

Lecture Notes in Bioinformatics 4366
Edited by S. Istrail, P. Pevzner, and M. Waterman

Editorial Board: A. Apostolico S. Brunak M. Gelfand
T. Lengauer S. Miyano G. Myers M.-F. Sagot D. Sankoff
R. Shamir T. Speed M. Vingron W. Wong

Subseries of Lecture Notes in Computer Science

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Karl Tuyls Ronald Westra
Yvan Saeys Ann Nowé (Eds.)

Knowledge Discovery
and Emergent Complexity
in Bioinformatics

First International Workshop, KDECB 2006
Ghent, Belgium, May 10, 2006
Revised Selected Papers

13

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Series Editors

Sorin Istrail, Brown University, Providence, RI, USA
Pavel Pevzner, University of California, San Diego, CA, USA
Michael Waterman, University of Southern California, Los Angeles, CA, USA

Volume Editors

Karl Tuyls
Maastricht University, Faculty of Humanities and Science
Maastricht ICT Competence Center, 6200 MD Maastricht, The Netherlands
E-mail: k.tuyls@micc.unimaas.nl

Ronald Westra
Maastricht University, Department of Mathematics
6200 MD Maastricht, The Netherlands
E-mail: westra@math.unimaas.nl

Yvan Saeys
Ghent University
Technologiepark 927, 9052 Ghent, Belgium
E-mail: yvan.saeys@ugent.be

Ann Nowé
Vrije Universiteit Brussel, Faculty of Sciences (WE)
Department of Computer Science, Pleinlaan 2, 1050 Brussels, Belgium
E-mail: ann.nowe@vub.ac.be

Library of Congress Control Number: 2007920820

CR Subject Classification (1998): H.2.8, I.5, J.3, I.2, H.3, F.1-2

LNCS Sublibrary: SL 8 – Bioinformatics

ISSN 0302-9743
ISBN-10 3-540-71036-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-71036-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12023929 06/3142 5 4 3 2 1 0

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Preface

This book contains selected and revised papers of the International Symposium on
Knowledge Discovery and Emergent Complexity in Bioinformatics (KDECB 2006),
held at the University of Ghent, Belgium, May 10, 2006.

In February 1943, the Austrian physicist Erwin Schrödinger, one of the founding
fathers of quantum mechanics, gave a series of lectures at Trinity College in Dublin
titled “What Is Life? The Physical Aspect of the Living Cell and Mind.” In these lec-
tures Schrödinger stressed the fundamental differences encountered between observing
animate and inanimate matter, and advanced some, at the time, audacious hypotheses
about the nature and molecular structure of genes, some ten years before the discoveries
of Watson and Crick. Indeed, the rules of living matter, from the molecular level to the
level of supraorganic flocking behavior, seem to violate the simple basic interactions
found between fundamental particles as electrons and protons. It is as if the organic
molecules in the cell ‘know’ that they are alive. Despite all external stochastic fluctua-
tions and chaos, process and additive noise, this machinery has been ticking for at least
3.8 billion years. Yet, we may safely assume that the laws that govern physics also steer
these complex associations of synchronous and seemingly intentional dynamics in the
cell. Contrary to the few simple laws that govern the interactions between the few really
elementary particles, there are at least tens of thousands of different genes and proteins,
with millions of possible interactions, and each of these interactions obeys its own pe-
culiarities. There are different processes involved such as transcription, translation and
subsequent folding. How can we ever understand the fundamentals of these complex
interactions that emerge from the few empirical observations we are able to make?

The KDECB 2006 Workshop was a great success and provided a forum for the pre-
sentation of new ideas and results bearing on the conception of knowledge discovery
and emergent complexity in bioinformatics. This event was organized in connection
with the 15th Belgium-Netherlands Conference on Machine Learning, held in Ghent,
Belgium. The goal of this workshop and this associated book is to increase awareness
and interest in knowledge discovery and emergent complexity research in bioinformat-
ics, and to encourage collaboration between machine learning experts, computational
biology experts, mathematicians and physicists, so as to give a representative overview
of the current state of affairs in this area. Next to a strong program with lectures by
leading scientists in this multidisciplinary field, the book contains contributions on
how knowledge can be extracted from sophisticated biological systems. Different disci-
plines, both ‘wet’ and ‘dry,’ have contributed to these developments and they will also
benefit directly or indirectly from new, intelligent, computational techniques.

Hence, we welcomed scientists and practitioners from several European countries
and different scientific areas in Ghent for the 1st Workshop on Knowledge Discovery
and Emergent Complexity in Bioinformatics (KDECB 2006).

We hope that our readers will enjoy reading the efforts of the researchers.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

VI Preface

Acknowledgements

Organizing a scientific event like KDECB, and editing an associated book, requires the
help of many enthusiastic people. First of all, the organizers would like to thank the
members of the Program Committee who guaranteed a scientifically strong and inter-
esting LNBI volume. Secondly, we would like to express our appreciation to the invited
speakers, Ricardo Grau, Reinhardt Guthke, William H. Majoros, Stan Maree, Grzegorz
Rozenberg and Jean-Philippe Vert, for their distinguished contributions to the sympo-
sium program. Finally, we would also like to thank the authors of all contributions for
submitting their scientific work to the KDECB symposium!

December 2006 Karl Tuyls
Ronald Westra

Yvan Saeys
Ann Nowé

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Organization

Organizing Committee

Co-chairs: Karl Tuyls
Ronald Westra
Yvan Saeys
Ann Nowé

Program Committee

Adelmo Cechin
Jeroen Donkers
Reinhard Gutkhe
Thomas Hamelryck
Nicolas Le Novere

Derek Linkens
Bernard Manderick
Ann Nowé
Yvan Saeys
Klaus Stiefel

Elena Tsiporkova
Bram Vanschoenwinkel
Ronald Westra

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Table of Contents

Knowledge Discovery and Emergent Complexity in Bioinformatics 1
Ronald Westra, Karl Tuyls, Yvan Saeys, and Ann Nowé

Boolean Algebraic Structures of the Genetic Code: Possibilities
of Applications . 10

Ricardo Grau, Maria del C. Chavez, Robersy Sanchez,
Eberto Morgado, Gladys Casas, and Isis Bonet

Discovery of Gene Regulatory Networks in Aspergillus fumigatus 22
Reinhard Guthke, Olaf Kniemeyer, Daniela Albrecht,
Axel A. Brakhage, and Ulrich Möller

Complexity Measures for Gene Assembly . 42
Tero Harju, Chang Li, Ion Petre, and Grzegorz Rozenberg

Learning Relations from Biomedical Corpora Using Dependency
Trees . 61

Sophia Katrenko and Pieter Adriaans

Advancing the State of the Art in Computational Gene Prediction 81
William H. Majoros and Uwe Ohler

Enhancing Coding Potential Prediction for Short Sequences Using
Complementary Sequence Features and Feature Selection 107

Yvan Saeys and Yves Van de Peer

The NetGenerator Algorithm: Reconstruction of Gene Regulatory
Networks . 119

Susanne Toepfer, Reinhard Guthke, Dominik Driesch,
Dirk Woetzel, and Michael Pfaff

On the Neuronal Morphology-Function Relationship: A Synthetic
Approach . 131

Ben Torben-Nielsen, Karl Tuyls, and Eric O. Postma

Analyzing Stigmergetic Algorithms Through Automata Games 145
Peter Vrancx, Katja Verbeeck, and Ann Nowé

The Identification of Dynamic Gene-Protein Networks 157
Ronald L. Westra, Goele Hollanders, Geert Jan Bex,
Marc Gyssens, and Karl Tuyls

Sparse Gene Regulatory Network Identification . 171
Ralf L.M. Peeters and Stef Zeemering

Author Index . 183

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Knowledge Discovery and Emergent Complexity

in Bioinformatics

Ronald Westra1, Karl Tuyls1, Yvan Saeys2, and Ann Nowé3

1 Department of Mathematics and Computer Science,
Maastricht University and Transnational University of Limburg,

Maastricht, The Netherlands
2 Department of Plant Systems Biology, Ghent University,
Flanders Interuniversity Institute for Biotechnology (VIB),

Ghent, Belgium
3 Computational Modeling Lab,

Vrije Universiteit Brussel,
Brussels, Belgium

1 Introduction

In February 1943, the Austrian physicist Erwin Schrödinger, one of the founding
fathers of quantum mechanics, gave a series of lectures at the Trinity College
in Dublin, entitled “What Is Life? The Physical Aspect of the Living Cell and
Mind”. In these lectures Schrödinger stressed the fundamental differences en-
countered between observing animate and inanimate matter, and advanced some
at the time audacious hypotheses about the nature and molecular structure of
genes, some ten years before the discoveries of Watson and Crick.

Indeed, the rules of living matter, from the molecular level to the level of
supraorganic flocking behavior, seem to violate the simple basic interactions
found between fundamental particles as electrons and protons. It is as if the
organic molecules in the cell ‘know’ that they are alive. Despite all external
stochastic fluctuations and chaos, process and additive noise, this machinery is
ticking for at least 3.8 billion years. Yet, we may safely assume that the laws
that govern physics also steer these complex associations of synchronous and
seemingly intentional dynamics in the cell. Contrary to the few simple laws that
govern the interactions between the few really elementary particles, there are at
least tens of thousands of different genes and proteins, with millions of possible
interactions, and each of these interactions obeys its own peculiarities. There are
different processes involved like transcription, translation and subsequent fold-
ing. How can we ever understand the fundamentals of these complex interactions
that emerge from the few empirical observations we are able to make.

The KDECB 2006 Symposium, and this associated book, is intended to pro-
vide a forum for the presentation of new ideas and results bearing on the con-
ception of knowledge discovery and emergent complexity in bioinformatics. The
goal of this symposium is to increase awareness and interest in knowledge dis-
covery and emergent complexity research in Bioinformatics, and encourage col-
laboration between Machine Learning experts, Computational Biology experts,

K. Tuyls et al. (Eds.): KDECB 2006, LNBI 4366, pp. 1–9, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 R. Westra et al.

Mathematicians and Physicists, and give a representative overview of the current
state of affairs in this area. Next to a strong program with lectures of leading
scientists in this multi-disciplinary field, we present contributions that cover on
how knowledge can be extracted from, and complexity emerges in sophisticated
biological systems. Different disciplines, both ‘wet’ and ‘dry’, have contributed
to these developments and they will also benefit directly or indirectly from new,
intelligent, computational techniques.

In the remainder of this document the three main themes of this book are
introduced and discussed, namely, (i) Machine Learning for Bioinformatics, (ii)
Mathematical modeling of gene-protein networks, and, (iii) Nature-inspired
computation.

2 Machine Learning for Bioinformatics

During the past decades, advances in genomics have generated a wealth of bi-
ological data, increasing the discrepancy between what is observed and what is
actually known about life’s organisation at the molecular level. To gain a deeper
understanding of the processes underlying the observed data, pattern recognition
techniques play an essential role.

The notion of a pattern however, needs to be interpreted in a very broad
sense. Essentially, we could define a pattern as everything that is the opposite
of chaos. Thus the notion of organisation can be associated with a pattern. The
goal of pattern recognition techniques then is to elucidate the organisation of the
pattern, resulting in a wide range of subtasks such as recognition, description,
classification, and grouping of patterns.

In bioinformatics, techniques to learn the theory automatically from the data
(machine learning techniques) play a crucial role, as they are a first step to-
wards interpreting the large amounts of data, and extracting useful biological
knowledge from it. Machine learning techniques are generally applied for the fol-
lowing problems: classification, clustering, construction of probabilistic graphical
models, and optimisation.

In classification (sometines also referred to as supervised learning) the goal
is to divide objects into classes, based on the characteristics of the objects. The
rule that is used to assign an object to a particular class is termed the classifica-
tion function, classification model, or classifier. Many problems in bioinformatics
can be cast into a classification problem, and well established methods can then
be used to solve the task. Examples include the prediction of gene structures
[4,26,37], which often is the first step towards a more detailed analysis of the
organism, the classification of microarray data [17,21], and recently also classifi-
cation problems related to text mining in biomedical literature [23]. The compu-
tational gene prediction problem is the problem of the automatic annotation of
the location, structure, and functional class of protein-coding genes. A correct
annotation forms the basis of many subsequent modeling steps, and thus should
be done with great care. Driven by the explosion of genome data, computational

Knowledge Discovery and Emergent Complexity in Bioinformatics 3

approaches to identify genes have thus proliferated, thereby depending strongly
on machine learning techniques.

A second class of problems in bioinformatics concerns the topic of clustering,
also termed unsupervised learning, because no class information is known a pri-
ori. The goal of clustering is to find natural groups of objects (clusters) in the
data that is being modeled, where objects in one cluster should be similar to each
other, while being at the same time different from the objects in another cluster.
The most common examples of clustering in bioinformatics concern the cluster-
ing of microarray expression data [10,19,39], and the grouping of sequences, e.g.
to build phylogenetic trees [13].

Probabilistic graphical models [31] have proliferated as a useful set of tech-
niques for a wide range of problems where dependencies between variables (ob-
jects) need to be modeled. Formally, they represent multivariate joint probability
densities via a product of terms, each of which only involves a few variables. The
structure of the problem is then modeled using a graph that represents the rela-
tions between the variables, which allows to reason about the properties entailed
by the product. Common applications include the inference of genetic networks
in systems biology [38] and Bayesian methods for constructing phylogenetic trees
[34]. Other examples of applications of machine learning techniques in bioinfor-
matics include the prediction of protein structure (which can be cast into an
optimisation problem), motif identification in sequences, and the combination
of different sources of evidence for analysis of global properties of bio(chemical)
networks. In all of these domains, machine learning techniques have proven their
value, and new methods are constantly being developed [25].

3 Modeling the Interactions Between Genes and Proteins

A prerequisite for the successful reconstruction of gene-protein networks is the
way in which the dynamics of their interactions is modeled. The formal math-
ematical modeling of these interactions is an emerging field where an array of
approaches are being attempted, all with their own problems and short-comings.
The underlying physical and chemical processes involved are multifarious and
hugely complex. This condition contrasts sharply with the modeling of inanimate
Nature by physics. While in physics huge quantities of only a small amount of
basic types of elementary particles interact in a uniform and deterministic way
provided by the fundamental laws of Nature, the situation in gene-protein in-
teractions deals with tens of thousands of genes and possibly some million pro-
teins. The quantities thereby involved in the actual interactions are normally
very small, as one single protein may be able to (in)activate a specific gene, and
thereby change the global state of the system. For this reason, gene regulatory
systems are much more prone to stochastic fluctuations than the interactions in-
volved in normal inorganic reactions. Moreover, each of these interactions is dif-
ferent and involves its own peculiar geometrical and electrostatic details. There
are different processes involved like transcription, translation and subsequent

4 R. Westra et al.

folding. Therefore, the emergent complexity resulting from gene regulatory net-
works is much more difficult to comprehend.

In the past few decades a number of different formalisms for modeling the
interactions amongst genes and proteins have been presented. Some authors
focus on specific detailed processes such as the circadian rhythms in Drosophila
and Neurospora [16,18], or the cell cycle in Schizosaccharomyces (Fission yeast)
[30]. Others try to provide a general platform for modeling the interactions
between genes and proteins. For a thorough overview consult de Jong (2002) in
[6], Bower (2001) in [3], and others [12,14,20].

Traditionally, much emphasis lay on static models, where the relations be-
tween genes and proteins are considered fixed in time. This was in line with
the impressive developments in microarray technology that opened a window
towards reconstructing static genetic and metabolic pathways, as for instance
demonstrated in [36]. Successful static models are the Logical Boolean networks
consult [2,3,5,1], and on Bayesian Networks consult [14,40,41]. In discrete event
simulation models the detailed biochemical interactions are studied. Consider-
ing a large number of constituents, the approach aims to derive macroscopic
quantities. More information on discrete event modeling can be found in[3].

In contrast to the static networks, the aim in modeling dynamic networks is to
explain the macroscopic network complexity from the molecular dynamics and
reaction kinetics. The approach to modeling the dynamical interactions amongst
genes and proteins is by considering them as biochemical reactions, and thus
representing them as traditional ‘rate equations’. The concept of chemical rate
equations, dating back to Van ’t Hoff, consists of a set of differential equations,
expressing the time derivative of the concentration of each constituent of the
reaction as some rational function of the concentrations of all the constituents
involved. In general, the syntax of the chemical reactions is mapped on the
syntax of the rate equations, as e.g. in the Michaelis-Menten equation for enzyme
kinetics. More on the physical basis of rate equations can be found in [48].

Though the truth of the underlying biochemical interactions between the con-
stituents is generally accepted, the idea of representing them by rate equations
involves a number of major problems. First of all, the rate equation is not a
fundamental law of Nature like the great conservation laws of Energy and Mo-
mentum, but a statistical average over the entire ensemble of possible micro-
scopic interactions. The applicability of the rate equation therefore relates to
the law of large numbers. In normal inorganic reactions this requirement holds.
However, in inhomogeneous mixtures or in fast reactions the actual dynamics
will depart significantly from this average. Also in case of gene-, RNA-, and
protein-interactions this condition will not hold as we will discuss later. Second,
the Maxwell velocity distribution should apply, otherwise the collision frequency
between the constituents would not be proportional to their concentrations, and
details of the velocity distribution would enter. This condition is met easily in
the presence of a solvent or an inert gas, but difficult to attain for macromole-
cules in a cytoplasm. The same holds for the distribution of the internal de-
grees of freedom of the constituents involved, such as rotational and vibrational

Knowledge Discovery and Emergent Complexity in Bioinformatics 5

energies. The distribution of their energies should have the same ‘temperature’
as in the Maxwell velocity distribution, otherwise this would affect the rate of
the collisions that result in an actual chemical reaction. Also this condition is not
easily met by gene-protein interactions. Finally, the temperature of the reaction
should be constant in space and time - this condition may be accounted for in
this context.

So, rate equations are statistical approximations that hold under above re-
quirements. Under these conditions they predict the average number of reactive
collisions. The actual observed number will fluctuate around this number, de-
pending on the details of the microscopic processes involved. In case of biochem-
ical interactions between genes and proteins at least some of the conditions will
be violated and therefore the applicability of the concept of rate equations is
valid only for genes with sufficient high transcription rates. This is confirmed by
recent experimental findings by Swain and Elowitz [11], [35], [42], [43].

Dynamic gene-protein networks can lead to mathematical complexities in
modeling and identification [27,28,8]. To overcome these problems, some authors
have proposed to model them as piecewise linear models, as introduced by Glass
and Kauffman [15]. Such models can be demonstrated to be memory-bounded
Turing-machines [2]. de Jong et al. [6,7] have proposed qualitative piecewise lin-
ear models rather than a quantitative models, because the correct underlying
multifarious mathematical expressions are not tractable. In spite of the intuitive
attractiveness of this idea, there are a number of conceptual and practical prob-
lems in applying these techniques in practical situations. In biology piecewise
linear behaviour is frequently observed, as for instance in embryonic growth
where the organism develops by transitions through a number of well-defined
‘check points’. Within each such checkpoint the system is in relative equilib-
rium. However, it should be mentioned that there is an ongoing debate on the
modeling of gene-protein dynamics as checkpoint mechanisms versus limit-cycle
oscillators, see [33,44].

Others have employed specific characteristics of the networks to construct
a viable reconstruction algorithm, such as the sparsity and hierarchy in the
network interactions [8,49,32].

4 Nature-Inspired Computing

In the sections above, we gave an overview of approaches and techniques from
computer science and mathematics that are promising in order to model biolog-
ical phenomena such as gene networks, protein structure, etc. We can however
go one step further, and try to model the emergent collective intelligence, aris-
ing in nature from local, simple interactions between simple units, which can be
biological cells, neurons as well as insects as ants and bees. Using insights from
how this complexity and global intelligence emerges in nature, we can develop
new computational algorithms to solve hard problems. Well known examples
are Neural Networks and Genetic Algorithms. Whereas Neural Networks are in-
spired on the working of the brain, Genetic Algorithms are based on the model of

6 R. Westra et al.

natural evolution. Another natured inspired technique is reinforcement learning.
Reinforcement learning [22,45] finds its roots in animal learning. It is well known
that, by operand or instrumental conditioning, we can teach an animal to re-
spond in some desired way. The learning is done by rewarding and punishing the
learner appropriately, and as a result the likelihood of the desired behaviour is
increased during the learning process, whereas undesired behaviour will become
less likely.

The objective of a reinforcement learner is to discover a policy, meaning a
mapping from situations to actions, so as to maximise the reinforcement it re-
ceives. The reinforcement is a scalar value which is usually negative to express
a punishment, and positive to indicate a reward. Unlike supervised learning
techniques, reinforcement learning methods do not assume the presence of a
teacher who is able to judge the action taken in a particular situation. Instead
the learner finds out what the best actions are by trying them out and by eval-
uating the consequences of the actions by itself. For many problems, such as
planning problems, the consequences of the action are not immediately appar-
ent after performing the action, but only after a number of other actions have
been taken. In other words the selected action may not only affect the immediate
reward/punishment the learner receives, but also the reinforcement it might get
in subsequent situations, i.e. the delayed rewards or punishments. Reinforcement
learning techniques such as Q-learning and Adaptive Critique techniques, can
deal with this credit assignment problem and are guaranteed to converge to an
optimal policy, as long as some conditions, such as the environment experienced
by the learner should be Markovian and the learner should be allowed sufficient
exploration, are met.

More recently other nature inspired techniques such as Ant Colony Optimi-
sation (ACO) [9] received a lot of attention. ACO techniques are inspired by
the behaviour of ants. It is well known that one single ant on its own cannot do
anything useful, but a colony of ants is capable of performing complex behav-
iour. The complex behaviour emerges due to the fact that ants can communicate
indirectly with each other, by laying a pheromone trail in the environment. This
pheromone signal can be observed by other ants, and this will influence their
own behaviour. The more pheromone is sensed by an ant in some direction, the
more it will be attracted in that direction, and the more the pheromone will
be reinforced. ACO algorithms have been successfully applied to complex graph
problems such as large instances of the travelling salesman problem. ACO tech-
niques are closely related to the Reinforcement Learning technique mentioned
in the previous paragraph, however they do not come with straightforward con-
vergence proofs. As is illustrated in [46] by Verbeeck et al. it is possible to
provide a clean proof of convergence by expressing the mapping between the
ACO pheromone updating mechanism and interconnecting learning automata
[29]. The insight into the convergence issues of these algorithms is crucial in
order to have a wider acceptance of these techniques.

Recent investigations [24,47] have also opened up the possibility of apply-
ing recruitment and navigational techniques from honeybees to computational

Knowledge Discovery and Emergent Complexity in Bioinformatics 7

problems as for instance foraging. Honeybees use a strategy named Path Inte-
gration. By employing this strategy, bees always know a direct path towards
their destination and their home. Bees employ a direct recruitment strategy by
dancing in the nest. Their dance communicates distance and direction towards
a destination. Ants, on the other hand, employ an indirect recruitment strategy
by accumulating pheromone trails. When a trail is strong enough, other ants are
attracted to it and will follow this trail towards a destination. Both strategies
provide the insects with an efficient way of foraging.

References

1. Arkin A., Ross J., McAdams H.H. (1994), Computational functions in biochemical
reaction networks. Biophys. Journal, Vol. 67, pp. 560–578.

2. Ben-Hur A., Siegelmann H.T. (2004), Computation in Gene Networks. Chaos, Vol.
14(1) pp. 145–151.

3. Bower J.M., Bolouri H.(Editors) (2001), Computational Modeling of Genetic and
Biochemical Networks. MIT Press, 2001.

4. Burge, C., Karlin, S. (1997), Prediction of complete gene structures in human
genomic DNA. J. Mol. Biol, Vol. 268, pp. 78–94.

5. Davidson E.H. (1999), A View from the Genome: Spatial Control of Transcription
in Sea Urchin Development, Current Opinions in Genetics and Development, Vol.
9, pp. 530–541.

6. de Jong H. (2002), Modeling and Simulation of Genetic RegulatorySystems: A
Literature Review. Journal of Computational Biology, Vol. 9(1), pp. 67–103.

7. de Jong H., Gouze J.L., Hernandez C., Page M., Sari T., Geiselmann J. (2004),
Qualitative simulation of genetic regulatory networks using piecewise-linear mod-
els. Bull Math Biol., Vol. 66(2), pp. 301–40.

8. D’haeseleer P., Liang S., Somogyi R. (2000), Genetic Network Inference: From
Co-Expression Clustering to Reverse Engineering. B ioinformatics, Vol. 16(8), pp.
707–726.

9. Dorigo M. and Sttzle T. (2004), Ant Colony Optimization. MIT Press. (2004).
10. Eisen, M. B., Spellman, P. T., Brown, P. O., Botstein, D. (1998), Cluster analysis

and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA, Vol.
95(25), pp 14863-14868

11. Elowitz M.B., Levine A.J., Siggia E.D., Swain P.S. (2002), Stochastic gene expres-
sion in a single cell. Science, Vol. 297, pp. 1183–1186.

12. Endy, D, Brent, R. (2001), Modeling Cellular Behavior. Nature, Vol. 409(6818),
pp. 391–395.

13. Felsenstein, J. (2004), Inferring Phylogenies. Sinauer Associates, Sunderland, Mass.
14. Friedman, N., Linial, M., Nachman, I., Pe’er, D. (2000), Using Bayesian Networks

to analyze expression data. Journal of Computational Biology, Vol. 7, pp. 601–620.
15. Glass L., Kauffman S.A. (1973), The Logical Analysis of Continuous Non-linear

Biochemical Control Networks, J.Theor.Biol., Vol. 39(1), pp. 103–129
16. Goldbeter A (2002), Computational approaches to cellular rhythms. Nature, Vol.

420, pp. 238–45.
17. Golub, T., Slonim, D., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J., Coller,

H., Loh, M., Downing, J., Caligiuri, M. (1999), Molecular Classification of Cancer:
Class Discovery and Class Prediction by Gene Expression Monitoring. Science, Vol.
286, pp. 531–537.

8 R. Westra et al.

18. Gonze D, Halloy J, and Goldbeter A (2004), Stochastic models for circadian os-
cillations : Emergence of a biological rhythm. Int J Quantum Chem, Vol. 98, pp.
228–238.

19. Hastie, T., Tibshirani, R., Eisen, M. B., Alizadeh, A., Levy, R., Staudt, L., Chan,
W. C., Botstein, D., Brown, P. (2000), Gene shaving as a method for identifying
distinct sets of genes with similar expression patterns. Genome Biol., Vol. 1(2),re-
search0003.10003.21.

20. Hasty J., McMillen D., Isaacs F., Collins J. J., (2001), Computational studies of
gene regulatory networks: in numero molecular biology. Nature Reviews Genetics,
Vol. 2(4), pp. 268– 279.

21. Inza, I., Larrañaga, P., Blanco, R., Cerrolaza, A.J. (2004), Filter versus wrapper
gene selection approaches in DNA microarray domains. Artificial Intelligence in
Medicine, special issue in “Data mining in genomics and proteomics”, Vol.31(2),
pp 91–103.

22. Kaelbling L.P., Littman L.M. and Moore A.W. (1996), Reinforcement learning: a
survey, Journal of Artificial Intelligence Research, 4 (1996) 237-285.

23. Krallinger, M., Valencia, A. (2005), Text-mining and information-retrieval services
for molecular biology. Genome Biol., Vol. 6(7), 224

24. Lambrinos, D., Moller, R., Labhart, T., Pfeifer, R., and Wehner, R. (2000). A
mobile robot employing insect strategies for navigation. Robotics and Autonomous
Systems, Vol. 30, Nos. 12, pp. 3964.

25. Larrañaga, P., Calvo, B., Santana, R., Bielza, C., Galdiano, J., Inza, I., Lozano,
J.A., Armañanzas, R., Santafé, R., Pérez, A., Robles, V. (2006), Machine Learning
in Bioinformatics. Briefings in Bioinformatics, Vol.7(1), pp. 86–112.

26. Mathé, C., Sagot, M.F., Schiex, T. and Rouzé, P. (2002), Current methods of gene
prediction, their strengths and weaknesses. Nucleic Acids Res., Vol. 30(19), pp.
4103–17.

27. Mestl T., Plahte E., Omholt S.W. (1995a), A Mathematical Framework for de-
scribing and analysing and Analyzing Gene Regulatory Networks. J. Theor. Biol.,
Vol. 176(2), pp. 291–300.

28. Mestl T., Plahte E., Omholt S.W. (1995b), Periodic Solutions in Systems of
Piecewise-Linear Systems. Synamic Stability of Systems, Vol. 10(2), pp. 179–193.

29. Narendra K. and Thathachar M., Learning Automata: An Introduction, Prentice-
Hall International, Inc, (1989).

30. Novak B, Tyson JJ (1997), Modeling the control of DNA replication in fission
yeast. Proc. Natl. Acad. Sci. USA, Vol. 94, pp. 9147–9152.

31. Pearl, J. (1988), Probabilistic reasoning in intelligent systems: networks of plausible
inference. Morgan Kaufmann Publishers, 1988.

32. Peeters R.L.M., Westra R.L. (2004), On the identification of sparse gene regulatory
networks, Proc. of the 16th Intern. Symp. on Mathematical Theory of Networks and
Systems (MTNS2004) Leuven, Belgium July 5-9, 2004

33. Rao, C.V., Wolf, D.M., Arkin, A.P. (2002), Control, exploitation and tolerance of
intracellular noise. Nature, Vol. 420, pp. 231–237.

34. Ronquist, F., J. P. Huelsenbeck (2003), MRBAYES 3: Bayesian phylogenetic in-
ference under mixed models. Bioinformatics, Vol. 19, pp. 1572–1574.

35. Rosenfeld, N., Young, J.W., Alon, U., Swain, P.S., Elowitz, M.B., Gene regulation
at the single-cell level. Science, Vol. 307, pp. 1962.

36. Rustici, G., Mata, J., Kivinen, K., Lio, P., Penkett, C.J., Burns, G., Hayles, J.,
Brazma, A., Nurse, P., Bahler, J. (2004), Periodic gene expression program of the
fission yeast cell cycle. Nature Genetics, Vol. 36(8), pp. 809–17.

Knowledge Discovery and Emergent Complexity in Bioinformatics 9

37. Salzberg, S.L., Pertea, M., Delcher, A.L., Gardner, M.J. and Tettelin, H. (1999),
Interpolated Markov models for eukaryotic gene finding. Genomics, Vol. 59, pp.
24–31.

38. Segal, E., Shapira, M., Regev, A., Pe’er, D., Botstein, D., Koller, D., Friedman,
N. (2003), Module Networks: Identifying Regulatory Modules and their Condition
Specific Regulators from Gene Expression Data. Nature Genetics, Vol. 34(2), pp.
166–76.

39. Sheng, Q., Moreau, Y., De Moor, B. (2003), Biclustering microarray data by Gibbs
sampling. Bioinformatics, Vol. 19 (Suppl. 2), pp. ii196-ii205.

40. Smith, V. A., Jarvis, E. D., Hartemink, A. J. (2002), Evaluating Functional Net-
work Inference Using Simulations of Complex Biological Systems. Proc. of the 10th
international conference on Intelligent Systems for Molecular Biology.

41. Somogyi R., Fuhrman S., Askenazi M., Wuensche A. (1997), The Gene Expres-
sion Matrix: Towards the Extraction of Genetic Network Architectures. Nonlin-
ear Analysis. Proc. of Second World Cong. of Nonlinear Analysis (WCNA96),
Vol.30(3) pp. 1815–1824.

42. Swain P.S. (2004), Efficient attenuation of stochasticity in gene expression through
post-transcriptional control. J. Mol. Biol., Vol. 344, pp. 965.

43. Swain, P.S., Elowitz, M.B., Siggia. E.D. (2002), Intrinsic and extrinsic contribu-
tions to stochasticity in gene expression. Proc. Natl. Acad. Sci. USA, Vol. 99(20),
pp.12795–800.

44. Steuer R. (2004), Effects of stochasticity in models of the cell cycle:from quantized
cycle times to noise-induced oscillations. Journal of Theoretical Biology, Vol. 228,
pp. 293–301.

45. Sutton, R.S., Barto, A.G. : Reinforcement Learning: An introduction. Cambridge,
MA: MIT Press (1998).

46. Verbeeck K. and Nowé A., Colonies of Learning Automata, IEEE Transactions
on Systems, Man and Cybernetics - Part B, Special Issue on Learning Automata:
Theory, Paradigms and Applications, 32 (2002) 772-780.

47. Wolf, H. and Wehner, R. (2000). Pinpointing food sources: olfactory and anemo-
tactic orientation in desert ants, Cataglyphis Fortis. The Journal of Experimental
Biology, Vol. 203, pp. 857868.

48. van Kampen N. G. (1992), Stochastic Processes in Physics and Chemistry, Elsevier
ScienceB. V., Amsterdam, (1992).

49. Yeung M.K.S., Tegnér J., Collins J.J. (2002), Reverse engineering gene networks
using singular value decomposition and robust regression, Proc. Natl. Acad. Sci.
USA, Vol. 99(9), pp. 6163–6168.

