielding users (RxJS can be used in both TypeScript and
JavaScript applications), they would have two options: package both source Type-
Script files (for TypeScript users) and compiled JavaScript files (for JavaScript users),
or ship compiled JavaScript files along with type declarations for TypeScript users.
The latter reduces the file size, and makes it unambiguous what the correct import to
use is. It also helps keep compile times for your application fast, since your TSC
instance doesn’t have to recompile RxJS every time you compile your own app (in
fact, it’s the reason the optimization strategy we introduce in “Project References” on
page 255 works!).

Type declaration files have a few uses:

1. When someone else uses your compiled TypeScript from their TypeScript appli-
cation, their TSC instance will look for .d.ts files corresponding to your generated
JavaScript files. This tells TypeScript what the types are for your project.

2. Code editors with TypeScript support (like VSCode) will read these .d.ts files to
give your users helpful type hints as they type, even if they don’t use TypeScript.

3. They speed up compile times significantly by avoiding unnecessarily re-
compiling your TypeScript code.

A type declaration is a way to tell TypeScript, “There exists this thing that’s defined in
JavaScript, and I'm going to describe it to you.” When we talk about type declara-
tions, we often call them ambient in order to differentiate them from regular declara-
tions that contain values; for example, an ambient variable declaration uses the
declare keyword to declare that a variable is defined somewhere in JavaScript, while
a regular nonambient variable declaration is a normal let or const declaration that
declares a variable without using the declare keyword.

You can use type declarations for a few things:

« To tell TypeScript about a global variable that’s defined in JavaScript somewhere.
For example, if you polyfilled the Promise global or defined process.env in a
browser environment, you might use an ambient variable declaration to give
TypeScript a heads-up.

+ To define a type that’s globally available everywhere in your project, so to use it
you don’t have to import it first (we call this an ambient type declaration).

o To tell TypeScript about a third-party module that you installed with NPM (an
ambient module declaration).

232 | Chapter 11: Interoperating with JavaScript

A type declaration, regardless of what you’re using it for, has to live in a script-
mode .ts or .d.ts file (recall our earlier discussion of script mode in “Module Mode
Versus Script Mode” on page 222). By convention, we give our file a .d.ts extension if
it has a corresponding .js file; otherwise, we use a .ts extension. It doesn’t matter what
you call the file—for example, I like to stick to a single top-level types.ts until it gets
unwieldy—and a single type declaration file can contain as many type declarations as
you want.

Finally, while top-level values in a type declaration file need the declare keyword
(declare let, declare function, declare class, and so on), top-level types and
interfaces do not.

With those ground rules out of the way, let’s briefly look at some examples of each
kind of type declaration.

Ambient Variable Declarations

An ambient variable declaration is a way to tell TypeScript about a global variable
that can be used in any .ts or .d.ts file in your project without explicitly importing it
first.

Let’s say you're running a NodeJS program in your browser, and the program checks
process.env.NODE_ENV (which is either "development" or "production") at some
point. When you run the program, you get an ugly runtime error:

Uncaught ReferenceError: process is not defined.

You sleuth around Stack Overflow a bit, and realize that the quickest hack to get your
program running is to polyfill process.env.NODE_ENV yourself and hardcode it. So
you create a new file, polyfills.ts, and define a global process.env:
process = {
env: {
NODE_ENV: 'production'
}
}
Of course, TypeScript then comes to the rescue, throwing a red squiggly at you to try
to save you from the mistake you're clearly making by augmenting the window global:

Error TS2304: Cannot find name 'process'.

But in this case, TypeScript is being overprotective. You really do want to augment
window, and you want to do it safely.

Type Declarations | 233

So what do you do? You pop open polyfills.ts in Vim (you see where this is going) and
type:

declare let process: {

env: {
NODE_ENV: 'development' | 'production'
}
}
process = {
env: {
NODE_ENV: 'production'
}

}

You’re declaring to TypeScript that there’s a global object process that has a single
property env, that has a property NODE_ENV. Once you tell TypeScript about that, the
red squiggly disappears and you can safely define your process global.

TSC Setting: lib

TypeScript comes with a set of type declarations for describing the
JavaScript standard library that includes built-in JavaScript types,
like Array and Promise, and methods on built-in types, like
''.toUpperCase. It also includes global objects like window and
document (in a browser environment), and onmessage (in a Web
Worker environment).

You can pull in TypeScript’s built-in type declarations using your

tsconfig.json’s Lib field. Jump ahead to “lib” on page 254 for a deep
dive into how to dial in your project’s 1ib setting.

Ambient Type Declarations

Ambient type declarations follow the same rules as ambient variable declarations: the
declaration has to live in a script-mode .ts or .d.ts file, and it’ll be available globally to
the other files in your project without an explicit import. For example, let’s declare a
global utility type ToArray<T> that lifts T to an array, if it isn’t an array already. We
can define this type in any script-mode file in our project—for this example, let’s
define it in a top-level types.ts file:

type ToArray<T> = T extends unknown[] ? T : T[]
We can now use this type from any project file, without an explicit import:

function toArray<T>(a: T): ToArray<T> {
/).
}

234 | Chapter 11: Interoperating with JavaScript

Consider using ambient type declarations to model data types that are used through-
out your application. For example, you might use them to make the UserID type we
developed in “Simulating Nominal Types” on page 152 globally available:

type UserID = string & {readonly brand: unigue symbol}

Now, you can use UserID anywhere in your application without having to explicitly
import it first.

Ambient Module Declarations

When you consume a JavaScript module and want to quickly declare some types for
it so you can use it safely—without having to contribute the type declarations back to
the JavaScript module’s GitHub repository or DefinitelyTyped first—ambient mod-
ule declarations are the tool to use.

An ambient module declaration is a regular type declaration, surrounded by a special
declare module syntax:

declare module 'module-name' {
export type MyType = number
export type MyDefaultType = {a: string}
export let myExport: MyType
let myDefaultExport: MyDefaultType
export default myDefaultExport

}
A module name ('module-name' in this example) corresponds to an exact import
path. When you import that path, your ambient module declaration tells TypeScript
what’s available:

import ModuleName from 'module-name'

ModuleName.a // string

If you have a nested module, make sure you include the whole import path in its dec-
laration:

declare module '@most/core' {
// Type declaration
}
If you just want to quickly tell TypeScript “I'm importing this module—Ill type it
later, just assume it’s an any for now,” keep the header but omit the actual declara-
tion:

// Declare a module that can be imported, where each of its imports are any
declare module 'unsafe-module-name'

Now if you consume this module, it’s less safe:

import {x} from 'unsafe-module-name'
x // any

Type Declarations | 235

Module declarations support wildcard imports, so you can give a type to any import
path that matches the given pattern. Use a wildcard (*) to match an import path:!

// Type JSON files imported with Webpack's json-loader
declare module 'json!*' {

let value: object

export default value

}

// Type CSS files imported with Webpack's style-loader
declare module '*.css' {

let css: CSSRulelist

export default css

}
Now, you can load JSON and CSS files:

import a from 'json!myFile'
a // object

import b from './widget.css'
b // CSSRulelList

For the last two examples to work, you’ll need to configure your
build system to load .json and .css files. You can declare to Type-
Script that these path patterns are safe to import, but TypeScript
won’t be able to build them by itself.

Jump ahead to “JavaScript That Doesn’t Have Type Declarations on DefinitelyTyped”
on page 246 for an example of how to use ambient module declarations to declare types
for untyped third-party JavaScript.

Gradually Migrating from JavaScript to TypeScript

TypeScript was designed with JavaScript interoperability in mind, not as an after-
thought. So while it’s not painless, migrating to TypeScript is a good experience, let-
ting you convert your codebase over a file at a time, opting into stricter levels of
safety as you migrate, showing your boss and your coworkers just how impactful stat-
ically typing your code can be, one commit at a time.

At a high level, here’s where you want to end up: your codebase should be completely
written in TypeScript with strict type coverage, and third-party JavaScript libraries
you depend on should come with high-quality, strict types of their own. Any bugs
that could be caught at compile time are, and TypeScript’s rich autocompletion

1 Wildcard matching with * follows the same rules as regular glob pattern matching.

236 | Chapter 11: Interoperating with JavaScript

https://en.wikipedia.org/wiki/Glob_(programming)

halves the time it takes to write each line of code. You might have to take a few baby
steps to get there:

+ Add TSC to your project.
o Start typechecking your existing JavaScript code.
» Migrate your JavaScript code to TypeScript, a file at a time.

o Install type declarations for your dependencies, either stubbing out types for
dependencies that don’t have types or writing type declarations for untyped
dependencies and contributing them back to DefinitelyTyped.?

« Flip on strict mode for your codebase.

This process can take a while, but you will see safety and productivity gains right
away, and uncover more gains as you keep going. Let’s walk through the steps one at
a time.

Step 1: Add TSC

When working on a codebase that combines TypeScript and JavaScript, start by let-
ting TSC compile JavaScript files alongside your TypeScript. In your tsconfig.json:

{
"compilerOptions": {
"allowls": true

}
With this one change, you can now use TSC to compile your JavaScript. Just add TSC
to your build process, and either run every existing JavaScript file through TSC,’ or
continue running legacy JavaScript files through your existing build process and run
new TypeScript files through TSC.

With allowJs set to true, TypeScript won't typecheck your existing JavaScript code,
but it will transpile it (to ES3, ES5, or whatever target is set to in your tsconfig.json)
using the module system you asked for (in your tsconfig.json’s module field). First
step, done. Commit it, and give yourself a pat on the back—your codebase now uses
TypeScript!

2 DefinitelyTyped is the open source repository for JavaScript type declarations. Read on to learn more.

3 For really big projects it can be slow to run every single file through TSC. For a way to improve performance
for large projects, see “Project References” on page 255.

Gradually Migrating from JavaScript to TypeScript | 237

Step 2a: Enable Typechecking for JavaScript (Optional)

Now that TSC is processing your JavaScript, why not typecheck it too? While you
might not have explicit type annotations in your JavaScript, remember how great
TypeScript is at inferring types for you; it can infer types in your JavaScript the same
way it does in your TypeScript code. Enable this in your tsconfig.json:

{
"compilerOptions": {
"allowls": true,
"checkls": true

}

Now, whenever TypeScript compiles a JavaScript file it'll do its best to infer types and
typecheck as it goes, like it does for regular TypeScript code.

If your codebase is big and flipping on checkJs reports too many type errors at once,
turn it off, and instead enable checking for a JavaScript file at a time by adding the //
@ts-check directive (a regular comment at the top of the file). Or, if a few big files are
throwing the bulk of your errors and you don’t want to fix them just yet, keep
checkJs on and add the // @ts-nocheck directive to just those files.

Because TypeScript can’t infer everything (e.g., function parameter
types), it will infer a lot of types in your JavaScript code as any. If
you have strict mode enabled in your tsconfig.json (you should!),
you may want to temporarily allow implicit anys while you
migrate. In your tsconfig.json, add:

{
"compilerOptions": {
"allowls": true,
"checkJs": true,
"noImplicitAny": false

}
Don’t forget to turn noImplicitAny on again when you’ve migra-
ted a critical mass of code to TypeScript! It will probably reveal a
bunch of real errors that you missed (unless, of course, you're
Xenithar, disciple of Bathmorda the JavaScript witch, able to type-
check in your mind’s eye with the help of nothing but a cauldron-
ful of mugwort).

238 | Chapter 11: Interoperating with JavaScript

When TypeScript runs over JavaScript code, it uses a more lenient inference algo-
rithm than it does for TypeScript code. Specifically:

« All function parameters are optional.

« The types of properties on functions and classes are inferred from usage (rather
than having to be declared up front):

class A {
x = 0 // number [string | string[], inferred from usage
method() {
this.x = 'foo'
}
otherMethod() {
this.x = ['array', 'of', 'strings']
}
}

o After declaring an object, class, or function, you can assign extra properties to it.
Under the hood, TypeScript does this by generating a corresponding namespace
for each class and function declaration, and automatically adding an index signa-
ture to every object literal.

Step 2b: Add JSDoc Annotations (Optional)

Maybe you'’re in a hurry, and just need to add a single type annotation for a new
function you added to an old JavaScript file. Until you get a chance to convert that
file to TypeScript, you can use a JSDoc annotation to type your new function.

You’ve probably seen JSDoc before; it’s those funny-looking comments above some
JavaScript and TypeScript code with @-annotations like @param, @returns, and so on.
TypeScript understands JSDoc, and uses it as input to its typechecker the same way
that it uses explicit type annotations in TypeScript code.

Let’s say you have a 3,000-line utilities file (yes, I know your “friend” wrote it). You
add a new utility function to it:

export function toPascalCase(word) {
return word.replace(

/\w+/g,
([a, ...b]) => a.toUpperCase() + b.join('').toLowerCase()

)
}
Without converting utils.js to TypeScript full sail—which would probably catch a
bunch of bugs you’d then have to fix—you can annotate just your toPascalCase
function, carving out a little island of safety in a sea of untyped JavaScript:

Gradually Migrating from JavaScript to TypeScript | 239

/'k*
* @param word {string} An input string to convert
* @returns {string} The string in PascalCase
*/
export function toPascalCase(word) {
return word.replace(

/\w+/g,
([a, ...b]) => a.toUpperCase() + b.join('').toLowerCase()

)
}
Without that JSDoc annotation, TypeScript would have inferred toPascalCase’s type
as (word: any) => string. Now, when TypeScript compiles your code it knows
toPascalCase’s type is (word: string) => string. And you got some nice docu-
mentation out of it!

Head over to the TypeScript Wiki to learn more about supported JSDoc annotations.

Step 3: Rename Your Files to .ts

Once you’ve added TSC to your build process, and optionally started typechecking
and annotating JavaScript where possible, it’s time to start switching over to Type-
Script.