K. Tuyls et al. (Eds.): KDECB 2006, LNBI 4366, pp. 10–21, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Boolean Algebraic Structures of the Genetic Code:
Possibilities of Applications

Ricardo Grau1, Maria del C. Chavez1, Robersy Sanchez2, Eberto Morgado1,
Gladys Casas1, and Isis Bonet1

1 Center of Studies on Informatics, Central University of Las Villas, Santa Clara,
CP 54830, Cuba

2 Research Institute of Tropical Roots, Tuber Crops and Banana (INIVIT),
Biotechnology Group, Santo Domingo, Cuba

{Rgrau,MChavez,Robersy,Morgado,Gladita,Ibonet}@uclv.edu.cu

Abstract. Authors had reported before two dual Boolean algebras to understand
the underlying logic of the genetic code structure. In such Boolean structures,
deductions have physico-chemical meaning. We summarize here that these
algebraic structures can help us to describe the gene evolution process.
Particularly in the experimental confrontation, it was found that most of the
mutations of several proteins correspond to deductions in these algebras and
they have a small Hamming distance related to their respective wild type. Two
applications of the corresponding codification system in bioinformatics
problems are also shown. The first one is the classification of mutations in a
protein. The other one is related with the problem of detecting donors and
acceptors in DNA sequences. Besides, pure mathematical models, Statistical
techniques (Decision Trees) and Artificial Intelligence techniques (Bayesian
Networks) were used in order to show how to accomplish them to solve these
knowledge-discovery practical problems.

Keywords: Genetic code; Boolean algebra; mutant sequence analysis; splice
site prediction; decision trees; Bayesian networks.

1 Introduction

The non-random organization of the genetic code has been pointed out and the
Manifold hypothesis was proposed to explain the enigmatic order observed [1], [2],
[3], [4]. We summarize in this introduction the results published by the authors about
the order determined from two Boolean algebraic structures for the set of the four
bases and extended to the codon set [5], [6], [7] and we show in the paper some
physico-chemical interpretations and their possibilities of applications.

1.1 The Boolean Algebras in the Set of Four Bases

In every Boolean algebra X with operators: ∧ (AND), ∨ (OR) and ¬ (NOT), for any
two elements α, β∈ X we have α≤β, if and only if ¬α∨β=1 (1 is the neutral element
for the operation “∧”, as 0 is the neutral element for the operation “∨”). If ¬α∨β=1 it

 Boolean Algebraic Structures of the Genetic Code: Possibilities of Applications 11

is also said that β is deduced from α. Furthermore, if α≤β and β≤α the elements α
and β are said to be comparable. Otherwise, they are said not to be comparable. The
last partial order is defined by using the hydrogen bond number and the chemical
types of purines {A, G} and pyrimidines {U, C} bases. Next, the Boolean lattice is
built on the base triplet set (64-codon set) that will be the direct third power of the
Boolean lattice of four DNA bases.

The Boolean lattice of the four bases is built assuming that the complementary
bases (in the Boolean sense) are the complementary bases in the DNA molecule.
Furthermore every Boolean lattice with 4 elements must have two non-comparable
elements, a maximum, a minimum and two non-comparable elements. At this point
we assumed that the maximum element in the Boolean lattice of the genetic code will
be the direct third power of the maximum element in the Boolean lattice of the bases
and we come to the correspondence: A→AAA, C→CCC, U→UUU, G→GGG.

1) Both codons GGG and CCC have the same maximum hydrogen bond numbers.
This property is reflected in the Boolean lattice, so that the GGG complementary
element has to be CCC. Furthermore, both codons code for small amino acid side
chains with small polarity difference Glycine and Proline respectively. Then this
similar property determines that these elements are comparable.

2) Both codons UUU and AAA have the same minimum hydrogen bond numbers
and then, the complementary element in the Boolean lattice of UUU has to be AAA.
But, these codons respectively code for amino acid side chains with extreme opposite
polarities, Leucine (a hydrophobic residue) and Lysine (having a strong polar group).
Consequently, this property suggests these elements are not to be comparable.

These last observations allow us to choose two dual Boolean lattices of the four
bases that will be conventionally called Primal and Dual Boolean lattices. From the
first observation it might think that the maximum element in the primal Boolean
lattice is C and the minimum element is G; or that in the dual Boolean lattice, the
maximum element is G and the minimum element is C. The second observation
means that the elements U and A are not comparable and therefore, they should not be
the maximum or minimum elements in a Boolean lattice with biological meaning. So,
we have two Boolean lattices (B(X), ∨ , ∧) (primal lattice) and (B’(X), ∧ , ∨) (dual
lattice), where X={U, C, G, A}. The Hasse diagrams of the two duals Boolean lattices
obtained are shown in Fig.1.

G 00

A 01 C 11

U 10 A 10 C 00

U 01 G 11 BA

Fig. 1. The Hasse diagrams of the four bases Boolean lattices. A: Primal and B: Dual.

12 R. Grau et al.

It is obvious that the primal and dual terms in these Boolean lattices will be
interchanged and as we will see later, they do not affect the biological meaning. To
simplify the notation we will refer simultaneously to both algebras as B(X).

These Boolean lattices have their equivalent Boolean algebras. From the algebraic
point of view B(X) is isomorphic to (Z2)

2 with the classical binary operations
(Z2={0,1}). This isomorphism is derived from the fact that all Boolean lattices with
the same number of elements are isomorphic. Then, it is possible to represent the
primal lattice by means of the correspondence: G↔ 00; A↔ 01; U↔ 10; C↔ 11.
Likewise, for the dual lattice we have: C↔ 00; U↔ 01; A↔ 10; G↔ 11.

1.2 The Boolean Algebra in the Set of Codons

The Boolean algebras of codons are obtained from the direct third power of the
Boolean algebras B(X) of the four DNA bases. Explicitly, the direct product
C=B(X)xB(X)xB(X) is taken as the Boolean algebras of codons. These algebras are
isomorphic to ((Z2)

6, ∨, ∧), induced by the isomorphism B(X) ↔(Z2)
2, so, for

instance (in the primal algebra): GUC ∨ CAG = CCC ↔ 001011∨ 110100=111111,
GUC ∧ CAG = GGG ↔ 001011 ∧ 110100=000000, ¬(GUC) = CAG ↔
¬(001011)=110100. Thus, we start from the source alphabet of the genetic code,
consisting of the four nucleotides of the DNA and the mRNA and arrive at the second
extension of that alphabet with 26=64 letter-codons of the genetic code and we
represent the Hasse diagram of both lattices (primal and dual) in the Fig. 2.

Fig. 2. Hasse diagram of the Boole lattices of the genetic code. Each gray scale denotes a
different group of codons according to the second base.

In the primal the neutral element for the operation “∨” is the codon GGG and for
the operation “∧” is the codon CCC. In both lattices, codons are read in the 5´→3´
direction and anticodon in the 3´→5´ direction following the standard convention.

 Boolean Algebraic Structures of the Genetic Code: Possibilities of Applications 13

Consequently the anticodon of the codon 5´GUC3´ represented by 001011 in the primal
lattice, is the triplet 3´CAG5´ similarly represented by 001011 in the dual lattice or
represented by 110100=¬(001011) in the primal lattice.

In the primal lattice the codon Y1Y2Y3 is deduced from the codon X1X2X3 if and
only if ¬(X1X2X3)∨Y1Y2Y3=CCC. We draw the Hasse diagram lines without arrows
to represent deductions in both senses (primal and dual), and so, paths connect
comparable codons. Particularly, codons with U as a second base will appear in
chains (path of maximum length) where codons with A as a second base will not.

The Hamming distance (dH) between two codons, represented as binary sextuplets,
corresponds to the number of different digits between them. That is, for instance
dH(GUC,CAG) = dH(001011,110100)=6 represents the distance between nodes in the
Hasse diagram that is shown in Fig. 2.

Now it’s possible to extend these ideas to the set of sequence of the same length N
(with N codons). We can operate “logically” with them as we do in ((Z2)

6)N and we
can speak about deductions and Hamming distance between these genes too. It will be
important for the study of mutations as we show in the following epigraph.

2 Some Physico-chemical Interpretations and Experimental
Confrontations

At this point, we want to show some model connections with the experimental data to
help in the understanding of the mutation process of molecular evolution. At first, it
was already observed than codons that code to amino acids with extreme hydrophobic
difference are in different chains with maximum length in the lattice structure.

2.1 Boolean Deductions

Both Boolean algebras reflect the well known experimental results: single-base
substitutions are strongly conservative in regard to amino acid changes in polarity. It
has been pointed out that the genetic code reduces the effects of point mutations and
minimizes subsequent transcriptions and translations errors to make possible the
reproduction of genetic information [1], [3], [8], [9]. Next, it should be expected that
the most frequently observed mutations minimize the above effect in proteins. Hence,
the fitting of our model with the experimental fact implies that the most frequent
mutation in protein should be deducted from the respective wild type.

Authors have calculated the number of deductions in a set of the 749 HIV-1
protease mutant genes deduced from the respective gene of the HXB2 strain. Each
protease sequence was aligned with the wild type. The calculations showed that from
11 182 mutations, 88.3% are comparable. Moreover if only those mutations in HIV-1
protease gene conferring drug resistance were taken into account for HIV-1 protease,
one can see that only a few mutations are not comparable [5]. Similar results were
obtained with other proteins. In Table 1, we show a sample of analyzed mutations in
HIV-1 reverse transcriptase that confer drug resistance. One can see that only a small
number of mutations are not comparable.

14 R. Grau et al.

Table 1. The deductible mutations found in the HIV reverse transcriptase gene conferring drug
resistance. Most of the reported mutations in HIV reverse transcriptase gene are comparables.
Mutations that are not comparables are presented in bold face. In the table, there are only single
point mutations, but there have been sequential mutations reported in different combinations.

Amino
acid

changes
Codon
Mutation

Antiviral*

Amino
acid

changes
Codon
Mutation

Antiviral*

A 62 V GCC -> GTC Multi-drug resistant H 208 Y CAT -> TAT AZT, lamivudine, PFA
A 98 G GCA -> GGA L-697,661 I 135 M ATA -> ATG Delavirdine, BI-RG-587
D 67 A GAC -> GCC AZT (zidovudine) I 135 T ATA -> ACA Delavirdine, nevirapine
D 67 E GAC -> GAG Multi-drug resistant K 101 E AAA -> GAA Multi-drug resistant
D 67 G GAC -> GAG (+)dOTFC K 101 Q AAA -> CAA LY-300046 HCl
D 67 G GAC -> GGC Multi-drug resistant K 103 N AAA -> AAC Multi-drug resistant
D 67 N GAC -> AAC AZT (zidovudine) K 103 R AAA -> AGA LY-300046 HCl, I-EBU
E 138 A GAG -> GCG TSAO K 103 T AAA -> ACA S-1153, UC-42
E 138 K GAG -> AAG Multi-drug resistant K 70 E AAA -> GAA 3TC, PMEA
E 44 A GAA -> GCA 3TC (lamivudine) K 70 R AAA -> AGA AZT (zidovudine)
E 44 D GAA -> GAC 3TC (lamivudine) K 70 S AAA -> AGA ddI, d4T
E 89 G GAA -> GGA PFA (foscarnet) L 100 I TTA -> ATA Multi-drug resistant
E 89 K GAA -> GGA PFA (foscarnet) L 210 W TTG -> TGG AZT, lamivudine, PFA
F 116 Y TTT -> TAT Multi-drug resistant L 214 F CTT -> TTT AZT, ph-AZT
F 77 L TTC -> CTC Multi-drug resistant L 74 V TTA -> GTA 1592U89 (abacavir)
G 141 E GGG -> GAG UC-16 P 119 S CCC -> TCC F-ddA (lodenosine)
G 190 A GGA -> GCA BI-RG-587, P 157 S CCA -> TCA 3TC (lamivudine)
G 190 E GGA -> GAA Multi-drug resistant Q 145 M CAG -> ATG Multi-drug resistant
G 190 Q GGA -> CAA Multi-drug resistant Q 151 M CAG -> ATG Multi-drug resistant
G 190 S GGA -> TCA DMP-266 (efavirenz) Q 161 L CAA -> CTA PFA (foscarnet)
G 190 T GGA -> ACA DMP-266 HBY 097 R 211 K AGG -> AAG AZT , lamivudine
G 190 V GGA -> GTA DMP-266 BI-RG-587 S 156 A TCA -> GCA PFA (foscarnet)
G 190 V GGA -> GTA DMP-266 (efavirenz) T 139 I ACA -> ATA ADAMII, Calanolide A
G 190 V GGA -> GTA BI-RG-587 V 106 A GTA -> GCA Multi-drug resistant
H 208 Y CAT -> TAT AZT, lamivudine, V 108 I GTA -> ATA DMP-266, trovirdine
I 135 M ATA -> ATG Delavirdine V 118 I GTT -> ATT 3TC (lamivudine)
I 135 T ATA -> ACA Delavirdine V 179 D GTT -> GAT Multi-drug resistant
K 101 Q AAA -> CAA LY-300046 HC1 V 179 F GTT -> TTT TMC125

Remark 1. All information on mutations contained in this printed table was taken
from the Los Alamos web site: http://resdb.lanl.gov/Resist DB.

Authors have shown that in the beta-globin gene the most frequent mutations
correspond to deductions and it could be observed that even though mutations can
affect the level of biological activity, their function is kept [5]. In the human
phenylalanine hydroxylase (PAH) gene the most frequent mutations correspond to
deductions too. The majority of these mutations result in deficient enzyme activity
and cause hyperphenylalaninemia [7].

So, we have experimental evidence and we can say that in the B(X) algebra the
deductions have a physico-chemical and biological meaning.

 Boolean Algebraic Structures of the Genetic Code: Possibilities of Applications 15

2.2 The Hamming Distance

The Hamming distance between two codons in the Hasse diagram reflects the
difference between the physico-chemical properties of the corresponding amino acids.
In Table 2 the average of the Hamming distance between the codon sets XAZ, XUZ,
XCZ and XGZ is shown (X, Z ∈{A, C, G, U}).

The maximum distance corresponds to the transversions in the second base of
codons. It is well known that such transversions are the most dangerous since they
frequently alter the hydrophobic properties and the biological functions of proteins.
Particularly, between codons of hydrophilic and hydrophobic amino acids, there are
larger values of the Hamming distance.

Table 2. The average of the Hamming distance between the codon sets XAZ, XUZ, XCZ
and XGZ

 XGZ XUZ XAZ XCZ
XGZ 3 3 3 4
XUZ 3 2 4 3
XAZ 3 4 2 3
XCZ 4 3 3 2

The results of these assumptions have been verified in the experimental data [6].

Particularly, almost all reported mutations conferring drug resistance in HIV proteasa
gene have a small Hamming distance with regard to the wild type, and similar results
have been obtained with mutations in HIV reverse-transcriptase, the beta-globin gene
and the PAH gene, named above.

Furthermore, we found that the small difference between the enzyme activities of
the wild type and the mutant means a small Hamming distance between them. (Fig3).
Generally, one can observe that as the Hamming distance between the wild type

Fig. 3. Changes in the enzymatic activities of mutants versus the Hamming distance. A: Ability
of HIV mutant proteases to process the Gag polyprotein [10]. B: DNA polymerase activity of
the HIV reverse transcriptase [11]. Activity changes in the mutants are normalized with respect
to the wild type enzyme.

16 R. Grau et al.

increases, the mutant enzyme activity decreases. Such results are a consequence of the
genetic code order. The Hamming distance between DNA bases is determined by
their physico-chemical properties.

The arrangement of codons in the genetic code is such that the Hamming distance
between codons are connected with the physico-chemical properties of amino acids.
The experimental confrontations suggest that in the molecular evolution process, the
mutation pathway tends to have the minimal Hamming distance between the wild
type and the mutant genes (proteins) in each mutation step. These results advance
another idea that the Boolean lattice could allow us to model the gene mutation
process.

3 Possibilities of Applications to Sequence Analysis

Now we summarize two different types of applications for bioinformatics sequence
analyses. Results are obtained with the use of the recommended coding system from
Boolean algebras and by using Decision Trees complemented with Bayesian
Networks.

3.1 Analysis of Mutant Sequences with a Bayesian Network

In order to illustrate the methodology, we use a data base with sequences of HIV-1-
protease mutants, each one with 99 codons. It is assumed that these sequences have
been previously grouped in “classes” or “families” according to certain criterion, that
could be for instance, resistance level to an antiviral (High, Medium, Low). In the
example shown clustering techniques to obtain 3 classes are used. Classes are
considered the “dependent variable” if we approach the task as supervised machine
learning problem. As “independent variables” of “features” we used the elements of
the sequence coded as a binary pair according to the primal Boolean algebra of four
bases. So we have 99*6=594 variables.

We use Decision Trees, specifically Chi-square Automatic Interaction Detector
(CHAID) as a first tool to obtain “interactions trees”. This method allows us a
considerable reduction of the probabilistic model. The particularity is that one
decision tree is not only obtained but several trees, one of every variable that has a
significant association with the families according to Chi-square test. These trees are
obtained in the order of the level of significance and in successive trees we do not
permit the entry of the variables that had entered in the previous trees. In the
illustrative example, we obtain seven significant binary positions and developing the
corresponding trees we obtain the interactions that involve nineteen variables in total.
Fig. 4 shows two of the seven trees we have built.

This form of building non-redundant trees permits to join them in a directed graph
without cycles that represents the principal dependences and so the topology of our
Bayesian network (Fig. 5). Now the conjoint distribution of family - as a function of
v1, v2, v3,…v594 - is reduced to calculus with v546, v323, v544, v324, v543,v500,…
v422, v296 (nodes of the network) and involves a minimal number of conditional

 Boolean Algebraic Structures of the Genetic Code: Possibilities of Applications 17

Fig. 4. On the left, the tree developed from the position 546 (v546) that interacts with position
323. On the right, the tree developed from the position 544 interacting with the position 324.
The percentages in each node besides 1: 2: 3: denote the proportion of mutant sequences in
respective families 1 2 and 3. For instance, 100% of the sequences with v546=0 and v323=0
belong to family 1. 100% of the sequences with v546=0 and v323=1are in family 3 and 100%
of the sequence with v546=1 belong to family 2.

probabilities. They are easily obtainable with any statistical package. We used SPSS
(Statistical Package for the Social Sciences)

For evidence propagation in the Bayesian network, a software (“ByShell”, [12])
was elaborated. This software implements a propagation algorithm for multi-
connected networks specifically a clustering tree algorithm that it is considered one of
the less complexity exact propagation algorithms. Now new proposal in distributed
form for this algorithm and approximated algorithms with simulation techniques are
being studied [13], [14], [15], [16].

With the network propagation in ByShell we can predict the family for a new
mutation or reciprocally, we can predict the content of certain positions in the DNA
mutant sequence if we know previously the family and/or some other positions. For
instance, if we have identified a sequence as belonging to the family 2, and we would
know the position 296 corresponding to the second binary of the first base of codon
50th (296=49*6+2), we can arrive to the conclusion that this nucleotide base should be
an A or a C because the algorithm answers that this position is 1 with probability
97%. If we also analyze the first binary number of this nucleotide (v295) we
definitively conclude that this base is probably A, because v295 is always equal to 0
in these conditions.

The main two advantages of Bayesian network as supervised machine learning
approach are precisely that the concepts of “dependent” and “independent” variables
can be interchanged, and also the non-necessity of all information about the rest of the
variables to predict one other. We can always obtain a prediction with certain

18 R. Grau et al.

Fig. 5. Bayesian network topology, obtained from the join of seven non-redundant decision
trees. One can see in particular the schematic representation of the family dependence on v546
interacting with v323; or the family dependence on v544 interacting with v324.

probability. It is clear the importance of these facilities in bioinformatics sequence
analyses.

If we are studying of genes (proteins) mutations as in this example, these
techniques can obviously be completed with the information about operators,
deductions and Hamming distance in the Boolean algebra as we have shown with
HIV protease in [17], or HIV reverse-transcriptase in [18]. There are interesting
questions as the followings that can be answered. Suppose that you have a new
sequenced mutation Is this a “theoretical mutation” in the sense of deductions in
Boolean algebra? What are the next most probably mutations from this one? Is this
mutation far (by using the Hamming distance point of view) from the wild type?
Which are the minimum changes in the sequence we can expect for a draft change in
their antiviral resistance, for instance?

However the next example can illustrate that this “simple codifying system” from
Boolean algebra of 4 bases can be useful in the analyses of other types of interesting
bioinformatics sequences, not necessarily proteins.

3.2 Classifying “True vs. False” Splice Sites in Human Sequences.

In this problem we use two data base sequences of nucleotide bases from the human
genome and pretend to classify true vs. false splice sites: donors identified for the
nucleotide pair “GT” and acceptors by the pair “AG”. The first data base has
sequences with the di-mers GT and contains known 6000 false and 1000 true donors.
The other data base has sequences with the di-mers AG and contains also 6000 false
and 1000 true cases of acceptors. Of course the length of the sequences of pairs
“intron-exon” (“exon-intron”) is very variable. So we began doing a statistical

 Boolean Algebraic Structures of the Genetic Code: Possibilities of Applications 19

analysis about the distribution of exon (intron) length in order to fix a representative
window with all the sequences of the same length. We obtained that it could be
enough to take amounts of 80 nucleotide bases in the intron and 22 bases in the exon.

In both cases, we codify the positions before the queried di-mer as the primal
Boolean algebra recommended, in such a way that we had 102 positions (splice
included) and so 204 binary predictive variables. We had also the dependent variable
for supervised learning (1: Positive splice, 0: Negative splice).

We used Decision Trees, in this case with the QUEST method implemented in
SPSS, with 8 level of depth. After a 10 – fold cross validation, we obtained a final
tree with all the data. Results are briefly commented.

Donors. In this case, we fixed 22 positions on the left and 78 positions after the pair
GT in such a way that positions 23th and 24th with the pair GT are represented for
instance for v23_1=0, v23_2=0 v24_1=1 v24_2=0. The Decision tree obtained has 5
terminal nodes in which the response is “Positive” (the rest is negative) and it is
possible to prune this tree until 4 positive nodes without lose information. The most
interesting thing as the results only depend on 6 nucleotide positions: two at left and
four on the right. As shown in Table 3 the rules that lead to a positive prediction are
mutually exclusive and characterize the donor patterns.

Table 3. Patterns around the pair “GT” corresponding to true donors

Patterns -2 -1 +1 +2 +3 +4
1 A or C G A T or C
2 G A A
3 T or A or C G or A A or C G G or T
4 G

GT

G or A A or C G

Several statistical measures of predicting performance were calculated in classical
form from TP (True Positives), TN (TN Negative), FP (False Positives) and FN (False
Negatives). Particularly, we obtained FP%= 4.3%, FN%= 26.9%, accuracy:
Ac=(TP+TN)/(TP+TN+FP+FN) = 92.4%, sensitivity: Se=TP/(TP+FN) = 73.1% and
Specificity has been calculated in accordance with two criterions: Sp=TN/(TN+FP) =
95.6% and Sp´=TN/(TN+FN) = 95.5%

Acceptors. In this case, we fixed 20 positions on the left and 80 positions after the
pair AG. The Decision tree obtained has 5 terminal nodes in which the response is
“Positive” (the rest is negative). Patterns are shown in Table 4. The measures of
performance classification were in this case as follow: FP%=5.1% FN%=36.2%
Se=63.7% Sp=94.8% Sp'=94% Ac=90.4%

In general, these classifiers are not better than other reported in the literature [19],
but they are good enough, specially to predict positive cases, and they are simpler
because involve only one feature that is expressed as a Boolean expression in
disjunctive normal form. It is clear also that we can obtain other decision trees and
join them in a Bayesian neural network as explained above.

20 R. Grau et al.

Table 4. Patterns around the pair “AG” corresponding to true acceptors
Pa

tte
rn

s

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3
 -2

 -1

+1
 a

 +
18

+
19

1 ToC ToC GoA ToC ToC ToC
2 ToC ToC ToC ToC Go

A
ToC ToC

3 ToC GoA ToC ToC ToC ToC
4 ToC ToC ToC ToC ToC
5 ToC ToC ToC ToC GoA ToC

AG

 ToC

4 Conclusions

Boolean algebraic structures of the sets of four nucleotide bases and codons are
simple mathematical models in which Boolean operators, deductions, and Hamming
distance have a physico-chemical and biological sense. It can help us to understand,
the evolution process. It has been shown how to use the codifying system
recommended from the Boolean algebras to solve some typical problems of
bioinformatics sequence analyses for knowledge discovering by using Decision trees
and Bayesian networks.

Acknowledgments. This work was developed in the framework of a collaboration
program supported by VLIR (Flemish Interuniversity Council, Belgium). Particularly
thanks are due to Yves Van de Peer and Yvan Saeys, Ghent University, by their help.

References

1. Crick, F. H. C.: The Origin of the Genetic Code. J. Mol. Biol. 1968, Vol. 38, No.3, (367-79).
2. Freeland, S., Hurst, L.: The Genetic Code is One in a Million. J. Mol. Evol. Vol. 47, No.3,

(1998),.238-248.
3. Alf-Steinberger, C.: The Genetic Code and Error Transmission. Proc. Natl. Acad. Sci.

USA, Vol. 64, No.2, (1969), 584-591.
4. Swanson, R.: A Unifying Concept for the Amino Acid Code. Bull. Math. Biol. Vol.46,

No.2:, (1984), 187-203.
5. Sanchez, R., Grau R., Morgado, E.: A Genetic Code Boolean Structure I. Meaning of

Boolean Deductions, Bull. Math. Biol. Vol. 67, (2005), 1-14
6. Sanchez, R., Grau, R., Morgado, E.: The Genetic Code Boolean Lattice, MATCH

Commun. Math. Comput. Chem., 52, (2004), 29-46
7. Sánchez, R., Grau, R., Morgado E.: Genetic Code Boolean Algebras, WSEAS

Transactions on Biology and Biomedicine, 1 (2004), 190-197
8. Friedman, S.M., Weinstein, I.B.: Lack of Fidelity in the Translation of

Ribopolynucleotides. Proc. Natl. Acad. Sci., Vol. 52, (1964), 988996.
9. Parker, J.: Errors and Alternatives in Reading the Universal Ggenetic Code. Microbiol.

Rev. Vol.53, No.3, (1989). 273-298.

 Boolean Algebraic Structures of the Genetic Code: Possibilities of Applications 21

10. Rose, R. E., Gong, Y., Greytok J. A., Bechtold, C. M., Terry, B. J., Robinson, B. S., Alam,
M., Colonno, R. J., Lin, P.: Human Immunodeficiency Virus Type 1 Biral Background
Plays a Major Role in Development of Resistance to Protease Inhibitors. Proc. Natl. Acad.
Sci. Vol.93, No.4, (1996) 1648–1653.

11. Kim, B., Hathaway, T. R., Loeb, L. A.: Human Immunodeficiency Virus Reverse
Transcriptase Functional Mutants Obtained by Random Mutagenesis Coupled with
Genetic Selection in Escherichia Coli. J. Biol. Chem. Vol.271, No.9, (1996), 4872–4878.

12. Chávez, M. C., Rodríguez, L.O.: Bayshell, Software para crear redes Bayesianas e inferir
evidencias en la misma, Registro de Software CENDA, 09358-9358, mayo, 2002,
Published in http://uclv.edu.cu/Bioinformatics Group/Software

13. Castillo, E., Gutiérrez, J.M., Hadi, Ali S.: Expert Systems and Probabilistic Network
Models, Springer-Verlag, New York, Inc. 1996.

14. Stuart, R., Norvig, P.: Inteligencia Artificial: Un Enfoque Moderno, Prentice Hall, México,
1996.

15. Williams, W. L., Wilson, R.C., Hancock, E.R.: Multiple Graph Matching with Bayesian
Inference. Pattern Recognition Lett. Vol 38, (1998), 11-13

16. Hunter, L.: Planning to Learn About Protein Structure, in Hunter, L. (ed) Artificial
Intelligence and Molecular Biology, AAAI Press Book, Cambridge (2003)

17. Grau, R., Galpert, D., Chavez, M. C., Sánchez, R., Casas, G., Morgado, E.,: Algunas
Aplicaciones de la Estructura Booleana del Código Genético, Revista Cubana de Ciencias
Informáticas, Vol 1 (2006), 16-30

18. Chavez, M. C., Casas, G., Grau, R., Sánchez, R: Statistical Learning Bayesian Networks
from of Protein Database of Mutants, Proceedings of First International Workshop on
Bioinformatics Cuba-Flanders 2006, Santa Clara, Cuba, (2006), ISBN: 959-250-239-0

19. Degroeve, S., Saeys, Y., De Baets, B., Rouzé, P., Van de Peer, Y.: Predicting Splice Sites
from High-Dimensional Local Context Representations, Bioinformatics, 21-8 (2005),
1332-1338

K. Tuyls et al. (Eds.): KDECB 2006, LNBI 4366, pp. 22 – 41, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Discovery of Gene Regulatory Networks in Aspergillus
fumigatus

Reinhard Guthke, Olaf Kniemeyer, Daniela Albrecht,
Axel A. Brakhage, and Ulrich Möller

Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute,
Beutenbergstr. 11a, 07745 Jena, Germany

{reinhard.guthke,olaf.kniemeyer,daniela.albrecht,
axel.brakhage,ulrich.moeller}@hki-jena.de

http://www.hki-jena.de

Abstract. Aspergillus fumigatus is the most important airborne fungal pathogen
causing life-threatening infections in immunosuppressed patients. During the
infection process, A. fumigatus has to cope with a dramatic change of
environmental conditions, such as temperature shifts. Recently, gene expression
data monitoring the stress response to a temperature shift from 30 °C to 48 °C
was published. In the present work, these data were analyzed by reverse
engineering to discover gene regulatory mechanisms of temperature resistance
of A. fumigatus. Time series data, i.e. expression profiles of 1926 differentially
expressed genes, were clustered by fuzzy c-means. The number of clusters was
optimized using a set of optimization criteria. From each cluster a
representative gene was selected by text mining in the gene descriptions and
evaluating gene ontology terms. The expression profiles of these genes were
simulated by a differential equation system, whose structure and parameters
were optimized minimizing both the number of non-vanishing parameters and
the mean square error of model fit to the microarray data.

1 Introduction

Pathogenic fungi need to deal with a variety of environmental challenges, such as
temperature shifts, during the course of an infection. The ability to meet these
challenges requires the expression of many specific genes. Aspergillus fumigatus has
become the most important airborne fungal pathogen of humans causing pneumonia
and invasive disseminated disease with high mortality in the immunocompromised
hosts. The lack of effective treatments results in a very high mortality rate of 30 % to
90 % [1]. The complete 29.4-megabase genome of the clinical isolate Af293 of A.
fumigatus, which consists of eight chromosomes containing 9,926 predicted genes,
has been sequenced recently [2]. The thermotolerance of A. fumigatus is a trait critical
to its ability to thrive in the human body. To investigate the adaptation of this fungus
to higher temperatures, gene expression was examined throughout a time course upon
shift of growth temperatures from 30 °C to 37 °C and 48 °C (representing
temperatures in the human body and compost, respectively) [2]. The time series of

 Discovery of Gene Regulatory Networks in Aspergillus fumigatus 23

1926 differentially expressed genes were grouped into 10 clusters using k-means
clustering method (Supplementary Table S2 of [2]).

Here we optimized the clustering and interpreted the expression profiles of
representative genes by an optimized dynamic linear network model on the
background of gene regulation. Different dynamic models have been constructed
using four distinct sets of genes found as representatives of the clusters by the
application of several selection criteria.

2 Material and Methods

2.1 Data

Gene expression profiles monitoring the stress response of A. fumigatus to a
temperature shift were obtained from [2]. The raw data measured using the
A. fumigatus Af293 DNA amplicon microarray containing 9,516 genes are available
from the Internet (http://www.ebi.ac.uk/arrayexpress, with accession numbers A-
MEXP-205, E-MEXP-332 and E-MEXP-333). We used the pre-processed data
representing logarithmized ratios (log-ratios) of the expression intensities of 1926
genes at six time points t (= 0, 15, 30, 60, 120, 180 min) before and after the
temperature shift (Table S2 of [2]). We focused the study on the temperature shift
from 30 °C to 48 °C because the mean absolute log-ratios are significantly higher
after this shift than after the shift to 37 °C. Different methods for the imputation of
missing data were applied, including the Gaussian mixture clustering method (gmc)
[3], the k-nearest neighbor algorithm (knn) [4], and the tri-level alternating
optimization method (tao) [5, 6]. The log-ratios at t = 0 (before the temperature shift)
were subtracted from the respective time series data, i.e. only differences with respect
to the pre-perturbation state were considered.

2.2 Clustering and Cluster Validation

The time series data were scaled between their respective absolute temporal extreme
values to focus subsequent cluster analysis on the qualitative behavior of the
expression profiles. The fuzzy C-means (fcm) algorithm [7] was used for clustering
(number of clusters C = 2, …, 15; fuzzy exponent 1.2; maximum number of iterations
= 300; minimum cost function improvement = 10-8). The optimum number of clusters
C was estimated by the vote of 36 cluster validity indices (CVIs): 18 generalizations
of Dunn’s index [8] were computed and the same 18 generalizations were applied to
the Davis-Bouldin index [9]. These indices capture different aspects of a clustering
structure. In order to reduce a bias of the biological sample, C was alternatively
estimated by a novel method based on maximum partition stability under a nearest-
neighbor (NN) resampling [10].

2.3 Selection of Cluster-Representative Genes by Gene Description Text Mining

For each cluster (c = 1,…, C) one representative gene was selected evaluating the
description string Si and the maximum absolute value of log-ratio assigned to the
respective gene i. The following selection criteria were used:

24 R. Guthke et al.

• The representative gene is annotated with known physiological function
containing the motif sc, that was found within the gene description strings Si for
many genes (mc > 5) of the respective cluster c and for no or only few genes mj
belonging to the other clusters j (mj < 3, j≠c); genes were sorted within a cluster c
by the score Mc = mc - Σj≠ c mj; the string (motif) sc with the highest score Mc was
selected.