One file at a time, update your files” extensions from .js (or .coffee, .es6, etc.) to .ts. As
soon as you rename a file in your code editor, you’ll see your friends the red squig-
glies appear (the TypeError, not the kids’ TV show), uncovering type errors, missed
cases, forgotten null checks, and misspelled variable names. There are two strategies
for fixing these errors:

1. Do it right. Take your time to type shapes, fields, and functions correctly, so you
can catch errors in all the files that consume them. If you have checkJs enabled,
turn on noImplicitAny in your tsconfig.json to uncover anys and type them, then
turn it back off to make the output of typechecking your remaining JavaScript
files less noisy.

2. Do it fast. Mass-rename your JavaScript files to the .ts extension, and keep your
tsconfig.json settings lax (meaning strict set to false) to throw as few type
errors as possible after renaming. Type complex types as any to appease the type-
checker. Fix whatever type errors remain, and commit. Once this is done, flip on
the strict mode flags (noImplicitAny, noImplicitThis, strictNullChecks,
and so on) one by one, and fix the errors that pop up. (See Appendix F for a full
list of these flags.)

240 | Chapter 11: Interoperating with JavaScript

http://bit.ly/2YCTWBf

If you choose to go the quick-and-dirty route, a useful trick is to
define an ambient type declaration TODO as a type alias for any, and
use that instead of any so that you can more easily find and track
missing types. You can also call it something more specific, so it’s
easier to find in a project-wide code search:

// globals.ts
type TODO_FROM_JS_TO_TS_MIGRATION = any

// MyMigratedUtil.ts
export function mergeWidgets(
widgetl: TODO_FROM_JS_TO_TS_MIGRATION,
widget2: TODO_FROM_JS_TO_TS_MIGRATION
): number {
// ...
}

Both ways of doing it are fair game, and it’s up to you which you want to go with.
Because TypeScript is a gradually typed language, it’s built from the ground up to
interoperate with untyped JavaScript code as safely as possible. Regardless of whether
you’re interoperating strictly typed TypeScript with untyped JavaScript or strictly
typed TypeScript with loosely typed TypeScript, TypeScript will do its best to make
sure that you're doing it as safely as possible, and that on the strictly typed island that
you've so carefully built, everything is as safe as it can be.

Step 4: Make It strict

Once you've migrated a critical mass of your JavaScript over to TypeScript, you’ll
want to make your code as safe as possible by opting into TSC’s more stringent flags
one by one (see Appendix F for a full list of flags).

Finally, you can disable TSC’s JavaScript interoperability flags, enforcing that all of
your code is written in strictly typed TypeScript:

{
"compilerOptions": {
"allowls": false,
"checkls": false

}

This will surface the final rounds of type-related errors. Fix these, and you're left with
a pristine, safe codebase that the most hardcore OCaml engineer would give you a pat
on the back for (were you to ask nicely).

Following these steps will get you far when adding types to JavaScript you control,
but what about JavaScript you don’t control, like code you installed from NPM? To
get there, we're first going to have to take a small detour...

Gradually Migrating from JavaScript to TypeScript | 241

Type Lookup for JavaScript

When you import a JavaScript file from a TypeScript file, TypeScript follows an algo-
rithm that looks like this to look up type declarations for your JavaScript code
(remember that “file” and “module” are interchangeable when we talk about Type-
Script):*

1. Look for a sibling .d.ts file with the same name as your .js file. If it exists, use it as
the type declaration for the js file.

For example, say you have the following folder structure:

my-app/

F—src/

| F—index.ts

| “—legacy/

| F—old-file.js

| L—old-file.d.ts

You then import old-file from index.ts:

// index.ts

import './legacy/old-file'
TypeScript will use src/legacy/old-file.d.ts as the source of type declarations
for ./legacy/old-file.

2. Otherwise, if allowJs and checkJs are true, infer the js file’s types (informed by
any JSDoc annotations in the js file).

3. Otherwise, treat the whole module as an any.

When importing a third-party JavaScript module—that is, an NPM package that you
installed to node modules—TypeScript uses a slightly different algorithm:

1. Look for a local type declaration for the module. If it exists, use it.
For example, say your app’s folder structure looks like this:

my-app/
F—node_modules/
| “—foo/
F—src/

| —index.ts

| —types.d.ts

And types.d.ts looks like this:

4 Strictly speaking, this is true for module-mode, but not script-mode, files. Read more in “Module Mode Ver-
sus Script Mode” on page 222.

242 | Chapter 11: Interoperating with JavaScript

// types.d.ts

declare module 'foo' {
let bar: {}
export default bar

}

If you then import foo, TypeScript will use the ambient module declaration in
types.d.ts as the source of types for foo:

// index.ts
import bar from 'foo'

2. Otherwise, look at the module’s package.json. If it defines a field called types or

typings, use the .d.ts file that field points to as the source of type declarations for
the module.

3. Otherwise, traverse out a directory at a time, and look for a node modules/@types
directory that has type declarations for the module.

For example, say you installed React:

npm install react --save
npm install @types/react --save-dev

my-app/
F—node_modules/
| —@types/

| | “—react/

| L—react/
F—src/

| L—index.ts

When you import React, TypeScript will find the @types/react folder and use that
as the source of type declarations for React:

// index.ts
import * as React from 'react'’

4. Otherwise, proceed to steps 1-3 of the local type lookup algorithm.

That was a lot of steps, but it’s remarkably intuitive once you get the hang of it.

Type Lookup for JavaScript | 243

TSC Settings: types and typeRoots

By default, TypeScript looks in node modules/@types in your
project’s folder and containing folders (../node modules/@types and
so on) for third-party type declarations. Most of the time, you want
to leave this behavior as is.

To override this default behavior for global type declarations, con-
figure typeRoots in your tsconfig.json with an array of folders to
look in for type declarations. For example, you can tell TypeScript
to look for type declarations in the typings folder as well as node
modules/@types:

{
"compilerOptions": {
"typeRoots" : ["./typings", "./node modules/@types"]
}
}

For even more granular control, use the types option in your
tsconfig.json to specify which packages you want TypeScript to look
up types for. For example, the following config ignores all third-
party type declarations except the ones for React:

{
"compilerOptions": {
"types" : ["react"]
}
}

Using Third-Party JavaScript

I'll assume you’re using a package manager like NPM or Yarn to
install third-party JavaScript. And if you're one of those people that
prefers to copy and paste code manually instead—shame on you.

When you npm install third-party JavaScript code into your project, there are three
possible scenarios:

1. The code you installed comes with type declarations out of the box.

2. The code you installed doesn’t come with type declarations, but declarations are
available on DefinitelyTyped.

3. The code you installed doesn’t come with type declarations, and declarations are
not available on DefinitelyTyped.

Let’s dig into each of these.

244 | Chapter 11: Interoperating with JavaScript

JavaScript That Comes with Type Declarations

You know that a package comes with type declarations out of the box if you import it
with {"noImplicitAny": true} and TypeScript doesn’t throw a red squiggly at you.

If the code you're installing is compiled from TypeScript, or its authors were kind
enough to include type declarations in its NPM package, then you’re in luck. Just
install the code and start using it with full type support.

Some examples of NPM packages that come with built-in type declarations are:

npm install rxjs
npm install ava
npm install @angular/cli

Unless the code you’re installing was actually compiled from Type-
Script, you always run the risk that the type declarations it comes
with don’t match up to the code those declarations describe. When
type declarations come packaged with source code the risk of this
happening is pretty low (especially for popular packages), but it’s
something to be aware of.

JavaScript That Has Type Declarations on DefinitelyTyped

Even if the third-party code you're importing doesn’t come with type declarations,
declarations for it are probably available on DefinitelyTyped, TypeScript’s
community-maintained, centralized repository for ambient module declarations for
open source projects.

To check if the package you installed has type declarations available on DefinitelyTy-
ped, either search on TypeSearch or just try installing the declarations. All Definitely-
Typed type declarations are published to NPM under the @types scope, so you can
just npm install from that scope:

npm install lodash --save # Install Lodash
npm install @types/lodash --save-dev # Install type declarations for Lodash

Most of the time, youll want to use npm install’s --save-dev flag to add your
installed type declarations to your package.json’s devDependencies field.

Since type declarations on DefinitelyTyped are community-
maintained, they run the risk of being incomplete, inaccurate, or
stale. While most popular packages have well-maintained type dec-
larations, if you find that the declarations you’re using can be
improved, take the time to improve them and contribute them
back to DefinitelyTyped so other TypeScript users can take advan-
tage of your hard work.

Using Third-Party JavaScript | 245

https://github.com/DefinitelyTyped/DefinitelyTyped
https://microsoft.github.io/TypeSearch/
http://bit.ly/2U7QYWP
http://bit.ly/2U7QYWP

JavaScript That Doesn’t Have Type Declarations on DefinitelyTyped

This is the least common case of the three. You have several options here, from the
cheapest and least safe to the most time-intensive and safest:

1. Whitelist the specific import by adding a // @ts-ignore directive above your
untyped import. TypeScript will let you use the untyped module, but the module
and all of its contents will be typed as any:

// @ts-ignore
import Unsafe from 'untyped-module'

Unsafe // any

2. Whitelist all usages of this module by creating an empty type declaration file and
stubbing out the module. For example, if you installed the rarely used package
nearby-ferret-alerter, you could make a new type declaration (e.g., types.d.ts)
and add to it the ambient type declaration:

// types.d.ts

declare module 'nearby-ferret-alerter'
This tells TypeScript that there exists a module that you can import (import
alert from 'nearby-ferret-alerter'), but it doesn’t tell TypeScript anything
about the types contained in that module. This approach is a slightly better alter-
native to the first, in that now there’s a central types.d.ts file that enumerates all
the untyped modules in your application, but it’s equally unsafe because nearby-
ferret-alerter and all of its exports will still be typed as any.

3. Create an ambient module declaration. Like in the previous approach, create a
file called types.d.ts and add an empty declaration (declare module 'nearby-
ferret-alerter'). Now, fill in the type declaration. For example, the result
might look like this:

// types.d.ts
declare module 'nearby-ferret-alerter' {

export default function alert(loudness: 'soft' | 'loud'): Promise<void>
export function getFerretCount(): Promise<number>

}

Now when you import alert from 'nearby-ferret-alerter', TypeScript will
know exactly what alert’s type is. It's no longer an any, but (loudness:
'quiet' | 'loud') => Promise<void>.

4. Create a type declaration and contribute it back to NPM. If you got as far as the
third option and now have a local type declaration for your module, consider
contributing it back to NPM so the next person that needs type declarations for
the awesome nearby-ferret-alerter package can use it too. To do this you can
either submit a pull request to the nearby-ferret-alerter Git repository and

246 | Chapter 11: Interoperating with JavaScript

contribute the type declarations directly, or, if the maintainers of that repository
don’t want to be on the hook for maintaining TypeScript type declarations, con-
tribute your declarations to DefinitelyTyped instead.

Writing type declarations for third-party JavaScript is straightforward, but how it’s
done depends on the type of module you're typing. There are a few common patterns
that come up when typing different kinds of JavaScript modules (from NodeJS mod-
ules to jQuery augmentations and Lodash mixins to React and Angular components).
Head over to Appendix D for a list of recipes for typing third-party JavaScript mod-
ules.

Automatically generating type declarations for untyped JavaScript
is an active area of research. Check out dts-gen for a way to auto-
matically generate type declaration scaffolding for any third-party
JavaScript module.

Summary

There are a few ways to use JavaScript from TypeScript. Table 11-1 summarizes the
options.

Table 11-1. Ways to use JavaScript from TypeScript

Approach tsconfig.json flags Type safety

Import untyped JavaScript {"allowJs": true} Poor

Import and check JavaScript {"allowJs": true, "checkJs": true} 0K

Import and check JSDoc-annotated JavaScript {"allowds": true, "checkJs": true, Excellent
"strict": true}

Import JavaScript with type declarations {"allowJs": false, "strict": true} Excellent

Import TypeScript {"allowJs": false, "strict": true} Excellent

In this chapter we covered various aspects of using JavaScript and TypeScript
together, from the different kinds of type declarations and how to use them, to
migrating your existing JavaScript project to TypeScript piece by piece, to using
third-party JavaScript safely (and unsafely). Interoperating with JavaScript can be one
of the trickiest aspects of TypeScript; with all the tools at your disposal, you're now
equipped to do it in your own project.

Summary | 247

https://www.npmjs.com/package/dts-gen

CHAPTER 12

Building and Running TypeScript

If you've deployed and run a JavaScript application in production, then you know
how to run a TypeScript application too—once you compile it to JavaScript, the two
aren’t so different. This chapter is about productionizing and building TypeScript
applications, but there isn’t much here that’s unique to TypeScript apps—it mostly
applies to JavaScript applications too. We'll divide it up into four sections, covering:

o The things you have to do to build any TypeScript application
« Building and running TypeScript applications on the server
+ Building and running TypeScript applications in the browser

« Building for and publishing your TypeScript application to NPM

Building Your TypeScript Project

Building a TypeScript project is straightforward. In this section, we’ll cover the core
ideas you’ll need to understand in order to build your project for whatever environ-
ment you plan to run it in.

Project Layout

I suggest keeping your source TypeScript code in a top-level src/ folder, and compil-
ing it to a top-level dist/ folder. This folder structure is a popular convention, and
splitting your source code and generated code into two top-level folders can make
your life easier down the line, when you’re integrating with other tooling. It also
makes it easier to exclude generated artifacts from source control.

249

Try to stick to this convention when you can:

my-app/
—dist/

| —index.d.ts
| F—index.js

| L—services/

| F—foo.d.ts
| F—foo.js

| F—bar.d.ts
| L—bar.js
F—src/

| —index.ts

| L—services/
|
|

—foo.ts

L—bar.ts

Artifacts

When you compile a TypeScript program to JavaScript, there are a few different arti-
facts that TSC can generate for you (Table 12-1).