• The representative gene shows an expression profile with at most one missing
value.

• The representative gene is characterized by a high temporal maximum of its
absolute log-ratio value.

Subsequently, the expression profiles of the selected C genes were used for dynamic
modeling.

2.4 Selection of Cluster-Representative Genes Using GO Terms

As an alternative to the analysis of the description string Si assigned to gene i, we
analyzed sets of GO terms (Gene Ontology, [11]) assigned to the genes i of
A. fumigatus. These sets of GO terms were formed by the set of matching GO terms A
found in the CADRE database [12] for gene i as well as the sets of GO terms B that
subsume the GO terms A. For each cluster c and each GO term T we calculated the
number mc of genes, which belong to the cluster c and were assigned to GO term T. The
GO terms were sorted within each cluster c according to the score Mc = mc - Σj≠ c mj; The
GO term Tc with the highest score Mc was selected. The cluster-representative gene

• belongs to cluster c,
• is assigned to the selected GO term Tc ,
• shows an expression profile with at most one missing value,
• is characterized by a high temporal maximum of its absolute log-ratio value.

2.5 Dynamic Modeling Using a Search Strategy

The dynamics of hypothetic gene regulatory networks was modeled by a system of
linear differential equations. The general mathematical form reads

)()(
)(

1
, tubtxw

dt

tdx
ij

C

j
ji

i ⋅+⋅=∑
=

 (1)

where xi(t) is the expression (log-ratio) of representative gene i (= 1,...,C) at time t, wij
denotes the gene-gene interaction matrix and bi represents the perturbation response
vector. u(t) is the Heaviside step function: u(t<0) = 0 and u(t≥0) = 1 representing the
temperature shift from 30 °C to 48 °C. The system is assumed to be at equilibrium
prior to the perturbation, i.e. dxi(t<0)/dt = xi(t<0) = 0.

Genetic networks are known to be sparsely connected [13]. The aim of dynamic
modeling and network reconstruction is thus to find a minimal set of relevant (i.e.
non-zero) model parameters (wij and bi) that are required to achieve an adequate fit to
the expression data at hand minimizing the mean square error (mse). For this reverse

 Discovery of Gene Regulatory Networks in Aspergillus fumigatus 25

engineering approach we used the network generation method recently described [14].
Here, the maximum dynamic order was set to one. The maximum allowed sub-model
error was set to 0.01.

3 Results and Discussion

3.1 Clustering and Cluster Validation

A small number of 221 values (1.9 % of the 5*1926 values) of the data set is missing.
The method applied to impute these missing values influences the results of clustering
in detail only, but it does not influence the main conclusions. In particular, in each case
we estimated four clusters. The majority of generalizations of Dunn’s index and of the
Davis-Bouldin index voted for two or four distinct clusters as shown in Figure 1a
after gmc imputation. The results of the nearest-neighbor resampling robustly indicated
highly stable partitions of up to four clusters (Figure 1b). Thus, the expression profiles
were grouped into four clusters that we labeled by ‘Increasing’, ‘Minimum’, ‘Maximum’
and ‘Decreasing’ (Figure 2 and Table 1).

After gmc imputation and fcm clustering, 247 (Nc in Table 1) genes belong to cluster
one labeled by ‘Increasing’, whereas 336 (Nc’ in Table 1) genes do so after tao imputing
and 244 genes are the same in both cases. Applying gmc imputation before clustering,
443 genes are assigned to cluster two (labeled by “Minimum”) while the usage of tao
imputation leads to the assignment of 433 genes of which 432 genes coincide with those
selected after gmc imputation. For cluster three (labeled by “Maximum”) the application
of gmc imputation leads to the assignment of 480 genes while tao imputation entails the
assignment of 423 genes of which 421 coincide with those obtained after gmc
imputation. 59 genes were shifted from cluster three to cluster one when the tao
imputation was applied instead of the gmc method. As for cluster four (labeled by
“Decreasing”) gmc imputation leads to the assignment of 427 genes, tao imputation to
the assignment of 418 genes and a number of 416 genes coincide.

Fig. 1. a) Left: Weighted vote of the 36 cluster validity indices (CVIs). A vote of 1.0 for the C-
cluster partition means that all indices had their global extremum at the value of C. A vote < 1
indicates that some CVIs exhibited a value different from their global extremum. b) Right:
Partition stability under the nearest-neighbor (NN) resampling technique with 10 NNs. A value
of 1.0 means that all clusters of 10 resample partitions showed at least an 80% overlap with a
cluster of the other partitions, respectively. Values < 1 indicate lower cluster overlap. All
results were obtained for the dataset completed by the gmc imputing method.

26 R. Guthke et al.

3.2 Selection of Cluster-Representative Genes by Gene Description Text Mining

In order to identify representative genes for each cluster c, we searched for strings sc
that were found as part of the description of many (mc) of the Nc genes and of only
few (mc’) genes of the other clusters (c’ ≠ c). Maximizing the difference of both gene
numbers (Mc = mc - mc’) for each cluster c, we found for three clusters (c = 1, 2, and
3) the strings ‘peroxi’, ‘ribosom’ and ‘heat shock’, denoting genes coding for

Fig. 2. Result of fcm clustering with four clusters after imputation of the missing values by the
gmc method: mean scaled gene expression profiles with standard deviation averaged over the
Nc genes for the respective cluster (Table 1)

Table 1. Number Nc of genes belonging to cluster c (c = 1,…,C) with the membership degree
greater 50% after gmc imputation. The numbers N’c were obtained after imputation by the tao
method. The maximum value mLRNc was estimated over the absolute log-ratios of the Nc genes
and the six time points t. The string motifs sc denote representative gene functions (‘peroxi’ –
oxidative stress, ‘ribosom’ – ribosomal protein, ‘heat shock’ – heat shock proteins, ‘sterol’ –
sterol biosynthesis). The string sc is contained in the description Si of mc genes of the Cluster c
and in the description of mc’ (= mc -Mc) genes belonging to the other clusters. The maximum
value mLRmc was estimated over the absolute log-ratios of the mc genes and the six time points.
Cluster means and standard deviations are shown in Figure 2.

c Nc N’c Label mLRNc sc mc mc’ Mc mLRmc

1
2
3
4

247
443
480
427

336
433
423
418

Increasing
Minimum
Maximum
Decreasing

4.94
3.06
6.94
4.69

‘peroxi’
‘ribosom’
‘heat shock’
‘sterol’

9
23

7
7

0
5
2
2

9
18

5
5

2.01
3.06
6.94
2.86

 Discovery of Gene Regulatory Networks in Aspergillus fumigatus 27

oxidative stress proteins, ribosomal proteins and heat shock proteins, respectively (see
Table 1 and 2). These gene functions are reasonable, since the respective genes are
involved in temperature shift response or are related to a general stress resistance.
Figure 3 shows the scaled expression profiles of those 9, 23 and 7 genes (see Table 2
for c = 1, 2 and 3), which belong to clusters one, two and three and code for oxidative
stress proteins, ribosomal proteins and heat shock proteins, respectively.

Fig. 3. Scaled expression profiles of the genes belonging to the clusters c and coding for
oxidative stress proteins (‘peroxi’, c = 1), ribosomal proteins (‘ribosom’, c = 2), heat shock
proteins (‘heat shock’, c = 3) and sterol biosynthesis enzymes (‘sterol’, c = 4) listed in Table 2.
The mean kinetics are shown as thick lines.

Among the 1926 differentially expressed genes, there are 10 genes annotated by
descriptions containing the string ‘peroxi’. Nine of them belong to cluster one
characterized by increasing kinetics (see Table 2 and Figure 3). The remaining gene
coding for MnSOD (Afu1g14550, manganese superoxide dismutase) belongs to none
of the four clusters because it is at the borderline between cluster one and cluster three
(i.e., the respective membership degrees are 0.448 and 0.451, which do not suffice to
surpass the required threshold 0.5), due to the late weak declination of its expression
profile. After tao imputation all 10 genes that are annotated with descriptions
containing the string ‘peroxi’ are members of cluster one (note that after tao
imputation cluster one contains 89 genes more than after gmc imputation; see Nc and
Nc’ for c = 1 in Table 1). Thus, the expression profiles of all genes coding for
oxidative stress proteins were increasing after the temperature shift.

We selected the catalase/peroxidase HPI (cat2) as the representative gene of the
‘Increasing’ cluster because it is implicated in A. fumigatus’ pathogenicity (see [15]
and Table S1 in [2]). The gene cat2 is ranked at the second position in Table 2 for
cluster one. The gene kat1 ranked at the first position was not selected as the cluster

28 R. Guthke et al.

representative gene because it codes for a protein that is not involved in the oxidative
stress response; it is only located in peroxisomes.

Among the 1926 differentially expressed genes, there are 29 genes annotated with
descriptions containing the string ‘ribosom’. Two of them are non-ribosomal
(Afu5g10120, monomodular non-ribosomal peptide synthetase; Afu3g03350,
nonribosomal peptide synthetase NRPS). 23 genes of the remaining 27 genes belong
to cluster two characterized by an early temporal minimum at t = 30 minutes (for
Afu1g02210, Afu1g12730, Afu1g04230, Afu5g08350) or at t = 60 minutes (for the
remaining 19 genes, see Table 2 for c = 2). Two genes (Afu6g13250, ribosomal
protein L31e; Afu2g10100, acidic ribosomal protein P2) of the remaining four genes
belong to cluster four characterized by declining kinetics. A further gene
(Afu3g12300, ribosomal L22e protein family) is characterized by a decreasing
expression profile with a weak minimum, thus it is situated at the borderline between
cluster two and cluster four (membership degrees 0.453 and 0.4724, respectively).
Hence, 26 of the 27 genes coding for ribosomal proteins are characterized by an
initially declining profile followed sooner or later by an increasing phase. Only one
gene (Afu2g02710, protein similar to 60S ribosomal protein Rlp24) belongs to cluster
three characterized by a temporal maximum at t = 60 minutes. On one hand it could
be speculated that Afu2g02710 is not a ribosomal gene indeed, but on the other hand
this gene is highly conserved and its protein was shown to be involved in the
assembly of the 60 S ribosomal subunit. Since it contains a conserved
metallochaperone-like domain, it could be functionally assigned to the heat shock
proteins with a chaperone function (see below).

There are 10 genes coding for heat shock proteins. Seven of them belong to cluster
three characterized by an early temporal maximum at 15 minutes (Afu2g11750) or 30
minutes (the other 6 genes belonging to cluster three shown in Table 2 for c = 3) after
temperature shift. The expression profiles of two genes (Afu5g10270, heat shock
protein, HSP20 family; Afu6g12450 12, kDa heat shock protein) are characterized by
a late temporal maximum at 60 minutes after temperature shift. Thus, 9 of the 10 heat
shock genes are characterized by an expression profile with a temporal maximum.
The remaining one (Afu8g03930, heat shock protein 70) belongs to cluster two
characterized by a temporal minimum.

For the clusters two and three, we selected as representatives those genes which
code for the large subunit ribosomal protein L3 (rpl3, Afu2g11850) and the heat
shock class I protein (hsp30, Afu6g06470), respectively, due to their maximum
absolute log-ratio value mLR estimated as the greatest within the respective group c
(Table 2). The ribosomal protein RPL3 is known as an A. fumigatus allergen (Table
S4 in [2]). The up-regulation of the heat shock protein HSP30 was verified by
proteome analysis, too (data not shown).

Among the 1926 differentially expressed genes, there are 9 genes annotated with
descriptions containing the string ‘sterol’. The expression profiles of all of these
genes are decreasing immediately after the temperature shift. Seven of them belong to
cluster four (see Table 2 and Figure 3). The remaining two genes (Afu1g04720, C-8
sterol isomerase erg-1; Afu1g07140, c-24 (28) sterol reductase) belong to cluster two
whose gene expression profiles initially declines too, but after passing a minimum (at
t = 60 min) the profiles increase again.

 Discovery of Gene Regulatory Networks in Aspergillus fumigatus 29

Table 2. Genes belonging to the clusters c annotated with a gene description string Si
containing the pattern sc (see Table 1). Descriptions of genes selected as cluster representatives
are underlined. mLR - maximum absolute value of log-ratios.

c Gene ID Gene Description String Si mLR

1

Afu1g12650
Afu8g01670
Afu4g09110
Afu8g05160
Afu4g11580
Afu6g04040
Afu1g13840
Afu7g06100
Afu5g04310

3-ketoacyl-CoA thiolase peroxisomal precursor (kat1)
Catalase/peroxidase HPI (cat2)
Cytochrome c peroxidase precursor
Peroxisomal membrane protein pex13 (peroxin-13)
Mn-superoxide dismutase
Peroxisomal D3,D2-enoyl-CoA isomerase
22 kDa peroxisomal membrane protein
Acyl-coenzyme A oxidase I, peroxisomal, component A
Peroxisomal membrane protein (pmp47)

2.01
1.95
1.50
1.38
1.37
1.17
1.09
1.08
0.86

2 Afu2g11850
Afu6g03830
Afu1g10510
Afu3g06960
Afu2g02150
Afu3g13320
Afu6g13550
Afu3g06970
Afu6g12660
Afu1g04530
Afu2g08130
Afu2g10440
Afu3g08460
Afu2g10090
Afu6g11260
Afu1g11710
Afu6g12720
Afu1g02210
Afu7g05290
Afu1g09440
Afu1g12730
Afu1g04230
Afu5g08350

Large subunit ribosomal protein L3 (rpl3)
Ribosomal protein L14
Ribosomal protein L35-like protein
60S ribosomal protein l21
Ribosomal protein S10
Ribosome-associated protein
Ribosomal protein S13p/S18e
Ribosomal protein S9 (S7)
40S ribosomal protein
Ribosomal L18ae protein family
Ribosomal protein L41
Ribosomal protein S14.e
60S ribosomal protein l37b
Ribosomal protein S15 (S12)
Ribosomal protein L26
60S ribosomal protein L1
Probable ribosomal protein S29. cytosolic
Required for biogenesis of the 60S ribosomal subunit
Ribosomal protein S13, cytosolic
Ribosomal protein S23 (S12)
Mitochondrial 60S ribosomal protein l3 precursor
Mitoribosomal protein YmL27
Ribosomal protein S16

3.06
2.72
2.66
2.64
2.57
2.54
2.50
2.49
2.46
2.42
2.35
2.35
2.33
2.28
2.14
2.14
1.95
1.73
1.65
1.61
1.09
0.88
0.36

3 Afu6g06470
Afu1g07440
Afu1g15270
Afu3g14540
Afu5g04170
Afu1g12610
Afu2g11750

Heat shock protein, class I (hsp30)
Heat shock protein 70
Heat shock protein CLPA
30 kDa heat shock protein
Heat shock protein 80
Heat shock protein Hsp88
Heat shock protein

6.94
3.91
3.39
2.96
2.90
2.85
2.34

4 Afu4g06890
Afu5g07780
Afu7g03740
Afu1g03150
Afu2g00320
Afu8g02440
Afu1g05720

Cytochrome P450 sterol 14-alpha-demethylase (erg11)
Squalene epoxidase; ergosterol biosynthesis
14-alpha sterol demethylase
C-14 sterol reductase
Sterol delta 5,6-desaturase ERG3
C-4 methyl sterol oxidase
C-14 sterol reductase

2.86
2.78
2.76
2.59
2.45
2.25
1.30

30 R. Guthke et al.

The string ‘reverse transcriptase’ is contained within the descriptions of six genes
belonging to cluster four and was not found in the description of genes belonging to any
of the other clusters. The resulting score M4 = 6 for the string ‘reverse transcriptase’ is
greater than the score M4 = 5 for ‘sterol’. However, the relevance of this gene function
to the temperature shift response of the fungus has to be investigated and discussed by
further work. Here, we selected the string ‘sterol’ that was ranked at the second position
of motifs typical for cluster four. The formation of ergosterol is essential for fungal
growth and vital for fungal cell membrane integrity. The gene erg11 (Afu4g06890)
coding for the cytochrome P450 sterol-14-alpha-demethylase, which is the target for
azole antifungal drugs [16], was found in Table 2 with a maximum absolute log-ratio
mLR. This gene was selected as representative for cluster four.

3.3 Selection of Cluster-Representative Genes Using GO Terms

Utilizing the CADRE database [12], we were able to find sets of matching GO terms
for 1907 of the 1926 differentially expressed genes. Among those sets, member
numbers varied between zero and thirteen. The remaining 19 genes could not be
found in the CADRE database, therefore we assumed that no GO terms were
available. After identifying superclasses in the matching GO, herein after referred to
as GO superclasses, the number of those plus the number of previously found
matching GO terms varied between zero (for 898 genes) and 31 (for two genes) as
shown in Figure 4. For 137 genes a number of 7 GO terms were assigned. Altogether,
1849 GO terms were assigned to one or more of the 1926 genes. Taking into
consideration that also subsets of GO terms may have a common GO superclass, the
number of maximally 31 associated GO terms is reasonable.

Table 3. Number Nc of genes belonging to cluster c (c = 1,…,C) with membership degree
greater 50% after gmc imputation (as in Table 1). Tc is the GO term (GO-name and GO-id) with
score Mc = mc – mc’ maximized for the respective cluster c. As for score Mc, mc refers to the
frequency of assignment of GO term Tc to members (genes) of cluster c while mc' is the number
of assignments of the respective GO term to members of clusters other than c.

c Nc Label Tc mc mc’ Mc

1
2
3
4

247
443
480
427

Increasing
Minimum
Maximum
Decreasing

Peroxisomal part
Nuclear part
Protein folding
Glucan metabolism

GO:0044439
GO:0044428
GO:0006457
GO:0006073

9
51
14

6

5
17

7
0

4
34

7
6

Table 3 shows those representative GO terms Tc to which a high number mc of genes
belonging to cluster c is assigned and to which only a low number mc’ of genes
belonging to the other clusters is assigned. In comparison to the results mentioned in
chapter 3.2 obtained by text mining, here we found the GO term ’peroxisomal part’
instead of the string motif ‘peroxi’ for cluster one, the GO term ‘nuclear part’ instead of
the string motif ‘ribosom’, the GO term ‘protein folding’ instead of the string motif
‘heat shock’, and the GO term ‘glucan metabolism’ instead of the string motif ‘sterol’.

 Discovery of Gene Regulatory Networks in Aspergillus fumigatus 31

Fig. 4. Distribution (‘histogram’) of the number of GO terms (i.e., matching GO and GO
superclasses) for the 1926 differentially expressed genes

These GO terms and the respective motifs are related physiologically to each other:
Oxidase enzymes involved in the removal of reactive oxygen are located in
peroxisomes; ribosomes are assembled in the nucleus; principle heat shock proteins
are chaperones that assist in protein folding; and glucans form part of the fungal cell
wall.

Table 4 shows the mc genes (mc =9, 51, 14 and 6 for the four clusters, respectively;
see Table 3), sorted according to the maximum absolute value of log-ratios (mLR).
The genes with the highest mLR were selected as representatives, i.e. fadD35 for
cluster one, nip7p for cluster two, clpB for cluster three and mutA for cluster four.

For cluster two, we not only studied the best matching GO term ‘nuclear part’
(GO:0044428) but also the four terms that follow in the ranking according to score Mc
as shown in Table 5. A common set of 23 genes is assigned to all of the first four GO
terms shown in Table 5. This set is characterized by the process ‘rRNA processing’
and the cellular component ‘Nucleolus’ (the other two GO terms are superclasses of
the latter term). The nucleolus, which is a substructure within the nucleus, is the site
of rRNA processing and ribosome assembly. Thus, we can conclude that the
expression of genes involved in rRNA processing and ribosome assembly follows
mostly the time course of cluster two, characterized by a temporal minimum. Among
the 23 genes that belong to cluster two and are involved in the nucleolar rRNA
processing the gene nip7p is the one specified by the highest maximum log-ratio
value mLR (= 1.99). Hence, this gene was selected as representative for cluster two.

Using the so called ‘specificity’ (Nc = mc /(mc + mc’) as an alternative score, the
fifth GO term in Table 5 ‘RNA binding’ was found to be the most representative GO

32 R. Guthke et al.

Table 4. Genes belonging to cluster c and their respective representative GO term Tc (see Table
3). Descriptions of genes selected as cluster representatives are underlined. mLR - maximum
absolute value of log-ratios. For the genes labeled by *) the gene descriptions were updated
from CADRE [12]. The strings ‘peroxi’, ‘ribosom’, ‘heat shock’ or ‘glucan’ were not found by
text mining (see chapter 3.2), because the former descriptions taken from [2] for text mining
did not contain these strings.

c Gene ID Gene Description mLR

1 Afu5g08470
Afu5g07400
Afu2g12530
Afu5g00640
Afu6g07740
Afu4g13550
Afu8g05160
Afu7g06100
Afu1g14380

fadD35
phenylacetyl-CoA ligase
carnitine acetyl transferase
peroxisomal dehydratase, putative *)
peroxisomal biogenesis factor (PEX11) *)
short chain dehydrogenase/reductase family
peroxisomal membrane protein pex13 (peroxin-13)
acyl-coenzyme A oxidase I, peroxisomal, component A
3-ketoacyl-acyl carrier protein reductase

4.94
4.20
1.96
1.76
1.55
1.40
1.38
1.08
0.98

2 Afu2g17060
Afu1g14220
Afu3g13400
Afu1g02210
Afu2g12880
Afu2g16260
Afu3g09600
Afu5g13050
Afu1g12000

Afu5g12100
…

60S ribosome subunit biogenesis protein (Nip7p), putative
fibrillarin
nucleolar protein nop5
Protein required for biogenesis of 60S ribosomal subunit *)
DUF663 domain protein
putative microtubule-associated protein
sik1 protein
kinesin
nuclear and cytoplasmic polyadenylated RNA-binding
protein pub1
pmt2 methyltransferase
… (further 41 genes, not shown)

1.99
1.81
1.78
1.73
1.66
1.64
1.51
1.50
1.48

1.47

3 Afu1g11180
Afu7g01860
Afu1g07440
Afu4g11330
Afu2g02050
Afu2g09290
Afu5g04170
Afu1g12610
Afu5g13920
Afu6g10700
Afu2g11750
Afu2g02700
Afu3g00990
Afu6g10480

ATP-dependent Clp protease, ATP-binding subunit ClpB
activator of Hsp70 and Hsp90 chaperones
heat shock protein 70
Aha1 domain family
peptidyl-prolyl cis-trans isomerase
mitochondrial protein HSP60, putative *)
heat shock protein 80
heat shock protein Hsp88
p21 protein
Hsp10
heat shock protein
mitochondrial DnaJ chaperone (Tim14), putative
flavin-binding monooxygenase, putative (T3P18.10)
F22M8.7 protein

4.91
3.92
3.91
3.74
3.52
3.16
2.90
2.85
2.56
2.47
2.34
1.51
1.48
1.37

4 Afu8g06360
Afu1g16190
Afu1g03350
Afu7g08510
Afu6g08510
Afu5g10540

mutanase (MatA, alpha-1,3-glucanase) *)
allergen (glucanase Crf1) *)
mutanase (alpha-1,3-glucanase) *)
alpha-1,3-glucanase *)
Crh-like protein (glucanase) *)
1,4-alpha-glucan branching enzyme

2.75
2.45
2.03
1.61
1.15
1.05

 Discovery of Gene Regulatory Networks in Aspergillus fumigatus 33

term for cluster two with 29 true positives and only 3 false negative results. Seven
genes, shown in Table 6, are assigned to all of the five GO terms. Hence, the gene
coding for the rRNA processing protein Bystin could be used as alternative to nip7p as
representative of cluster two. However, due to the relative low maximum log-ratio of
1.46, that option will not be made use of in the following analyzes.

Table 5. GO terms Tc assigned to genes of cluster two (c = 2) with high score Mc; alternative
score Nc = mc /(mc + mc’); the other symbols as in Table 3

Tc mc mc’ Mc Nc

Nuclear part
Intracellular non-membrane-bound organelle
rRNA processing
Nucleolus
RNA binding

GO:0044428
GO:0043232
GO:0006364
GO:0005730
GO:0003723

51
43
41
36
29

17
10
10

9
3

34
33
31
27
26

0.75
0.81
0.80
0.80
0.91

Table 6. Genes belonging to cluster two and to the five most representative GO terms Tc shown
in Table 5. The gene descriptions were updated using CADRE [12].

Gene ID Gene Description mLR

Afu3g04110
Afu3g05490
Afu4g13690
Afu7g03690
Afu8g04790
Afu2g16040
Afu2g05930

rRNA processing protein (Bystin)
Nrap protein superfamily (nucleolar RNA-associated
protein)
small nucleolar ribonucleoprotein snoRNP protein (gar1)
G-patch RNA maturation protein (Gno1), putative
ribosome biogenesis protein, putative
rRNA biogenesis protein, putative
small nucleolar ribonucleoprotein complex subunit, putative

1.46
1.35
1.31
0.99
0.98
0.81
0.57

3.4 Dynamic Modeling

Model A
The measured expression profiles of the selected genes cat2, rpl3, hsp30 and erg11
were simulated by the differential equation system (2) with the variables x1, x2, x3 and
x4, respectively. Figure 5 visualizes the network structure of the model. The results of
model simulation are shown in Figure 6.

)(0431.00268.0 1
1 tux

dt

dx
⋅+⋅−=

)(1580.00618.0 4
2 tux

dt

dx
⋅−⋅−=

)(7269.00245.02315.0 34
3 tuxx

dt

dx
⋅+⋅−⋅=

.)(1658.00599.0 1
4 tux

dt

dx
⋅−⋅−= .

(2)

34 R. Guthke et al.

Randomly disturbed input data were used for a model validation analysis by
perturbation to assess the impact of measurement errors and to test the reliability of
the structures generated. The analyzes were repeated 104 times using input data
obtained by adding normal distributed random deviates with a standard deviation σ.
With σ = 0.1 the structure with six links shown in Figure 4 was confirmed in 43 % of
the cases. Five links without the activation link from the perturbation by temperature
shift to cat2 were confirmed in 82 % of all cases. Four links without the link from
temperature to cat2 and from erg11 to rpl3 were found in 90 % of the randomly
repeated calculations (59 % for σ = 0.5). These four links from temperature to hsp30,
erg11 and rpl3 and from erg11 to hsp3 are highlighted in Figure 4 by thick lines. In
all 104 cases only the links from temperature to hsp30 (activation) and erg11
(inhibition) were found.

Fig. 5. Structure of the dynamic model A (2) identified by the model fit shown in Figure 6
(Temp: Temperature shift; erg11: cytochrome P450 sterol 14-alpha-demethylase, enzyme
involved in ergosterol biosynthesis; cat2: catalase/peroxidase; rpl3: large subunit ribosomal
protein L3; hsp30: heat shock protein class I). The arrows represent stimuli or activations. The
T-shaped links (⊥) represent inhibitions. Grey boxes denote elements with negative wi,j (decay
or self-regulation). The thick links indicate the connections confirmed by resampling.

Model B
The regulation of cat2 was reconstructed vaguely due to the erratic data of the
respective expression profile, i.e. the low value at t = 30 min and high value at t = 60
min are questionable (see Figure 6). Therefore, we selected alternatively for cluster
one gene kat1 as representative, which is the gene with the highest maximum log-
ratio among the nine genes labeled by ‘peroxi’ that belong to cluster 1 (the first gene
shown in Table 2). Figures 7 and 8 show the reconstructed alternative network and
the model fit results. The four confirmed links of the structure of model A (thick lines
in Figure 5) were also found in the structure of model B (Figure 7). The structure
shown in Figure 7 was confirmed in 84 % of the network reconstruction calculations
repeated with randomly disturbed input data (σ = 0.1). Simulating model B with N =
11 parameters, the fit error was mse = 1.7, whereas model A with N = 9 parameters

 Discovery of Gene Regulatory Networks in Aspergillus fumigatus 35

Fig. 6. Measured (•) expression kinetics (log-ratios) for the genes selected as representatives of
the four clusters (c = 1, 2, 3, and 4; Table 1) and kinetics simulated by the differential equation
system (2), whose network structure is shown in Figure 5. Model fit error mse = 2.9.

leads to a fit error of mse = 2.9. According to the χ2-criterion (χ2= mse / (n – N)) and
with the number n = 24 of measured data (i.e., four variables measured at six time
points) model B is superior to model A. The model fit could not be improved using a
higher dynamic order.

Fig. 7. Structure of the dynamic model B identified by the model fit shown in Figure 8: In
opposition to Figure 5 gene kat1 (3-ketoacyl-CoA ketothiolase / peroxisomal precursor) was
selected as the representative of gene cluster one (labeled by ‘Increasing’ and ‘peroxi’) instead
of cat2 (catalase/peroxidase). Symbols as in Figure 5.

36 R. Guthke et al.

Fig. 8. Measured (•) expression kinetics (log-ratios) for the genes selected as representatives of
the four clusters and kinetics simulated by the model shown in Figure 7. In contrast to Figure 6
gene kat1 was used as representative for cluster one. Model fit error: mse = 1.7.

Model C
In chapter 3.3, the genes fadD35, nip7p, clpB and mutA were selected by GO term
analysis as representatives for the clusters assigned to the phenomenological labels
‘Increasing’ / ’Peroxisomal part’, ‘Minimum’ / ’Nuclear part’, ‘Maximum’ / ‘Protein
folding’ and ‘Decreasing’ / ‘Glucan metabolism, respectively. Dynamic models were
fitted to the expression profiles of these representative genes. Figure 9 visualizes the

Fig. 9. Structure of the dynamic model C identified by the model fit shown in Figure 10. Here,
the set of representative genes selected using GO terms are mutA (mutanase, alpha-1,3-
glucanase), clpB (Clp protease, involved in protein folding), nip7p (60S ribosome subunit
biogenesis protein) and fadD35 (long-chain-fatty-acid—CoA ligase). Symbols as in Figure 5.

 Discovery of Gene Regulatory Networks in Aspergillus fumigatus 37

Fig. 10. Measured (•) expression kinetics (log-ratios) for the genes selected as representatives of
the four clusters by GO term analysis and kinetics simulated by the model C shown in Figure 9.
Model fit error: mse = 5.9.

network structure of the model C. The results of model simulation are shown in
Figure 10. By resampling with randomized data (standard deviation σ = 0.1) all seven
links shown in Figure 9 and the two self regulation were found in more than 99% of
the reconstructed models, i.e. they are very stable.

Model D
Gene mutA whose expression data are erratic as shown in Figure 10 was substituted
by gene crf1, which was ranked in Table 4 as the second representative candidate for
cluster four. Both genes are coding for glucanases. Figure 11 visualizes the network
structure of the model D. By resampling with randomized data (standard deviation
σ = 0.1) all six links shown in Figure 11 were found in more than 90% of the
reconstructed models. Only the self regulation term of nip7p was not stable at this
percentage level (i.e., it was found only in 70% of the reconstructed models). The
results of model simulation are shown in Figure 12. Models C and D have different
structures: In contrast to model D, model C has a link from nip7p to fadD35, whereas
model D has a self-regulation term for nip7p, which does not apply to model C.
Model D is superior to model C, because the fit error of model D is smaller (mse =
5.0) than that of model C (mse = 5.9) and both models have the same number of
model parameters (N = 9).

38 R. Guthke et al.

Fig. 11. Structure of the dynamic model D identified by the model fit shown in Figure 12. In
contrast to Figure 9 the gene crf1 (glucanase) was selected as the representative gene of
gene cluster 4 (labeled by ‘Decreasing’ and ‘Glucan metabolism’) instead of matA (mutanase,
alpha-1,3-glucanase). Symbols as in Figure 5.

Fig. 12. Measured (•) expression kinetics (log-ratios) for the genes selected as representatives
of the four clusters by GO term analysis and kinetics simulated by the model D shown in Figure
11. In opposition to Figure 10 the gene crf1 was used as representative for cluster four. Model
fit error: mse = 5.0.

 Discovery of Gene Regulatory Networks in Aspergillus fumigatus 39

4 Conclusion

After temperature shift from 30 °C to 48 °C four clusters of gene expression profiles
were found characterized by increasing and decreasing kinetics as well as by the
traversal of temporal minima or maxima. Genes related to the peroxisomal part are
mainly up-regulated, whereas the majority of genes assigned to the sterol and glucan
metabolism are down-regulated. Most of the genes coding for heat-shock proteins and
chaperones (mediating protein folding) show temporal maxima in their expression
profiles, whereas profiles of genes coding for ribosomal proteins and proteins
involved in rRNA processing and ribosome assembly, pass through temporal minima.

The dynamic modeling was performed for four selected transcripts, which have to
be representative for the four clusters. For the selection of cluster-representative genes
we applied different criteria. Several model structures (A, B, C and D) were
constructed for four sets of representative genes. The different structures have some
common features: As an early temperature shift response, the expression of genes
involved in the metabolism of sterols and glucanes, i.e., constituents of the cell
membrane and cell wall, respectively, as well as the expression of ribosomal proteins
and rRNA processing enzymes were repressed. The remodeling of the cell wall in
response to heat shock and its regulation by a heat shock transcription factor was
shown for the yeast Saccharomyces cerevisiae [17]. Genes coding for heat shock
proteins and chaperones are primarily induced after the temperature shift, but later
their expression is reduced in connection with the repression of the synthesis of cell
wall and membrane constituents.

The fit error of model B was the smallest followed by model A. Gene kat1 used for
model B as well as gene fadD35 used for models C and D are coding for proteins,
which are involved in the β-oxidation of fatty acids in the peroxisomes. Gene kat1 is a
peroxisomal protein, but is not involved in the stress response to reactive oxygen
species. For this reason we prefer the model A for detailed discussion:

Genes involved in oxidative defense reactions, such as catalase cat2 and genes
encoding for superoxide dismutases, are up-regulated. These genes have been
discussed as potential virulence determinants in A. fumigatus [18]. In comparison,
genes coding for enzymes involved in the biosynthesis of the cell membrane
component ergosterol are down-regulated. In general, sterols such as the fungal
ergosterol influence membrane fluidity and membrane permeability by decreasing the
fluidity of the liquid crystalline phase of membranes [19]. In addition, the down-
regulated gene erg11 (cytochrome P-450 sterol 14-alpha-demethylase) is a specific
target of antifungal triazoles [20]. Genes coding for heat shock proteins, such as
HSP30, are up-regulated transiently, whereas genes coding for ribosomal proteins,
such as the fungal allergen RPL3, are down-regulated transiently, i.e. after two hours
the up- or down-regulation is diminished. By reverse engineering of the putative gene
regulatory network a hypothesis was generated as illustrated by Figure 5. According
to this, the relaxation of the expression of genes coding for heat shock protein HSP30
and ribosomal protein RPL3 is caused by an influence of the down-regulated erg11.
This hypothesis has to be validated, but some data addressing this relationship are
available from the literature. It was demonstrated in the yeast S. cerevisiae that
ergosterol does not directly effect heat shock. However, biological membranes have
been implicated as a primary sensor of environmental stress proteins [21] and a

40 R. Guthke et al.

protein kinase in S. cerevisiae involved in cell cycle control was shown to be
positively regulated by trace amounts of ergosterol [22].

There are alternative hypotheses. One of them is, that the expression minimum of
genes coding for ribosomal proteins, which was found at 60 minutes after the
temperature shift, is causally related to the expression maximum of genes coding for
heat shock proteins that was found 30 minutes after the temperature shift. In general,
many heat shock proteins are closely connected to the biosynthesis of proteins by
functioning as molecular chaperones, i. e. they assist other proteins in achieving
proper folding. The significance of a thermotolerant ribosome assembly for the
virulence of A. fumigatus was discussed by Bhabhra and Askew 2005 [23].
Furthermore, the importance of these proteins in the virulence of pathogenic fungi and
their role in the resistance to antifungal drugs has been discussed [24].

Acknowledgement

This work was supported by the German Federal Ministry for Education and Research
BMBF (FKZ 0312704D) and the Priority Program 1160 of the Deutsche
Forschungsgemeinschaft. The authors would like to thank Lennart Heinzerling for a
review of this paper.

References

1. Brakhage, A.A., Langfelder, K.: The molecular biology of Aspergillus fumigatus. Annual
Review of Microbiol, 56 (2002) 433-455

2. Nierman, W.C. et al.: Genomic sequence of the pathogenic and allergenic filamentous
fungus Aspergillus fumigatus. Nature, 438 (2005) 1151-1156

3. Ouyang, M., Welsh, W.J., Georgopoulos, P.: Gaussian mixture clustering and imputation
of microarray data. Bioinformatics, 20 (2004) 917-923

4. Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein,
D. and Altman, R.B.: Missing values methods for DNA microarrays. Bioinformatics, 17
(2001) 520-525

5. Hathaway, R.J., Hu, Y., Bezdek J.C.: Local Convergence of Tri-Level Alternating
Optimization. Neural Parallel Sci. Comput, 9 (2001) 19-28

6. Timm, H.: Fuzzy-Clusteranalyse: Methoden zur Exploration von Daten mit fehlenden
Werten sowie klassifizierten Daten, Dissertation, University of Magdeburg, Germany,
2002; http://fuzzy.cs.uni-magdeburg.de/~htimm/data/dissertation.pdf

7. Bezdek, J.C., Pal, S.K.: Fuzzy models for pattern recognition: methods that search for
structures in data. IEEE Press, New York (1992)

8. Bezdek, J.C., Pal, N.R.: Some new indexes of cluster validity. IEEE Trans. Syst. Man
Cybern., B28 (1998) 301-315

9. Bolshakova, N., Azuaje, F.: Cluster validation techniques for genome expression data.
Signal Process., 83 (2003) 825-833

10. Möller, U., Radke, D.: A cluster validity approach based on nearest neighbor resampling.
International Conference on Pattern Recognition, Hong Kong, August, 2006.

11. http://www.geneontology.org
12. http://www.cadre.man.ac.uk/Aspergillus_fumigatus

 Discovery of Gene Regulatory Networks in Aspergillus fumigatus 41

13. Yeung, M.K., Tegner, J., Collins, J.J.: Reverse engineering gene networks using singular
value decomposition and robust regression. Proc. Natl. Acad. Sci. USA, 99 (2002) 6163-
6168

14. Guthke, R., Möller, U., Hoffmann, M., Thies, F., Töpfer, S.: Dynamic network
reconstruction from gene expression data applied to immune response during bacterial
infection. Bioinformatics, 21 (2005) 1626-1634

15. Paris, S., Wysong, D., Debeaupuis, J.P., Shibuya, K., Philippe, B., Diamond, R.D., Latge
J.P.: Catalases of Aspergillus fumigatus. Infect Immun, 71 (2003) 3551-3562

16. Mellado, E., Garcia-Effron, G., Buitrago, M.J., Alcazar-Fuoli, L., Cuenca-Estrella, M.,
Rodriguez-Tudela, J.L.: Targeted gene disruption of the 14-alpha sterol demethylase
(cyp51A) in Aspergillus fumigatus and its role in azole drug susceptibility. Antimicrob
Agents Chemother. 49 (2005) 2536-2538

17. Imazu, H., Sakurai, H.: Saccharomyces cerevisiae heat shock transcription factor regulates
cell wall remodeling in response to heat shock. Eukaryot. Cell, 4 (2005) 1050-1056

18. Brakhage, A.A.: Systemic fungal infections caused by Aspergillus species: epidemiology,
infection process and virulence determinants. Curr Drug Targets 6 (2005) 875-886

19. Beney, L., Gervais, P.: Influence of the fluidity of the membrane on the response of
microorganisms to environmental stress. Appl. Microbiol. Biotechnol. 57 (2001), 34-42

20. Ferreira, M. E. et al.: The ergosterol biosynthesis pathway, transporter genes, and azole
resistance in Aspergillus fumigatus. Med. Mycol., 43 Suppl. 1 (2005) S313-S319

21. Swan, T. M., Watson, K.: Stress tolerance in a yeast sterol auxotroph: role of ergosterol,
heat shock proteins and trehalose. FEMS Microbiol. Lett., 169 (1998) 191-197

22. Dahl, C., Biemann, H.-P., Dahl, J.: A protein kinase antigenically related to pp60v-src
possibly involved in yeast cell cycle control: Positive in vivo regulation by sterol. Proc.
Natl. Acad. Sci. USA, 84 (1987) 4012-4016

23. Bhabra, R., Askew, D. S.: Thermotolerance and virulence of Aspergillus fumigatus: role of
the fungal nucleolus. Med. Mycol., 43 (2005) S87-S93

24. Burnie, J. P., Carter, T. L., Hodgetts, J. S., Matthews, R. C.: Fungal heat-shock proteins in
human disease. FEMS Microbiol. Rev., 30 (2006) 53-88

Complexity Measures for Gene Assembly

Tero Harju1, Chang Li2, Ion Petre2,3, and Grzegorz Rozenberg4,5

1 Department of Mathematics, University of Turku,
Turku Center for Computer Science, FIN-20014 Turku, Finland

harju@utu.fi
2 Department of Computer Science, Åbo Akademi University,

Turku Center for Computer Science, FIN-20520 Turku, Finland
lchang@abo.fi

3 Academy of Finland
ipetre@abo.fi

4 Leiden Institute for Advanced Computer Science, Leiden University,
2333 CA Leiden, The Netherlands

rozenber@liacs.nl
5 Department of Computer Science, University of Colorado,

Boulder, Co 80309-0347, USA

Abstract. The process of gene assembly in ciliates is a fascinating ex-
ample of programmed DNA manipulations in living cells. Macronuclear
genes are split into coding blocks (called MDSs), shuffled and separated
by non-coding sequences to form micronuclear genes. Assembling the
coding blocks from micronuclear genes to form functional macronuclear
genes is facilitated by an impressive in-vivo implementation of the linked
list data structure of computer science. Complexity measures for genes
may be defined in many ways, including the number of MDSs, the num-
ber of loci, etc. We take a different approach in this paper and propose
four complexity measures for genes in ciliates, based on the ‘effort’ re-
quired to assemble the gene. We consider: (a) the types of operations
used in the assembly, (b) the number of operations used in the assembly,
(c) the length of the molecular folds involved, and (d) the length of the
shortest possible parallel assembly for that gene.

“One of the oldest forms of life on Earth has been revealed as a natural
born computer programmer.”

BBC, September 10, 2001.

1 Introduction

Ciliates are very old eukaryotic unicellular organisms that, through evolution,
have developed an unusual way of organizing their genome. Each cell has two
types of functionally different nuclei - the macronucleus is the somatic nucleus,
while the micronucleus is the germline nucleus. Depending on the species each
type of nuclei may be present in many copies in each cell.

The macronuclear genes are very short molecules, e.g., ranging in the S.nova
organisms between 200bp and 3700bp, with an average of 2200 bp in length,

K. Tuyls et al. (Eds.): KDECB 2006, LNBI 4366, pp. 42–60, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Complexity Measures for Gene Assembly 43

see [22], [19], [3], [4]. As a matter of fact, these are the shortest DNA molecules
known in Nature, see [20]! On the other hand, micronuclear genome is organized
on very long chromosomes (about 120 chromosomes, each with about 107 bp
in S.nova, see [19]), with coding sequences occupying as little as 2 - 5% of the
genome, see, e.g., [3]. During the process of sexual reproduction, ciliates destroy
the old macronuclei and transform a micronucleus into a new macronucleus.
Ciliates thus have to identify precisely the genetic material and splice it out from
the chromosomes. The complexity of the process is profoundly magnified by the
fundamentally different organization of the micronuclear and the macronuclear
genomes. This process of converting micronuclear genes to their macronuclear
form, called gene assembly, is especially involved in a family of ciliates called
Stichotrichs – we concentrate in this paper on this family.

The macronuclear gene is a contiguous DNA sequence, which is placed on
its own chromosome, that (with few exceptions only) is not shared with other
genes. The same gene in the micronucleus is broken into pieces called MDSs
(macronuclear destined sequences) that are separated by noncoding blocks called
IESs (internally eliminated sequences). Moreover, the order of MDSs may be
permuted (with respect to their order in the macronuclear gene), and some of the
MDSs may be inverted. Here is where the challenge of gene assembly lies: ciliates
have to identify correctly more than 100 000 MDSs in their genome, see [20],
assemble them together in the macronuclear (orthodox) order, and eliminate all
IESs. We refer to [12], [19], [23] for more details on ciliates and gene assembly.

A hint on how ciliates achieve gene assembly is given by the structure of
MDSs. It turns out that ciliates organize their genomic data as linked lists in
the style used in computer science, see [19]. A short sequence at the end of
each MDS is repeated at the beginning of the MDS that should follow it in
the orthodox order, thus (in the terminology of computer science) serving as a
pointer in a linked list. It is currently believed that ciliates splice together the
consecutive MDSs on the common pointers to assemble the gene. The models
for gene assembly in Stichotrichs, such as, e.g., [16], [17] and [8], [21], agree on
this generic mechanism.

We consider in this paper the intramolecular model of [8], [21]. The model is
based on three molecular operations: ld, hi, and dlad. In each of these operations,
the molecule folds on itself so that two or more pointers get aligned and through
recombination two or more MDSs get combined into a bigger composite MDS.
The process continues until all MDSs have been assembled.

First operation: ld. In the operation (loop, direct repeat)-excision, or ld for short,
a pair of pointers flanking an IES guides the excision of this IES as a circular
molecule, as illustrated in Fig. 1. The DNA molecule folds on itself so that the two
pointers can get aligned, after which the IES is excised through recombination.
As a result, two MDSs get joined and form a bigger composite MDS. It is crucial
to note that the excised molecule is an IES (closed into a circular form) and so
it does not contain any coding blocks – therefore it is not required to participate
anymore in the gene assembly process.

44 T. Harju et al.

��� ���

��� ���

Fig. 1. Illustration of the ld-rule

Second operation: hi. The operation (hairpin, inverted repeat)-excision/reinser-
tion, or hi for short, is applicable to a molecule containing a pair of pointers
where one pointer is the inversion of the other. This is illustrated in Fig. 2. The
molecule folds on itself forming a hairpin so that the two copies of the pointer can
get aligned with the same polarity, thus facilitating the recombination. Through
recombination, the sequence between the two occurrences of the pointer is in-
verted. One may also note that as a result of applying hi, two MDSs are joined
together into a bigger composite MDS, while two IESs are joined together into
a bigger noncoding block (a bigger composite IES).

��� ���

���
���

Fig. 2. Illustration of the hi-rule

Third operation: dlad. The operation (double loop,alternating direct repeat)-
excision/reinsertion, or dlad for short applies to a DNA molecule containing
two pairs of pointers where the segments delimited by the pairs of pointers over-
lap with each other. This is illustrated in Fig. 3. The molecule folds into two
loops so that the two copies of the first pointer align with each other in one
loop, and the two copies of the second pointer align with each other in the other
loop. Thus, the molecule is in position for two recombinations. As a result of this
double recombination, two sequences are translocated; several MDSs are joined
together into bigger composite MDSs(see [6] for details).

Complexity Measures for Gene Assembly 45

��� ���

��� ���

Fig. 3. Illustration of the dlad-rule

2 Definitions

We give in this section some basic notions concerning permutations, strings, and
graphs.

For a finite alphabet Σ = {a1, . . . , an}, we denote by Σ∗ the free monoid
generated by Σ and call any element of Σ∗ a string. Let Σ = {a1, . . . , an},
where Σ ∩ Σ = ∅. For p, q ∈ Σ ∪ Σ, we say that p, q have the same signature
if either p, q ∈ Σ, or p, q ∈ Σ and we say that they have different signatures
otherwise. For p ∈ Σ, we say that p is an unsigned letter, while for p ∈ Σ, we
say that p is a signed letter.

Let Σ� = (Σ ∪ Σ)∗. For any u ∈ Σ�, u = x1 . . . xk, with xi ∈ Σ ∪ Σ, for all
1 ≤ i ≤ k, we set ‖u‖ = ‖x1‖ . . . ‖xk‖, where ‖a‖ = ‖a‖ = a, for all a ∈ Σ. Also,
u = xk . . . x1, where a = a, for all a ∈ Σ.

We say that u ∈ Σ� is a signed double occurrence string if for any p ∈ Σ, u
has either 0, or 2 occurrences from the set {p, p}. In case u has two occurrences
from the set {p, p}, we say that p is a positive letter in u if the two occurrences
have different signatures, and we say that p is a negative letter in u if the two
occurrences have the same signature. We say that letters p and q, p �= q, overlap
in u if u = u1pu2qu3pu4qu5, for some ui ∈ Σ�, 1 ≤ i ≤ 5.

For two signed double occurrence strings, we say that v is a substring of u,
denoted v ≤ u, u = u1vu2, for some strings u1, u2. We say that the signed double
occurrence string u is elementary if u has no substring v with v a signed double
occurrence string.

A permutation π over alphabet Σ is a bijection π : Σ → Σ. Fixing the order
relation (a1, a2, . . . , am) over Σ, we often denote π as the string π(a1) . . . π(am) ∈
Σ∗. A signed permutation over Σ is a string ψ ∈ Σ�, where ‖ψ‖ is a permutation
over Σ.

A signed graph is a triple G = (V, E, φ), where V is a finite set of vertices,
E ⊆ V × V is the set of (undirected) edges, with the property that (x, y) ∈ E if
and only if (y, x) ∈ E, and φ : V → {+, −} is the signature function. We say that
vertex p ∈ V is positive if φ(p) = + and it is negative otherwise. For all p ∈ V , we

46 T. Harju et al.

denote by NG(p) the neighborhood of p in G, i.e., NG(p) = {q ∈ V | (p, q) ∈ E}.
For V ′ ⊆ V , the subgraph of G induced by V ′ is GV = (V ′, E′, φ′), where
E′ = {(p, q) ∈ E | p, q ∈ V ′} and φ′ : V ′ → {+, −}, φ′(p) = φ(p), for all p ∈ V ′.

For all p ∈ V we denote by G − p the graph induced by the set of vertices
V \ {p}. We also denote by locp(G) the local complement of G at p: locp(G) =
(V, E′, φ′), where (x, y) ∈ E′ if and only if (x, y) �∈ E, for all x, y ∈ NG(p), and
(x, y) ∈ E′ if and only if (x, y) ∈ E otherwise. Also, φ′(x) = + if and only if
φ(x) = −, for all x ∈ NG(p), and φ′(x) = φ(x), otherwise.

We denote by C4 and D4 the graphs shown in Fig. 4.

(a) (b)

Fig. 4. (a) The square C4; (b) the diamond D4

With any signed double occurrence string u over alphabet Σ, we associate a
signed graph Gu = (Vu, Eu, φu) as follows: Vu = {p ∈ Σ | p or p occurs in u},
Eu = {(p, q) | p and q overlap in u}, and φu(p) = + if and only if p is a positive
letter in u. The graph Gu is called the overlap graph of u.

For k ≥ 2 we will use throughout the paper the alphabets Σk = {1, . . . , k}
and Δk = {2, . . . , k}.

3 Three Models for Gene Assembly

The intramolecular model for gene assembly, [8], [21], has been formalized on
several levels of abstraction. The structures of genes can be represented as: signed
permutations, MDS descriptors, signed double occurrence strings, or signed over-
lap graphs. Consequently, the process of gene assembly can be formalized through
processing of strings, or through processing of graphs. As it turns out, all these
levels of abstraction are equivalent as far as the modeling of gene assembly is con-
cerned, see [6] for a detailed discussion on model forming. Nevertheless, different
levels of abstraction prove more suitable (more elegant or technically simpler)
for different research topics.

In this paper we consider issues dealing with formalization of the gene as-
sembly on the level of string permutation, signed double occurrence strings, and
signed graphs. We present briefly these three abstraction levels referring to [6]
for more details.

For any gene γ having k MDSs, k ≥ 1, we may associate a signed permutation
in the following way: associate to the MDS Mi letter i, 1 ≤ i ≤ k, and to its
inversion M i the signed letter ī. Thus the signed permutation associated to the
MDS sequence M3M1M2 is simply the signed permutation 31̄2.

Complexity Measures for Gene Assembly 47

We may also associate a signed double occurrence string with any gene (more
generally, to any sequence of MDSs), simply by writing its sequence of pointers.
Thus, given a sequence of k MDSs, we associate with each MDS Mi, 2 ≤ i ≤ k−1,
the string consisting of its incoming and outgoing pointers: i(i + 1). With M i

we associate string (i + 1)i. The first and the last MDS are special because they
contain only one pointer each, and moreover we mark the beginning of the first
MDS by the beginning marker, and the end of the last MDS by the end marker.
In our coding of these MDSs, we ignore the beginning and the end markers –
thus, with M1 we associate string 2 and with M1 string 2̄. Similarly, with Mk we
associate string k and with Mk string k̄, Consequently, with the MDS sequence
M3M1M2 we associate string 32̄23. Also, with the MDS sequence M2M̄4M1M3
we associate string 234̄234.

On a higher level of abstraction, we may associate a graph with a sequence of
MDS in the following way. If uγ is the string associated with gene γ, then Gγ is
the signed overlap graph of uγ , as defined in Section 2. Thus, the graph associated
with the MDS sequence M3M1M2 consists of positive vertex 2, adjacent to
negative vertex 3.

The molecular operation ld, hi, dlad are modeled by string rewriting rules as
follows (we will use the notation ld, hi, dlad also for the string rules, but this
should not lead to confusion).

Let u be a signed double occurrence string over alphabet Δk.

1. For all p ∈ Δk ∪ Δk, ldp is defined as follows:

ldp(uppv) = uv,

where u, v ∈ Δ�
k .

2. For all p ∈ Δk ∪ Δk, hip is defined as follows:

hip(upvp̄w) = uv̄w,

where u, v ∈ Δ�
k .

3. For all p ∈ Δk ∪ Δk, dladp,q is defined as follows:

dladp,q(u1pu2qu3pu4qu5) = u1u4u3u2u5,

where ui ∈ Δ�
k , for all 1 ≤ i ≤ 5.

We say that a composition φ of ld, hi, and dlad operations is a reduction
strategy for string u if φ(u) = Λ.

Example 1. Let u = 35̄2654736724̄88, then ld8 is applicable to u: ld8(u) =
35̄2654736724̄. Also, hi4 and dlad5,6 are applicable to u: hi4(u) = 35̄2652̄7̄6̄3̄7̄88,
and dlad3,2(u) = 6765465̄4̄88.

The corresponding operations for signed graphs are defined as follows (again,
also for the graph rules we will use the same notation ld, hi, and dlad). Let
G = (V, E) be a signed graph.

48 T. Harju et al.

1. For all p ∈ V , ldp is applicable to G if and only if p is an isolated negative
vertex in G. When applicable, ldp(G) = G − p.

2. For all p ∈ V , hip 4 is applicable to G if and only if p is an positive vertex in
G. When applicable, hip(G) = locp(G) − p.

3. For all p, q ∈ V , dladp,q is applicable to G if and only if p and q are adjacent
negative vertices in G. When applicable, dladp,q(G) = (V \ {p, q}, E′), where
E′ is obtained from E by complementing the edges that join vertices in
NG(p) with vertices in NG(q). This means that (x, y) ∈ (E′ \ E) ∪ (E \ E′)
if and only if

x ∈ NG(p) \ NG(q) and y ∈ NG(q), or
x ∈ NG(q) ∪ NG(q) and y ∈ (NG(p) \ NG(q)) ∪ (NG(q) \ NG(p)), or
x ∈ NG(q) \ NG(p) and y ∈ NG(p).

We say that a composition ψ of ld, hi, and dlad operations is a reduction
strategy for graph G if ψ(G) = ∅.

Example 2. The signed overlap graph associated to string u in Example 1 is
depicted in Fig. 5

(a) (b) (c)

Fig. 5. (a) The graph Gu in Example 2; (b) hi4(Gu); (c) dlad2,3(Gu)

Without risk of confusion, for both the string rules and for the graph rules we
set Ld = {ldp | p ≥ 2}, Hi = {hip | p ≥ 2}, and Dlad = {dladp,q | p, q ≥ 2, p �= q}.

Note that the process of gene assembly, and all its formalizations, as sorting
permutations, reducing strings, or reducing graphs, are non-deterministic. We
illustrate this in the following example.

Example 3. Consider a double occurrence string u = 562324573467. There are
at least two reduction strategies for u: φ1 = ld7 ◦ ld4 ◦ dlad5,6 ◦ dlad2,3 and φ2 =
ld5 ◦ ld6 ◦ dlad2,3 ◦ dlad4,7. Indeed,

φ1(u) = (ld7 ◦ ld4 ◦ dlad5,6)(56457467) = (ld7 ◦ ld4)(7447) = ld7(77) = Λ,

φ2(u) = (ld5 ◦ ld6 ◦ dlad2,3)(56232635) = (ld5 ◦ ld6)(5665) = ld5(55) = Λ.

Note that the two strategies have the same number of ld operations, albeit ap-
plied to different pointers.

Complexity Measures for Gene Assembly 49

The following result, adapted from [6] provides an invariant for all sorting strate-
gies of a given string.

Theorem 1 ([6]). Let u be a signed double occurrence string and φ1, φ2 two
reduction strategies for u. Then φ1 and in φ2 contain the same number of ld
operations.

4 First Complexity Measure: The Minimal Subset of
Operations Sufficient for Gene Assembly

We introduce in this section our first measure of gene complexity in terms of the
smallest set of (types of) operations that are capable to assemble a given gene.
Our formalism in this section will be that of signed double occurrence strings.
Note that a similar presentation may also be done in terms of signed graphs,
see [5].

The concept of (gene) complexity here is the following. For a given string x,
consider reduction strategies ϕ for x, and take the set Sϕ ⊆ {Ld, Hi, Dlad} of
those types of operations that are used in ϕ. We say that Sϕ is a reduction set
for x.

Example 4. Note that a string may have several reduction sets. For instance,
if u = 23̄2̄434, then ϕ1(u) = dlad3,4 ◦ hi2 is a reduction strategy for u: ϕ1 =
dlad3,4(3434) = Λ. Thus, {Hi, Dlad} is a reduction set for u. However, {Hi} is
also a reduction set for u. Indeed, ϕ2 = hi2 ◦ hi4 ◦ hi3 is a reduction strategy for u:
ϕ2(u) = (hi2 ◦ hi4)(24̄24) = hi2(22̄) = Λ.

We say that a set S ⊆ {Ld, Hi, Dlad} is a minimal reduction set for X , if for any
T ⊆ S, where T is a reduction set for X, we have T = S.

As we will observe at the end of this section, a string X has a unique minimal
reduction set. Anticipating this result, the following notion of complexity is well
defined.

Definition 1. The complexity C1(X) of a signed double occurrence string X is
a minimal reduction set of X.

To prove the result announced above, we need to consider for every S ⊆
{Ld, Hi, Dlad}, what are the strings with S as a reduction set. The first com-
plete characterization was given in [5] in the case of realistic strings. The results
were then extended to signed double occurrence strings in [1]; the characteriza-
tions in [1] are based in part on a notion of break point graphs. For simplicity,
we only consider here the case of elementary strings and the approach in [5].

Theorem 2 ([5]). Let u be an elementary string.

(i) {Ld} is a reduction set for u if and only if u contains neither overlap, nor
signed letters.

(ii) {Ld, Hi} is a reduction set for u if and only if |u| ≤ 2 or u contains at least
one positive pointer.

50 T. Harju et al.

(iii) {Ld, Dlad} is a reduction set for u if and only if u contains no signed
letters.

(iv) {Ld, Hi, Dlad} is a reduction set for any signed double occurrence string.

We omit in this paper the characterizations of the strings with {Hi}, {Dlad}, or
{Hi, Dlad} as reduction sets. Such characterization have been given in [5].

Example 5. (a) The R1 gene of S.nova is described by the MDS sequence
M1M2M3M4M5M6. Its associated string 2233445566 has {Ld} as a mini-
mal reduction set.

(b) {Dlad} is a minimal reduction set for string 2323.
(c) {Hi} is a minimal reduction set for string 232̄3.
(d) String 23̄2̄3 has two reduction strategies: ld3 ◦ hi2 and ld2 ◦ hi3. Thus, {Ld, Hi}

is a minimal reduction set for it.
(e) The α-TP gene of S.nova is described by the MDS sequence M1M3M5M9

M11M2M4M6M8M10M12M13M14. Its associated string 2345691011122345
678910111213131414 has {Ld, Dlad} as a minimal reduction set.

(f) The actin I gene of S.nova is described by the MDS sequence M3M4M6M5
M7M9M2M1M8. Its associated string 344567567893̄2̄289 has {Ld, Hi, Dlad}
as a minimal reduction set.

We can now prove the following result.

Theorem 3. Let u �= Λ be an elementary string and S1, S2 two minimal reduc-
tion sets for u. Then S1 = S2.

Proof. Assume that there is an elementary string u �= Λ with two different
minimal reduction sets S1, S2. Clearly, S1 �⊆ S2 and S2 �⊆ S1. We then have the
following cases:

(i) S1 = {Ld}, S2 = {Hi}; (vi) S1 = {Ld, Hi}, S2 = {Hi, Dlad};
(ii) S1 = {Ld}, S2 = {Dlad}; (vii) S1 = {Ld, Dlad}, S2 = {Hi};
(iii) S1 = {Ld}, S2 = {Hi, Dlad}; (viii) S1 = {Ld, Dlad}, S2 = {Hi.Dlad};
(iv) S1 = {LdHi}, S2 = {Dlad}; (ix) S1 = {Hi}, S2 = {Dlad}.
(v) S1 = {Ld, Hi}, S2 = {Ld, Dlad};

In all cases except (ii) and (vi) we have that one of the reduction sets contains
Hi, while the other does not. Consequently, according to one reduction set, u
should have at least one signed letter, while according to the other reduction
set, u should have none. Thus, u = Λ, a contradiction.

In Cases (ii) and (vi) u has two reduction strategies: one containing at least one
Ld- operation, another containing none. This is a contradiction by Theorem 1.

Corollary 1. The complexity measure C1 is well defined.

5 Second Complexity Measure: Weights Associated with
the Assembly Operations

The concept of our second measure of complexity is straightforward: a gene is
more “complex” than another if it requires more “effort” to be assembled. The

Complexity Measures for Gene Assembly 51

simplest way to measure the “effort” required to assemble a given gene is through
counting the number of operations required in the reduction.

Definition 2. Let u be a signed double occurrence string and ϕ a reduction
strategy for u. We denote by C

(1)
2 (ϕ) the number of ld, hi, and dlad operations

in ϕ. Then the complexity C
(1)
2 (u) is defined as:

C
(1)
2 (u) = min{C

(1)
2 (ϕ) | ϕ is a reduction strategy for u}.

Example 6. Consider u = 23̄2̄434 and reduction strategies ϕ1, ϕ2 for u as given
in Example 4. Then C

(1)
2 (ϕ1) = 2, while C

(1)
2 (ϕ2) = 3. It is easy to see that

C
(1)
2 (u) = 2.

Clearly, to find the complexity C
(1)
2 (u) for a given string u, one needs to find the

length of a reduction strategy ϕ for u using maximum number of dlad operations.
Indeed, note that ld and hi operations reduce the length of the string by two,
while dlad operations reduce the length of the string by four.

Finding the complexity C
(1)
2 (u) is easy if C1(u) �= {Hi, Dlad}. Indeed, based on

Theorem 1, it is easy to see that in this case, for any two reduction strategies ϕ

and ψ for u, we have C
(1)
2 (ϕ) = C

(1)
2 (ψ). It is currently unknown how to compute

C
(1)
2 (u) if C1(u) = {Hi, Dlad}.
Considering the molecular model of the dlad operations, with a double fold and

two simultaneous recombination, it may sometimes be undesirable to maximize
the number of dlad operations as done when computing C

(1)
2 (u). A different idea

is to associate weights with each of ld, hi and dlad and consequently to any
reduction strategy. Associating weights to the operations may be done in at
least two ways: either by introducing a (fixed) weight for each type of operation,
or through variable weights depending on the type of operation and the string
to which the operation applies. We illustrate both ideas in the following.

Definition 3. For any operation f ∈ Ld∪Hi∪Dlad, we define C
(2)
2 (f) as follows:

C
(2)
2 (f) = c1, if f ∈ Ld; C

(2)
2 (f) = c2, if f ∈ Hi; and C

(2)
2 (f) = c3, if f ∈ Dlad,

where c1, c2, c3 ≥ 0. Then for a composition ϕ = fk ◦ · · · ◦ f1, fi ∈ Ld∪Hi∪Dlad,
we let C

(2)
2 (ϕ) =

∑k
i=1 C

(2)
2 (fi).

For a signed double occurrence string u, the complexity C
(2)
2 (u) is defined as

C
(2)
2 (u) = min{C

(2)
2 (ϕ) | ϕ is a reduction strategy for u}.

Note that if we define C
(2)
2 (f) = 1, for any f ∈ Ld ∪ Hi ∪ Dlad, then C

(2)
2 = C

(1)
2 :

we only count the number of operations in each strategy.

Example 7. Let u = 23̄2̄434 and let ϕ1, ϕ2 be reduction strategies for u as in
Examples 4 and 6. Let assign the weights as follows: C

(2)
2 (f) = 0 for f ∈ Ld,

C
(2)
2 (f) = 1 for f ∈ Hi, C

(2)
2 (f) = 3 for f ∈ Dlad. Then C

(2)
2 (ϕ1) = 4 and

C
(2)
2 (ϕ2) = 3.

52 T. Harju et al.

A more refined measure of complexity may be introduced depending on the
length of the strings “manipulated” by each operation: the length of the string
inverted by hip, and the length of the strings translocated by dladp,q. In the case
of ldp, the excised string is always the same, pp and so, for simplicity, we may
set the complexity of ld equal to zero. Formally this is defined as follows.

Definition 4. Let u be a signed double occurrence string.

(i) For any operation ldp applicable to u, we let C
(3)
2 (ldp, u) = 0.

(ii) For any operation hip applicable to u, we let C
(3)
2 (hip, u) = |u2|, where

u = u1pu2pu3, for some strings u1, u2, u3.
(iii)For any operation dladp,q applicable to u, we let C

(3)
2 (dladp,q, u) = |u2|+|u4|,

where u = u1pu2qu3pu4qu5, for some strings u1, u2, u3, u4, u5.

For a reduction strategy ϕ = fk ◦ · · · ◦ f1 for u, fi ∈ Ld ∪ Hi ∪ Dlad, we
let C

(3)
2 (ϕ, u) =

∑k
i=1 C

(3)
2 (fi, (fi−1 ◦ · · · f1)(u)). Then we define the complexity

C
(3)
2 (u) by

C
(3)
2 (u) = min{C

(3)
2 (ϕ, u) | ϕ is a reduction strategy for u}.