Table 12-1. Artifacts that TSC can generate for you

Type File extension tsconfig.json flag Emitted by default?
JavaScript Js {"emitDeclarationOnly": false} Yes
Source maps Js.map {"sourceMap": true} No
Type declarations .d.ts {"declaration": true} No
Declaration maps .d.ts.map {"declarationMap": true} No

The first type of artifact—JavaScript files—should be familiar. TSC compiles your
TypeScript code to JavaScript that you can then run using a JavaScript platform like
Node]S or Chrome. If you run tsc yourfile.ts, TSC will typecheck yourfile.ts and
compile it to JavaScript.

The second type of artifact—source maps—is special files that link each piece of your
generated JavaScript back to the specific line and column of the TypeScript file that it
was generated from. This is helpful for debugging your code (Chrome DevTools will
show your TypeScript code, instead of the generated JavaScript), and for mapping
lines and columns in JavaScript exception stack traces back to TypeScript (tools like
those mentioned in “Error Monitoring” on page 258 do this lookup automatically if you
give them your source maps).

The third artifact—type declarations—Iets other TypeScript projects take advantage
of your generated types.

250 | Chapter 12: Building and Running TypeScript

Finally, declaration maps are used to speed up compilation times for your TypeScript
projects. You'll read more about them in “Project References” on page 255. We’ll spend
the rest of this chapter talking about how and why to generate these artifacts.

Dialing In Your Compile Target

JavaScript can be an unusual language to work with: not only does it have a quickly
evolving specification with a yearly release cycle, but, as a programmer, you can’t
always control which JavaScript version the platform you're running your program
on implements. On top of that, many JavaScript programs are isomorphic, meaning
you can run them on either the server or the client. For example:

o If you run your backend JavaScript program on a server that you control, then
you can control exactly which JavaScript version it will run on.

o If you then release your backend JavaScript program as an open source project,
you don’t know which JavaScript version will be supported by your consumers’
JavaScript platforms. The best you can do in a NodeJS environment is declare a
range of supported Node]S versions, but in a browser environment you're out of
luck.

« If you run your JavaScript in a browser, you have no idea which browser people
will use to run it—the latest Chrome, Firefox, or Edge that supports most
modern JavaScript features, a slightly outdated version of one of those browsers
that’s missing some bleeding-edge functionality, an antiquated browser like
Internet Explorer 8, or an embedded browser like the one that runs on the Play-
Station 4 in your garage. The best you can do is define a minimum set of features
that people’s browsers need to support to run your application, ship polyfills for
as many of those features as you can, and try to detect when users are on really
old browsers that your app won’t run on and show them a message saying that
they need to upgrade.

o Ifyou release an isomorphic JavaScript library (e.g., a logging library that runs on
both browser and server), then you have to support both a minimum Node]JS
version and a swath of browser JavaScript engines and versions.

Not every JavaScript environment supports every JavaScript feature out of the box,
but you should still try to write code in the latest language version. There are two
ways to do this:

1. Transpile (i.e., automatically convert) applications from the latest version of Java-
Script to the oldest JavaScript version that a platform you target supports. We do
this for language features like for..of loops and async/await, which can be
automatically converted to for loops and . then calls, respectively.

Building Your TypeScript Project | 251

2. Polyfill (i.e., provide implementations for) any modern features that are missing
in the JavaScript runtime you’re running on. We do this for features provided by
the JavaScript standard library (like Promise, Map, and Set) and for prototype
methods (like Array.prototype.includes and Function.prototype.bind).

TSC has built-in support for transpiling your code to older JavaScript versions, but it
will not automatically polyfill your code. This is worth reiterating: TSC will transpile
most JavaScript features for older environments, but it will not provide implementa-
tions for missing features.

TSC gives you three settings to dial in which environments you want to target:

o target sets the JavaScript version you want to transpile to: es5, es2015, etc.

» module sets the module system you want to target: es2015 modules, commonjs
modules, systemjs modules, etc.

o 1ib tells TypeScript which JavaScript features are available in the environments
you’re targeting: es5 features, es2015 features, the dom, etc. It doesn’t actually
implement these features—that’s what polyfills are for—but it does tell Type-
Script that the features are available (either natively or via a polyfill).

The environment you plan to run your application in dictates which JavaScript ver-
sion you should transpile to with target and what to set 1ib to. If you're not sure,
es5 is usually a safe default for both. What you set module to depends on whether
you’re targeting a Node]S or browser environment, and what module loader you’re
using if the latter.

If you need to support an unusual set of platforms, look up which
JavaScript features your target platforms support natively in Juriy
Zaytsev’s (aka Kangax’s) compatibility tables.

Let’s dig a little deeper into target and lib; we’ll leave module to the sections on
“Running TypeScript on the Server” on page 258 and “Running TypeScript in the
Browser” on page 259.

target

TSC’s built-in transpiler supports converting most JavaScript features to older Java-
Script versions, meaning you can write your code in the latest TypeScript version and
transpile it down to whatever JavaScript version you need to support. Since Type-
Script supports the latest JavaScript features (like async/await, which is not yet sup-
ported by all major JavaScript platforms at the time of writing), you’ll almost always

252 | Chapter 12: Building and Running TypeScript

http://kangax.github.io/compat-table/es5/

find yourself taking advantage of this built-in transpiler to convert your code to
something that NodeJS and browsers understand today.

Let’s take a look at which specific JavaScript features TSC does and does not transpile
for older JavaScript versions (Table 12-2 and Table 12-3).!

In the past, there was a new revision of the JavaScript language
released every few years, with an incrementing language version
(ES1, ES3, ES5, ES6). As of 2015, the JavaScript language now has a
yearly release cycle, with each language version named after the
year it’s released in (ES2015, ES2016, and so on). Some JavaScript
features, however, get TypeScript support before they’re actually
slated for a specific JavaScript version; we refer to these features as
“ESNext” (as in, the next revision).

Table 12-2. TSC does transpile

Version Feature

£S2015 const, let, for. .of loops, array/object spread (. . .), tagged template strings, classes,
generators, arrow functions, function default parameters, function rest parameters, destructuring
declarations/assignments/parameters

£S2016 Exponentiation operator (**)

£S2017 async functions, awaiting promises
£S2018 async iterators

£S2019 Optional parameter in catch clause
ESNext Numeric separators (123_456)

Table 12-3. TSC does not transpile

Version Feature

ES5 Object getters/setters
£S2015 Regex y and u flags
52018 Regex s flag

ESNext BigInt (123n)

To set the transpilation target, pop open your tsconfig.json and set the target field to:

o es3 for ECMAScript 3
o es5 for ECMAScript 5 (this is a good default if you're not sure what to use)

1 If you use a language feature that TSC doesn’t transpile and your target environment doesn’t support it either,
you can usually find a Babel plugin to transpile it for you. To find the most up-to-date plugin, search for
“babel plugin <feature name>” in your favorite search engine.

Building Your TypeScript Project | 253

o es6 or es2015 for ECMAScript 2015
+ es2016 for ECMAScript 2016
o es2017 for ECMAScript 2017
 es2018 for ECMAScript 2018

« esnext for whatever the most recent ECMAScript revision is

For example, to compile to ES5:

{
"compilerOptions": {
"target": "es5"
}
}

lib

As I mentioned, there’s one hitch with transpiling your code to older JavaScript ver-
sions: while most language features can be safely transpiled (let to var, class to
function), you still need to polyfill functionality yourself if your target environment
doesn’t support a newer library feature. Some examples are utilities like Promise and
Reflect, and data structures like Map, Set, and Symbol. When targeting a bleeding-
edge environment like the latest Chrome, Firefox, or Edge, you usually won’t need

any polyfills; but if you're targeting browsers a few versions back—or most Node]JS
environments—you will need to polyfill missing features.

Thankfully, you won’t need to write polyfills yourself. Instead, you can install them
from a popular polyfill library like core-js, or add polyfills to your code automati-
cally by running your typechecked TypeScript code through Babel with @babel/poly
fill.

If you plan to run your application in a browser, be careful not to
bloat the size of your JavaScript bundle by including every single
polyfill regardless of whether or not the browser youre running
your code in actually needs it—your target platform probably
already supports some of the features you're polyfilling. Instead,
use a service like Polyfill.io to load just those polyfills that your
user’s browser needs.

Once you’ve added polyfills to your code, it’s time to tell TSC that your environment
is guaranteed to support the features you polyfilled—enter your tsconfig.json’s 1ib
field. For example, you could use this configuration if you've polyfilled all ES2015
features plus ES2016’s Array.prototype.includes:

254 | Chapter 12: Building and Running TypeScript

https://www.npmjs.com/package/core-js
https://babeljs.io/docs/en/babel-polyfill
https://babeljs.io/docs/en/babel-polyfill
https://polyfill.io/v2/docs/

{
"compilerOptions": {
"lib": ["es2015", "es2016.array.includes"]
}
}
If you’re running your code in the browser, also enable DOM type declarations for
things like window, document, and all the other APIs you get when running your Java-
Script in the browser:

{
"compilerOptions": {
"1ib": ["es2015", "es2016.array.include", "dom"]
}

}

For a full list of supported libs run tsc --help.

Enabling Source Maps

Source maps are a way to link your transpiled code back to the source code it was
generated from. Most developer tools (like Chrome DevTools), error reporting and
logging frameworks, and build tools know about source maps. Since a typical build
pipeline can produce code that’s very different from the code you started with (for
example, your pipeline might compile TypeScript to ES5 JavaScript, tree-shake it
with Rollup, preevaluate it with Prepack, then minify it with Uglify), using source
maps throughout your build pipeline can make it a lot easier to debug the resulting
JavaScript.

It’s generally a good idea to use source maps in development, and ship source maps
to production in both browser and server environments. There’s one caveat, though:
if you rely on some level of security through obscurity for your browser code, don’t
ship source maps to browsers in production.

Project References

As your application grows, it will take longer and longer for TSC to typecheck and
compile your code. This time grows roughly linearly with the size of your codebase.
When developing locally, slow incremental compile times can seriously slow down
your development, and make working with TypeScript painful.

To address this, TSC comes with a feature called project references that speeds up
compilation times dramatically, including incremental compile times. For any project
with a few hundred files or more, project references are a must-have.

Building Your TypeScript Project | 255

Use them like this:

1. Split your TypeScript project into multiple projects. A project is simply a folder
that contains a tsconfig.json and some TypeScript code. Try to split your code in
such a way that code that tends to be updated together lives in the same folder.

2. In each project folder, create a tsconfig.json that includes at least:
{
"compilerOptions": {
"composite": true,
"declaration": true,
"declarationMap": true,
"rootDir": "."
3
"include": [
ALY AN £
1,
"references": [
{ "path": "../myReferencedProject",
"prepend": true
}
1
}

The keys here are:

o composite, which tells TSC that this folder is a subproject of a larger Type-
Script project.

o declaration, which tells TSC to emit .d.ts declaration files for this project.
The way project references work, projects have access to each other’s declara-
tion files and emitted JavaScript, but not their source TypeScript files. This
creates a boundary beyond which TSC won’t try to retypecheck or recompile
your code: if you update a line of code in your subproject A, TSC doesn’t have
to retypecheck your other subproject B; all TSC needs to check for a type error
is B’s type declarations. This is the core behavior that makes project references
so efficient at rebuilding big projects.

« declarationMap, which tells TSC to build source maps for generated type dec-
larations.

« references, which is an array of subprojects that your subproject depends on.
Each reference’s path should point either to a folder that contains a tscon-
fig.json, or directly to a TSC configuration file (if your configuration file isn’t
named tsconfig.json). prepend will concatenate the JavaScript and source maps
generated by the subproject you're referencing to the JavaScript and source

256 | Chapter 12: Building and Running TypeScript

maps generated by your subproject. Note that prepend is only useful when
you’re using outFile—if you don’t use outFile, you can ditch the prepend.

« rootDir, which explicitly specifies that this subproject should be compiled rel-
ative to the root project (.). Alternatively, you can specify an outDir that’s a
subfolder of the root project’s outDir.

3. Create a root tsconfig.json that references any subprojects that aren’t yet refer-
enced by another subproject:

{
"files": [],
"references": [
{"path": "./myProject"},
{"path": "./mySecondProject"}
1
}

4. Now when you compile your project with TSC, use the build flag to tell TSC to
take project references into account:

tsc --build # Or, tsc -b for short

At the time of writing, project references are a new TypeScript fea-
ture with some rough edges. When using them, be careful to:

\ o Rebuild the entire project (with tsc -b) after cloning or
refetching it, in order to regenerate any missing or outda-
ted .d.ts files. Alternatively, check in your generated d.ts files.

« Not use noEmitOnError: false with project references—TSC
will always hardcode the option to true.

o Manually make sure that a given subproject isn’t prepended by
more than one other subproject. Otherwise, the doubly pre-
pended subproject will show up twice in your compiled out-
put. Note that if you're just referencing and not prepending,
you’re good to go.

Using extends to Reduce tsconfig.json Boilerplate

Because you probably want all of your subprojects to share the same compiler
options, it’s convenient to create a “base” tsconfig.json in your root directory that sub-
projects’ tsconfig.jsons can extend:

{

"compilerOptions": {

Building Your TypeScript Project | 257

"composite": true,

"declaration": true,

"declarationMap": true,

"lib": ["es2015", "es2016.array.include"],
"rootDir": ".",

"sourceMap": true,

"strict": true,

"target": "es5",

}
}
Then, update your subprojects to extend it using tsconfig.json’s extends option:
{
"extends": "../tsconfig.base",
"include": [

"L [ER[E s
1,

"references": [

{
"path": "../myReferencedProject",
"prepend": true
}
1,
}
Error Monitoring

TypeScript warns you about errors at compile time, but you also need a way to find
out about exceptions that your users experience at runtime, so that you can try to
prevent them at compile time (or at least fix the bug that caused the runtime error).
Use an error monitoring tool like Sentry or Bugsnag to report and collate your run-
time exceptions.