Example 8. Let u = 344567567893̄2̄289 be the string associated with the gene
actin I in S.nova. Then ϕ1 = ld6 ◦ dlad7,5 ◦ ld4 ◦ hi2 ◦ hi8 ◦ hi9 ◦ hi3 is a reduction
strategy for u:

u1 = hi3(u) = 9̄8̄7̄6̄5̄7̄6̄5̄4̄4̄2̄289,

u2 = hi9(u1) = 8̄2̄2445675678,

u3 = hi8(u2) = 7̄6̄5̄7̄6̄5̄4̄4̄2̄2,

u4 = hi2(u3) = 7̄6̄5̄7̄6̄5̄4̄4̄,
u5 = ld4(u4) = 7̄6̄5̄7̄6̄5̄,
u6 = dlad7,5(u5) = 6̄6̄,

u7 = ld6(u6) = Λ.

Hence C
(3)
2 (ϕ1, u) = C

(3)
2 (hi3, u) + C

(3)
2 (hi9, u1) + C

(3)
2 (hi8, u2) + C

(3)
2 (hi2, u3) +

C
(3)
2 (ld4, u4)+C

(3)
2 (dlad7,5, u5)+C

(3)
2 (ld6, u6) = 10+12+10+0+0+2+0 = 34.

Note that ϕ2 = hi3 ◦ hi2 ◦ dlad8,9 ◦ ld7 ◦ dlad5,6 ◦ ld4 is also a reduction strategy
for u:

v1 = ld4(u) = 3567567893̄2̄289,

v2 = dlad5,6(v1) = 377893̄2̄289,

v3 = ld7(v2) = 3893̄2̄289,

v4 = dlad8,9(v3) = 33̄2̄2,

v5 = hi2(v4) = 33̄,
v6 = hi3(v5) = Λ.

Thus C
(3)
2 (ϕ2, u) = C

(3)
2 (ld4, u) + C

(3)
2 (dlad5,6, v1) + C

(3)
2 (ld7, v2) + C

(3)
2 (dlad8,9,

v3) + C
(3)
2 (hi2, v4) + C

(3)
2 (hi3, v5) = 0.

Complexity Measures for Gene Assembly 53

A natural question here is: what are the strings with the minimal C
(3)
2 (u) com-

plexity? We discuss this issue in the next section, where we consider the simple
operations for gene assembly.

6 Third Complexity Measure: Simple Operations

As discussed above, one way to introduce a complexity measure for gene assembly
is by considering the length of the molecular folds involved in every step of the
assembly. We consider in this section simple versions of ld, hi, and dlad where the
operations can only be applied on the shortest possible folds. It is known that
Ld∪Hi∪Dlad is a complete model, in the sense that any gene (alternatively: signed
permutation, string, or graph) may be assembled in this model, see [7]. It turns
out that the simple operations are not complete: there are certain patterns that
cannot be assembled through simple operations. Remarkably though, all known
micronuclear gene sequences, see [2], can indeed be assembled through simple
operations.

The molecular model for simple ld, hi, and dlad was introduced in [11]. Due
to lack of space, we only give here a short intuitive presentation, followed by
its formalization as rewriting rules for signed permutations. For formalizations
on the level of MDS descriptors and signed double occurrence strings we refer
to [11].

As observed in Section 3, ld must always be simple – the excised sequences
may never contain coding blocks for the assembly to succeed. In simple hi, one
only inverts sequences containing at most one MDS. Similarly, in simple dlad, the
two sequences that are translocated may contain altogether at most one MDS.
We refer to [11] for details.

As noted in Section 3, when working with signed permutations, we ignore the
ld operation and model gene assembly as a process of sorting a signed permu-
tation rather than as a process of pointer elimination. Simple hi and dlad are
modeled through the following operations for signed permutations.

1. For each p ≥ 1, shp is defined as follows:

shp(xp . . . (p + i)(p + k) . . . (p + i + 1)y) = xp . . . (p + i)(p + i + 1) . . . (p + k)y,

shp(x(p + i) . . . p(p + i + 1) . . . (p + k)y) = xp . . . (p + i)(p + i + 1) . . . (p + k)y,

shp(x(p + i + 1) . . . (p + k)(p + i) . . . p) = x(p + k) . . . (p + i + 1)(p + i) . . . py,

shp(x(p + k) . . . (p + i + 1)p . . . (p + i)y) = x(p + k) . . . (p + i + 1)(p + i) . . . py,

where k > i ≥ 0 and x, y, z are signed strings over Σn. Let Sh = {shi | 1 ≤
i ≤ n}.

2. For each p, 2 ≤ p ≤ n − 1, sdp is defined as follows:

sdp(x p . . . (p + i) y (p − 1) (p + i + 1) z) = xy(p − 1)p . . . (p + i)(p + i + 1)z,

sdp(x (p − 1)(p + i + 1)yp . . . (p + i)z) = x(p − 1)p . . . (p + i)(p + i + 1)yz,

54 T. Harju et al.

where i ≥ 0 and x, y, z are signed strings over Σn. We also define sdp as
follows:

sdp(x(p + i + 1)(p − 1)y(p + i) . . . pz) = x (p + i + 1)(p + i) . . . p(p − 1)yz,

sdp(x(p + i) . . . py(p + i + 1)(p − 1)z) = xy(p + i + 1)(p + i) . . . p(p − 1)z,

where i ≥ 0 and x, y, z are signed strings over Σn. Let Sd = {sdi, sdi | 1 ≤
i ≤ n}.

We say that a signed permutation π over a set of integers {i, i+1, . . . , i+ l} is
sortable if there are operations φ1, . . . , φk ∈ Sh ∪Sd such that (φk ◦ . . . ◦ φ1)(π)
is a sorted permutation. We say that π is blocked if neither an sh operation, nor
an sd operation is applicable to π and π is not sorted.

Let φ = φk ◦ . . .◦φ1, φi ∈ Sh ∪Sd, for all 1 ≤ i ≤ k. We say that φ is a strategy
for π if φ(π) is either sorted or blocked. In the former case we say that φ is a
sorting strategy, while in the latter case we say that φ is a unsuccessful strategy
for π.

Example 9. Let π = 2 4 3 1 be a signed permutation. Then (sh1 ◦ sd3)(π) =
sh1(2 3 4 1) = 4 3 2 1, a sorted permutation.

One may introduce “elementary” versions of sh and sd, where only one letter is
rewritten in every step, rather than strings as in sh and sd. We introduce them
in the following.

3. For each p ≥ 1, ehp is defined as follows:

ehp(x p(p + 1) y) = x p (p + 1) y, ehp(x (p + 1) p y) = x (p + 1) p y,
ehp(x p (p + 1) y) = x p (p + 1) y, ehp(x (p + 1) p y) = x (p + 1) p y,

where x, y are signed strings over Σn. LetEh = {shp | 1 ≤ p ≤ n}.
4. For each p ≥ 1, 2 ≤ p ≤ n − 1, edp is defined as follows:

edp(x p y (p − 1) (p + 1) z) = x y (p − 1) p (p + 1) z,

edp(x (p − 1) (p + 1) y p z) = x (p − 1) p (p + 1) y z,

edp(x (p + 1) (p − 1) y p z) = x (p + 1) p (p − 1) y z,

edp(x p y (p + 1) (p − 1) z) = x y (p + 1) p (p − 1) z,

where x, y, z are signed strings over Σn. Let Ed = {sdp | 1 ≤ p ≤ n}.

Example 10. (a) Let π = 3 45 6 12. Then (eh1 ◦ eh6 ◦ eh4 ◦ eh3)(π) = 3 4 5 6 1 2 is
a sorted permutation.
(b) Let π′ = 3 4 5 6 12. Then π′ is not Eh∪Ed-sortable. Indeed, no eh or ed
operation is applicable to π′.

Lemma 1. For any signed permutation π, if ehp(edp, resp.) is applicable to π,
for some p, then shp(sdp, resp.) is also applicable to π and ehp(π) = shp(π)
(edp(π) = sdp(π), resp.)

Complexity Measures for Gene Assembly 55

Note that Lemma 1 does not hold in the reverse direction: if π = 1 4 2 3, then
sd2(π) = 1 2 3 4, while ed2 is not applicable to π.

As illustrated by the next example, it turns out that the Eh∪Ed-model is
nondeterministic.

Example 11. Let π = 1 3 5 2 4. Note that π has both sorting and non-sorting
strategies in the elementary model. Indeed, (ed2 ◦ ed4)(π) = 1 2 3 4 5, a sorted
permutation. On the other hand, π′ = ed3(π) = 1 5 2 3 4 is not sorted and no eh
or ed operation is applicable to π′.

Due to nondeterminism, deciding whether a given permutation is Eh-, Ed-, or
Eh∪Ed-sortable is difficult. A complete answer may be found in [10], based on
an involved notion of dependency graph.

The simple model however is different. A permutation may indeed have several
different strategies, but they are either all sorting, or all non-sorting. Moreover,
[13] also defines a notion of structure of a permutation and notes that the re-
sults obtained after applying these strategies, though different, have the same
structure. In this way, deciding whether or not a given permutation π is Sh-,
Sd-, or Sh ∪Sd-sortable is easy: simply apply operations from the desired set in
an arbitrary order; if the final blocked permutation is sorted, then the answer is
‘yes’, otherwise the answer is ‘no’: there are no sorting strategies for π.

Example 12. (a) The permutation π1 = 4671235 has several sorting strategies.
Here are some of them:

π
(1)
1 = sd5 ◦ sh6 ◦ sh1(π1) = 4567123,

π
(2)
1 = sd5 ◦ sh6 ◦ sh2(π1) = 4567123,

π
(3)
1 = sd4 ◦ sh6 ◦ sh2(π1) = 6712345,

π
(4)
1 = sh6 ◦ sh1 ◦ sd4(π1) = 6712345.

(b) The permutation π2 = 13685724 has several unsuccessful strategies. Here
are some of them:

π
(1)
2 = sd2 ◦ sd7(π2) = 12367854,

π
(2)
2 = sd2 ◦ sd6(π2) = 12385674,

π
(3)
2 = sd3 ◦ sd7(π2) = 18567234,

π
(4)
2 = sd3 ◦ sd6(π2) = 18567234.

7 Fourth Complexity Measure: Parallelism

The previous three measures of complexity all deal with sequential compositions
of operations leading to the assembly of a given gene. We introduce in this section
a fourth measure of complexity dealing with more general parallel assemblies
of genes.

56 T. Harju et al.

A systematic study of parallelism for gene assembly has been initiated in [15].
We only consider in this paper a graph-based presentation of parallelism, al-
though a string-based study is also possible, see [15].

Intuitively, a set of operations can be applied in parallel to a gene pattern
if only if each operation’s applicability is independent of the other’s. In other
words, a number of operations can be applied in parallel to a gene pattern if
they can be (sequentially) applied in any order to that gene pattern. Note that
this is consistent with how parallelism and concurrency are defined in computer
science.

E.g., the C2 gene of S.nova described by the MDS sequence M1M2M3M4
requires three Ld operations. The three Lds can be applied independently of
each other and so, they can be applied in parallel. Also, the micronuclear gene
R1 of S.nova described by the MDS sequence M1M2M3M4M5M6, requires five
Ld operations, and all of them can be applied at once. Consequently, its parallel
complexity is one, the same as gene C2.

Parallelism can be defined in terms of signed graphs as follows.

Definition 5 ([15]). Let S ⊆ Ld ∪ Hi ∪ Dlad be a set of k rules and let G =
(V, E, σ) be a signed graph. We say that the rules in S can be applied in parallel
to G if for any ordering ϕ1, ϕ2, . . . , ϕk of S, the composition ϕk ◦ · · · ◦ ϕ1 is
applicable to G.

The following result provides a simple criterium for two rules to be applicable
in parallel.

Lemma 2 ([15]). Let G = (V, E, σ) be a signed graph and let ϕ, ψ ∈ Ld ∪ Hi ∪
Dlad be two rules applicable to G with dom(ϕ) ∩ dom(ψ) = ∅.

(i) If ϕ ∈ Ld, then ϕ and ψ can be applied in parallel to G.
(ii) If ϕ = hip with p ∈ V , then ϕ and ψ can be applied in parallel to G if and

only if NG(p) ∩ dom(ψ) = ∅.
(iii) If ϕ, ψ ∈ Dlad, then ϕ and ψ can applied in parallel to G if and only if the

subgraph of G induced by dom(ϕ) ∪ dom(ψ) is not isomorphic to either C4
or D4.

According to the definition, if a set of rules is applicable in parallel to a signed
graph, then any composition of these rules is applicable to that graph. This
definition does not require that the result of applying different compositions of
rules must be the same. However, it can be proved that this is indeed the case.

Lemma 3 ([15]). If ϕ, ψ ∈ Ld∪Hi∪Dlad are applicable in parallel to the signed
graph G, then ϕ(ψ(G)) = ψ(ϕ(G)).

The general case follows now easily from Lemma 3.

Theorem 4 ([15]). Let G be a signed graph and let S ⊆ Ld ∪Hi ∪Dlad be a set
of rules applicable in parallel to G. Then for any two compositions ϕ, ϕ′ of the
rules in S, ϕ(G) = ϕ′(G).

Based on Theorem 4 we can now define the notion of parallel complexity.

Complexity Measures for Gene Assembly 57

Definition 6. Let G be a signed graph. If S ⊆ Ld ∪ Hi ∪ Dlad is a set of rules
applicable in parallel to G, then we say that S is applicable to G and we denote by
S(G) the graph obtained as a result of applying to G any sequential composition
of the rules in S.

If S1, S2, . . . , Sk ⊆ Ld ∪ Hi ∪ Dlad are disjoint sets of rules, Si ∩ Sj = ∅,
for i �= j, we say that Sk ◦ . . . ◦ S1 is applicable to G if Si is applicable to
(Si−1 ◦ . . . ◦ S1)(G), for all 1 ≤ i ≤ k. If (Sk ◦ . . . ◦ S1)(G) = ∅, then we say
that Sk ◦ . . . ◦ S1 is a parallel reduction strategy for G. We say that the parallel
complexity of S = Sk ◦ . . . ◦ S1 is C4(S) = k.

We define the parallel complexity C4(G) of G as follows:

C4(G) = min{C4(S) | S is a parallel reduction strategy for G}.

Example 13. (a) Any discrete graph can be reduced in one parallel step.
(b) The smallest graph with parallel complexity two is shown in Fig. 6(a).
(c) The smallest graph with parallel complexity three is shown in Fig. 6(b).

(a) (b)

Fig. 6. (a) A graph with parallel complexity two; (b) A graph with parallel complexity
three

Example 14. Let G be the signed overlap graph associated with actin I gene in S.
nova, illustrated in Fig. 7. There are only 6 different maximal parallel strategies
to reduce G:

S1 = {ld7, hi3} ◦ {hi2, ld4, dlad5,6, dlad8,9};
S2 = {ld6, hi8, hi9} ◦ {hi2, hi3, ld4, dlad5,7};
S3 = {ld6, hi3} ◦ {hi2, ld4, dlad5,7, dlad8,9};
S4 = {ld7, hi8, hi9} ◦ {hi2, hi3, ld4, dlad5,6};
S5 = {ld5, hi3} ◦ {hi2, ld4, dlad6,7, dlad8,9};
S6 = {ld5, hi8, hi9} ◦ {hi2, hi3, ld4, dlad6,7}.

Note that there are 3060 sequential strategies to reduce this graph (and as-
semble the gene), see [6] – the reason for this difference is that many sequential
strategies coincide modulo commutation of some rules. Those rules may be ap-
plied in parallel.

The following problem seems to be difficult: check whether or not a given set of
rules can be applied in parallel to a given signed graph. In the next theorem we
give a simple criterium in the case when at most two dlad rules are to be applied.
Giving a general answer, for an arbitrary number of dlad rules, remains an open
problem.

58 T. Harju et al.

Fig. 7. The signed overlap graph associated with string 3 4 4 5 6 7 5 6 7 8 9 3 2 2 8 9, both
representing the structure of the micronuclear gene actin I in S.nova

Theorem 5 ([15]). Let G be a signed graph and S ⊆ Ld ∪ Hi ∪ Dlad a set of
rules containing at most two dlad’s. Let P be the union of domains of rules in
S with P+ = {p ∈ P | σ(p) = +}, and P− = P \ P+. Then the rules in S can
be applied in parallel to G if and only if the following conditions are satisfied:

(i) The subgraph induced by P+ is discrete. Moreover, there is no edge between
vertices in P+ and vertices in P−.

(ii) The subgraph induced by P− does not contain induced squares C4 or dia-
monds D4.

Fig. 8. A negative graph with parallel complexity three

Two conjectures were given in [15] regarding the parallel complexity of graphs.
We proposed that any negative graph may be reduced in at most two parallel
steps and that any graph may be reduced in at most four parallel steps. Revis-
iting these conjectures and based on a newly available gene assembly simulator,
see [18], we give in the following counterexamples to both these conjectures. It
is currently unknown if the parallel complexity of arbitrary graphs is bounded.
Several classes of graphs are shown to have bounded parallel complexity in [9].

Example 15. (a) The negative graph G3 depicted in Fig. 8 has parallel complex-
ity three. (As a matter of fact, an automated search shows that this is a small-
est such graph in terms of number of vertices.) Indeed, one three-step parallel
strategy for G3 is {ld6} ◦ {dlad5,7} ◦ {dlad1,2, dlad3,4}. Some straightforward
analysis shows that no two-step or one-step parallel strategy for G3 exists.

Complexity Measures for Gene Assembly 59

Fig. 9. A graph with parallel complexity five

(b) The graph G5 depicted in Fig. 9 has parallel complexity 5. One 5-step par-
allel reduction for G5 is {ld8, ld12}◦{ld6, ld10, hi7, hi11}◦{hi5, hi9}◦{hi2, hi4}◦
{hi1, hi3}.

Acknowledgments. The authors gratefully acknowledge support by Academy of
Finland (TH – project 39802, CL – project 203667, IP – project 108421) and
NSF (GR – grant 0121422).

References

1. Brijder, R., Hoogeboom, H.J., Rozenberg, G., Reducibility of gene patterns in
cliates using the breakpoint graph, to appear in Theoret. Comput. Sci (2006)

2. Cavalcanti, A., Clarke, T.H., Landweber, L., MDS IES DB: a database of macronu-
clear and micronuclear genes in spirotrichous ciliates. Nucleic Acids Research 33
(2005) 396–398.

3. Chang, W.J., Bryson, P.D., Liang, H., Shin, M.K., Landweber, L., The evolution-
ary origin of a complex scrambled gene. Proceedings of the National Academy of
Sciences of the US 102(42) (2005) 15149–15154

4. Chang, W.J., Kuo, S., Landweber, L., A new scrambled gene in the ciliate Urolep-
tus. Gene (2006), to appear

5. Ehrenfeucht, A., Harju, T., Petre, I., and Rozenberg, G. (2002) Characterizing the
micronuclear gene patterns in ciliates. Theory of Comput. Syst. 35 pp 501–519

6. Ehrenfeucht, A., Harju, T., Petre, I., Prescott, D. M., and Rozenberg, G. (2004)
Computation in Living Cells: Gene Assembly in Ciliates, Springer

7. Ehrenfeucht, A., Petre, I., Prescott, D. M., and Rozenberg, G., Universal and simple
operations for gene assembly in ciliates. In: V. Mitrana and C. Martin-Vide (eds.)
Words, Sequences, Languages: Where Computer Science, Biology and Linguistics
Meet, Kluwer Academic, Dortrecht, (2001) pp. 329–342

8. Ehrenfeucht, A., Prescott, D. M., and Rozenberg, G., Computational aspects of
gene (un)scrambling in ciliates. In: L. F. Landweber, E. Winfree (eds.) Evolution
as Computation, Springer, Berlin, Heidelberg, New York (2001) pp. 216–256

60 T. Harju et al.

9. Harju, T., Li, C., and Petre, I., Results on parallel reductions of signed overlap
graphs, manuscript (2006)

10. Harju, T., Petre, I., Rogojin, V., and Rozenberg, G., Simple operations for gene
assembly. In: A. Carbone, N. A. Pierce (eds.) DNA Computing: 11th Interna-
tional Workshop on DNA Computing, Lecture Notes in Comput. Sci. 3892 (2006),
96 – 111.

11. Harju, T., Petre, I., and Rozenberg, G., Modelling simple operations for gene as-
sembly. In: J.Chen, N.Jonoska, G.Rozenberg (Eds.) Nanotechnology: Science and
Computation (2006) 361–376

12. Jahn, C. L., and Klobutcher, L. A., Genome remodeling in ciliated protozoa. Ann.
Rev. Microbiol. 56 (2000), 489–520.

13. Langille, M., Petre, I. (2006) Simple gene assembly is deterministic. Fundamenta
Informaticae IOS Press

14. Harju, T., Petre, I., Rogojin, V., and Rozenberg, G. (2006), Simple operations for
gene assembly, In: Proceedings of the 11th International Meeting on DNA-based
computers DNA11 Lecture Notes in Computer Science (2006) Springer

15. Harju, T., Li, C., Petre, I., and Rozenberg, G., Parallelism in gene assemby, In:
Proceedings of the 10th International Meeting on DNA-based computers DNA 10,
Milan, Italy, Lecture Notes in Computer Science 3384 (2005) 140–150

16. Landweber, L. F., and Kari, L., The evolution of cellular computing: Nature’s
solution to a computational problem. In: Proceedings of the 4th DIMACS Meeting
on DNA-Based Computers, Philadelphia, PA (1998) pp. 3–15

17. Landweber, L. F., and Kari, L., Universal molecular computation in ciliates. In:
L. F. Landweber and E. Winfree (eds.) Evolution as Computation, Springer, Berlin
Heidelberg New York (2002)

18. Petre, I., Skogman, S. (2006) Gene assembly simulator. http://combio.abo.fi/
simulator/simulator.php

19. Prescott, D. M., The DNA of ciliated protozoa. Microbiol. Rev. 58(2) (1994)
233–267

20. Prescott, D. M., DNA manipulations in ciliates. In: W.Brauer, H.Ehrig,
J.Karhumäki, A.Salomaa (eds.) Formal and Natural Computing: essays dedicated
to Grzegorz Rozenberg, LNCS 2300, Springer (2002) 394–417

21. Prescott, D. M., Ehrenfeucht, A., and Rozenberg, G., Molecular operations for
DNA processing in hypotrichous ciliates. Europ. J. Protistology 37 (2001) 241–260

22. Swanton, M.T., Heumann, J.M., Prescott, D.M., Gene-sized DNA molecules of the
macronuclei in three species of hypotrichs: size distribution and absence of nicks.
Chromosoma 77 (1980) 217–227

23. Yao, M.C., Fuller, P., Xi, X., Programmed DNA Deletion As an RNA-Guided
System of Genome Defense, Science 300 (2003) 1581–1584

http://combio.abo.fi/simulator/simulator.php
http://combio.abo.fi/simulator/simulator.php

Learning Relations from Biomedical Corpora

Using Dependency Trees

Sophia Katrenko and Pieter Adriaans

Human-Computer Studies Laboratory,
University of Amsterdam,

Kruislaan 419, 1098VA, Amsterdam, The Netherlands
katrenko@science.uva.nl, pietera@science.uva.nl

Abstract. In this paper we address the relation learning problem in
the biomedical domain. We propose a representation which takes into
account the syntactic information and allows for using different machine
learning methods. To carry out the syntactic analysis, three parsers,
LinkParser, Minipar and Charniak parser were used. The results we
have obtained are comparable to the performance of relation learning
systems in the biomedical domain and in some cases out-perform them.
In addition, we have studied the impact of ensemble methods on learning
relations using the representation we proposed. Given that recall is very
important for the relation learning, we explored the ways of improving
it. It has been shown that ensemble methods provide higher recall and
precision than individual classifiers alone.

1 Introduction

Not only the number of publications in the biomedical domain grows rapidly
every year, there are also many approaches proposed to how to handle such
amount of data.

These approaches primarily consider such tasks as text mining, information
extraction and information retrieval. Information retrieval focuses on the re-
trieval of the full documents, while the goal of information extraction is to find
text fragments relevant to the user need. However, it is often useful to get more
fine-grained information, for instance, the list of biomedical instances or rela-
tions. Such information might be especially important for the curation of existing
resources, such as databases of interactions (Albert et al., 2003).

The paper is organized as follows. We start with the discussion of the related
work and problem statement. In Section 3, we present our approach and provide
motivation for it. Further, we test our approach on two data sets for the interac-
tion extraction. We report on our results and conclude with the discussion and
outlook for the future work.

2 Problem Statement and Related Work

The biggest collection of medical documents is Medline, with 2,000 citations added
everyweek. The large size of this collection makes it impossible to annotate it all by

K. Tuyls et al. (Eds.): KDECB 2006, LNBI 4366, pp. 61–80, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

62 S. Katrenko and P. Adriaans

humans. Consequently, there have been several attempts to create smaller anno-
tated corpora based on Medline, such as Genetag used for the gene/protein named
entity recognition (NER) (Tanabe et al., 2005), or MedTag, the corpus compris-
ing Genetag, MedPost and ABGene (Smith et al., 2005). There have also been
corpora created with a special purpose to be used by the various challenges, e.g.
corpus of the annotated gene-protein relations for the ”Genic Interaction Extrac-
tion Challenge” (Nédellec, 2005).

In general, the relation learning problem can be seen as a two-step process.
First, the relation arguments have to be identified. Further, it is necessary to
check whether the relation holds. This setting has also been used for the relation
discovery in other domains (Zelenko et al., 2003), moreover, it is often assumed
that the arguments have already been found. In this case, the relation learning is
reduced to the second step which involves procedures enabling such verification.
It has been shown by Bunescu et al. (2005) that provided the correct names of
proteins are given, the accuracy of relation discovery is much higher.

The relation learning task can be formulated in the following way:

Definition 1 (Relation learning). Given a data set D 1 and an n-ary relation
Rel with the arguments X, Y . . . Z find all instances x ∈ X, y ∈ Y, . . . , z ∈ Z
(x, y, z ∈ D), such that Rel(x, y, . . . , z) holds.

An example of the relation learning task is given below. In the typical scenario,
one starts with the preprocessing (which includes such steps as tokenization and
might require some additional analysis depending on the method used). The
first step consists of named entity recognition, where all proteins occurring in
the sentence are identified. There are three of them, retinoblastoma, RIZ, and
E1A. The next step is to detect if there are any relations among them. The cor-
rect answer is an interaction between retinoblastoma and RIZ, while E1A does
not participate in any interaction.

Input: The retinoblastoma protein binds to RIZ, a zing-finger pro-
tein that shares an epitope with the adenovirus E1A protein.
Preprocessing: The| retinoblastoma | protein | binds | to | RIZ |
, | a | zing − finger | protein | that | shares | an | epitope | with |
the | adenovirus | E1A | protein | . |
Step1:The〈prot〉 retinoblastoma 〈/prot〉 protein binds to 〈prot〉
RIZ 〈/prot〉 , a zing-finger protein that shares an epitope with the
adenovirus 〈prot〉 E1A 〈/prot〉 protein .
Step2: The 〈p1 pair=”1”〉〈prot〉retinoblastoma〈/prot〉〈/p1〉 pro-
tein binds to 〈p1 pair=”1”〉〈prot〉RIZ〈/prot〉〈/p1〉, a zing-
finger protein that shares an epitope with the adenovirus
〈prot〉E1A〈/prot〉 protein.
Output: interaction(retinoblasma, RIZ)

1 Where a data set D can be text, semi-structured data, etc.

Learning Relations from Biomedical Corpora Using Dependency Trees 63

An interesting observation has been made by Cohen and Hersh (2005) who con-
sidered binary biomedical relations. Although the accuracy of relation extraction
for many domains (such as news article extraction) crucially depends on the
accuracy of named entity recognition and is equal to the cube2 of the performance
of latter, it seems not to hold in the biomedical domain. The conclusion can be
drawn that the surrounding context makes it easier to identify the arguments of
a relation in the biomedical domain.

Below, we discuss the relation learning task from the following perspectives:
types of relations and approaches.

Types of Relations. Relation learning has received much attention in the past
decade but it is nevertheless difficult to compare the results obtained by different
research groups. It concerns not only the data sets being used but also the types
of relations in question. Often, a certain relation is in focus, such as inhibition
(Pustejovsky et al., 2002) or a relation between genes and diseases. The latter is a
causal relation which can be formulated as a question ”Which gene(s) cause(s) a
disease Y?” which in turn can be used for the question answering or information
retrieval (Hersh & et al., 2005). This type of relation has been studied by Craven
and Kumlien (1999), Ray and Craven (2001). More recently, there has been work
on the gene-disease relations carried out by Chun et al. (2006). Contrary to the ap-
proach taken by Craven and Kumlien (1999) who have used weakly labeled data,
Chun et al. aimed at using a corpus annotated by humans. However, it has been
shown that if a gene and a disease co-occur, they are likely to be true positives
for the relation extraction. 94% of the correctly identified and co-occurring genes
and diseases presented a gene-disease relation. We assume, therefore, that in the
discovery of a gene-disease relation, it is necessary to study recall.

However, it is necessary to achieve high recall in other relation learning tasks
as well. Some of the relations, such as interactions between genes or genes and
proteins are more complex. They can be further divided into groups according
to type of interaction, such as interactions expressed by explicit action, binding
of the protein on the promoter of a gene, etc. Since the arguments of such
relations are genes or proteins, it is important to know whether a given relation is
symmetric. The asymmetry of a relation also increases the rate of false positives.

Methods. Most approaches to relation learning fall in one of two categories,
either hand-written patterns or learning oriented approaches. The approaches
based on the hand-written (usually pattern-oriented) are usually time-consuming
since they often assume use of rules (patterns) written by an expert. Conse-
quently, when such rules are applied to the unseen data, they fail to take into
account relations expressed in another way. Although patterns provide a high
precision, recall might be much lower (Thomas et al., 2000). In the biomedical

2 Since a relation in question is binary, one needs to identify two arguments and a term
identifying a relation itself. It is therefore assumed that the performance of the re-
lation identification equals to the cube of the performance of identifying each of the
arguments and a link-word.

64 S. Katrenko and P. Adriaans

domain, it has been proposed to use two types of patterns. The first type is se-
quential and based on the often occurring sequences of words in a sentence. The
second type (Khoo et al., 2000) attempts to account for a syntactic structure
of a sentence. Taken the dependency structure of a sentence, which is usually
represented as a tree, the patterns in the latter case are subtrees. Such patterns
are sometimes referred to as graphical (Khoo et al., 2000). A simpler approach is
to consider not the dependency tree as a whole but certain predefined syntactic
functions. This idea has been used by Hahn and Romacker (2000),Rinaldi et al.
(2004) who have focused on the subject-verb-object patterns.

The drawback of the approaches using hand-written patterns is their low re-
call. Another way to construct such patterns is to use a rule learning algorithm.
The performance of the rule learning methods has been studied in detail by
Bunescu et al. (2005). The authors have addressed the problems of protein iden-
tification and extraction of the protein interactions. For the relation extraction,
two approaches have been developed, based on the Rapier rule learning method
and on the longest common subsequences. It has been shown that these two
approaches outperform hand-written rules.

Contrary to the approaches discussed above, Pustejovsky et al. (2002) and
Leroy and Chen (2005) have employed finite state automata to learn relations.
When testing their approach on the inhibit-relation, Pustejovsky et al. (2002)
have received precision of 90,4% and recall of 58,9%. Particularly interesting
approach has been proposed by Bunescu and Mooney (2005) who have studied
subsequence kernels for relation extraction. Comparative experiments on the
AImed corpus (Bunescu & Mooney, 2005) have revealed that the relation kernel
outperforms the approaches based on the longest common subsequences and
hand-written rules.

Approaches based on a pure co-occurrence of the biomedical terms are also
useful, however, their performance depends on the type of a relation (Stephens
et al., 2001). As mentioned above, the co-occurrence of terms denoting diseases
and genes is likely to provide evidence for the relation between them. In contrast
to a gene-disease relation, a relation between genes is less predictable by the pure
co-occurrence of genes in a sentence.

Learning with the Background Knowledge. Since many knowledge re-
sources have been created in the biomedical community in recent years, it is
especially valuable to test their impact on the biomedical entity extraction task.
Leroy and Chen (2005) have presented a hybrid system integrating linguistic
parsing with the existing knowledge sources, such as Gene Ontology, UMLS,
and the HUGO nomenclature. They have evaluated 549 relations from Med-
line abstracts containing p53 gene. In comparison to the relations extracted by
parser, the relations provided by a co-occurrence based semantic net Concept
Space have been less precise and relevant. However, when adding relations con-
taining terms found in GO and HUGO, precision increases. By approaches such
as Leroy’s, it has been demonstrated that the knowledge sources can contribute
to the protein identification or relation extraction tasks.

Learning Relations from Biomedical Corpora Using Dependency Trees 65

3 Approach

The approach we take follows the definition of relation discovery as a two-step
process, concentrating on the second step only. We assume that we have already
identified the arguments of a relation. In what follows, we present our method
and give a motivation from both, linguistic and machine learning perspectives.

Syntactic Information for Relation Learning. In the linguistic tradition,
a syntactic structure of a sentence can be presented either by constituency or
by dependency analysis (Rastier et al., 2001). The principal distinction between
two approaches is the following. By the constituency analysis a sentence is repre-
sented by non-overlapping groups of words, whereas dependency is a hierarchical
relation where every word in a sentence is linked to a word dominating it. For
the sentence in (1), the constituency analysis is given in (2) and the depen-
dency structure is presented on Fig.1. In (2), all words are grouped into noun
phrases (NP), verb phrases (VP), prepositional phrase (PP) and pre-verbal ad-
verb phrase (ADVP). It can be noticed that one phrase can contain other phrases,
but they never overlap.

(1) Cdc25 can be activated in vitro in a Raf1-dependent manner.
(2) (S (NP Cdc25) (VP can) (VP be (VP activated (ADVP in vitro) (PP in

(NP a Raf1-dependent manner))))) (. .))

Unlike constituency analysis, dependency structure does not imply linear or-
dering and in our view is more appropriate for the relation learning task. At the
closer inspection of the sentence (1), it can be found that Cdc25 and Raf1 are
interacting proteins. The evidence supporting such claim is a word activated, so
it is possible to rephrase a sentence as ’Raf1 activates Cdc25’. It is, however,
difficult to use the constituency structure to detect this relation automatically.
In contrast, the root of the dependency tree depicted on Fig.1 already consists
of the word activated. It is also given that Cdc25 is a subject of the sentence and
that it is in passive voice. Following such analysis, it becomes clear that Cdc25
is an argument of the binary relation of activation. Assuming activation to be
an asymmetric relation, we can conclude that Cdc25 is a target and Raf1 is an
agent of this relation, or activation(Raf1,Cdc25).

Generally speaking, a root of a dependency tree is often a verb. As shown by
Sekimizu et al. (1998), a relation between two or more arguments is also often
expressed by verbs. We can therefore conclude that a root of a dependency tree
conveys information crucial for relation learning. Furthermore, by examining a
parent and children of a given node, one can notice that they constitute a local
context important for the argument identification. In the example (1) dependent,
which is a parent of the word Raf1 indicates that Raf1 is an agent and not the
target of the interaction.

There are several advantages to considering dependency tree levels. First of all,
it is possible to test our hypothesis in order to discover which levels are the most
important for relation learning. Selecting tree levels can be considered as a feature
engineering step. Moreover, since the final representation is of the attribute-value

66 S. Katrenko and P. Adriaans

activated
s
Aux

be

mod

Cdc25 can be vitro
lex−mod mod

in in
pcomp−n

manner
det mod

a dependent
lex−mod lex−mod

Raf1 -

Fig. 1. Dependency structure

type, it is possible to test different machine learning methods. It is of consider-
able interest to apply ensemble methods (Dietterich, 2000). The experiments for
the named entity recognition task have already demonstrated that use of meta-
learning improves the accuracy of classification (Sang & Meulder, 2003).

3.1 Defining Levels

We divide all features into two groups, local and global context. To reduce data
sparseness, we decided to use lemmas3 instead of words. A parent of a given
node (P) and its two children form a local context. The features of a parent and
a child are lemmas and the syntactic function between a node in question and
a parent (a child). Since a tree is an acyclic graph, each node has at most one
parent but can have more than one child. We limited ourselves to two children,
C1 and C2.

In addition to a root of a tree (R), a global context consists of a least common
subsumer (LCS).

Definition 2 (Least common subsumer (LCS)). Given two nodes A and B
in a dependency tree T , a least common subsumer LCS(A, B) is a node L, such
that L is ancestor for both, A and B, and there exist no other node N being an
ancestor for A and B, such that L is ancestor of N . There is exactly one LCS
for any two nodes in a dependency tree.

For example, for words a and Raf1 on Fig.1, the least common subsumer is
manner. Although such nodes, as in, vitro, and activated are all ancestors of a
and Raf1, they are not least common subsumers.
3 Lemmas are canonical forms of lexemes, for nouns they usually are nouns in singular,

nominative case (such as lemma dog for a word dogs), for verbs lemmas represent
verbs in infinitive (e.g., the lemma go for the word went).

Learning Relations from Biomedical Corpora Using Dependency Trees 67

Algorithm 1
Given text data D and relation rel(X, Y)
Parse D to receive a set of dependency trees S = ∪Tj , j = 1, ..., N
for each relation mention i of rel(X, Y) in Tj do

extract a root RX of Tj w.r.t. X
extract a root RY of Tj w.r.t. Y
extract a parent node PX

extract a parent node PY

extract the children nodes of X, C1
X and C2

X

extract the children nodes of Y , C1
Y and C2

Y

extract a least common subsumer LCS of X and Y
end for
Define a feature set (FS) based on the via the extracted syntactic information
Represent each relation mention i according to FS
Run a chosen learning algorithm on the constructed representation

The motivation to include the least common subsumer to the feature set comes
from the observation that the arguments of the relation can be located closer
to the leaves of a tree and a root in such cases is not sufficiently discriminative.
Consider, for instance, a sentence in (3). Here, there are two relation mentions,
namely interaction(cwlH,sigma(H)) and interaction(gerE,cwlH). A root of the
dependency tree for this sentence is depended, which indicates an interaction be-
tween gerE and cwlH. However, it is not sufficient to discover a relation between
gerE and sigma(H), it is only possible to take into account if a least common
subsumer (dependent) is used.

(3) Expression of the sigma(K)-dependent cwlH gene depended on gerE.

Table 1. Feature sets

Feature set(FS) Features
FS1 LCS
FS2 C1

X, C2
X , C1

Y , C2
Y , LCS

FS3 PX, PY , LCS
FS4 C1

X, C1
Y , PX, PY

LCS, RX

FS5 C1
X, C2

X , C1
Y , C2

Y , PX , PY

LCS, RX , RY

Some parsers treat a subordinate clause as separate producing not a single
tree for a sentence but two. We decided therefore to define two features, one for a
root of the first argument (R1) and second for a root of the second argument(R2).
Table 1 illustrates how the features have been grouped into feature sets given
two nodes X and Y and the relation Rel(X, Y).4

4 In Table 1, the lower indices correspond to two arguments, X and Y .

68 S. Katrenko and P. Adriaans

Table 2. Feature set for the example on Fig.1

Feature Cdc25 Raf1
C1 - -
C2 - -
P activate s dependent lexmod
LCS activate activate
R activate activate

When considering the fifth dataset (FS5), the example on Fig.1 can be rep-
resented as in Table 2.

Note that we incorporated the syntactic labels into the parent-features P .
Cdc25 is linked to the word activated by the syntactic function s (standing for
a subject), while Raf1 is connected to dependent by lex-mod function (standing
for a modifier).

4 Experiments

4.1 Datasets

For our experiments, we have used two data sets. One of them is AImed (Bunescu
et al., 2005) and theother is a data set createdwithin the ”Genic InteractionExtrac-
tion” challenge(Nédellec, 2005) (fromnow,we refer to it asLLL (LearningLanguage
in Logic) data set). The AImed data set consists of the examples of protein-protein
interactions. It has been compiled from the 225 Medline abstracts and annotated
by the experts. The second data set, LLL, has been created by extracting Medline
abstracts on Bacillus subtilis. It also includes annotations created by experts, with
the distinction that the focus is on the interactions between genes and proteins.LLL
data set consists of 77 sentences and 165 annotated interactions.

4.2 Data Preprocessing

The LLL data set has already consisted of the tokenized sentences accompanied
by the syntactic analysis. For parsing, the LLL organizers have used LinkParser
whose output has been verified by experts. Besides this, a dictionary of genes
and proteins has been provided so we annotated all occurrences of the dictionary
items in text as biological entities (in the dictionary, no distinction between genes
and proteins has been made).

The second data set has been preprocessed by us. We have used a tokenizer
based on the white spaces. We have also found that the present annotation
sometimes contains protein tags surrounding the interaction tags as shown in
(4). Here, Ras is annotated as a protein being an argument of an interaction
with RIN1. In addition, Ras binding protein is also annotated as a protein. As
explained below, we have constructed false interactions for the training purpose
based on the entities annotated as proteins and not being part of a relation.

Learning Relations from Biomedical Corpora Using Dependency Trees 69

We scanned AImed data set and found 14 cases where annotation of a protein
included annotation of interactions as its part. While carrying out preprocessing,
the external protein tags have been removed.

(4) Human 〈p1 pair=”1”〉〈prot〉RIN1〈/prot〉〈/p1〉 was first characterized as a
〈prot〉〈p2 pair=”1”〉〈prot〉Ras〈/prot〉〈/p2〉 binding protein 〈/prot〉 based
on the properties of its carboxyl-terminal domain.

The data sets we have used provide annotations of the binary interaction
relation. The arguments of a relation in LLL always occur in the same sentence,
while in AImed they might be in adjacent sentences. We discarded all examples
from the latter corpus, which were spanning over several sentences.

In order to obtain the negative interactions, we have followed the closed world
assumption. However, it has been used in a different way for each of the data sets.
The interactions between proteins in AImed are considered to be symmetric. There-
fore, the false positives are created as all pairs of proteins being not arguments of
the interaction relation aswell as pairswhere one of the proteins is an argument of a
relation in a given sentence. LLL data set contains interactions between genes and
proteins which are treated as instances of an asymmetric relation. Because of this,
the false interactions are produced as pairs of biomolecular entities (i.e., proteins
or genes) which do not participate in a relation but also those where the arguments
of a relation are flipped (e.g., a pair (X,Y) where X and Y are biomolecular entities
will be considered a false positive for the true interaction (Y,X)).

After constructing a training set, we received 909 training instances for the
LLL data set, 165 of which were positive examples. For the AImed corpus, we
obtained 5,106 instances with 1,006 of them being positive examples.

4.3 Parsers

Syntactic analysis is an important step for many text mining tasks in the bio-
medical domain. In most cases, moving to another domain means necessity of
a parser adaptation. Such need is motivated by the domain-specific vocabulary
and different stylistic peculiarities (Lease & Charniak, 2005). Lease and Charniak
(2005) studied parsing in the biomedical domain and showed that by adapting
the Charniak parser, an error rate decreases in 14,2%. Since our approach also
crucially depends on the quality of the syntactic analysis, we selected several
state-of-the-art parsers to experiment with.

The first parser is LinkParser which has been used by the organizers of LLL
data set. It produces relations between pair of words in a sentence, linked by the
syntactic function, such as subject or complement. This parser has been adapted
to the biomedical domain at MIG Lab. Moreover, the output of the parser was
verified by hand, so it can be referred to as the gold standard analysis.

Minipar is another parser, which is freely available.5 On the Susanne corpus,
it achieves 88% precision and 80% recall. Unlike LinkParser, Minipar has not
5 Minipar is available from http://www.cs.ualberta.ca/∼lindek/minipar.htm

70 S. Katrenko and P. Adriaans

been trained on the biomedical corpora and it needs to be investigated whether
it can be succesfully applied for a given task.

The third syntactic analyzer that we considered is the Charniak parser, whose
output can be transformed to the dependencies between a pair of words. This
statistical parser was trained on Penn BioIE treebank and part of the Genia
treebank and reaches 85% PARSEVAL F-measure when performing 10-fold
cross-validation. However, in this case the dependencies do not contain syn-
tactic functions, as in the output of LinkParser. We present the example of the
syntactic analysis by all three parsers in Appendix I (Fig.7, Fig.6, Fig.5).

4.4 Data Sets Analysis

To give further motivation for the levels selection, we examined roots of the
syntactic trees from LLL data set.

This data set was also processed by 2 researchers in the bioinformatics field
whose main intention was to detect all verbs used to express interactions between
two biomolecular instances. Such information enables further analysis of the tree
levels, namely, it is possible to compare the list of interaction verbs against the
words found in a root of the dependency structures. Fig. 8 presents a distribution
of verbs selected by our experts which were found in a root of a sentence. 50 out
of 77 sentences in the LLL training set contain the selected verbs as roots of the
dependency structures. 74,07% of all selected verbs can be found in a root of
a dependency tree. Moreover, the verbs which do not occur in a root of a tree,
can still be found on other levels. For instance, although stimulate and rely are
not present in a root, they occur in the parents’ nodes of the arguments of a
relation, as in example (5).

(5) During endospore formation in Bacillus subtilis, the DNA binding protein
GerE stimulates transcription from several promoters that are used by RNA
polymerase containing sigmaK.

5 Results and Discussion

The results we present below have been received by 10-fold cross-validation for
AImed data set and 5-fold cross-validation for the LLL data set, respectively. We
have also used the implementation of the machine learning methods from the
Weka toolkit(Witten & Frank, 2005).

Tree Levels. We studied the impact of the feature sets mentioned above on
recall and precision. First, we started with a feature set containing the least
common subsumer only (FS1). In our view, this feature set is similar to the
pattern approaches whose main objective is to find a link (a so-called relation
word) between two arguments.

As Table 3 suggests, the least common subsumer often includes the words
important for relation learning in the biomedical domain. In the list below, such

Learning Relations from Biomedical Corpora Using Dependency Trees 71

Table 3. Least common subsumer: AImed data set

Words (LCS) Frequency
to be 449
to bind 211
to interact 182
to inhibit 65
to associate with 47
to contain 47
to reveal 43
to induce 42
to include 39
to identify 38
to show 37
to require 36
to regulate 34
to suppress 30
to detect 30
to express 29
to activate 24
to initiate 28
to encode 20
to block 18
to recognize 17
to stimulate 17
to increase 7
to act (as) 3

words are bold-faced. Comparing this list against the list of the verbs identifying
relations (Sekimizu et al., 1998), we found that they significantly overlap.

However, using this feature set provides recall and precision, which can likely be
further improved. This supports our hypothesis about precompiled list of patterns
used for the relation extraction - in most cases, they cannot cover unseen data well.
Our results are in line with those reported by Ahmed et al. (2005).

The second feature set, FS2, consists of FS1 and the children of two arguments.
As the results on Fig.2 suggest, recall already increases by adding the information
about the children.

Using the third feature set containing lemmas from the parent-level provides
better results than FS2. We believe it is due to the fact that in many cases
proteins are leaves in a tree so the information about the children is missing.

The best performance on LLL has been obtained by employing the third fea-
ture set or the fourth set containing all features as defined in Section 3.

As we have mentioned above, in most cases the existing approaches to relation
extraction provide considerably high precision but low recall. Our results suggest
that the approach we have taken leads to the higher recall and lower precision. It
can be concluded that although the information from the dependency tree levels

72 S. Katrenko and P. Adriaans

 20

 30

 40

 50

 60

 70

 80

 90

 100

FS5FS4FS3FS2FS1

P
er

ce
nt

ag
e,

 %

Feature sets

precision
recall

Fig. 2. Precision and recall for different feature sets (Stacking, LLL data set)

helps to find many true positives, the local context is sometimes not sufficient
to be able to discriminate between true and false positives.

Ensemble Methods. To test the hypothesis that ensemble methods may im-
prove the overall performance, we have conducted experiments with three ensem-
ble methods, stacking, bagging and AdaBoost. Ensemble of classifiers provide
better accuracy if the individual classifiers are diverse and accurate. A classifier
is said to be accurate when its error rate is better then random guess (Dietterich,
2000). Bagging and AdaBoost present the ensemble methods manipulating the
training examples. The main idea behind such methods lies in generating mul-
tiple hypotheses. In the case of bagging, a different subset from the training
data is sampled every time a learning algorithm is applied. Bagging and Ad-
aBoost work well for such algorithms as rule learning or decision tree methods
which are generally considered to be unstable. Stacking belongs to the method
of combining different classification models.

We considered three classifiers of a different nature, BayesNet, Näıve Bayes
method and K-nearest neighbor classifier. Bagging and AdaBoost have been ap-
plied with BayesNet classifier. The experiment with stacking has been constructed
in the following way: BayesNet has been chosen as meta-classifier with NäıveBayes
and 1-nearest neighbour classifiers as individual classifiers. The quantitative re-
sults of the experiments on both corpora are given in Table 4 and Table 5. In both
cases stacking provides much higher recall compared to the supervised methods
or other ensemble methods.

(Bunescu & Mooney, 2005) have also used 10-fold cross-validation to test
their methods on the AImed corpus. They reported on the performance of their
approaches by presenting it as a precision-recall curve. To compare our results
on the AImed corpus with the performance of the methods described in (Bunescu
& Mooney, 2005), we chose the highest recall received by stacking (68,4%). It
corresponds to the precision of 39% on the precision-recall curve which has been
received by the subsequence kernel method. We can conclude therefore that our

Learning Relations from Biomedical Corpora Using Dependency Trees 73

Table 4. Results on LLL data set

Method Precision Recall F-score
Näıve Bayes 72% 55,6% 62,7%
BayesNet 67,5% 65,4% 66,5%
IB1 74,5% 70,4% 72,4%
Stacking 60,7% 84% 70,5%
Bagging 67,5% 67,9% 67,7%
AdaBoostM1 69% 71,6% 70,3%

Table 5. Results on AImed data set

Method Precision Recall F-score
Näıve Bayes 48,5% 45,2% 46,8%
BayesNet 46,5% 52,8% 49,5%
IB1 49,7% 49,4% 49,6%
Stacking 45% 68,4% 54,3%
Bagging 46,6% 52,1% 49,2%
AdaBoostM1 50,4% 53,5% 51,9%

method outperforms the subsequence kernel method on AImed corpus by 5%.
The comparison of the results of the best individual classifier (BayesNet) to the
subsequence kernel method demonstrates that it performs equally well. The dif-
ference in the performance can be explained by the features used in (Bunescu
& Mooney, 2005). In particular, Bunescu and Mooney (2005) have considered
sequential information which consisted of the words found between two enti-
ties, in front of them and after them. After having defined such features, the
authors have restricted themselves to the subsequences of the types mentioned
above, where a maximal word length equals 4. According to Bunescu and Mooney
(2005), such feature selection leads to less overfitting. In our case, we considered
not the common subsequences but the levels from the dependency tree instead.
We believe that the selection of levels we have made provides information suffi-
cient for relation learning and constitutes an alternative approach to the method
proposed by Bunescu and Mooney (2005).

Comparison of the results received on the AImed data set with the performance
on the LLL data set (Table 4) demonstrates that we have received much better
results on the latter. There are several distinctions between the two data sets.
Although LLL data set is much smaller, it contains the syntactic information
checked by hand. Some classification errors on the LLL data set can be explained
by the asymmetry of the relation between genes and proteins.

Complexity. The feature sets we constructed in our approach are relatively
small but able to cover information needed for relation learning. Our approach
provides results comparable to that of the state-of-the-art methods. The rep-
resentation we use results in the training set of the size M*N, where M is the

74 S. Katrenko and P. Adriaans

 0

 20

 40

 60

 80

 100

CharniakMiniparLinkParser

P
er

ce
nt

ag
e,

 %

Parsers

precision
recall

Fig. 3. Precision and recall for different parsers (Stacking, LLL data set)

number of features and N is the number of all potential candidates (in our case,
it is a Cartesian product of all proteins found within the same sentence multi-
plied by the number of sentences). The largest feature set we employ consists
of 9 features, thus the maximal size of a training set equals to 9*N. Therefore,
the training time depends mostly on a machine learning method used. It is, for
example, known that k-nn algorithm is slower than Näıve Bayes, although both
of them can be applied to the representation we propose.

Note on Syntactic Analysis. As we already mentioned, the approaches making
use of the syntactic structure depend on the accuracy of the parser. Precision and
recall of the parsers we used varies and it is likely that some errors in classification
are due to the incorrect parsing. To explore if it affects the accuracy of found in-
teractions, we conducted the following experiments. In addition to the LinkParser
(whose output was checked by hand), we used Minipar and Charniak parser to an-
alyze the LLL data set. We fixed the feature set (FS4) and used the same machine
learning method (Stacking) on the representation received by all three parsers.

As expected, use of the LinkParser output provides the highest precision and re-
call for the relation learning task (Fig.3). Stacking also boosts recall when used to
the Minipar or Charniak parsers’ output. However, in both cases precision drops.

We already mentioned in Section 4 that all three parsers give different output.
It can be demonstrated on the example in Appendix I. In particular, Minipar pro-
duces the syntactic functions for each dependency, whereas the modified output
of Charniak parser lacks them. To test whether syntactic functions contribute to
the learning task, we conducted another experiment using the same feature set
(FS4) and BayesNet classifier with the syntactic functions and without them. To
make such comparison fair, we considered LinkParser only. The output of Mini-
par was not checked by hand so it is not possible to analyze whether the changes
in performance are due to the incorrect parsing or to the presence (absence) of
the syntactic functions. The results are presented in Fig.4. It can be concluded

Learning Relations from Biomedical Corpora Using Dependency Trees 75

 50

 55

 60

 65

 70

 75

recallprecision

P
er

ce
nt

ag
e,

 %

LinkParser

with synt. functions
without syn.functions

Fig. 4. Syntactic functions

that although removing syntactic functions decrease recall, it does not decrease
the overall performance much.

In addition, all three parsers use different sets of the syntactic functions. Some-
times, syntactic functions are grouped or discriminated according to a certain
criterion. For instance, such phrases as transcribed by polymerase and activation
in prespore are treated differently by Minipar and LinkParser. While the former
introduces a special link pcomp-n between a preposition in and a noun prespore,
the latter incorporates preposition in the syntactic function and outputs the re-
lation comp-in between activation and prespore. Such treatment of complements
means that the actual training sets differ. LinkParser seems to provide more use-
ful information, because a parent node of prespore is activation and not in as in
case of Minipar or Charniak parser.

The performance of current state-of-the- art parsers on the biomedical data
has been studied by Grover et al. (2005). The evaluation of a parser has also
been done by Rinaldi et al. (2004) who used LT Chunk to obtain verbal and
nominal chunks. Nevertheless, the results Rinaldi et al. (2004) have achieved
with the correct (verified) syntactic analysis do not differ much from the results
received by the parser.

6 Conclusions

In this paper, we have proposed a novel representation for learning relations
based on the dependency trees. Learning relations is a difficult task since it
is not possible to directly used many well-known machine learning methods
using attribute-value representation. This difficulty leads to employing either
pattern-based methods or methods capable to use complex representations, such
as support vector machines(Zelenko et al., 2003). The representation we use is
derived from the complex structures (dependency trees) but it is still attribute-
value like representation. Consequently, it can be used for any machine learning
method having such representation as its input.

76 S. Katrenko and P. Adriaans

Another advantage this representation gives us lies in the possibility to use en-
semblemethods.Ensemblemethods aremethodswhosemainpurpose is to combine
the decisions of individual classifiers. When conducted experiments using bagging,
stacking and boosting, the performance improved, mainly contributing to higher
recall. It also motivates for combining such methods with approaches providing
high precision. We plan to investigate the ensemble methods further in our future
research.

We have tested the representation on the data sets containing interactions
between genes and proteins (LLL data set) and between proteins (AImed data
set). The results on both data sets are promising and either comparable to the
state-of-art results or better than those. One of the directions in our future
research is to carry out a more thorough comparison between our approach and
the method proposed by Bunescu and Mooney (2005). Since the feature sets in
both approaches are different, we plan to explore whether these two methods
can complement each other.

Our experiments suggest that the quality of syntactic analysis is of vital im-
portance when using techniques based on it. As it has been shown, the syntactic
analysis verified by the experts is more accurate and this, in turn, leads to higher
accuracy of the extracted interactions.

Acknowledgments

The authors would like to thank M. Scott Marshall and Marco Roos for their
help in analyzing data sets. Special thanks to Razvan Bunescu who provided
us with the AImed data set. Matt Lease made the Charniak’s parser trained
on the biomedical corpora available. This work was carried out in the context
of the Virtual Laboratory for e-Science project (www.vl-e.nl). This project is
supported by a BSIK grant from the Dutch Ministry of Education, Culture and
Science(OC&W) and is part of the ICT innovation program of the Ministry of
the Ministry of Economic Affairs (EZ).

Bibliography

Ahmed, S. T., Chidambaram, D., Davulcu, H., & Baral, C. (2005). Intex: A syntactic
role driven protein-protein interaction extractor for bio-medical text. In Proceed-
ings of the ACL-ISMB Workshop on Linking Biological Literature, Ontologies and
Databeses: Mining Biological Semantics (pp. 54–61). Detroit: Association for Com-
putational Linguistics.

Albert, S., Gaudan, S., Knigge, H., Raetsch, A., Delgado, A., & Huhse, B. (2003).
Computer-assisted generation of a protein-interaction database for nuclear receptors.
Molecular Endocrinology.

Bunescu, R. C., Ge, R., & Kate, R. J. (2005). Comparative experiments on learning
information extractors for proteins and their interactions. Artificial Intelligence in
medicine, 33, 139–155.

Bunescu, R. C., & Mooney, R. J. (2005). Subsequence kernels for relation extraction.
In Proceedings of the 19th Conference on Neural Information Processing Systems.

Learning Relations from Biomedical Corpora Using Dependency Trees 77

Chun, H. W., Tsuruoka, Y., Kim, J. D., Shiba, R., & Nagata, N. (2006). Extraction of
gene-disease relations from medline using domain dictionaries and machine learning.
In Proceedings of the 11th Pacific Symposium on Biocomputing.

Cohen, A. M., & Hersh, W. R. (2005). A survey of current work in biomedical text
mining. Briefings in Bioinformatics, 6(1), 57–71.

Craven, M., & Kumlien, J. (1999). Constructing biological knowledge bases by ex-
tracting information from text sources. In Proceedings of the Seventh International
Conference on Intelligent Systems for Molecular Biology (pp. 77–86). Heidelberg,
Germany: AAAI Press.

Dietterich, T. G. (2000). Ensemble methods in machine learning. Lecture Notes in
Computer Science, 1857, 1–15.

Grover, C., Lascarides, A., & Lapata, M. (2005). A comparison of parsing technologies
for the biomedical domain. Natural Language Engineering, 11(1), 27–65.

Hahn, U., & Romacker, M. (2000). An integrated model of semantic and conceptual
interpretation from dependency structures. Proceedings of the 18th conference on
Computational linguistics (pp. 271–277). Morristown, NJ, USA: Association for
Computational Linguistics.

Hersh, W., & et al. (2005). Trec 2005 genomics track overview. TREC 2005 meeting.
Khoo, C. S. G., Chan, S., & Niu, Y. (2000). Extracting causal knowledge from a

medical database using graphical patterns. ACL’00 Proceedings of the 38th Annual
Meeting on Association for Computational Linguistics (pp. 336–343). Morristown,
NJ, USA: Association for Computational Linguistics.

Lease, M., & Charniak, E. (2005). Parsing biomedical literature. In Proceedings of
IJCNLP 2005. Jeju Island, Republic of Korea.

Leroy, G., & Chen, H. (2005). Genescene: An ontology-enhanced integration of linguis-
tic and co-occurrence based relations in biomedical texts. JASIST, 56, 457–468.

Nédellec, C. (2005). Learning language in logic - genic interaction extraction challenge.
In Proceedings of the Learning Language in Logic workshop.

Pustejovsky, J., Castano, J., Zhang, J., Cochran, B., & Kotecki, M. (2002). Robust
relational parsing over biomedical literature: Extracting inhibit relations. Pacific
Symposium on Biocomputing.

Rastier, F., Cavazza, M., & Abeille, A. (2001). Semantics for descriptions. Stanford,
USA: Center for the Study of Language and Information.

Ray, S., & Craven, M. (2001). Representing sentence structure in hidden Markov
models for information extraction. In Proceedings of the Seventeenth International
Joint Conference on Artificial Intelligence (pp. 1273–1279). Seattle, WA: Morgan
Kaufmann.

Rinaldi, F., Schneider, G., & Kaljurand, K. (2004). Mining relations in the genia
corpus. In ”Second European Workshop on Data Mining and Text Mining for Bioin-
formatics”, in conjunction with ECML/PKDD 2004. Pisa, Italy.

Sang, E. T. K., & Meulder, F. D. (2003). Introduction to the conll-2003 shared task:
Language-independent named entity recognition. In Proceedings of CoNLL’2003.

Sekimizu, T., Park, H., & Tsujii, J. (1998). Identifying the interaction between genes
and gene products based on frequently seen verbs in medline abstracts. Genome
Informatics.

Smith, L. H., Tanabe, L., Rindlesch, T., & Wilbur, W. (2005). Medtag: A collection of
biomedical annotations. In Proceedings of the Joint ACL Workshop and BioLINK
SIG (ISMB) on Linking Biological Literature Ontologies and Databases.

Stephens, M., Palakal, M., Mukhopadhyay, S., Raje, R., & Mostafa, J. (2001). Detecting
gene relations from medline abstracts. In Proceedings of the Sixth Annual Pacific
Symposium on Biocomputing (PSB 001).

78 S. Katrenko and P. Adriaans

Tanabe, L., Xie, N., L. H. Thom, W. M., & Wilbur, W. J. (2005). Genetag: a tagged cor-
pus for gene/protein named entity recognition. BMC Bioinformatics, 6(Suppl I):S3.

Thomas, J., Milward, D., Ouzounis, C., & Pulman, S. (2000). Automatic extraction of
protein interactions from scientific abstracts. In Proceedings of Pacific Symposium
on Biocomputing.

Witten, I. H., & Frank, E. (2005). Data Mining: Practical machine learning tools and
techniques. San Francisco: Morgan Kaufmann. 2nd edition edition.

Zelenko, D., Aone, C., & Richardella, A. (2003). Kernel methods for relation
extraction. J. Mach. Learn. Res., 3, 1083–1106.

Appendix I

(6) ykuD was transcribed by SigK RNA polymerase from T4 of sporulation.

transcribed
comp by

subj

comp from

polymerase
mod att mod att

ykuD T4

comp of

SigK RNA sporulation

Fig. 5. LinkParser’s output

transcribed
s

be

by subj

ykuD was by

pcomp−n

polymerase
nn mod

RNA

lex−mod

from

pcomp−n

SigK T4

mod

of

pcomp−n

sporulation

Fig. 6. Minipar’s output

Learning Relations from Biomedical Corpora Using Dependency Trees 79

was

ykuD transcribed

by

polymerase

RNA from

SigK T4

of

sporulation

Fig. 7. Charniak parser’s output

Table 6. Some of the syntactic functions used in LinkParser

Abbreviation Name Example
comp by complement(by) (polymerase, transcribed) ’transcribed by polymerase’
mod att modifier(att) (RNA, polymerase)
comp of complement(of) (T4,sporulation) ’T4 of sporulation’
comp from complement(from) (transcribed, T4) ’transcribed from T4’
subj subject (transcribed, ykuD)

Table 7. Some of the syntactic functions used in MiniParser

Abbreviation Name Example
s surface subject (transcribed, ykuD)
be be (transcribed, was)
by-subj by-subj (for passive voice) (transcribed, by)
pcomp-n nominal complement of prepositions (by, polymerase), (from, T4), (of, sporulation)
nn complement (polymerase, RNA)
mod modifier (polymerase, from)
lex-mod modifier (RNA, SigK)

80 S. Katrenko and P. Adriaans

0 1 2 3 4 5 6

to dephosphorylate

to prevent

to limit

to reduce

to couple

to affect

to block

to convert

to contribute

to encode

to govern

to increase

to initiate

to terminate

to bind

to derive

to inhibit

to recognize

to repress

to require

to act

to depend

to induce

to regulate

to activate

Number of sentences

Fig. 8. Distribution of the verbs selected by experts in LLL data set

K. Tuyls et al. (Eds.): KDECB 2006, LNBI 4366, pp. 81 – 106, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Advancing the State of the Art in Computational Gene
Prediction

William H. Majoros and Uwe Ohler

Center for Bioinformatics and Computational Biology
Institute for Genome Sciences and Policy, Duke University

101 Science Drive, Durham, NC 27708, USA
{bmajoros, uwe.ohler}@duke.edu

Abstract. Current methods for computationally predicting the locations and
intron-exon structures of protein-coding genes in eukaryotic DNA are largely
based on probabilistic, state-based generative models such as hidden Markov
models and their various extensions. Unfortunately, little attention has been
paid to the optimality of these models for the gene-parsing problem.
Furthermore, as the prevalence of alternative splicing in human genes becomes
more apparent, the “one gene, one parse” discipline endorsed by virtually all
current gene-finding systems becomes less attractive from a biomedical
perspective. Because our ability to accurately identify all the isoforms of each
gene in the genome is of direct importance to biomedicine, our ability to
improve gene-finding accuracy both for human and non-human DNA clearly
has a potential to significantly impact human health. In this paper we review
current methods and suggest a number of possible directions for further
research that may alleviate some of these problems and ultimately lead to better
and more useful gene predictions.

1 Introduction

The growing availability of large quantities of genomic sequence data for both human
and non-human species has promoted a renewed interest in purely computational
methods for finding protein-coding genes in raw DNA. In the case of vertebrate
genomes, the problem has been fairly likened to that of finding the proverbial needle
in a haystack, with the additional complication that each needle has an internal
structure which also needs to be predicted.

Of the methods which have been investigated for solving this difficult problem,
those based on probabilistic models of gene composition and structure have largely
come to dominate, with the emphasis in the field now being on the use of hidden
Markov models (HMMs) and their various extensions—in particular, those permitting
the incorporation of various forms of external evidence such as patterns of
evolutionary conservation between related genomes. As the field continues along this
track, a number of difficulties have emerged which suggest that the use of purely
generative models for heuristic parsing may not be an ideal framework for automated
gene prediction.