Running TypeScript on the Server

To run your TypeScript code in a Node]S environment, just compile your code to
ES2015 JavaScript (or ES5, if you're targeting a legacy NodeJS version) with your
tsconfig.json’s module flag set to commonjs:

{

"compilerOptions": {
"target": "es2015",
"module": "commonjs"

}

}

258 | Chapter 12: Building and Running TypeScript

https://sentry.io
https://bugsnag.com

That will compile your ES2015 import and export calls to require and
module.exports, respectively, so your code will run on NodeJS with no further bun-
dling needed.

If you're using source maps (you should be!), you’'ll need to feed your source maps
into your Node]S process. Just grab the source-map-support package from NPM,
and follow the package’s setup instructions. Most process monitoring, logging, and
error reporting tools like PM2, Winston, and Sentry have built-in support for source
maps.

Running TypeScript in the Browser

Compiling TypeScript to run in the browser involves a little more work than running
TypeScript on the server.

First, pick a module system to compile to. A good rule of thumb is to stick to umd
when publishing a library for others to use (e.g., on NPM) in order to maximize com-
patibility with various module bundlers that people might use in their projects.

If you just plan to use your code yourself without publishing it to NPM, which format
you compile to depends on the module bundler you're using. Check your bundler’s
documentation—for example, Webpack and Rollup work best with ES2015 modules,
while Browserify requires Common]JS modules. Here are a few guidelines:

o If you're using the System]S module loader, set module to systemjs.

o If you're running your code through an ES2015-aware module bundler like Web-
pack or Rollup, set modu'le to es2015 or higher.

o If you're using an ES2015-aware module bundler and your code uses dynamic
imports (see “Dynamic Imports” on page 219), set module to esnext.

o Ifyou’re building a library for other projects to use, and aren’t running your code
through any additional build steps after tsc, maximize compatibility with differ-
ent loaders that people use by setting module to umd.

o If you're bundling your module with a Common]S bundler like Browserify, set
module to commonjs.

o If you’re planning to load your code with RequireJS or another AMD module
loader, set module to amd.

o If you want your top-level exports to be globally available on the window object
(as you might if you’re Mussolini’s great-nephew), set modu'le to none. Note that
TSC will try to curb your enthusiasm for inflicting pain on other software engi-
neers by compiling to commonjs anyway if your code is in module mode (see
“Module Mode Versus Script Mode” on page 222).

Running TypeScriptin the Browser | 259

https://www.npmjs.com/package/source-map-support
https://www.npmjs.com/package/pm2
https://www.npmjs.com/package/winston
https://sentry.io
https://github.com/systemjs/systemjs
https://webpack.js.org
https://webpack.js.org
https://github.com/rollup/rollup
https://github.com/browserify/browserify
https://requirejs.org

Next, configure your build pipeline to compile all your TypeScript to a single Java-
Script file (usually called a “bundle”) or a set of JavaScript files. While TSC can do
this for you for small projects with the outFile TSC flag, the flag is limited to gener-
ating System]S and AMD bundles. And since TSC doesn’t support build plugins and
intelligent code splitting the same way that a dedicated build tool like Webpack does,
you’ll soon find yourself wanting a more powerful bundler.

That’s why for frontend projects, you should use a more powerful build tool from the
beginning. There are TypeScript plugins for whatever build tool you might be using,
such as:

ts-loader for Webpack

tsify for Browserify
@babel/preset-typescript for Babel
gulp-typescript for Gulp

grunt-ts for Grunt

While a full discussion of optimizing your JavaScript bundle for fast loading is out-
side the scope of this book, some brief advice—not specific to TypeScript—is:

Keep your code modular, and avoid implicit dependencies in your code (these
can happen when you assign things to the window global, or to other globals), so
that your build tool can more accurately analyze your project’s dependency
graph.

Use dynamic imports to lazy-load code that you don’t need for your initial page
load, so you don’t unnecessarily block your page from rendering.

Take advantage of your build tool’s automatic code splitting functionality, so that
you avoid loading too much JavaScript and slowing page load unnecessarily.

Have a strategy for measuring page load time, either synthetically or, ideally, with
real user data. As your app grows the initial load time can get slower and slower;
you can only optimize that load time if you have a way to measure it. Tools like
New Relic and Datadog are invaluable here.

Keep your production build as similar as possible to your development build.
The more the two diverge, the more hard-to-fix bugs you’ll have that only show
up in production.

Finally, when shipping TypeScript to run in the browser, have a strategy for poly-
filling missing browser features. This might be a standard set of polyfills you ship
as part of every bundle, or it might be a dynamic set of polyfills based on what
features the user’s browser supports.

260

| Chapter 12: Building and Running TypeScript

http://bit.ly/2Gw3uH2
https://webpack.js.org
http://bit.ly/2KOaZgw
http://bit.ly/2IDpfGe
http://bit.ly/2vc2Sjy
https://babeljs.io
http://bit.ly/2vanubN
https://gulpjs.com
http://bit.ly/2PgUXuq
https://gruntjs.com
https://newrelic.com
https://www.datadoghq.com

Publishing Your TypeScript Code to NPM

It’s easy to compile your TypeScript code so that other TypeScript and JavaScript
projects can use it. There are a few best practices to keep in mind when compiling to
JavaScript for external use:

« Generate source maps, so you can debug your own code.
« Compile to ES5, so that others can easily build and run your code.

o Be mindful about which module format you compile to (UMD, Common]s,
ES2015, etc.).

« Generate type declarations, so that other TypeScript users have types for your
code.

Start by compiling your TypeScript to JavaScript with tsc, and generate correspond-
ing type declarations. Be sure to configure your tsconfig.json to maximize compatibil-
ity with popular JavaScript environments and build systems (more on that in
“Building Your TypeScript Project” on page 249):

{
"compilerOptions": {
"declaration": true,

"module": "umd",
"sourceMaps": true,
"target": "es5"

}
}

Next, blacklist your TypeScript source code from getting published to NPM in
your .npmignore, to avoid bloating the size of your package. And in your .gitignore,
exclude generated artifacts from your Git repository to avoid polluting it:

.npmignore

*.ts # Ignore .ts files
1*.d.ts # Allow .d.ts files

.gitignore

*.d.ts # Ignore .d.ts files
*.js # Ignore .js files

Publishing Your TypeScript Code toNPM | 261

If you stuck with the recommended project layout and kept your
source files in src/ and your generated files in dist/, your .ignore
files will be even simpler:

.npmignore

src/ # Ignore source files

.gitignore

dist/ # Ignore generated files

Finally, add a "types" field to your project’s package.json to indicate that it comes
with type declarations (note that this isn’t mandatory, but it is a helpful hint to TSC
for any consumers that use TypeScript), and add a script to build your package before
publishing it, to make sure that your package’s JavaScript, type declarations, and
source maps are always up to date and in sync with the TypeScript you compiled
them from:

{
"name": "my-awesome-typescript-project",
"version": "1.0.0",
"main": "dist/index.js",
"types": "dist/index.d.ts",
"scripts": {
"prepublishOnly": "tsc -d"
}
}

That’s it! Now when you npm publish your package to NPM, NPM will automati-
cally compile your TypeScript to a format usable by both people that use TypeScript
(with full type safety) and people that use JavaScript (with some type safety, if their
code editor supports it).

Triple-Slash Directives

TypeScript comes with a little-known, rarely used, and mostly outdated feature called
triple-slash directives. These directives are specially formatted TypeScript comments
that serve as instructions to TSC.

They come in a few flavors, and in this section, we’ll cover just two of them: types,
for eliding type-only full-module imports, and amd-module, for naming generated
AMD modules. For a full reference, see Appendix E.

The types Directive

When you import something from a module, depending on what you imported,
TypeScript won’t always need to generate an import or require call when you com-

262 | Chapter 12: Building and Running TypeScript

pile your code to JavaScript. If you have an import statement whose export is only
used in a type position in your module (i.e., you just imported a type from a module),
TypeScript won’t generate any JavaScript code for that import—think of it as only
existing at the type level. This feature is called import elision.

The exception to the rule is imports used for side effects: if you import an entire
module (without importing a specific export or a wildcard from that module), that
import will generate JavaScript code when you compile your TypeScript. You might
do this, for instance, if you want to make sure that an ambient type defined in a
script-mode module is available in your program (like we did in “Safely Extending
the Prototype” on page 154). For example:

// global.ts
type MyGlobal = number

// app.ts

import './global'
After compiling app.ts to JavaScript with tsc app.ts, youll notice that that
the . /global import wasn’t elided:

// app.Js

import './global'
If you find yourself writing imports like this, you may want to start by making sure
that your import really needs to use side effects, and that there isn’t some other way
to rewrite your code to make it more explicit which value or type you’re importing
(e.g., import {MyType} from './global'—which TypeScript will elide for you—
instead of import './global'). Or, see if you can include your ambient type in your
tsconfig.json’s types, files, or include field and avoid the import altogether.

If neither of those works for your use case, and you want to continue to use a full-
module import but avoid generating a JavaScript import or require call for that
import, use the types triple-slash directive. A triple-slash directive is three
slashes /// followed by one of a few possible XML tags, each with its own set of
required attributes. For the types directive, it looks like this:

o Declare a dependency on an ambient type declaration:
/// <reference types="./global" />
o Declare a dependency on @types/jasmine/index.d.ts:

/// <reference types="jasmine" />

You probably won’t find yourself using this directive often. And if you do, you may
want to rethink how you’re using types in your project, and consider if there’s a way
to rely less on ambient types.

Triple-Slash Directives | 263

The amd-module Directive

When compiling your TypeScript code to the AMD module format (indicated with
{"module": "amd"} in your tsconfig.json), TypeScript will generate anonymous AMD
modules by default. You can use the AMD triple-slash directive to give your emitted
modules names.

Let’s say you have the following code:

export let LogService = {
log() {
/] ...
}
}

Compiling to the amd module format, TSC generates the following JavaScript code:

define(['require', 'exports'], function(require, exports) {
exports.__esModule = true
exports.LogService = {
log() {
Y/
}
}
H

If you’re familiar with the AMD module format, you might have noticed that this is
an anonymous AMD module. To give your AMD module a name, use the amd-
modu'le triple-slash directive in your code:
/// <amd-module name="LogService" /> (1]
export let LogService = {
log() {
Y72

}
}

@ We use the amd-module directive, and set a name attribute on it.

© The rest of our code is unchanged.

Recompiling to the AMD module format with TSC, we now get the following Java-
Script:

/// <amd-module name='LogService' />
define('LogService', ['require', 'exports'], function(require, exports) {

exports.__esModule = true
exports.LogService = {
log() {
// ...
}

264 | Chapter 12: Building and Running TypeScript

}
b

When compiling to AMD modules, use the amd-module directive to make your code
easier to bundle and debug (or, switch to a more modern module format like ES2015
modules if you can).

Summary

In this chapter we covered everything you need to know to build and run your Type-
Script application in production, either in the browser or on the server. We discussed
how to choose a JavaScript version to compile to, which libraries to mark as available
in your environment (and how to polyfill libraries when they’re missing), and how to
build and ship source maps with your application to make it easier to debug in pro-
duction and develop locally. We then explored how to modularize your TypeScript
project to keep compilation times fast. Finally, we finished up with how to run your
TypeScript application on the server and in the browser, how to publish your Type-
Script code to NPM for others to use, how import elision works, and—for AMD
users—how to use triple-slash directives to name your modules.

Summary | 265

CHAPTER 13
Conclusion

We’re nearing the end of our journey together.

We've covered what types are and why they’re useful; how TSC works; what types
TypeScript supports; how TypeScript’s type system handles inference, assignability,
refinement, widening, and totality; the rules of contextual typing; how variance
works; and how to use type operators. We’ve covered functions and classes and inter-
faces, iterators and iterables and generators, overloads, polymorphic types, mixins,
decorators, and the various escape hatches you can use once in a while to sacrifice
safety to get your code out before your deadline. We explored the different ways to
handle exceptions safely and their trade-offs, and how to use types to make concur-
rent, parallel, and asynchronous programs safe. We dove into using TypeScript with
popular frameworks like Angular and React, and how namespaces and modules
work. We looked at using, building, and deploying TypeScript on the frontend and
on the backend, and talked about how to gradually migrate code to TypeScript, how
to use type declarations, how to publish your code to NPM so others can use it, how
to safely use third-party code, and how to build your TypeScript projects.

I hope that I've infected you with the gospel of static types. I hope you now, at times,
find yourself sketching out programs in types before implementing them, and I hope
you've gained a deeply intuitive understanding of how you can use types to make
your applications safer. I hope that I've changed your view of the world, at least a lit-
tle bit, and that you now think in types when you write code.

You’re now equipped to teach others about TypeScript. Advocate for safety, and help
make your company’s and your friends’ code better and more fun to write.

267

Finally, keep exploring. TypeScript probably isn’t your first language, and it probably
won’t be your last. Keep learning about new ways to program, new ways to think
about types, and new ways to think about the trade-offs between safety and ease of
use. Maybe you’ll create the next big thing after TypeScript, and maybe I'll be the one
to write about it someday...

268 | Chapter 13: Conclusion

APPENDIX A

Type Operators

TypeScript supports a rich set of type operators for working with types. Use
Table A-1 as a handy reference for when you want to learn more about an operator.

Table A-1. Type operators

Type operator
Type query

Keys

Property lookup
Mapped type
Modifier addition
Modifier subtraction

Read-only modifier

Optional modifier

Conditional type

Nonnul1 assertion
Generic type
parameter default

Type assertion

Type guard

Syntax

typeof,
instanceof

keyof
0[K]

[K in 0]
+

readonly

as, <>

is

Useiton
Any type

Object types
Object types
Object types
Object types
Object types

Object types, array
types, tuple types

Object types, tuple
types, function
parameter types

Generic types, type
aliases, function
parameter types
Nullable types
Generic types

Any type

Function return types

Learn more

“Refinement” on page 126, “Classes Declare Both
Values and Types” on page 98

“The keyof operator” on page 134
“The keying-in operator” on page 132
“Mapped Types” on page 137
“Mapped Types” on page 137
“Mapped Types” on page 137

“Objects” on page 25, “Classes and Inheritance” on
page 83, “Read-only arrays and tuples” on page 36

“Objects” on page 25, “Tuples” on page 35,
“Optional and Default Parameters” on page 47

“Conditional Types” on page 143

“Nonnull Assertions” on page 149, “Definite
Assignment Assertions” on page 151

“Generic Type Defaults” on page 78

“Type Assertions” on page 148, “The const type”
on page 123

“User-Defined Type Guards” on page 142

Type Operators | 269

APPENDIX B
Type Utilities

TypeScript’s type utilities come bundled into its standard library. Table B-1 enumera-
tes all of the available utilities at the time of writing.

See es5.d.ts for an up-to-date reference.

Table B-1. Type utilities

Type utility Useiton Description

ConstructorParame (lass constructor types A tuple of a class constructor’s parameter types

ters

Exclude Union types Exclude a type from another type

Extract Union types Select a subtype that's assignable to another type

InstanceType (lass constructor types The instance type you get from new-ing a class constructor

NonNullable Nullable types Exclude nul1l and undefined from a type

Parameters Function types A tuple of a function’s parameter types

Partial Object types Make all properties in an object optional

Pick Object types A subtype of an object type, with a subset of its keys

Readonly Array, Object, and Tuple ~ Make all properties in an object read-only, or make an array or
types tuple read-only

ReadonlyArray Any type Make an immutable array of the given type

Record Object types A map from a key type to a value type

Required Object types Make all properties in an object required

ReturnType Function types A function’s return type

Type Utilities | 271

http://bit.ly/2I0Ve2U

APPENDIX C
Scoped Declarations

TypeScript declarations have a rich set of behaviors needed to model types and val-
ues, and as in JavaScript, they can be overloaded in a variety of ways. This appendix
covers two of these behaviors, summarizing which declarations generate types (and
which generate values), and which declarations can be merged.

Does It Generate a Type?

Some TypeScript declarations create a type, some create a value, and some create
both. See to Table C-1 for a quick reference.

Table C-1. Does the declaration generate a type?

Keyword Generates a type? Generates a value?

class Yes Yes
const, let,var No Yes
enum Yes Yes
function No Yes
interface Yes No
namespace No Yes
type Yes No

Does It Merge?

Declaration merging is a core TypeScript behavior. Take advantage of it to create
richer APIs, better modularize your code, and make your code safer.

Scoped Declarations | 273

Table C-2 is reprinted from “Declaration Merging” on page 226; it’s a handy refer-
ence for which kinds of declarations TypeScript will merge for you.

Table C-2. Can the declaration be merged?

To
Value Class Enum Function Typesalias Interface Namespace Module
Value No No No No Yes Yes No —
Class — No No No No Yes Yes —
Enum — — Yes No No No Yes —
From Function — — — No Yes Yes Yes —
Typealas — — — — No No Yes —
Interface —_- = = = — Yes Yes —
Namespace — — — — — — Yes —

Module _ = = = — — — Yes

274 | Appendix C: Scoped Declarations

APPENDIXD

Recipes for Writing Declaration Files for
Third-Party JavaScript Modules

This appendix covers a few key building blocks and patterns that come up over and
over again when typing third-party modules. For a deeper discussion of typing third-
party code, head over to “JavaScript That Doesn’t Have Type Declarations on Defini-
telyTyped” on page 246.

Since module declaration files have to live in .d.ts files and so can’t contain values,
when you declare module types you need to use the declare keyword to aftirm that
values of the given type really are exported by your module. Table D-1 provides a
short summary of regular declarations and their type declaration equivalents.

Table D-1. TypeScript and its type-only equivalents

s .d.ts

var a = 1 declare var a: number
let a =1 declare let a: number
const a = 1 declare const a: 1

function a(b) { return b.toFixed() } declare function a(b: number): string

class A { b() { return 3 } } declare class A { b(): number }
namespace A {} declare namespace A {}

type A = number type A = number

interface A { b?: string } interface A { b?: string }

Recipes for Writing Dedlaration Files for Third-Party JavaScript Modules | 275

Types of Exports

Whether your module uses global, ES2015, or Common]S exports will affect how you
write your declaration files.

Globals

If your module only assigns values to the global namespace and doesn’t actually
export anything, you can just create a script-mode file (see “Module Mode Versus
Script Mode” on page 222) and prefix your variable, function, and class declarations
with declare (every other kind of declaration—enum, type, and so on—remains
unchanged):

// Global variable
declare let someGlobal: GlobalType

// Global class
declare class GlobalClass {}

// Global function
declare function globalFunction(): string

// Global enum
enum GlobalEnum {A, B, C}

// Global namespace
namespace GlobalNamespace {}

// Global type alias
type GlobalType = number

// Global interface

interface GlobalInterface {}
Each of these declarations will be globally available to every file in your project
without requiring an explicit import. Here, you could use someGlobal in any file in
your project without importing it first, but at runtime, someGlobal would need to be
assigned to the global namespace (window in browsers or global in Node]S).

Be careful to avoid imports and exports in your declaration file in order to keep your
file in script mode.

ES2015 Exports

If your module uses ES2015 exports—that is, the export keyword—simply replace
declare (which affirms that a global variable is defined) with export (which affirms
that an ES2015 binding is exported):

276 | Appendix D: Recipes for Writing Declaration Files for Third-Party JavaScript Modules

// Default export
declare let defaultExport: SomeType
export default defaultExport

// Named export

export class SomeExport {
a: SomeOtherType

}

// Class export
export class ExportedClass {}

// Function export
export function exportedFunction(): string

// Enum export
enum ExportedEnum {A, B, C}

// Namespace export
export namespace SomeNamespace {
let someNamespacedExport: number

}

// Type export
export type SomeType = {
a: number

}

// Interface export

export interface SomeOtherType {
b: string

}

Common)S Exports

Common]S was the de facto module standard before ES2015, and is still the standard

for Node]S at the time of writing. It also uses the export keyword, but the syntax is a
bit different:

declare let defaultExport: SomeType

export = defaultExport
Notice how we assigned our exports to export, rather than using export as a modi-
fier (like we do for ES2015 exports).

A type declaration for a third-party CommonJS module can contain exactly one
export. To export multiple things, we take advantage of declaration merging (see
Appendix C).

For example, to type multiple exports and no default export, we export a single
namespace:

Recipes for Writing Declaration Files for Third-Party JavaScript Modules | 277

declare namespace MyNamedExports {
export let someExport: SomeType
export type SomeType = number
export class OtherExport {
otherType: string
}
}

export = MyNamedExports
What about a Common]S module that has both a default export and named exports?
We take advantage of declaration merging:

declare namespace MyExports {
export let someExport: SomeType
export type SomeType = number

}
declare function MyExports(a: number): string
export = MyExports

UMD Exports

Typing a UMD module is nearly identical to typing an ES2015 module. The only dif-
ference is that if you want to make your module globally available to script-mode files
(see “Module Mode Versus Script Mode” on page 222), you use the special export as
namespace syntax. For example:

// Default export
declare let defaultExport: SomeType
export default defaultExport

// Named export

export class SomeExport {
a: SomeType

}

// Type export
export type SomeType = {
a: number

}

export as namespace MyModule

Notice that last line—if you have a script-mode file in your project, you can now use
that module directly (without importing it first) on the global MyModule namespace:

let a = new MyModule.SomeExport

Extending a Module

Extending a module’s type declaration is less common than typing a module, but it
might come up if you write a jQuery plugin or a Lodash mixin. Try to avoid doing it

278 | Appendix D: Recipes for Writing Declaration Files for Third-Party JavaScript Modules

when possible; instead, consider using a separate module. That is, instead of a Lodash
mixin use a regular function, and instead of a jQuery plugin—wait, why are you still
using jQuery?

Globals

If you want to extend another module’s global namespace or interface, just create a
script-mode file (see “Module Mode Versus Script Mode” on page 222), and augment
it. Note that this only works for interfaces and namespaces because TypeScript will
take care of merging them for you.

For example, let’s add an awesome new marquee method to jQuery. We'll start by
installing jquery itself:

npm install jquery --save

npm install @types/jquery --save-dev
We'll then create a new file—say jquery-extensions.d.ts—in our project, and add mar
quee to jQuery’s global JQuery interface (I found that jQuery defines its methods on
the JQuery interface by sleuthing through its type declarations):

interface JQuery {

marquee(speed: number): JQuery<HTMLElement>

}
Now, in any file where we use jQuery, we can use marquee (of course, we’ll want to
add a runtime implementation for marquee too):

import $ from 'jquery'

$(myElement).marquee(3)

Note that this is the same technique we used to extend built-in globals in “Safely
Extending the Prototype” on page 154.

Modules

Extending module exports is a bit trickier, and has more pitfalls: you need to type
your extension correctly, load your modules in the correct order at runtime, and
make sure to update your extension’s types when the structure of the type declara-
tions for the module you're extending changes.

As an example, let’s type a new export for React. We'll start by installing React and its
type declarations:

npm install react --save
npm install @types/react --save-dev

Then we’ll take advantage of module merging (see “Declaration Merging” on page
226) and simply declare a module with the same name as our React module:

Recipes for Writing Dedlaration Files for Third-Party JavaScript Modules | 279

import {ReactNode} from 'react'

declare module 'react' {
export function inspect(element: ReactNode): void

}

Note that unlike in our example for extending globals, it doesn’t matter whether our
extension file is in module mode or script mode.

What about extending a specific export from a module? Inspired by ReasonReact,
let’s say we want to add a built-in reducer for our React components (a reducer is a
way to declare an explicit set of state transitions for a React component). At the time
of writing, React’s type declarations declare the React.Component type as an interface
and a class that get merged together into a single UMD export:

export = React
export as namespace React

declare namespace React {
interface Component<P = {}, S = {}, SS = any>
extends ComponentLifecycle<P, S, SS> {}
class Component<P, S> {
constructor(props: Readonly<P>)
/) ..
}
/).
}

Let’s extend Component with our reducer method. We can do this by entering the fol-
lowing in a react-extensions.d.ts file in the project root:

import 'react' (1)

declare module 'react' { (2]
interface Component<P, S> { (3]
reducer(action: object, state: S): S (4]
}
}

©® We import 'react', switching our extension file into script mode, which we
need to be in to consume a React module. Note that there are other ways we
could have switched to script mode, like importing something else, exporting
something, or exporting an empty object (export {})—we didn’t have to import
'react’ specifically.

® We declare the 'react' module, indicating to TypeScript that we want to declare
types for that specific import path. Because we already installed @types/react
(which defines an export for the same exact 'react' path), TypeScript will
merge this module declaration with the one provided by @types/react.

280 | Appendix D: Recipes for Writing Declaration Files for Third-Party JavaScript Modules

https://reasonml.github.io/reason-react

© We augment the Component interface provided by React by declaring our own
Component interface. Following the rules of interface merging (“Declaration
Merging” on page 93), we have to use the same exact signature in our declaration
as the one in @types/react.

O Finally, we declare our reducer method.

After declaring these types (and assuming we’ve implemented the runtime behavior
to support this update somewhere), we can now declare React components with
built-in reducers in a typesafe way:

import * as React from 'react'

type Props = {
/) ...
}

type State = {
count: number
item: string

}

type Action =
| {type: 'SET_ITEM', value: string}
| {type: 'INCREMENT_COUNT'}
| {type: 'DECREMENT_COUNT'}

class ShoppingBasket extends React.Component<Props, State> {
reducer(action: Action, state: State): State {
switch (action.type) {
case 'SET_ITEM':
return {...state, item: action.value}
case 'INCREMENT_COUNT':
return {...state, count: state.count + 1}
case 'DECREMENT_COUNT':
return {...state, count: state.count - 1}
}
}
}

As noted at the start of this section, it’s good practice to avoid this pattern when pos-
sible (even though it’s cool) because it can make your modules brittle and dependent
on load order. Instead, try to use composition so that your module extensions con-

sume the module they’re extending, and export a wrapper rather than modifying that
module.

Recipes for Writing Dedlaration Files for Third-Party JavaScript Modules | 281

APPENDIX E
Triple-Slash Directives

Triple-slash directives are just regular JavaScript comments that TypeScript looks for
to do things like adjust compiler settings for a specific file, or indicate that your file
depends on another file. Put your directives at the top of your file, before any code.
Triple-slash directives look like this (each directive is a triple-slash, ///, followed by
an XML tag):

/// <directive attr="value" />

TypeScript supports a handful of triple-slash directives. Table E-1 lists the ones you
are most likely to use:

amd-module
Head over to “The amd-module Directive” on page 264 to learn more.

lib
The 1ib directive is a way to indicate to TypeScript which of TypeScript’s 1ibs
your module depends on, which you may want to do if your project doesn’t have

a tsconfig.json. Declaring the 1ibs you depend on in your tsconfig.json is almost
always a better option.

path
When using TSC’s outFile option, use the path directive to declare a depend-
ency on another file, so that the other file appears earlier in your compiled out-
put than the dependent file does. If your project uses imports and exports, you
likely won’t ever use this directive.

type
Head over to “The types Directive” on page 262 to learn more about the type
directive.

Triple-Slash Directives | 283

Table E-1. Triple-slash directives

Directive Syntax Useit to...

amd-module <amd-module name="MyCompo Declare export names when compiling to AMD modules
nent" />

1ib <reference 1lib="dom" /> Declare which of TypeScript's built-in 1ibs your type

declarations depend on

path <reference path="./ Declare which TypeScript files your module depends on
path.ts" />

type <reference types="./ Declare which type declaration files your module depends
path.d.ts" /> on

Internal Directives

You will probably never use the no-default-1ib directive (Table E-2) in your own
code.