82 W.H. Majoros and U. Ohler

In particular, the widespread existence of alternative splicing in mammalian genes,
the suboptimality of maximum likelihood HMMs for Viterbi parsing, and the lack of
efficient discriminative training procedures for stochastic parsers all seem to be
conspiring to keep the predictive accuracy of practical gene-finding systems
substantially below what is needed by the users of these systems. In the case of
biomedical applications, our ability to overcome these limitations may translate into
significant impacts on human health.

In this paper we suggest a number of possible directions for further research that
may alleviate some of these problems and ultimately lead to better and more useful
gene predictions in eukaryotic DNA.

2 Background

2.1 The Problem of Finding and Parsing Eukaryotic Protein-Coding Genes

The human genome comprises 23 chromosomes, each consisting of a single DNA
molecule which is in turn formed out of a linear series of nucleotides. Nucleotides
come in four varieties: adenine (A), cytosine (C) guanine (G), and thymine (T). If
each nucleotide is denoted by a single letter from the DNA alphabet α ={A,C,G,T},
the entire genome can then be represented by a sequence of approximately 2.9 billion
letters. Embedded within this enormous sequence—at seemingly random intervals—
are the actual genes, which encode the proteins used by the cell to mediate the
building and operation of a complete organism. Expression of a gene begins with its
transcription into messenger RNA (mRNA), which may then be spliced by the
eukaryotic spliceosome to remove stretches of nonfunctional DNA within the gene
known as introns. The two ends of the mRNA are then specially processed and the
message is exported out of the nucleus to await translation by a molecular complex
called a ribosome. This latter process pairs off individual amino acids with each triple
of nucleotides (called a codon) along the message. The concatenation of these amino
acids forms a polypeptide which finally folds into a functional protein. In this way,
the precise sequence of nucleotides comprising a gene, and the precise way in which
that gene’s mRNA is spliced, determine the final form of the protein product and thus
influence the operation of the cell. Fig. 1 summarizes this process.
The human gene-finding problem is a difficult one for two reasons: (1) the genes
comprise less than 2% of our 2.9 billion letter genome, and (2) once a gene is found,
the locations of the introns within the gene must be precisely determined before the
protein product of the gene may be accurately deduced. The problem is thus one of
parsing—i.e., partitioning an input sequence into a series of “words” (non-
overlapping intervals of various types). The top portion of Fig. 2 shows a sample
parse of a DNA sequence; rectangular boxes represent exons (non-intronic regions of
a gene), the line segments separating pairs of exons represent introns, and the white
spaces to the left and right of the gene represent intergenic regions.

Shaded portions of exons represent the parts of the gene which are actually
translated into amino acids; in typical eukaryotic organisms, only the region between

 Advancing the State of the Art in Computational Gene Prediction 83

Fig. 1. The central dogma of molecular biology: DNA gives rise to RNA messages, which are
translated into polypeptides that then fold into functional proteins. Source: Majoros WH,
Methods for Computational Gene Prediction, Cambridge University Press (forthcoming),
reproduced with permission.

the start codon (ATG) and the stop codon (one of TGA, TAG, or TAA) is translated.
Hatched portions of exons in the figure therefore represent untranslated regions
(UTRs), and are generally not predicted by current gene-finding programs (though
preliminary work in this direction shows some promise—e.g., [1]). The bottom
portion of the figure emphasizes the signals, or fixed-length nucleotide motifs, which
serve as boundaries for individual exons and introns. Most eukaryotic introns begin
with a GT dinucleotide (called a donor site) and end with an AG (called an acceptor
site).

A gene parse thus consists of a syntactically valid series of signals from the set
V={ATG, GT, AG, TGA, TAA, TAG} which have been identified in the input
sequence. The necessary syntactic constraints on the parse of a genomic sequence are:

ATG → TAG
ATG → GT
GT→ AG
AG → GT
AG → TAG
TAG → ATG

where the rule X→Y indicates that signal X may be followed by signal Y in a
syntactically valid parse (rules for genes on the opposite DNA strand are easily
obtained from these). The set of all valid parses for a given input sequence may be

84 W.H. Majoros and U. Ohler

Fig. 2. The gene-parsing problem. A complete mRNA consists of one or more exons (rect-
angles). Portions of these exons may be coding (gray) or noncoding (hatched), with only the
former giving rise to amino acids during translation. The coding segment extends from a start
codon (ATG) to a stop codon (TGA, TAG, or TAA), with one or more introns (GT to AG) in
between. Introns are spliced out prior to translation into a protein. Source: Majoros WH,
Methods for Computational Gene Prediction, Cambridge University Press (forthcoming),
reproduced with permission.

Fig. 3. An example parse graph. Vertices are shown as dinucleotide or trinucleotide motifs at
the bottom. Edges denote exons, introns, or intergenic regions. Source: Majoros WH, Methods
for Computational Gene Prediction, Cambridge University Press (forthcoming), reproduced
with permission.

represented using a parse graph (Fig. 3) in which vertices represent putative signals
and edges represent possible exons, introns, and intergenic regions.

Because not every ATG/GT/AG/TAG/TGA/TAA occurring in a sequence is a true
start codon, donor site, acceptor site, or stop codon, as recognized by the living cell,
the gene-parsing problem is a highly ambiguous one. For this reason, stochastic
parsers based on probabilistic models of DNA have largely come to dominate the

 Advancing the State of the Art in Computational Gene Prediction 85

gene-finding field. Several of the most popular types of model for this task are
described in the sections that follow.

2.2 Hidden Markov Models

A hidden Markov model (HMM) is a state-based generative model which emits
symbols over a finite alphabet. Formally, a hidden Markov model M = (Q, α, Pt, Pe)
operates by beginning in the special state q0∈Q, transitioning stochastically from state
to state (i.e., between elements of Q={q0, q1, ... , qm-1}) according to the transition
distribution, Pt(qj | qi), and emitting a single symbol c∈α according to the emission
distribution, Pe (c | q), upon entering state q∈Q. The machine ceases operation when it
re-enters state q0 (which emits no symbols). Gene-finding with an HMM is
accomplished by positing that the DNA sequence S under study was generated by a
particular model M having alphabet α ={A,C,G,T} and then identifying the most
probable path (series of states) φ* by which M could have generated S:

φ* = argmax
φ

P(φ | S) = argmax
φ

P(φ, S)
P(S)

= argmax
φ

P(φ, S)

= argmax
φ

P(S | φ)P(φ).

 (1)

That is, were the HMM to emit sequence S, the most probable way for it to do so
would be for it to pass through precisely the series of states specified by φ*. Eq. (1)
can be further factored into a product of emission and transition probabilities along a
prospective path φ by decomposing P(φ) into Pt terms, and P(S | φ) into Pe terms:

φ* = argmax

φ
Pt (q0 | y|S |) Pe(xi | yi+1)Pt (yi+1 | yi)

i=0

|S |−1

∏ , (2)

where S = x0 ... x|S|-1 is a sequence of length |S|, for nucleotides xi, and φ = (y0, ... , y|S|+1)
for states yi ∈Q; y0 = q0 and y|S|+1 = q0 are assumed since the machine must begin and
end in state q0. Actually finding the optimal path (or “parse”) φ* can be carried out
using Viterbi’s dynamic programming algorithm [2], which entails the computation of
two matrices, V(i, k) for the path probabilities and T(i, k) for the traceback pointers
which allow us to reconstruct the optimal path once the matrices have been computed:

V (i, k) =
max

j
V (j,k −1)Pt (qi | q j)Pe(xk | qi) if k > 0,

Pt (qi | q0)Pe(x0 | qi) if k = 0.

⎧
⎨
⎪

⎩ ⎪
 (3)

⎪⎩

⎪
⎨
⎧

=

>−=
.0 if0

,0 if)|()|()1,(
maxarg

),(
k

kqxPqqPkjV
jkiT ikejit (4)

86 W.H. Majoros and U. Ohler

Reconstruction of the optimal path proceeds by starting at the highest-scoring cell
(i, k) in the last column of the V matrix and iteratively assigning i←T(i, k) and k←k-1
until the first column (k=0) is reached; the successive i visited during this traversal
correspond to the states qi in the optimal path (in reverse order).

Training of an HMM is most commonly carried out using maximum likelihood
estimation (MLE). In the simplest case, in which individual nucleotides in the training
sequences are labeled with corresponding states in the model, MLE can be performed
simply by tabulating the number of times C(qi, qj) that state qi was followed by qj in
the training set, and also the number of times C(sk, qi) that nucleotide sk was labeled
with state qi, for alphabet α ={sk | 0 k< size(α)}. Normalizing these counts produces
the desired probability estimates:

P(q j | qi) ≈
C(qi ,q j)

C(qi ,qh)
h=0

|Q|−1∑
 ,

Pe(sk | qi) ≈ C(sk ,qi)

C(sh ,qi)h=0

|α |−1∑
 . (5)

More sophisticated methods such as Viterbi training or the use of an expectation
maximization (EM) algorithm [3] are required when labeled training data are not
available [4].

A simple HMM for gene finding is depicted in Fig. 4. The state labeled (N)
represents intergenic regions. The machine may self-transition any number of times
while in this state to generate arbitrarily long intergenic regions. Following the path
q2→q3→q4 produces a start codon (ATG) and places the machine in the exon states
(q5, q6, q7—three states to represent the three codon positions). Generation of an intron
begins with a donor site (GT; q13→q14) followed by an arbitrarily long intronic region
(“I”, q15) and then an acceptor site (AG; q16→q17). The reader can easily verify that
states {q8, q9, q10, q11, q12} generate only the three eukaryotic stop codons, TGA, TAA,
and TAG. Note that states labeled with a specific nucleotide in the figure can generate
only that symbol (e.g., T for state q14).

Such a simple HMM can be extended in various ways to improve gene-finding
accuracy, primarily through the more detailed modeling of statistical biases in
nucleotide composition within gene features. An example is the use of higher-order
emission probabilities:

Pe(xi | xi−nxi−n+1...xi−1,q j) ≈
C(xi−nxi−n+1...xi ,q j)

C(xi−nxi−n+1...xi−1s,q j)
s∈α
∑

 , (6)

where Pe(xi | xi-n xi-n+1... xi-1, qj) denotes the probability of state qj emitting symbol xi,
given that the subsequence xi-n... xi-1 has just been emitted; counts C(xi-n xi-n+1... xi, qj)
for all (n+1)-letter sequences xi-n xi-n+1... xi may be derived from the training data
as before.

An unfortunate aspect of gene modeling with HMMs is the fact that variable-length
features (such as exons or introns) are implicitly modeled as having geometrically

 Advancing the State of the Art in Computational Gene Prediction 87

Fig. 4. A simple HMM for gene finding. States are represented as circles and transitions as
arrows. Probabilities are omitted for clarity. States which emit only one symbol are shown with
the corresponding symbol next to the state. The special state q0 is the start/stop state, which
emits no symbols. Source: Majoros WH, Methods for Computational Gene Prediction,
Cambridge Univer sity Press (forthcoming), reproduced with permission.

distributed lengths, as enforced via the compounding of repeated transition probabilities
during generation of a variable-length feature. Generalized HMMs (GHMMs—see
below) solve this problem while also allowing for greater modeling flexibility.

2.3 Generalized Hidden Markov Models

GHMMs improve on HMMs by abstracting the generation of entire gene features into
single states; i.e., upon entering a state qi the machine may emit an entire subsequence
Si before making the next transition. In this way, feature lengths may be explicitly
modeled via arbitrary distributions (not necessarily geometric), the syntactic and
statistical properties of individual features may be encapsulated within each state in
an arbitrary (i.e., non-Markovian) way, and the number of states required to
implement a production-quality gene-finding system can be kept relatively small.

Formally, a GHMM is a stochastic generative model M = (Q, α, Pt, Pe, Pd) in which
all terms are as defined for the HMM case, except that individual state emissions are
entire substrings (rather than individual symbols) over α, with those emissions having

88 W.H. Majoros and U. Ohler

lengths distributed according to the state-specific duration distribution Pd (L|q), L∈ , q∈Q.

Decoding (i.e., finding the optimal path) with a GHMM is similar to the HMM case:

φ* = argmax

φ
Pt (q0 | yn) Pt (yi | yi−1)Pd (di | yi)Pe(Si | yi,di)

i=1

n

∏ , (7)

for putative parse φ = (y0, ... , yn+1), ∀i yi ∈Q, where it can be seen that the emission
term Pe(Si | yi, di) is now additionally conditioned on the duration di = |Si | of the
subsequence Si emitted by state yi; S = S1S2... Sn. Note that the parse again begins and
ends in (silent) state q0: y0 = yn+1 = q0. An efficient dynamic programming heuristic
exists for the GHMM case [5,6] which first identifies high-scoring putative signals in
the input sequence and links these into a continuously-pruned parse graph; by
weighting the vertices and edges of this graph with corresponding terms from Eq. (7)
we obtain a structure that can be searched very quickly to find the optimal parse.

Training of a GHMM is most often carried out using MLE by separately estimating
the Pt, Pe, and Pd parameters from labeled training data. The Pd distribution is
commonly represented via a smoothed histogram constructed from feature lengths in
the training data; Pt is easily estimated by observing transition counts in the training
data and normalizing these into probabilities, as in the HMM case. Because most
GHMM-based gene finders utilize some form of Markov chain (a two-state, higher-
order HMM in which transition probabilities are ignored) as the submodel within each
variable-length state of the GHMM (i.e., states for exons, introns, or intergenic
regions), estimation of Pe is rendered trivial; interpolation techniques are also
sometimes employed to mitigate the effects of sampling error when using higher-
order models [7]. Fixed-length states of the GHMM, which correspond to signals such
as start/stop codons and donor/acceptor sites, are typically represented using a weight
matrix (WMM) [8], in which each position of a fixed-length signal window is
described by a position-specific emission distribution, possibly conditional on the
symbols residing at other positions within the window [9]. Thus, for most GHMM
implementations, MLE parameter estimation may be performed without the need for
iterative methods such as Viterbi training or EM.

2.4 Pair HMMs and Generalized Pair HMMs

A significant increase in predictive accuracy can often be achieved by modeling
evolutionary trends as observed in the genomic sequence of related organisms. This is
due to the fact that natural selection tends to operate more stringently on the coding
(versus noncoding) regions of any genome. When predicting genes in some target
genome S, an informant genome I from some related organism may be employed by
aligning portions of S and I for which homology (evolutionary commonality of
descent) may be inferred via sequence similary. In this case, the optimal parse may be
defined as that φ which maximizes P(φ |S, I), which we may factor as:

φ* = arg max
φ

P(φ | S, I) = argmax
φ

P(φ, S, I)
P(S, I)

= arg max
φ

P(φ, S, I)

= arg max
φ

P(φ)P(S, I | φ),

 (8)

 Advancing the State of the Art in Computational Gene Prediction 89

where P(φ) is merely the product of transition probabilities incurred along the path φ
just as before, leaving only the problem of evaluating P(S, I |φ). A particularly elegant
method for modeling the latter joint probability is by positing a special type of
Markov model M=(Q, α, Pt, Pe) in which each state q∈ Q emits pairs of symbols
(s1, s2) ∈ α×α rather than individual symbols as in a standard HMM. Replacing α with
the augmented alphabet α- = {A,C,G,T,-}, for ‘-’ the gap symbol representing
unaligned positions or gaps in an alignment, we arrive at a model capable of emitting
aligned sequences with gaps. Such a model is called a Pair HMM (PHMM); an
example is shown in Fig. 5.

Fig. 5. A simple Pair HMM. State M emits matched or mismatched symbols into an alignment;
IX and IY emit gapped alignment positions (i.e., gaps in sequence X for IX and in sequence Y for
IY). Transition probabilities are indicated using letters α, χ, δ, and μ. Source: Majoros WH,
Methods for Computational Gene Prediction, Cambridge University Press (forthcoming),
reproduced with permission.

Decoding with a PHMM may be described as:

φ* = argmax

φ={y0 ,...,yn+1}
Pt (q0 | yn) Pe(ai,1,ai,2 | yi)

i=1

n

∏ Pt (yi | yi−1) , (9)

where ai, j denotes the ith symbol in the j th track (j∈ {1, 2}) of the alignment formed by
a putative parse φ . Unfortunately, a dynamic programming solution to this
optimization problem requires a three-dimensional matrix and therefore significantly
greater computational resources than for a standard HMM. Heuristics are thus
commonly employed to prune the matrix, as illustrated in Fig. 6. The heuristic aligner
BLAST [10] is often used to precompute a set of guide alignments (black bars in the
figure); portions of the dynamic programming matrix which are deemed too distant
from these guide alignments are pruned from the matrix and never evaluated.

Generalized PHMMs (GPHMMs) have also been employed for gene prediction
[11,12]. A GPHMM may be obtained by embedding a PHMM within each state of a
GHMM, so that each GPHMM state will emit pairs of aligned genomic features (e.g.,

90 W.H. Majoros and U. Ohler

Fig. 6. Pruning an alignment matrix. Precomputed alignments are shown as solid bars;
rectangles denote the portion of the alignment matrix which are actually evaluated. The third
dimension, corresponding to states of the PHMM, is omitted for clarity. Source: Majoros WH,
Methods for Computational Gene Prediction, Cambridge University Press (forthcoming),
reproduced with permission.

exons, introns, or intergenic regions). The corresponding decoding optimization is
given by:

φ* = Pt (q0 | yn) arg max
φ

Pe(Si,1, Si,2 | yi ,di,1,di,2)
i=1

n

∏
 Pt (yi | yi−1)Pd (di,1,di,2 | yi).

 (10)

One dynamic programming solution for GPHMMs proceeds by constructing a parse
graph (Fig. 3) for each of the two input sequences and then aligning these graphs in
such a way that like vertices (e.g., ATG-ATG, GT-GT, etc.) are permitted to align and
unlike vertices (e.g., ATG-TAG) are not, with Eq. (10) serving as the objective
function of the alignment process [12]. The resulting alignment between parse graphs
will outline an isomorphism corresponding to a parse in each of the two graphs.
Precomputed guide alignments are generally also required for GPHMMs in order to
achieve acceptable time-space complexity via pruning of the dynamic-programming
matrix.

2.5 Phylogenetic HMMs

Whereas PHMMs and GPHMMs incorporate homology evidence from a single
informant genome, Phylogenetic HMMs (PhyloHMMs) permit evidence from any
number of informants to be utilized, with a Bayesian network being employed to
reduce bias due to the non-independence of the informants. Precomputed alignments
are again used; unlike PHMMs and GPHMMs, however, current PhyloHMM

 Advancing the State of the Art in Computational Gene Prediction 91

implementations adhere strictly to the precomputed alignments, rather than merely
using them as guides for the purpose of pruning the search space.

The decoding derivation for a PhyloHMM is:

φ* = arg max
φ

P(φ | S, I (1) ,..., I (n))

= arg max
φ

P(φ, S, I (1) ,..., I (n))

P(S, I (1) ,..., I (n))

= arg max
φ

P(φ, S, I (1) ,..., I (n))

= arg max
φ

P(φ)P(S, I (1),..., I (n) | φ)

= arg max
φ

P(φ)P(S | φ)P(I (1),..., I (n) | S,φ),

(11)

for target genome S and informants I (1), ... , I (n). The P(φ)P(S | φ) term can be evaluated
using a standard GHMM decoder. The remaining term, P(I (1)... I (n) | S, φ), can be
evaluated as follows:

∏∏
∈ =

=
φ

ψφ
i

i

iy

e

bj
ij

n
jj

n SIIFSIIP),|,...,(),|,...,()()1()()1(, (12)

where the second product is over columns bi through ei of the precomputed alignment,

according to the emission of state yi ∈ φ. The evolution model ψ i typically differs

between coding states (i.e., ψcoding) and non-coding states (ψnoncoding) so as to model the

differences in rates of evolution between the coding and noncoding portions of
genomes. These rates are reflected in the F(•) term, which is known as Felsenstein’s
algorithm [13], and is used to compute the likelihood of a single column in the
alignment:

F (I j
(1),..., I j

(n) | S j ,ψ i) = P(v j | parent(v j),ψ i)
nonroot

v

∏
⎛

⎝

⎜
⎜ ⎜

⎞

⎠

⎟
⎟ ⎟ unobservables

∑ , (13)

where the summation is over all possible assignments of nucleotide sequences to the
(unobserved) ancestral species in a phylogenetic tree (or phylogeny) describing the
evolutionary relationships among the target and informant genomes; the phylogeny
effectively serves as a Bayesian network for modeling evolutionary dependencies. vj
is the residue in column j of the alignment for any non-root vertex v in the tree; these
vj thus correspond to the (observable) informants as well as their (unobservable)
common ancestors in the phylogeny. Summing over all the possible nucleotides in the

92 W.H. Majoros and U. Ohler

ancestral genomes permits us to evaluate this formula in the presence of
unobservables, by effectively computing an expectation. Before this computation may
be performed the phylogeny must first be re-rooted so that the target genome is at the
root of the phylogeny and the informant genomes are at the leaves [14], reflecting the
dependence of the informants on the target.

The actual dependence of each genome on its parent genome—denoted

P(vj | parent(vj),ψ i) in Eq. (13)—may be represented at the individual nucleotide level

using a substitution matrix M in which the entry Ma, b gives the probability of
nucleotide a evolving into nucleotide b during a period of time equivalent to the
evolutionary distance between the two genomes. Non-independence of the columns in
the alignment may be modeled as well, by conditioning the substitution matrix on one
or more preceding nucleotides in the parent genome, similar to the higher-order
Markov models described earlier.

The substitution matrices comprising the evolutionary models ψ i of a PhyloHMM

may be independently trained from aligned features of the appropriate type (e.g.,

aligned coding exons for ψ coding) using standard maximum likelihood techniques

developed prevously for phylogeny reconstruction [15]. A general-purpose gradient
ascent procedure may thus be employed to maximize the likelihood of the training
data using Eq. (12) as the objective function of the optimizer.

2.6 Ad Hoc “Combiner” Methods

Integration of other forms of evidence besides evolutionary conservation between
genomes—such as expression evidence in the form of messenger RNAs and proteins
culled from living cells of the target organism—can be incorporated as well, though
current methods tend to be largely ad hoc in nature and therefore defy (at present) any
concise, unified description such as those given in the preceding sections. These
programs are referred to as combiners, since they may combine many disparate
sources of evidence, including predictions from other gene-finding programs. Despite
their typically ad hoc nature, some combiner programs have proven to be among the
most accurate systems currently available for predicting gene structure [16,17]. It
seems a curious fact that, despite their not conforming (in most cases) to a rigorous
probabilistic formulation as in the case of Markov models and their various relatives
described earlier, combiner-type programs can perform so well. As we will discuss in
greater detail below, this may be due (in part) to the fact that combiner systems are
typically trained discriminatively via extensive manual tuning of evidence weights,
with the goal of the manual tuner being to maximize the accuracy of the gene
predictions when the system is applied to the sequences in the training set, as opposed
to maximizing the likelihood of the training data as in MLE. Another likely reason for
the success of combiners is their integration of all available forms of evidence in
arriving at a prediction; it is in reference to this latter property that combiner-type
programs are often referred to as being integrative. Unfortunately, because the “gold
standard” against which gene finders are often measured—namely, test sets of
previously annotated genes—is often produced (or at least heavily influenced) by a
combiner-like “annotation pipeline” (see section 4.5), the superiority of integrative
systems may in fact be somewhat over-estimated.

 Advancing the State of the Art in Computational Gene Prediction 93

3 Limitations of Current Methods

3.1 MLE+Viterbi Is Not Optimal

As described above, most state-of-the-art gene-finding systems are at present based
on Markovian models of one type or another (i.e., HMMs, GHMMs, PHMMs,
GPHMMs, PhyloHMMs). The vast majority of systems based on these models are
trained via MLE and are then subjected to some form of Viterbi decoding, with the
latter being extended in various ways to incorporate external evidence such as
informant sequences (e.g., PHMMs and PhyloHMMs) as well as modeling
enhancements such as explicit state duration (e.g., GHMMs). Much evidence
suggests, however, that these MLE-trained systems are not optimal in practice, in that
the use of non-maximum-likelihood parameters can often improve the accuracy of a
given probabilistic parser when the parser is later utilized for Viterbi-based
prediction. Indeed, the suboptimality of the MLE+Viterbi strategy has been well-
documented for some time now in the field of speech recognition, in which HMM-
based systems are fairly routinely subjected to one of several non-MLE forms of
training collectively known as discriminative training [18-20].

Whereas the goal of maximum likelihood training is to maximize the joint
likelihood of the training set T (consisting of pairs of sequences S and their “correct”
parse φ) given the model parameters θ—e.g.,

θMLE

* = argmax
θ

P(φ, S |θ)
(S ,φ)∈T

∏
⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟ , (14)

the goal of discriminative training is to maximize the expected accuracy of the
resulting parser. This latter goal can be formalized in a number of ways. A common
formulation is the so-called conditional maximum likelihood (CML):

θCML

* = argmax
θ

P(φ | S,θ)
(S ,φ)∈T

∏
⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟ =

argmax
θ

P(φ, S |θ)
P(S |θ)(S ,φ)∈T

∏
⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟ , (15)

in which we require the parameterization θ *
CML under which the correct parses of the

training sequences are most probable, given the sequences and the model parameters.
Unfortunately, methods for directly optimizing Eq. (15) for an HMM are not known
[4], and while a number of heuristics have been developed within the field of speech
recognition for this or similar objective functions (e.g., maximum mutual information,
MMI [18]; minimum classification error, MCE [19]), these tend to be unstable in
practice so that convergence is typically not guaranteed without manual tuning of
additional parameters (e.g., [19, 21]). It should also be noted that for practical gene
finders the number of model parameters to be optimized can be in the high thousands
in the case of higher-order models, making thorough discriminative training of such
models seem highly daunting at best.

Explicit discriminative training for HMM-based gene finders has thus been largely
ignored (see [21] for a rare example). In the case of GHMMs and more sophisticated
probabilistic models for gene finding, much anecdotal evidence suggests that a very
crude form of discriminative training is typically performed via manual tuning of a

94 W.H. Majoros and U. Ohler

small number of model parameters by the authors of these systems so as to improve
the observed prediction accuracy on the training set or on a separate test set. In the
case of comparative gene-finding systems (i.e., those incorporating external evidence
apart from the target genome), such manual tuning is commonly performed by
introducing one or more “fudge factors” to allow for the artificial weighting of the
various components of the decoding objective function such as the informant
component (e.g., “coding bias” in ExoniPhy [15]; “conservation score coefficient” in
N-SCAN [22]; non-maximum-likelihood value for Pmatch in TWAIN [12]). Though
these “fudge factors” appear to serve no theoretical role in the probabilistic
formulation of the model, such manipulations can sometimes dramatically increase
the accuracy of the resulting parser.

Automated discriminative training procedures for generalized HMMs and
comparative systems such as pair HMMs and PhyloHMMs have received little or no
attention as of yet. A rare exception involved the use of a crude gradient-ascent
approach to optimize a handful of the thousands of parameters making up a GHMM-
based gene finder [23]. Given the simplistic and ad hoc nature of the “fudge factor”
approach described above for PhyloHMMs and other sophisticated probabilistic gene
parsers, investigations into more comprehensive means of discriminatively optimizing
these systems would seem to be well justified.

Alternatively, one might consider the very need for discriminative training of
Markovian gene-finding models to be an indication that this family of models is
perhaps not an ideal one for the gene-finding application. Investigations into
explicitly discriminative, non-Markovian frameworks such as conditional random
fields have recently produced promising preliminary results [24, 25]. The use of
alternate HMM decoders (i.e., in place of Viterbi) remains another possibility, though
experiments by ourselves with two recently-proposed alternate decoders (posterior
Viterbi [26], optimal accuracy decoder [27]) suggest that these decoders do not
provide an appreciable gain in predictive accuracy for eukaryotic gene finding, and in
particular do not obviate the need for discriminative training of the model
(unpublished data).

3.2 Reliance on Precomputed Alignments

As mentioned earlier, the PhyloHMM framework, and to a lesser extent the PHMM
and GPHMM frameworks, rely on pre-computed alignments of the target and
informant genomes to be used during gene prediction. In the case of Pair HMMs and
GPHMMs, the pre-computed alignments serve largely as guides, so that the actual
pairing off of target and informant nucleotides resulting from a decoding run of the
system may differ to some degree from that prescribed by the pre-computed
alignment, though in practice the aggressive pruning of the dynamic programming
matrix around the guide alignments may preclude all but the smallest divergence from
the pre-computed alignment. In the case of PhyloHMMs, all known implementations
at present adhere to the pre-computed alignment precisely, so that alignment errors by
the external alignment tool may give rise to spurious evolutionary patterns as seen by
the PhyloHMM decoder. Ideally, one would like the gene prediction and alignment
phases to proceed simultaneously, so as to mutually inform one another, as in the case

 Advancing the State of the Art in Computational Gene Prediction 95

of (non-pruned) PHMM decoding. Methods for efficiently achieving this in the case
of PhyloHMMs have yet to be investigated.

3.3 Simplifying Assumptions

A number of simplifying assumptions are typically made in formulating a gene-
finding model, most often for the purpose of reducing the computational complexity
of the decoding process. In particular, various models assume that:

1. feature lengths are geometrically distributed (HMMs)
2. exon-intron structure does not change over evolutionary time (GPHMMs,

PhyloHMMs)
3. pre-computed alignments are correct (PhyloHMMs; also to some degree GPHMMs

and PHMMs)
4. each locus has exactly one correct parse (one “isoform”)
5. the target sequence contains no frameshifts
6. genes do not overlap
7. non-consensus splice sites do not occur
8. stop codons do not code for any amino acid

Though all of these assumptions can be shown to be false in at least one biologically
valid instance, few efforts have been undertaken to relax these assumptions. Known
exceptions include the modeling of non-geometrically distributed intron lengths [28]
and the modeling of genes which overlap on opposite strands [29], neither of which
have seen widespread adoption in mainstream eukaryotic gene finders as of yet. In the
case of non-consensus splice sites, though several software implementations do
permit the user to explicitly request the modeling of non-consensus splice sites, a
thorough analysis of the impact of this feature on prediction accuracy has yet to be
performed, while conventional wisdom holds that the sensitivity gains can be more
than offset by the loss in specificity.

Because Markovian-based gene finders utilize a Viterbi decoding step to find the
single most promising parse of an input sequence, any genes which are predicted as
part of the parse will be assigned a single exon-intron stucture by the gene finder.
Unfortunately, many human genes (perhaps as many as 80%) can be spliced in
multiple ways to produce distinct intron-exon structures, or isoforms. The issue of
multiple isoforms is discussed in more depth in the next section.

The assumption that stop codons do not code for any amino acid is untrue in the
very rare case of selenocysteine—an amino acid coded by the codon TGA (UGA in
the mRNA). In general, gene finders do not predict genes containing in-frame stop
codons (i.e., stop codons residing at a distance d from the beginning of the coding
portion of the spliced gene, in which d is divisible by 3), except for the in-frame stop
codon occurring at the very end of the gene. For most organisms, to allow the
prediction of genes with in-frame stop codons (other than the termination codon at the
end of the gene) would very likely result in a significant degradation in predictive
accuracy, since for most sequenced genomes to date, the majority of known genes do
not contain in-frame stop codons. A rare example of a gene-finding system which can

96 W.H. Majoros and U. Ohler

predict selenocysteine-bearing genes has been described [30] in which homology
evidence and other information from the UTR of a putative gene were used to
limit the large number of possible in-frame stop-codon-bearing genes to a more
reasonable number.

The assumption that genes do not overlap is specific to eukaryotic gene finders;
because overlapping genes appear to be more common in prokaryotes, prokaryotic
gene-finding programs have modeled overlapping genes for some time now [31, 32]
and gene finders for eukaryotic viruses such as HIV also must deal with the
phenomenon of overlapping genes [33]. In the case of eukaryotes, nested genes and
genes which overlap other genes on the opposite strand are not just rare exceptions
(e.g., in Drosophila melanogastor [34]), though most eukaryotic gene finders do not
predict them. Two exceptions are SNAP [29] and AUGUSTUS [28], which can be
run in a special single-strand mode, in which genes are independently predicted on
either strand, so that a gene prediction on one strand may overlap a prediction the
other strand.

Reliance on pre-computed alignments has already been discussed; the somewhat
related issue of conservation of exon-intron structure in GPHMMs and PhyloHMMs
is similarly vexing. Fig. 7 illustrates the problem for a pair of Aspergillus
homologues. The upper track in the figure depicts the exon-intron structure of a
particular gene in A. oryzae; the lower track depicts the homologous gene in A.
fumigatus, where it can be seen that a number of structural changes have been
effected since these organisms diverged from their common ancestor, though the
encoded proteins have remained identical. Efficient GPHMM implementations
generally do not permit the prediction of homologues with different exon-intron
structures, since to do so would largely eliminate any opportunity for pruning the
search space, resulting in dynamic programming matrices which are often too large to
evaluate in a reasonable amount of time. In the case of PhyloHMMs, the potential for
such structural changes would at the least seem to present a challenge for the
alignment pre-processing phase. More specifically, the need for incorporating amino

Fig. 7. An example of exon-intron structure divergence. These two genes from Aspergillus
oryzae and A. fumigatus encode the same protein, but have accumulated a number of structural
changes since their last common ancestor. Many comparative gene finders cannot easily model
such structural changes. Source: Majoros WH, Methods for Computational Gene Prediction,
Cambridge University Press (forthcoming), reproduced with permission.

 Advancing the State of the Art in Computational Gene Prediction 97

acid conservation into the alignment phase would seem to be greater than is perhaps
recognized at present.