Table E-2. Internal triple-slash directives

Directive Syntax Useit to...

no-default-1ib <reference no-default- Tell TypeScript to not use any 1ibs at all for this file
1ib="true" />

Deprecated Directives

You should never use the amd-dependency directive (Table E-3), and instead stick to
a regular import.

Table E-3. Deprecated triple-slash directives

Directive Syntax Instead use...

amd-dependency <amd-dependency path="./a.ts" name="MyComponent" /> 1import

284 | Appendix E: Triple-Slash Directives

APPENDIX F
TSC Compiler Flags for Safety

For a complete list of available compiler flags, head over to the
TypeScript Handbook website.

Each TypeScript release introduces new checks that you can enable to squeeze even
more safety out of your code. Some of these flags—prefixed with strict—are
included as part of the strict flag; or, you can opt into strict flags one at a time.
Table F-1 lists the compiler flags related to safety that are available at the time of
writing.

Table F-1. TSC safety flags

Flag Description
alwaysStrict Emit 'use strict'.
noEmitOnError Don’t emit JavaScript when your code has type errors.

noFallthroughCasesInSwitch Make sure that every switch case either returns a value or breaks.

noImplicitAny Error when a variable’s type is inferred as any.

noImplicitReturns Make sure that every code path in every function explicitly returns. See “Totality”
on page 130.

noImplicitThis Error when you use this in a function without explicitly annotating the this
type. See “Typing this” on page 50.

noUnusedLocals Warn about unused local variables.

noUnusedParameters Warn about unused function parameters. Prefix your parameter name with _ to
ignore this error.

strictBindCallApply Enforce type safety for bind, call, and apply. See “call, apply, and bind” on
page 50.

TSC Compiler Flags for Safety | 285

http://bit.ly/2JWfsgY

Flag Description

strictFunctionTypes Enforce that functions are contravariant in their parameter and this types. See
“Function variance” on page 118.

strictNullChecks Promote nul1 to a type. See “null, undefined, void, and never” on page 37.
strictPropertyInitialization Enforce that class properties are either nullable or initialized. See Chapter 5.

286 | Appendix F: TSC Compiler Flags for Safety

APPENDIX G

TSX

Under the hood, TypeScript exposes a few hooks for typing TSX in a pluggable way.
These are special types on the global.JSX namespace that TypeScript looks at as the
source of truth for TSX types throughout your program.

hooks you can use.

If you’re just using React, you don’t need to know about these low-
level hooks, but if you’re writing a TypeScript library that uses TSX
without React, this appendix provides a helpful reference for the

TSX supports two kinds of elements: built-in ones (intrinsic elements) and user-
defined ones (value-based elements). Intrinsic elements always have lowercased
names, and refer to built-in elements like , <h1>, and <div>. Value-based ele-
ments have PascalCased names, and refer to those elements that you create with
React (or whatever frontend framework you’re using TSX with); they can be defined

either as functions or as classes. See Figure

TSX

G-1.

Intrinsic
Element

Value-Based

Element

Functional
Component

Figure G-1. The kinds of TSX elements

TSX

287

Using React’s type declarations as an example, we’ll walk through the hooks Type-
Script uses to safely type TSX. Here’s how React hooks into TSX to type JSX safely:

declare global {
namespace JSX {
interface Element extends React.ReactElement<any> {} (1)
interface ElementClass extends React.Component<any> { (2]
render(): React.ReactNode

}

interface ElementAttributesProperty { (3]
props: {}

}

interface ElementChildrenAttribute { (4]
children: {}
}

type LibraryManagedAttributes<C, P> = // ... (5)

interface IntrinsicAttributes extends React.Attributes {} (6]
interface IntrinsicClassAttributes<T> extends React.ClassAttributes<T> {} (7]

interface IntrinsicElements { (8]

a: React.DetailedHTMLProps<
React.AnchorHTMLAttributes<HTMLAnchorElement>,
HTMLAnchorElement

>

abbr: React.DetailedHTMLProps<
React.HTMLAttributes<HTMLElement>,
HTMLElement

>

address: React.DetailedHTMLProps<
React.HTMLAttributes<HTMLElement>,
HTMLElement

>

Y/

}
}
}

JSX.Element is the type of a value-based TSX element.

JSX.ElementClass is the type of an instance of a value-based class component.
Whenever you declare a class component that you plan to instantiate with TSX’s
<MyComponent /> syntax, its class must satisfy this interface.

© JSX.ElementAttributesProperty is the name of the property TypeScript looks
at to figure out what attributes a component supports. For React, that means the
props property. TypeScript looks for this value on a class instance.

288 | Appendix G: TSX

http://bit.ly/2CNzeW2

O JSX.ElementChildrenAttribute is the name of the property that TypeScript
looks at to figure out what types of children a component supports. For React,
that means the children property.

@ JsX.IntrinsicAttributes is the set of attributes that all intrinsic elements sup-
port. For React, that means the key attribute.

O JsSX.IntrinsicClassAttributes is the set of attributes that all class components
(both intrinsic and value-based) support. For React, that means ref.

@ Jsx.LibraryManagedAttributes specifies other places where JSX elements can
declare and initialize property types. For React, that means propTypes as another
place to declare property types, and defaultProps as the place to declare default
values for properties.

O JsX.IntrinsicElements enumerates every type of HTML element that you can
use in TSX, mapping each element’s tag name to its attribute and children types.
Because JSX isn’t HTML, React’s type declarations have to tell TypeScript exactly
what elements someone might use in a TSX expression, and because you can use
any standard HTML element from TSX, the declarations have to manually enu-
merate each element along with its attribute types (for an <a> tag, for example,
valid attributes include href: string and rel: string, but not value) and
what types of children it might have.

By declaring any of these types in the global JSX namespace, you can hook into Type-
Script’s typechecking behavior for TSX and customize it however you want. Unless
you're writing a library that uses TSX (and doesn’t use React), you’ll probably never
touch these hooks.

TSX | 289

Symbols
! (exclamation mark), nonnull assertion opera-
tor, 150
& (ampersand), for intersection types, 32, 132
() (parentheses), invoking functions with, 50
* (asterisk), before function names, 52
+ (plus) type operator, 139
/11 (triple-slash directives), 283
< > (angle brackets)
enclosing generic type parameters, 66
in type assertions, 148
? (question mark)
for optional elements in tuples, 36
for optional function parameters, 47
for optional properties in objects, 27
@ts-check comment, 238
@ts-ignore comment, 246
@ts-nocheck comment, 238
[] (square brackets)
index signature syntax, 28
keying-in operator, 146
retrieving enum values, 40
in tuple declarations, 35
{} (curly braces), defining object literal types
with, 26
| (pipe symbol), for union types, 32, 132, 190
- (minus) type operator, 139
... (ellipsis) in variadic function parameters list,
49

abstract classes, 86, 88
extending versus implementing interfaces,
96

Index

abstract syntax tree (AST), 5
actual parameters (see arguments)
Ahead-of-Time (AoT) compiler (Angular), 207,
209
aliases (type) (see type aliases)
allow]s TSC flag, 237
ambient module declarations, 235
creating for third-party JavaScript, 246
wildcard, 236
ambient type declarations, 234
defining TODO as type alias for any, 241
ambient variable declarations, 233
AMD module standard, 217
consuming JavaScript module that uses, 221
amd-module directive, 264
Angular 6/7, 207-210
components, 207
initializing a project, 207
installing CLI, 207
services, 209
angularCompilerOptions, 209
any type, 19
as overloaded function parameter type, 62
inferred for empty array elements, 35
JavaScript types inferred as, 238
object versus, 25
TODO ambient type declaration as type
alias for, 241
type assertions as, 148
widening of variables initialized as null or
undefined to, 123
APIs
application interacting with databases, 212

Index | 291

typesafe, for use with frameworks and Type-
Script, 210-212
apply function, 50
arguments
defined, 47
passing in function calls, 47
variable or fixed number of, 48
arity
modeling using bounded polymorphism, 77
variadic versus fixed-arity functons, 48
arrays, 33-37
Array type, extending safely, 154
Array.prototype.includes (ES2016), 254
covariance in array members, 118
filtering, 65
generic functions on Array type, 71
homogeneous, 34
lists of function parameters passed in as, 48
read-only, 36
syntaxes for, T[] and Array<T>, 34
tuples, 35
as (type assertion), 148
as const, 123
assertions
definite assignment, 151
nonnull, 149
type, 148
assignability, 19, 121
for enums, 42
inferred generic types to explicitly bound
generic, 72
assignment, this variable, 51
AST (abstract syntax tree), 5
async and await syntax, 174, 183
asynchronous programming, 173-187
async and await, 183
async streams, 184-187
event emitters, 184-187
callbacks, 176-178
JavaScript's event loop, 174-176
promises, 178-183
asynchronously loading modules, 216

B

Babel, running typechecked TypeScript code
through, 254

backend frameworks, 212

bigint type, 23

binary trees, 74

bind function, 50

binding
for generic type parameters, 67
of generics, when it happens, 68-71

boolean type, 17, 21

bottom type, 38

bounded polymorphism, 74-78
using to model arity, 77
with multiple constraints, 76

bounds, 19

Browserify, 217

browsers
loading and running JavaScript, 216
module-loadable format for, 218
overloads in browser DOM APIs, 62
preferring modules over namespaces, 226
running JavaScript in, polyfills and, 254
running TypeScript code in, 259
typesafe multithreading with Web Workers,

187-196
typesafe protocols, 194

build flag (TSC), 257

build tools, 260

builder pattern, 109

bytecode, 5

C

call function, 50
call signatures, 55-57
declaring generics as part of, 68
implementing, example, 57
in type-driven development, 80
overloaded, 59-64
shorthand versus written out fully, 58
callbacks, 176-178
appendAndRead function example, 179
callback pyramids, 177
catch clause, 181, 183
channels, emitting events on, 184
check]s TSC flag, 238
class keyword, 88
classes, 83-90
and inheritance, 83
abstract classes, 86
access modifiers for properties and
methods, 86
binding of generics, 69
covariance in class members, 118
declaring both values and types, 98

292 | Index

declaring, type declarations and, 231
decorators, 104-106
design patterns, 107-110
builder pattern, 109
factory pattern, 108
implementing interfaces, 94
versus extending abstract classes, 96
mixins, 101-104
polymorphism, 100
simulating final classes, 107
structural typing, 97
super calls, 89
using this as return type, 89
classic mode (moduleResolution flag), 228
CLI (command-line interface) in Angular, 207
installing, 207
client/server communications, 210-212
code editors, 10
setting up for TypeScript, 11-13
code examples from this book, xvi
code splitting, 219
code style
configuring for TSLint, 13
in this book, xiv
Common]S module setting (TSC), 252
Common]S module standard, 217
consuming JavaScript module that uses, 221
problems with, 217
companion object pattern, 140, 227
compile target for TypeScript projects, 251-255
target setting, 252
compilers
angularCompilerOptions, 209
AoT Angular compiler, 209
TypeScript compiler, 5-7
components
Angular, 207
React, 201
function and class components, 203
composite (compiler option), 256
concrete types, 64
binding to generic type parameters, 66
conditional types, 143-147
built-in, 146
distributive, 144
infer keyword, declaring generics inline, 145
const
array declarations with, 35
declaring objects with, 26

declaring symbols with, 24
enum declarations with, 41
problems with, 42
type declarations with, 43
using to opt out of type widening at declara-
tion time, 123
variable declarations with, 31
const values, 22
constraints, 19
generics as, 68
constructor signatures, 100
constructors
class, mixins and, 102
extended class constructors, 106
private class constructors, 107
safety issues with function constructors, 46
super calls, 89
contextual typing, 58
contravariance, 118
in function parameters and this types, 121
conversions (type), 9
core-js library, 254
covariance, 117
in function return types, 120
createElement DOM API, 62
CSS files, loading, 236

D

.d.ts file extension (type declarations), 230
databases, application interacting with, 212
declaration (compiler option), 256
declaration maps, 251
declaration merging, 93, 226-228, 273
declarationMap (compiler option), 256
declare keyword, 230, 231
declare module syntax, 235
decorators, 104-106
example, @serializable decorator, 105
expected type signatures for decorator func-
tions, 105
use by Angular, 208
defaults
for function parameters, 47
generic type, 78
definite assignment assertions, 151
DefinitelyTyped
JavaScript with type declarations on, 245
JavaScript without type declarations on, 246
dependency injector (Angular), 209

Index | 293

design patterns, 107-110
builder pattern, 109
factory pattern, 108
dialog, closing with nonnull assertions, 149
directives
triple-slash, 262-265, 283
amd-module, 264
types, 263
distributive property of conditional types fol-
lowing, 144
DOM (Document Object Model), xiii
DOM type declarations, enabling, 255
enabling DOM APIs in TSC compiler, 199
events, typed in TypeScript standard library,
186
overloads in browser DOM APIs, 62
dom library for TSC, 188
Don't Repeat Yourself (DRY), 31
downlevellteration TSC flag, 55
DRY (Don't Repeat Yourself), 31
duck typing, 25
(see also structural typing)
dynamic imports, 220

E
editors, 10
autocompletion in, 200
Either type, 165
engines (JavaScript), 6
enums, 39-44, 153
assignability, 121
avoiding use of, 43
const, 41
naming conventions, 40
preserveConstEnums TSC flag, 42
splitting across multiple declarations, 40
with explicit numeric values, example of, 40
with inferred numeric values, example of,
40
with partially inferred values, example of, 41
errors
error messages in TypeScript, 3
handling, 159-172
in Promises, 182
returning exceptions, 163-165
returning null, 160
throwing exceptions, 161-163
using Option type, 165-171
in callbacks, 178

in JavaScript, 2
in Promise implementation, 180
monitoring in TypeScript projects, 258
surfacing, in JavaScript versus TypeScript,
10
TypeScript errors
TS1332, 24
TS1353,23
TS§2300, 31, 93
TS2304, 202, 233
TS2314, 68, 146
TS2322, 21, 23, 24, 27, 29, 36, 72, 125
TS2339, 3, 25, 36, 41, 42, 65, 142, 200
TS2345, 3, 18, 33, 35, 43,47, 97, 117,
119, 120, 124, 125, 136, 149, 154
TS2362,72
TS§2365, 3,9
TS2366, 131
TS2367, 24
TS2393, 225
TS2428, 94
TS§2430, 92
TS2454, 151
TS2469, 24
TS2476, 42
TS2511, 86
TS2531, 149
TS2532,27
TS§2540, 29
TS2542, 36
TS2554, 47,49, 78
TS2558, 72
TS2571, 20
TS2684, 52
TS§2706, 79
TS2717,93
TS2739, 137
TS2741, 27,28
TS7006, 58
TS7030, 131
ES2015, 218
escape hatches, 147-152
definite assignment assertions, 151
nonnull assertions, 149
simulating nominal types, 152-154
type assertions, 148-149
esModulelnterop TSC flag, 202, 221
ESNext features, 253
esnext module mode, 221

294 | Index

event emitters, 184, 187
using in multithreading with Web Workers,
189-194
event loop, 174-176
event queue, 175
exceptions, 159
handling, 160
(see also errors, handling)
JavaScript and, 2
returning, 163-165
throwing, 161-163
in Promises, 182
excess property checking, 123
executors, 179
exhaustiveness checking, 130
(see also totality)
experimentalDecorators TSC flag, 104
exports
Common]S, 217
ES2015 standard for, 218-219
module mode versus script mode, 222
module.exports, 217
namespace, 223
using Common]JS and AMD code, 221
extends keyword, 88
extends option (TSC), 257

F

factory pattern, 108
filesystem, module paths as filenames on, 219
final classes, simulating, 107
finally clause, 183
fixed-arity functions, 48
flow-based type inference, 126
folder structure for TypeScript projects, 14, 249
formal parameters (see parameters)
frameworks, 199-213
backend, 212
frontend, 199-210
Angular 6/7, 207-210
enabling DOM APIs in tsconfig.json,
199
React, 201-207
typesafe APIs for, 210-212
fresh object literal type, 124
fullTemplateTypeCheck TSC flag, 209
Function type, 55
functions, 45-81, 141-143
binding generics, 69

declaring and invoking, 45-64
call signatures, 55-57
contextual typing, 58
declaring with named function syntax,
46
generator functions, 52
invoking functions, 47
invoking with call, apply, and bind, 50
iterators, 53-55
optional and default parameters, 47
overloaded function types, 58-64
rest parameters, 48
typing this variable, 50
decorator, 105
improving type inference for tuples, 141
null, undefined, void and never return
types, 37
overloaded ambient function declarations,
225
parameter types, 18
polymorphism, 64-79
bounded, 74-78
generic type defaults, 78
type-driven development, 79
user-defined type guards, 142
variance, 118
covariant return types, 120

G

generator functions, 52
generic type parameters, 66
(see also generic types; generics)
as constraints, 68
comma-separated list within angle brackets,
67
naming conventions, 67
generic types, 66
Promise, 180
generics, 66
binding, when it happens, 68-71
bounded polymorphism, 74-78
classes and interfaces support for, 100-101
declaring as part of a condition, 143, 145
interface declaring, 94
subtyping, 115
type aliases, 73
type defaults, 78
type inference, 71-73
global namespace, 155, 225

Index | 295

global JSX namespace, 203
globals (browser), 218, 222
gradually typed languages, 8

H

homogeneous arrays, 34
HTML templates (Angular), 208

I
immediately invoked function expressions
(IIFEs), 216
immutable arrays, 37
implements keyword, 94
import function, 220
import statements, 155, 220
imports
Common]S, 217
dynamic, 219
ES2015 standard for, 218-219
import elision, 263
module mode versus script mode, 222
module name for exact import path, 235
using Common]JS and AMD code, 221
whitelisting an untyped import, 246
index signatures, 28
Record object, 137
index.ts, 13
infer keyword, 145
inferring types, 7
inheritance, 83
simulating multiple inheritance, 101
inner nodes, 74
instance methods, 88
instanceof operator, 99
interfaces, 91-96
Angular lifecycle hooks, 208
binding of generics, 69
comparison with type aliases, 91
declaration merging, 93
extending objects, classes, or other inter-
faces, 92
implementation, 94
implementing versus extending abstract
classes, 96
merging, 226
polymorphism, 101
top-level, in type declaration files, 233
internal triple-slash directives, 284
interpreted languages, 6

intersection types, 32, 92
array, 34
intrinsic elements (TSX), 287
invalid actions, 2
invariance, 117
isomorphic programs, 251
iterable iterators, 54
Iterablelterator type, 53
iterables, 53
iterators, 53-55
built-in, for common collection types, 54
defined, 54

J

JavaScript, xiii
built-in iterators for collection types, 54
compile target for TypeScript projects,
251-255
language versions and releases, 253

configuring build pipeline to compile Type-

Script code to, 260
engine, 6
event loop, 174-176
interoperating with, 229-247
gradually migrating code to TypeScript,
236-241
type lookup for JavaScript, 242-244
using third-party JavaScript, 244-247
using type declarations, 230-236
ways to use JavaScript from TypeScript,
247
latest syntax and features, xiv
modules, brief history of, 216-218
optimizing bundles for fast loading, 260
type system, comparison to TypeScript,
8-10
TypeScript program compiled to, 250
JSDoc annotations, 239
JSON (JavaScript Object Notation)
loading .json files, 236
JSX (JavaScript XML), 201
React hooking into TSX to type JSX cor-
rectly, 288
TSX and, 202
using TSX with React, 203-207
jsx directive, 203

K

keying-in operator, 132, 146

296 | Index

keyof operator, 134
keyofStringsOnly TSC flag, 136

L
LAB;js, loading module with, 217
lazy-loading code, 220
lazy and asynchronous loading modules, 216
lazy loading chunks of code, 220
leading with the types, 80
leaf nodes, 74
let
type declarations with, 43
using const instead of, 22
variable declarations with, 31
lib directive, 283
lib setting (TSC), 234, 252, 254
lib tsconfig.json option, 200
lifecycle hooks (Angular), 208
listeners, creating, 186
onmessage API in Web Workers, 189

M
mapped types, 137-140
built-in, 139
using to build typesafe event emitters, 185
MatrixProtocol, 194
memory safety, 187
message passing (Web Workers), 188
message passing API, 188
onmessage API, 189
methods, 88
abstract, 87
access modifiers for, 86
mixins, 101-104
module mode versus script mode, 222
module setting (TSC), 252
module setting (tsconfig.json), 225
module.exports, 217
moduleResolution TSC flag, 227
modules, 215-222
ambient module declarations, 235
amd-module directive, 264
brief history of JavaScript modules, 216-218
import, export, 218-219
dynamic imports, 219
module mode or script mode, 222
using Common]JS and AMD code, 221
imported from JavaScript, type lookup for,
242-244

module field in tsconfig.json, 237
picking module system to compile Type-
Script to, 259
preferring over namespaces, 226
telling TypeScript about a third-party mod-
ule installed with NPM, 232
untyped, importing from third-party Java-
Script, 246
writing declaration files for third-party
JavaScript modules, 275-281
Moment.js date manipulation library, 220
multithreading, 187-197
in the browser with Web Workers, 187-196
typesafe multithreading in Node]S with
child processes, 196-197

N

named function syntax, 46
namespace keyword, 222
namespaces, 222-226
collisions, 225
compiled output, 225
exports, 223
long, using aliases to shorten, 224
merging, 226
preferring modules over, 226
subnamespaces, 224
never type, 37, 145
summary of usage, 38
new operator, 100
new(...any[]) syntax for extended class con-
structors), 106
next method, 54
no-invalid-this TSLint rule, 50
Node API for Redis, 185
node mode (moduleResolution flag), 227
NodeJS
callback-based fs.readFile API, 176-178
EventEmitter, 184, 191
installing and running, 11
modules, 217
preferring modules over namespaces, 226
running TypeScript code in, 258
typesafe multihreading with child processes,
196-197
wrapping callback-based fs.readFileAPI in
Promise-based API, 180
nodes (binary tree), 74
nolmplicitAny flag in tsconfig.json, 20

Index | 297

nolmplicitAny flag in tsconfig.sh, 238
nolmplicitReturns TSC flag, 131
nolmplicitThis TSC option, 52
nominal types, simulating, 152-154
nominal typing, 25
nonnull assertions, 149
NPM package manager, 11
installing third-party JavaScript, 244
publishing TypeScript code to, 261-262
sending type declaration to, 246
null type, 37
example of usage, 37
function returning null, 160
nonnull assertions, 149
problems with in programming languages,
39
strict null checking, 39
summary of usage, 38
variables initialized to, type widening, 123
number type, 17, 22
numbers, numeric separators in, 23

0

object literals, 26
fresh object literal type, 124
object-relational mappers (ORMs), 212
objects, 25-30, 132-140
companion object pattern, 140
covariant members, 116
declaring in TypeScript, 29
empty, 29
filtering arrays of, 65
index signature, 28
invariant property types in some languages,
118
mapped types, 137-140
properties of, 27
Record type, 137
shape of, 27
type operators for, 132-136
keying-in operator, 132
keyof operator, 134
Observables, 184
Option type, 165-171
flatMap and getOrElse methods, 168
implementation in Some<T> and None
classes, 167
implementing flatMap and getOrElse on
Some<T> and None, 168

implementing Option function, 170
using overloaded signatures to give flatMap
more specific types, 169
ORMs (object-relational mappers), 212
outFile TSC flag, 260
overloaded ambient function declarations, 225
overloaded function types, 58-64
filter function, 65
keeping overload signatures specific, 61

P

parallelism, 187
(see also multithreading)
parameters
compatibility of arguments with, 47
contravariance in function parameters, 120
defined, 47
generic type, 66
optional and default, 47
optional function parameters in type infer-
ence on JavaScript, 239
rest, 48
type, 18
path directive, 283
paths (module), 219, 221, 227
polyfills, 252
for process.env.NODE_ENV, 233
for target environment not supporting
newer library feature, 254
polymorphism, 64-79
binding of generics, 68-71
bounded, 74-78
using to model arity, 77
with multiple constraints, 76
classes and interfaces, 100-101
generic type aliases, 73
generic type defaults, 78
generic type inference, 71-73
generic type parameters, 66
preserveConstEnums TSC flag, 42
private (access modifier), 86
class constructors, 107
classes with private fields, 97
project references, 255-258
projects, setting up for TypeScript, 13
promises, 178-183
Promise implementation, 179
generic type, 180
rejecting Promises with an error, 182

298 | Index

sequencing Promises with then and
catch, 181
returned by import function, 220
using async and await with, 183
wrapping callback-based NodeJS API
fs.readFile in Promise-based API, 180
properties
access modifiers for, 86
excess property checking, 123
function, modeling with full call signatures,
63
object and class, covariance in, 117
type inference on JavaScript code, 239
protected (access modifier), 86
classes with protected fields, 97
protocols
client/server communications over, 210
typesafe, 194, 210
prototypes, extending safely, 154-156
public (access modifier), 86
methods, 87

R
React, 201-207
hooks into TSX to type JSX safely, 288
JSX primer, 201
TSX or JSX support in TypeScript, 202
using TSX with, 203
reactive programming libraries, 184
readonly modifier, 28
using with arrays and tuples, 37
ReadonlyArray type, 36
Record type, 137
Redis library, using, 185
reference types, xv
references (compiler option), 256
refinement (types), 126-130
discriminated union types, 128
typeof operator and changing scopes, 142
require calls, 217
rest parameters, 48
type inference for, 141
return statements, totality checking, 130
return types
annotations of, 46
covariance in, 120
this variable, 89
role-oriented programming, 101
runtime, 5

exceptions, 159
RxJS library, 184

S
safety flags (TSC), 285
scoped declarations, 273
script mode versus module mode, 222
script mode for type declarations, 233
self-hosting compilers, 11
sequencing operations
in callbacks, 177
in Promises, 181
services (Angular), 209
shapes
subtype and supertype rules, 117
subtyping, 116
shorthand call signatures, 58
source maps, 250
enabling, 255
feeding into Node]S process, 259
SQL calls, 212
src/index.ts, 13
strict flags in TSC, 20, 285
strict mode (TSC), 238
strictBindCallApply option, 50
strictFunctionTypes TSC flag, 121
strictNullChecks and strictPropertyInitializa-
tion TSC flags, 86
strictNullChecks option, 39
string type, 17, 23
strings
automatic type conversions in JavaScript, 9
filtering arrays of, 65
structural typing, 25
classes in TypeScript, 97
subtypes, 114
assignability and, 121
subtyping rules for more complex types, 115
shapes and arrays, 116
super calls, 89
supertypes, 115
assignability and, 121
using object type in place of expected super-
type, 116
symbol type, 24
example usages for unique symbol, 24
Symbol.iterator, 54

Index | 299

T

tags for union types, 129
target setting (TSC), 252
tasks, 175
tests, relying on to find errors, 3
then clause, 181
using async and await instead of, 183
third-party JavaScript, using, 244-247
this variable, 50
contravariance in function this types, 120
typing, 50
using as method return type, 89
totality, 130-132
traits, 101
(see also mixins)
transpiling, 251
JavaScript features TSC does/does not tran-
spile for, 252
TSC support for transpiling code to older
JavaScript versions, 252
triple-slash directives, 262-265, 283-284
amd-module, 264
types, 263
true and false values (boolean type), 21
Try type, 165
try/catch statements, 161, 181
TSC compiler, 6, 11
artifacts generated by, 250
checkJs flag, 238
compiling JavaScript code, 237
configuring with tsconfig.json, 11
declarations flag, 231
downlevellteration flag, 55
enabling DOM APIs, 199
enabling dom lib for, 188
enabling nolmplicitAny flag, 238
enabling webworker lib for, 188
esModuleInterop flag, 202, 221
experimentalDecorators flag, 104
fullTemplateTypeCheck flag, 209
generating JavaScript bundles, 260
installing with npm, 11
jsx flag, 202
keyofStringsOnly flag, 136
lib setting, 234
moduleResolution flag, 227
namespace output, 225
nolmplicitReturns flag, 131
nolmplicitThis option, 52

preserveConstEnums option, 42
project references, 255-258
safety flags, 285
setting to dial in environments to target, 252
strictBindCallApply option, 50
strictFunctionTypes flag, 121
strictNullChecks and strictPropertylnitiali-
zation flags, 86
strictNullChecks option, 39
types and typeRoots settings, 244
using more stringent flags on migrated Java-
Script code, 241
tsconfig.json, 11
enabling nolmplicitAny flag, 20
lib option, 200
module:esnext, 221
options, 12
TSLint
configuring with tslint.json, 13
installing, 11
no-angle-bracket-type-assertion rule, 148
no-invalid-this rule, 50
tslint.json, 13
TSX
reference, 287-289
using with React, 203-207
tuples, 35
improving type inference for, 141
optional elements, 36
read-only, 36
rest elements, 36
type aliases, 30
binding of generics, 69
comparison with interfaces, 91
for namespaces, 224
generic, 73
type branding, 153
type declarations, 230-236, 250
ambient module declarations, 235
ambient type declarations, 234
ambient variable declarations, 233
creating for third-party JavaScript and send-
ing to NPM, 246
differences from regular TypeScript syntax,
230
DOM type declarations, enabling, 255
example with equivalent TypeScript code,
230
in JavaScript on DefinitelyTyped, 245

300 | Index

JavaScript code without on DefinitelyTyped,
246
uses of type declaration files, 232
type guards, 142
type inference
improving for tuples, 141
types in JavaScript code, 238
type literals, 21
type operators, 269
for object types, 132-136
keying-in operator, 132
keyof, 134
- (minus) and + (plus), 139
type refinement (see refinement)
type safety, 1
type signatures (see call signatures)
type systems, 7-10
comparison for JavaScript and TypeScript,
8-10
what TypeScript type system handles, 267
type utilities, 271
type widening, 122-123
excess property checking, 123
preventing with const type, 123
type-driven development, 79
type-level code, 56
typechecker, 6, 17
typechecking, 6
for Angular templates, 209
JavaScript code, 238
JavaScript versus TypeScript, 9
typeof operator, 99, 142
using with array items, 35
types
advanced object types, 132-140
companion object pattern, 140
mapped types, 137-140
Record, 137
type operators, 132-136
binding, JavaScript versus TypeScript, 8
classes declaring both values and types, 98
conditional, 143-147
built-in, 146
declaring generics inline with infer key-
word, 145
distributive conditionals, 144
conversions, JavaScript versus Typescript, 9
declarations generating, 273
declaring type this variable, 51

defined, 17
DOM type declarations, enabling, 200
escape hatches, 147-152
definite assignment assertions, 151
nonnull assertions, 149
simulating nominal types, 152-154
type assertions, 148-149
extending the prototype safely, 154-156
function, 141-143
improving type inference for tuples, 141
user-defined type guards, 142
merging types and values, 226
relationships between, 114-130
assignability, 121
refinement, 126-130
subtypes and supertypes, 114
type widening, 122-123
variance, 115-121
sketching out programs in, 267
supported by TypeScript, 19-44
any, 19
arrays, 33-37
bigint, 23
boolean, 21
null, undefined, void, and never, 37-39
number, 22
objects, 25-30
string, 23
symbol, 24
tuples, 35
type aliases, 30
types and their subtypes, 43
union and intersection types, 32
unknown, 20
terminology and vocabulary of, 18
top-level, in type declaration files, 233
totality, 130-132
type lookup for JavaScript, 242-244
types and typeRoots settings (TSC), 244
types directive, 263
TypeScript
benefits of, 1
building a project, 249-258
artifacts generated by TSC, 250
dialing in your compile target, 251-255
enabling source maps, 255
error monitoring, 258
project layout, 249
project references, 255-258

Index | 301

compiler, 5-7
errors, handling of, 3
gradually migrating JavaScript code to,
236-241
adding JSDoc annotations, 239
adding TSC to JavaScript projects, 237
enabling typechecking for JavaScript,
238
renaming files to .ts, 240
using strict TSC flags, 241
modules, consuming and exporting, 218
publishing code to NPM, 261-262
running in the browser, 259
running on the server, 258
setting up code editors, 11-13
setting up projects, index.ts file, 13
triple-slash directives, 262-265
type system, 7-10
comparison to JavaScript, 8-10
TypeSearch, 245

U
undefined type, 37
example of usage, 37
nonnull assertions, 149
summary of usage, 38
variables initialized to, type widening, 123
union types, 32
adding conditional type, 144
defining for communication among
threads, 190
discriminated, 128
unique symbols, 24, 153
unknown type, 20
user-defined type guards, 142

v
value-based elements (TSX), 287
value-level code, 56
value: type annotations, 7
values, xv
classes declaring both values and types, 98
declarations generating, 273
merging values and types, 226
null and undefined, 37
top-level, in type declaration files, 233
type declarations and, 230

var
type declarations with, 43
using const instead of, 22
variable declarations with, 31
variables
ambient variable declarations, 233
ambient versus regular declarations, 232
declaring, then initializing with values, 27
immutable, no type widening, 122
mutable, type widening, 122
with explicitly annotated types, 7
with implicitly inferred types, 7
variadic functions, 48
variance, 115-121
function, 118
kinds of, 117
shape and array, 116
view layer of frontend applications (React), 201
void type, 37
summary of usage, 38
VSCode, 11

]

weakly typed languages, 9
web page for this book, xvii
Web Workers, typesafe multithreading with,
187-196
abstracting snowflake API behind
EvenEmitter-based API, 191
message passing API, 188
onmessage API, 189
typesafe protocols, 194
widening types (see type widening)
WindowEventMap interface, 186
Without type, 145

X

XML
JSX (JavaScript XML), 201
tags in triple-slash directives, 283
TSX (JSX and TypeScript), 202
using TSX with React, 203-207

Y

yield keyword, 53

302 | Index

About the Author

Boris Cherny is an engineering and product leader at Facebook. Previously, he
worked in VC, ad tech, and at a bunch of startups, most of which aren’t around any-
more. He is interested in programming languages, code synthesis and static analysis,
and building user experiences that people love. In his free time, he runs the San Fran-
cisco TypeScript Meetup and writes on his personal blog, performancejs.com. Find
him on GitHub at https://github.com/bcherny.

Colophon

The animal on the cover of Programming TypeScript is a guanaco (Lama guanicoe).
Guanacos are the wild ancestors of llamas and are also related to camels. Before sheep
were introduced to the continent, guanacos could be found throughout much of
South America. They live in the dry, steep, mountainous regions, ranging as high as
13,000 feet above sea level. Most of the 600,000 guanaco live in Argentina today,
specifically favoring the Patagonia region.

To survive the rocky and sloped terrain, a guanaco has two padded toes on each foot
and a low center of gravity. The average height of a guanaco is under four feet at the
shoulder. Their thick wool coats are light to medium, reddish brown with near white
coloring underneath. Long eyelashes protect their eyes from strong winds, and big,
pointed ears help them sense threats.

Guanacos travel in herds made up of several females, young under one year of age,
and a single breeding male. When they feel threatened, guanacos alert their herd to
flee with a high-pitched bleat that some say sounds like a barking laugh. Pumas and
foxes prey on guanacos, so they take turns standing on hills and shrieking to alert the
rest of the herd when it’s time to run to safety. A guanaco can typically run up to 35
miles per hour. If a predator chases the herd, the male will run to the back in defense.

It takes nearly a full year for a guanaco to gestate. Once born, a chulengo, as they're
called, needs only five minutes before it can begin to walk. After a year living with
their parents, chulengos must find their own herds. This abrupt dismissal may con-
tribute to the low survival rate among guanaco young—just 30% reach adulthood. An
adult can live for 15 to 20 years.

On the rugged slopes and scrub of the guanaco habitat, grasses and vegetation are
tough, thick, and a crucial source of hydration. Guanacos have three-chamber stom-
achs that help them digest the plants and retain the liquid for longer periods of time.
Their upper lips are split in two—an adaptation that makes grabbing their food
easier.

https://performancejs.com/
https://github.com/bcherny

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover illustration is by Karen Montgomery, based on a black and white engrav-
ing from the Pictorial Museum of Animated Nature. The cover fonts are Gilroy Semi-
bold and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Cover
	Copyright
	Table of Contents
	Preface
	How This Book Is Organized
	Style
	Conventions Used in This Book

	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction
	Chapter 2. TypeScript: A 10_000 Foot View
	The Compiler
	The Type System
	TypeScript Versus JavaScript

	Code Editor Setup
	tsconfig.json
	tslint.json

	index.ts
	Exercises

	Chapter 3. All About Types
	Talking About Types
	The ABCs of Types
	any
	unknown
	boolean
	number
	bigint
	string
	symbol
	Objects
	Intermission: Type Aliases, Unions, and Intersections
	Arrays
	Tuples
	null, undefined, void, and never
	Enums

	Summary
	Exercises

	Chapter 4. Functions
	Declaring and Invoking Functions
	Optional and Default Parameters
	Rest Parameters
	call, apply, and bind
	Typing this
	Generator Functions
	Iterators
	Call Signatures
	Contextual Typing
	Overloaded Function Types

	Polymorphism
	When Are Generics Bound?
	Where Can You Declare Generics?
	Generic Type Inference
	Generic Type Aliases
	Bounded Polymorphism
	Generic Type Defaults

	Type-Driven Development
	Summary
	Exercises

	Chapter 5. Classes and Interfaces
	Classes and Inheritance
	super
	Using this as a Return Type
	Interfaces
	Declaration Merging
	Implementations
	Implementing Interfaces Versus Extending Abstract Classes

	Classes Are Structurally Typed
	Classes Declare Both Values and Types
	Polymorphism
	Mixins
	Decorators
	Simulating final Classes
	Design Patterns
	Factory Pattern
	Builder Pattern

	Summary
	Exercises

	Chapter 6. Advanced Types
	Relationships Between Types
	Subtypes and Supertypes
	Variance
	Assignability
	Type Widening
	Refinement

	Totality
	Advanced Object Types
	Type Operators for Object Types
	The Record Type
	Mapped Types
	Companion Object Pattern

	Advanced Function Types
	Improving Type Inference for Tuples
	User-Defined Type Guards

	Conditional Types
	Distributive Conditionals
	The infer Keyword
	Built-in Conditional Types

	Escape Hatches
	Type Assertions
	Nonnull Assertions
	Definite Assignment Assertions

	Simulating Nominal Types
	Safely Extending the Prototype
	Summary
	Exercises

	Chapter 7. Handling Errors
	Returning null
	Throwing Exceptions
	Returning Exceptions
	The Option Type
	Summary
	Exercises

	Chapter 8. Asynchronous Programming, Concurrency, and Parallelism
	JavaScript’s Event Loop
	Working with Callbacks
	Regaining Sanity with Promises
	async and await
	Async Streams
	Event Emitters

	Typesafe Multithreading
	In the Browser: With Web Workers
	In NodeJS: With Child Processes

	Summary
	Exercises

	Chapter 9. Frontend and Backend Frameworks
	Frontend Frameworks
	React
	Angular

	Typesafe APIs
	Backend Frameworks
	Summary

	Chapter 10. Namespaces.Modules
	A Brief History of JavaScript Modules
	import, export
	Dynamic Imports
	Using CommonJS and AMD Code
	Module Mode Versus Script Mode

	Namespaces
	Collisions
	Compiled Output

	Declaration Merging
	Summary
	Exercise

	Chapter 11. Interoperating with JavaScript
	Type Declarations
	Ambient Variable Declarations
	Ambient Type Declarations
	Ambient Module Declarations

	Gradually Migrating from JavaScript to TypeScript
	Step 1: Add TSC
	Step 2a: Enable Typechecking for JavaScript (Optional)
	Step 2b: Add JSDoc Annotations (Optional)
	Step 3: Rename Your Files to .ts
	Step 4: Make It strict

	Type Lookup for JavaScript
	Using Third-Party JavaScript
	JavaScript That Comes with Type Declarations
	JavaScript That Has Type Declarations on DefinitelyTyped
	JavaScript That Doesn’t Have Type Declarations on DefinitelyTyped

	Summary

	Chapter 12. Building and Running TypeScript
	Building Your TypeScript Project
	Project Layout
	Artifacts
	Dialing In Your Compile Target
	Enabling Source Maps
	Project References
	Error Monitoring

	Running TypeScript on the Server
	Running TypeScript in the Browser
	Publishing Your TypeScript Code to NPM
	Triple-Slash Directives
	The types Directive
	The amd-module Directive

	Summary

	Chapter 13. Conclusion
	Appendix A. Type Operators
	Appendix B. Type Utilities
	Appendix C. Scoped Declarations
	Does It Generate a Type?
	Does It Merge?

	Appendix D. Recipes for Writing Declaration Files for Third-Party JavaScript Modules
	Types of Exports
	Globals
	ES2015 Exports
	CommonJS Exports
	UMD Exports

	Extending a Module
	Globals
	Modules

	Appendix E. Triple-Slash Directives
	Internal Directives
	Deprecated Directives

	Appendix F. TSC Compiler Flags for Safety
	Appendix G. TSX
	Index
	About the Author
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