3.4 The Existence of Alternative Splicing

The propensity for human genes to encode multiple, distinct proteins via alternative
splicing (as well as alternative polyadenylation and alternative transcription/translation
initiation) is now well documented [35]; Fig. 8 illustrates some of the potential effects
of alternative splicing and related phenomena.

Each potential splicing pattern gives rise to a unique isoform for the locus. Some
loci can have very many isoforms [36], and there is even evidence that exons from
distinct loci in the human genome may sometimes be spliced together to encode a
“chimeric” protein [37]. It has been suggested that the propensity for a locus to
encode multiple proteins may account for the seemingly large mismatch between the
estimated number of human genes (~25000) and the number of proteins (>100000),
and is therefore a particularly important issue for human gene finding.

Despite the prevalence of these phenomena in human genes, however, virtually all
state-of-the-art eukaryotic gene finders continue to enforce a one-gene-one-parse
discipline via their use of Viterbi (or Viterbi-like) decoding to find the single optimal
parse of the input sequence. We will address possible methods for relaxing this
discipline in section 4.1.

Fig. 8. Some possibilities for alternative splicing of coding segments (i.e., ignoring UTRs).
Many isoforms may potentially be produced from a single locus in a combinatorial fashion.
Source: Majoros WH, Methods for Computational Gene Prediction, Cambridge University
Press (forthcoming), reproduced with permission.

98 W.H. Majoros and U. Ohler

4 Some Possible Future Directions

4.1 Redefining the Problem

The earliest “gene finding” systems were actually exon finders: that is, rather than
predicting complete gene structures, they instead predicted individual exons, and left
the task of assembling exons into complete genes to the end user. As Markov-based
systems gained in popularity it became more feasible to predict whole gene structures
via the well-established Viterbi decoding algorithm. As the prevalence of alternative
splicing in mammalian genomes becomes better appreciated, however, the suitability
of a Viterbi-based approach is increasingly cast into doubt. A modified version of
Viterbi decoding which permits the efficient identification of the N best (rather than
the single best) parses has been suggested as one possible means of addressing the
issue of alternative splicing within current gene-finding frameworks [38]. However,
not all possible valid alternative isoforms are actually produced in an organism, and
without additional splicing-specific information, we will not be able to deduce the set
of isoforms which are actually produced.

One possible remedy lies in redefining the problem so as to focus on the
identification of likely exons in isolation—i.e., predicting individual exons without
regard to their compatibility (i.e., whether they overlap, whether they maintain a
consistent reading frame, etc.) with other predicted exons in a complete gene parse.
The task of assembling these exon predictions into one or more predicted isoforms for
a locus can then be left for downstream software, or for human annotators in the case
of well-funded genome projects. Although this redefinition of the problem would
seem to be a step backward toward the earlier exon-finding approaches mentioned
above, there are a number of potential advantages to this change.

The most obvious advantage of such an approach, for organisms exhibiting
appreciable levels of alternative splicing, is that it facilitates the identification of
multiple isoforms by downstream analyses after exon prediction has been performed.
For instance, the last few years have seen the development of a number of algorithms
which allow the predictions of which individual exons are subject to alternative
splicing [39-41], and additionally other alternative splicing patterns such as intron
retention [42]. That is, the identification of likely exons and the assembling of exons
into multiple isoforms become effectively decoupled, thereby entailing many of the
advantages of modular software design (i.e., division of labor, ease of development
and debugging, efficiency gains through parallelization, etc.). Given a set of high-
confidence exon predictions from an exon finder, research into optimal methods for
combining these into multiple-isoform predictions may proceed without the need to
repeatedly perform the content-scoring analyses encapsulated within the exon finder,
perhaps significantly easing the computational load of development and research
efforts. Indeed, were the exon predictions from one or more exon finders to be
collected into publicly available data banks for each genome project, the annotation
(and re-annotation) of these genomes at the whole-gene level may be considerably
eased, since the exon-finding phase need not be performed anew as alternative
parameterizations of the exon-assembly process are explored. Exons predicted by
different exon finders may also be considered for combination by automated methods
into coherent isoform predictions (thereby addressing the not-uncommon situation in

 Advancing the State of the Art in Computational Gene Prediction 99

which one gene finder correctly predicts one exon of a gene while another gene finder
correctly predicts another, but neither program predicts the entire gene correctly).

Predicting individual exons for later use by an exon-assembly process poses the
question of how best to settle the tradeoff between sensitivity and specificity. Many, if
not most, exon-finding approaches require that the user or designer impose a scoring
threshold below which a putative exon is not reported. In situations in which a later
automated exon-assembly process is to be performed, a reasonably liberal threshold
would presumably be of greatest value, so as to avoid limiting sensitivity. In a similar
vein, one might view an ensemble of exon predictions much like a “particle cloud” in
statistical physics, in which a particle’s position is not precisely defined, but is instead
characterized by a probability distribution. In a similar way, one or more exon finders
may be used to induce a probability distribution on the set of all possible open
reading frames (i.e., possible coding exons) in a sequence. To the extent that an exon
finder cannot identify exact exon boundaries with absolute certainty (e.g., in cases of
alternative splicing affecting the choice of either 5’ or 3’ splice site), some form of
“exon cloud” representation may be appropriate so as not to unduly constrain a
downstream exon-assembly process. Because optimal exon assembly in the case of
genes with multiple isoforms is not yet a solved problem, such an ensemble-based
approach to exon prediction may indeed be a promising starting point. As our
knowledge about splicing regulatory factors and their cis-regulatory sequences
increases (see, e.g., [43]), we can use information about, e.g., their expression values
as evidence to infer condition-specific isoforms.

4.2 A Greater Role for Machine Learning

The redefinition of the gene-finding problem via the decoupling of exon finding from
the later assembly of exons into one or more isoforms for each putative gene would in
some ways seem to permit a greater role for alternative machine-learning approaches
in the gene prediction process. Although a number of machine learning methods have
been utilized within gene finders in the past (e.g., decision trees in GlimmerM [44];
neural networks in GRAIL [45]), the newest generation of gene-finding systems are
based primarily on Markov models and generally do not incorporate any other
machine learning algorithms. One obstacle to the greater utilization of other machine
learning methods in gene finding appears to be the fundamental mismatch between
the classification-oriented formulation of many machine-learning algorithms (at least
the more popular ones such as support vector machines and the like) and the parsing-
oriented interface of HMMs provided by Viterbi decoding. Because alternative
splicing was for a number of years considered a rare exception to the one-gene-one-
protein “rule,” the single-parse approach enforced by Viterbi decoding became well
entrenched in the gene-finding field. Exon finding, on the other hand, permits a very
natural interpretation within the classification framework: given an open reading
frame, an exon finder aims to accurately classify the interval as being an exon (class
1) or not being an exon (class -1).

Reformulating the problem as one of classification would permit designers of
exon-finding software to draw more fully on the vast body of research from the
machine-learning field. In particular, the use of maximum discrimination classifiers
may produce appreciable accuracy gains as compared to the standard MLE-trained

100 W.H. Majoros and U. Ohler

Markov models which currently dominate the field. This in turn highlights yet another
advantage of a move away from the MLE+Viterbi strategy for whole-gene prediction,
which as we noted earlier can be characterized as sub-optimal in certain regards.

A particularly popular machine-learning method, support vector machines (SVMs)
[46], has been applied to the problems of exon prediction [47], start codon prediction
[48], splice site prediction [49], and the prediction of specific forms of alternative
splicing [39]. The discriminative nature of SVMs and the high accuracy rates which
have been observed in a number of applications suggest that further investigations
into their use for gene and exon prediction may indeed be worthwhile.

4.3 Focus on Integrative Methods

As we noted earlier, the ad hoc methods exemplified by so-called “combiner” systems
have proven in some cases to be exceptionally effective at producing highly accurate
gene predictions, though it seems obvious that much of the advantage enjoyed by
these systems derives not so much from their ad hoc nature as from their access to
multiple forms of evidence (e.g., homology evidence, known proteins, other gene
predictions) in making informed decisions regarding the most likely exonic structure
for a gene. Despite the success of integrative approaches utilizing all available
evidence, much attention in the field remains focused on systems utilizing only
limited forms of evidence—e.g., nucleotide-based conservation in the case of
PhyloHMMs and other comparative gene finders. A greater emphasis on the further
development of integrative approaches to computational gene prediction may thus be
useful, though it is acknowledged that in the case of genomes for which little
additional evidence besides the primary genomic sequence is available, the advantage
of integrative approaches dwindles.

4.4 Interoperability

Yet another possible avenue for advancing the state of the art in computational gene
finding is through the use of explicit graph-based representations of genome content.
Recall from section 2.1 our definition of a parse graph as a directed acyclic graph in
which individual vertices represent putative splice sites and start/stop codons, and
edges denote putative exons, introns, and intergenic regions. While not all gene
finders explicitly construct such a graph, it is arguably the case that most, if not all,
state-of-the-art whole-gene prediction systems construct such a graph implicitly
during their processing of the input sequence. For many of these systems, at the point
in their decoding algorithms (whether Viterbi or otherwise) when they select an
optimal predecessor signal for linking into the “trellis” which is later used to retrace
the optimal parse, if the potential predecessors of the current signal are instead linked
to the current signal via a weighted edge (with some function of each predecessor’s
inductive score serving as the weight), then a parse graph would be automatically
induced, and could be emitted by the program in addition to (or even instead of) the
gene prediction corresponding to the optimal parse.

Such weighted parse graphs could be immensely useful for later re-processing,
especially as additional evidence becomes available which was not present at the time
the gene finder was originally run. Parse graphs from multiple gene finders (perhaps
based on different training sets or utilizing different classes of model) could

 Advancing the State of the Art in Computational Gene Prediction 101

conceivably be combined with each other and/or with additional evidence (e.g.,
homology evidence, expression evidence, etc.) to produce a re-weighted graph that
may permit more accurate decoding by virtue of the integrative nature of the graph’s
construction. Decoding of (i.e., extracting a gene prediction from) parse graphs can be
done very simply and efficiently using a specialized shortest-path algorithm entirely
anologous to Viterbi decoding [6]. Given a standard file format for the storage of such
graphs, decoding of any graph could then be performed by a “universal decoder”
program, which need not be aware of the actual methods employed in weighting any
particular graph. Given the existence of such a “universal decoder,” the
implementation of a decoder in any given graph-emitting gene finder then becomes
unnecessary, since the universal decoder may be applied to the emitted graph. Were
such a graph-based interface to be adopted by a sufficient number of gene-finding
systems, entire pipelines may conceivably be constructed in which the graphs from
one or more gene finders are subjected to any number of re-weighting processes to
incorporate additional information such as the existence of genomic repeats [50] or
other genome-level features not commonly utilized by the primary gene-finding
programs, or which were not available when the programs were trained. The last stage
in such a pipeline would presumably involve the use of a graph-based decoder to
extract one or more gene predictions.

The utility of a graph-based representation for the identification of alternative
splicing should be fairly obvious. Indeed, graph-based methods for the identification
of alternative splicing have already been proposed, though not in an overtly
Markovian setting [51]. In our own research we have observed a tendency for our
graph-based gene finders to often rank the “correct” gene parse very highly, while
ranking another, incorrect parse only slightly higher, so that were the program to emit
the top N parses, for some reasonably small N, instead of the single highest-scoring
parse, the correct parse would very often be among the top N. Because most state-of-
the-art eukaryotic gene finders emit only the single highest-scoring parse, the
“correct” parse (which might be recognized by a human annotator as correct, due to
his or her access to additional evidence) is effectively lost. Methods for sampling
parses from an HMM have been explored, and their possible utility to the detection of
alternative splicing suggested [38], though the actual adoption of these methods by
mainstream gene finders has for the most part not occurred. The proposed practice of
emitting an entire parse graph (after applying a reasonable amount of pruning so as to
keep the size of the graph manageable while eliminating very unlikely parses) may be
viewed as an extreme variant of the sampling approach.

Finally, we would speculate that the availability of pre-computed parse graphs for
a large number of organisms in some publicly-available repository—much like the
precomputed whole-genome alignments maintained at such sites as the UCSC [52]—
may prove useful in enabling researchers to re-analyze genomes at a later date when
additional evidence becomes available, without having to deal with the often vexing
problem of re-aquiring an older gene finder which had been used in an earlier
analysis, or even having to recompile old, possibly poorly-maintained source code in
order to run such programs on newer assemblies of a previously annotated genome.

Yet other advantages to graph-based gene prediction conceivably exist which we
have not here enumerated. Unless and until a sufficient number of gene-finding software
systems adopt such an interface, these advantages will of course prove elusive.

102 W.H. Majoros and U. Ohler

Fig. 9. Some possible uses of parse graphs as a data interchange format for computational gene
prediction. Graphs produced via one gene finder may be re-weighted by other downstream
programs through the incorporation of additional evidence. Eventually a graph may be supplied
to a “universal decoder” to extract an optimal parse. Source: Majoros WH, Methods for
Computational Gene Prediction, Cambridge University Press (forthcoming), reproduced with
permission.

4.5 Improved Evaluation Protocols

It is an unfortunate (and often quite vexing) fact that the unbiased evaluation of gene-
finder accuracy can often be very difficult to achieve. Sustained progress in any field
depends to a significant degree on our ability to accurately measure progress when it
is made. In the case of gene prediction, verification of predicted genes in the
laboratory can be rather expensive, so that accuracy assessments are most often made
by applying a new (or newly retrained or modified) program to a “test set” of genes
for which the intron-exon structures are more-or-less known. Unfortunately, many
genes for which we believe we know the “correct” intron-exon structure may in fact
be alternatively spliced, so that the predictions obtained for a particular locus which
do not agree with the known structure of the gene may in fact match a valid, but
unknown, isoform for that gene. In other cases, the “known” structure of a test gene
may in fact derive from an earlier gene prediction which had been elevated to “known
gene” status by an over-eager human annotator; a number of these “hypthetical” gene
structures may in fact be false, again distorting our assessment of the predictive
accuracy of a new gene finder when it is tested against these annotated gene
structures. In the case of combiner-type programs, a further possibility for bias their
evaluation exists—namely, the fact that many gene annotations in curated gene sets

 Advancing the State of the Art in Computational Gene Prediction 103

derive from annotation pipelines that are effectively combiner programs themselves,
so that a combiner program under evaluation is effectively assessed by the degree to
which the program agrees with some other combiner-like program upon which the
human annotators (if any) heavily depended during genome annotation.

In order to improve this situation, a set of standardized gene sets—more than one,
and ideally more than a few—need to be generated and rigorously maintained as new
isoforms of existing genes are discovered. Such standard test sets should come from a
variety of organisms, and should also be accompanied by corresponding training sets.
Large-scale gene-finder competitions (e.g., GASP [53], EGASP [16]) whichattempt to
evaluate and rank sets of gene finders on a common test set generally do not (and, out
of practical reasons, typically cannot) control for the difference in training sets used
by the authors of the various programs, even though it has been well-documented that
the details of the training regime applied to a particular gene finder can significantly
affect the accuracy of the resulting system [23]. More generally, the practice of
comparing different gene-finding algorithms by applying completely different
software systems embedding those approaches to a common test set fails to account
for the many minute modeling decisions which are made by different software authors
in implementing their highly complex software systems. Thus, a comparison between
program X implementing a model of type MX and a program Y implementing a
different class of model MY may be so severely influenced by implementation details
of the two software systems as to invalidate, or at least distort, any conclusions which
are drawn about the fundamental capabilities of methods MX and MY. The ideal
scenario for comparing algorithmic and modeling approaches would involve the
implementation of the alternative approaches within the same software code-base, so
that differences in accuracy between the different versions of a single software system
utilizing different gene-finding strategies may be less influenced by implementation
details (e.g., [17]); ideally, such single-code-base experiments should be replicated
across several independently-developed code-bases. The availability of larger
numbers of open-source gene-finding software systems will hopefully make the latter
types of experiments more feasible.

5 Summary and Conclusions

We have reviewed the major approaches currently in popular use for automated gene
prediction in eukaryotic DNA. While much progress has certainly been made over the
past two decades in building accurate gene-parsing systems, much room yet remains
for progress. We have enumerated a number of shortcomings inherent in current state-
of-the-art systems, and suggested a number of very broad avenues for possible future
research. We have focused in particular on the existence of alternative splicing in
mammalian genomes, since the existence of potentially many uncharacterized
alternative splice forms in human genes poses a potential barrier to biomedical
advances aimed at improving human health. To the extent that alternative splicing is
still not adequately addressed by current gene-finding systems, the need for creative
proposals for the advancement of the field should be manifestly clear.

104 W.H. Majoros and U. Ohler

References

1. Davuluri RV, Grosse I, Zhang MQ (2001) Computational identification of promoters and
first exons in the human genome. Nature Genetics 29:412-417.

2. Viterbi A (1967) Error bounds for convolutional codes and an assymptotically optimal
decoding algorithm. IEEE Transactions on Information Theory, 260-269.

3. Dempster A, Laird N, Rubin D (1977) Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical Society (Series B) 39:1–38.

4. Rabiner LR (1989) A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE 77:257-286.

5. Kulp D, Haussler D, Reese M, Eeckman F (1996) A generalized hidden Markov model for
the recognition of human genes in DNA. ISMB '96.

6. Majoros WM, Pertea M, Delcher AL, Salzberg SL (2005) Efficient decoding algorithms
for generalized hidden Markov model gene finders. BMC Bioinformatics 6:16.

7. Salzberg SL, Pertea M, Delcher AL, Gardner MJ, Tettelin H (1998) Interpolated Markov
models for eukaryotic gene finding. Genomics 59:24-31.

8. Staden R (1984) Computer methods to locate signals in nucleic acid sequences. Nucleic
Acids Research 12:505-519.

9. Zhang MQ, Marr TG (1993) A weight array method for splicing signal analysis. Computer
Applications in the Biosciences 9:499-509.

10. Altschul SF, Madden TL, Schaffer AA, Zhang J, Anang Z, Miller W, Lipman DJ (1997)
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Nucleic Acids Research 25:3389-3402.

11. Alexandersson M, Cawley S, Pachter L (2003) SLAM: Cross-species gene finding and
alignment with a generalized pair hidden Markov model. Genome Research 13:496-502.

12. Majoros WM, Pertea M, Salzberg SL (2005) Efficient implementation of a generalized
pair hidden Markov model for comparative gene finding. Bioinformatics 21:1782-1788.

13. Felsenstein J (1981) Evolutionary trees from DNA sequences. Journal of Molecular
Evolution 17:368-376.

14. Durbin R, Eddy S, Krogh A, Mitchison G (1998) Biological sequence analysis. Cambridge
University Press.

15. Siepel A, Haussler D (2004) Computational identification of evolutionarily conserved
exons. RECOMB’04, March 27-31, 2004, San Diego.

16. Guigó R, Flicek P, Abril JF, Reymond A, Lagarde J, Denoeud F, Antonarakis S,
Ashburner M, Bajic VB, Birney E, Castelo R, Eyras E, Gingeras TR, Harrow J, Hubbard
T, Lewis S, Ucla C, Reese MG (2006) EGASP: The human ENCODE genome annotation
assessment project. Genome Biology 7(Suppl 1):S2.

17. Allen JE, Majoros WH, Pertea M, Salzberg SL (2006) JIGSAW, GeneZilla, and
GlimmerHMM: puzzling out the features of human genes in the ENCODE regions.
Genome Biology 7(Suppl 1):S9.

18. Bahl LR, Brown PF, de Souza PV, Mercer RL (1986) Maximum mutual information
estimation of hidden Markov model parameters for speech recognition. In: Proceedings of
the International Conference on Acoustics, Speech and Signal Processing 1986, pp 49-52.

19. Reichl W, Ruske G (1995) Discriminative training for continuous speech recognition. In:
Proceedings of the Fourth European Conference on Speech Communication and
Technology (EUROSPEECH-95): 18-21 September 1995; Madrid. Amsterdam: Institute
of Phonetic Sciences. pp 537-540.

 Advancing the State of the Art in Computational Gene Prediction 105

20. Normandin Y (1996) Maximum mutual information estimation of hidden Markov models.
In: Automatic Speech and Speaker Recognition. Lee C-H, Soong FK, Paliwal KK (eds).
Klewer Academic Publishers, Norwell. pp 58-81.

21. Krogh A (1997) Two methods for improving performance of an HMM and their
application for gene finding. In: Proceedings of the Fifth International Conference on
Intelligent Systems for Molecular Biology. Gaasterland T, Karp P, Karplus K, Ouzounis C,
Sander C, Valencia A (eds). American Association for Artificial Intelligence. pp 179-186.

22. Gross SS, Brent MR (2005) Using multiple alignments to improve gene prediction.
RECOMB’05. pp 374-388.

23. Majoros WM, Salzberg SL (2004) An empirical analysis of training protocols for
probabilistic gene finders. BMC Bioinformatics 5:206.

24. Vinson J, DeCaprio D, Luoma S, Galagan JE (2006) Gene prediction using conditional
random fields (abstract). In: The Biology of Genomes, Cold Spring Harbor Laboratory,
New York, May 10-14, 2006.

25. Culotta A, Kulp D, McCallum A (2005) Gene prediction with conditional random fields.
Technical Report UM-CS-2005-028. University of Massachusetts, Amherst.

26. Fariselli P, Martelli PL, Casadio R (2005) The posterior-Viterbi: a new decoding
algorithm for hidden Markov models. BMC Bioinformatics 6 Suppl 4:S12.

27. Käll L, Krogh A, and Sonnhammer ELL (2005) An HMM posterior decoder for sequence
feature prediction that includes homology information. Bioinformatics 21 Suppl. 1, i251-
i257.

28. Stanke M, Waack S (2003) Gene prediction with a hidden Markov model and a new intron
submodel. Bioinformatics 19:II215-II225.

29. Korf I (2004) Gene finding in novel Genomes. BMC Bioinformatics 5:59.
30. Castellano S, Lobanov AV, Chapple C, Novoselov SV, Albrecht M, Hua D, Lescure A,

Lengauer T, Krol A, Gladyshev VN,

Guigó

R (2005) Diversity and functional plasticity of

eukaryotic selenoproteins: Identification and characterization of the SelJ family. Proc Natl
Acad Sci 102:16188–16193.

31. Delcher A, Harmon D, Kasif S, White O, Salzberg SL (1999) Improved microbial gene
identification with GLIMMER. Nucleic Acids Research 27:4636-4641.

32. Shmatkov AM, Melikyan AA, Chernousko FL, Borodovsky M (1999) Finding prokyarotic
genes by the ‘frame-by-frame’ algorithm: targeting gene starts and overlapping genes.
Bioinformatics 15:874-886.

33. McCauley S, Hein J (2006) Using hidden Markov models and observed evolution to
annotate viral genomes. Bioinformatics 22:1308-1316.

34. Misra S, Crosby MA, Mungall CJ, Matthews BB, Campbell KS, Hradecky P, Huang Y,
Kaminker JS, Millburn GH, Prochnik SE, Smith CD, Tupy JL, Whitfied EJ, Bayraktaroglu
L, Berman BP, Bettencourt BR, Celniker SE, de Grey AD, Drysdale RA, Harris NL,
Richter J, Russo S, Schroeder AJ, Shu SQ, Stapleton M, Yamada C, Ashburner M, Gelbart
WM, Rubin GM, Lewis SE (2002) Annotation of the Drosophila melanogaster
euchromatic genome: a systematic review. Genome Biology 3:RESEARCH0083.

35. Thanaraj TA, Stamm S, Clark F, Riethoven JJM, Le Texier V, Muilu J (2004) ASD: the
Alternative Splicing Database. Nucleic Acids Research 32:D64-D69.

36. Wojtowicz WM, Flanagan JJ, Millard SS, Zipursky SL, Clemens JC (2004) Alternative
splicing of Drosophila Dscam generates axon guidance receptors that exhibit isoform-
specific homophilic binding. Cell 118:619-33.

37. Parra G, Reymond A, Dabbouseh N, Dermitzakis ET, Castelo R, Thomson TM,
Antonarakis SE, Guigo R (2006) Tandem chimerism as a means to increase protein
complexity in the human genome. Genome Research 16:37-44.

106 W.H. Majoros and U. Ohler

38. Cawley SE, Pachter L (2003) HMM sampling and applications to gene finding and
alternative splicing. ECCB 2003:36-41.

39. Dror G, Sorek R, Shamir R (2004) Accurate identification of alternatively spliced exons
using support vector machines. Bioinformatics 21:897-901.

40. Yeo GW, Van Nostrand E, Holste D, Poggio T, Burge CB (2005) Identification and
analysis of alternative splicing events conserved in human and mouse. PNAS 102:2850-
2855.

41. Rätsch G, Sonnenburg S, Schölkopf B (2005) RASE: recognition of alternatively spliced
exons in C.elegans. Bioinformatics 21 Suppl 1:i369-377.

42. Ohler U, Shomron N, Burge CB (2005) Recognition of unknown conserved alternatively
spliced exons. PLoS Computational Biology 1:113-22.

43. Wang Z, Rolish ME, Yeo G, Tung V, Mawson M, Burge CB (2004) Systematic
identification and analysis of exonic splicing silencers. Cell 119:831-845.

44. Pertea M, Salzberg SL (2002) Computational gene finding in plants. Plant Molecular
Biology 48:49-48.

45. Uberbacher EC, Mural RJ (1991) Locating protein coding regions in human DNA
sequences using a multiple-sensor neural network approach. PNAS 88:11261-11265.

46. Vapnik V (1998) Statistical Learning Theory. John Wiley and Sons.
47. Jaakkola TS, Haussler D (1999) Exploiting generative models in discriminative classifiers.

Advances in Neural Information Processing Systems 11:487-493.
48. Zien A, Rätsch G, Mika S, Scholkopf B, Lengauer T, Muller K-R (2000) Engineering

support vector machine kernels that recognize translation initiation sites. Bioinformatics
16:799-807.

49. Sun YF, Fan XD, Li YD (2003) Identifying splicing sites in eukaryotic RNA: support
vector machine approach. Comput Biol Med. 33:17-29.

50. Bedell JA, Korf I, Gish W (2000) MaskerAid: a performance enhancement to
RepeatMasker. Bioinformatics 16:1040-1041.

51. Heber S, Alekseyev M, Sze SH, Tang H, Pevzner PA (2002) Splicing graphs and EST
assembly problem. Bioinformatics 18 Suppl 1:S181-8.

52. Karolchik D, Baertsch R, Diekhans M, Furey TS, Hinrichs A, Lu YT, Roskin KM,
Schwartz M, Sugnet CW, Thomas DJ, Weber RJ, Haussler D, Kent WJ (2003) The UCSC
genome browser database. Nucleic Acids Research 31:51-54.

53. Reese MG, Eeckman FH, Kulp D, Haussler D (1997) Improved splice site detection in
Genie. Journal of Computational Biology 4:311-323.

Enhancing Coding Potential Prediction for Short

Sequences Using Complementary Sequence
Features and Feature Selection

Yvan Saeys and Yves Van de Peer

Department of Plant Systems Biology, Ghent University,
Flanders Interuniversity Institute for Biotechnology (VIB),

Technologiepark 927 B-9052, Ghent, Belgium
{yvan.saeys,yves.vandepeer}@psb.ugent.be

Abstract. The identification of coding potential in DNA sequences is
of major importance in bioinformatics, where it is often used to assist
expert systems that automatically try to recognize genes in genomes. For
longer sequences, the identification of coding potential tends to be easier
due to a better signal-to-noise ratio, whereas for very short sequences the
issue becomes more problematic. In this paper, we present new methods
that specifically aim at a better prediction of coding potential in short
sequences. To this end, we combine different, complementary sequence
features together with a feature selection strategy. Results comparing the
new classifiers to state of the art models show that our new approach
significantly outperforms the existing methods when applied to short
sequences.

1 Introduction

An important task in current bioinformatics is the analysis of newly sequenced
genomes. A first step in this process is the identification of the exact location and
structure of the genes in the genome, often referred to as gene prediction. Within
expert systems for gene prediction, systems to predict the coding potential for
a given subsequence are of high importance. Coding potential prediction is the
problem of assessing the probability that a given DNA subsequence encodes a
(part of a) protein. As large parts of most genomes do not encode proteins (in
the Human genome e.g. only about 5% of the genome codes for proteins), coding
potential prediction methods are important to locate the informational parts of
the sequence.

Current gene prediction programs are complicated frameworks that combine
different submodels together with an optimization technique to find the most
likely gene structure. The most important techniques that are used nowadays
to model the whole gene prediction framework are based on hidden Markov
models (HMM; [11,18]). These models typically combine the results of several
submodels, each performing their own, specific task. The submodels of a gene
predictor can be divided into two classes: content sensors and signal sensors.
While signal sensors are intended to recognize specific functional sites (start and

K. Tuyls et al. (Eds.): KDECB 2006, LNBI 4366, pp. 107–118, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

108 Y. Saeys and Y. Van de Peer

Fig. 1. An unknown DNA sequence can be translated into an amino acid sequence in
three possible ways (reading frames)

stop codons, splice sites), content sensors are used to get an impression of the
composition of a particular subsequence. This is used to discriminate between
protein coding regions and non coding sequences. The ability to discriminate
between coding and non coding sequences relates to the structure of coding
sequences, which are organized in codons, and these codons are not equally used
(codon bias). Whereas for longer sequences it is easier to detect this codon bias,
the issue becomes more problematic when short sequence fragments need to be
analyzed.

To detect the peculiarities of coding sequences, a large number of protein
coding measures were developed [4]. In this paper, we provide a unifying frame-
work that combines many of these measures, and integrates them into a single,
discriminative, classification framework.

The rest of the paper is organized as follows. We start by summarizing the
existing techniques for coding potential prediction. Subsequently we elaborate
on how features can be extracted from these different techniques, and how we
integrate them into a new classification model. As many of the included features
can be expected to be redundant or irrelevant, we explore the effect of feature
selection, comparing the new methods to existing techniques. We end with some
concluding remarks and future perspectives.

2 Current Techniques for Coding Potential Prediction

To discriminate between DNA sequences that code for proteins and sequences
that do not, we need some characteristics (features) that are typical to coding
sequences. As coding sequences are translated into amino acids (the constituents
of proteins), and this translation occurs by converting three subsequent DNA
nucleotides (termed a codon) into one amino acid, coding sequences will have
a specific codon structure. When confronted with an unknown DNA sequence,
there are three possible ways in which it can be translated into amino acids
(Figure 1). Each of these possibilities is called a reading frame, hence the reading
frame determines on which position in the sequence the codons start. Coding
sequences are known to have a codon bias, i.e. certain codons (subwords of length
three) occur more often than others, and this bias is different from non coding
sequences. To capture these differences in composition between coding and non
coding sequences, a number of techniques have been developed. These can be
roughly divided into two classes: methods based on Markov models, and methods
based on signal processing.

Enhancing Coding Potential Prediction for Short Sequences 109

2.1 Markov Models for DNA Sequence Modeling

Markov models are generative inductive classifiers, i.e. they learn a model of
the joint probability p(S, c) of the sequences S and the label c (where c can be
either coding or non coding), and make their predictions by using Bayes’ rule
to calculate p(c|S), and then picking the most likely label c. Using Bayes’ rule,
the probabilities p(c|S) can be calculated from the class-conditional probabilities
p(S|c). For a kth order Markov model, the probabilities p(S|c) are modeled as:

p(S|c) = p(s1|c) · · · p(sk|s1, ..., sk−1, c) ·
∏n

i=k+1 p(si|si−k, ..., si−1, c)

where si denotes the ith character in sequence S, and c is one of {coding, non
coding}. This means the Markov model uses a sliding window approach over the
sequence, where positions are scored, depending on at most k previous positions.
When confronted with a new sequence S′, the probabilities p(coding|S′) and
p(non coding|S′) are calculated using the Markov model, and the most likely
class is chosen as the prediction.

If higher order dependencies between nucleotides exist, then modeling these
should result in better prediction methods, as they model the underlying se-
quence in a more realistic fashion [2]. However, to model DNA, the number of
parameters of the model (the k-mer probabilities) increases exponentially with
the order k of the Markov model: O(4k+1). As a result, the number of training
instances needed to reliably estimate each model parameter also grows exponen-
tially with k. A more common way to account for a limited number of training
examples is the Interpolated Markov Model (IMM, [16]). This method combines
probabilities from contexts of varying lengths (i.e. various orders) to make pre-
dictions. It then uses only those contexts for which sufficient data is available. For
a given order k, this is done by estimating the probabilities as weighted linear
combinations of the parameters p(si|c), p(si|si−1, c), · · · , p(si|si−k, · · · , si−1, c).
The weights of the linear combination are computed as a combination of two
parameters: the χ2 significance and the frequency of occurrence. As a result,
higher order interactions will only be modeled if there is enough training data
and if including them provides a significant difference compared to using only
the lower order combinations.

2.2 Methods Based on Signal Processing

Methods from signal processing are often used to find regularities in a signal.
When applied to genomic sequences, the general notion of “time” in signal
processing is interpreted as “position” in the sequence, and regularities can be
found by converting the sequence into a numerical format, and subsequently
applying signal processing techniques.

For coding potential prediction, the signal processing technique that is most
often used is the Fourier transform [17]. Other transforms that can be used are
the “run” transform [4] and more recently also the Z-transform [5].

110 Y. Saeys and Y. Van de Peer

Sequence G C T G A T C G A T
Apply UA 0 0 0 0 1 0 0 0 1 0
Apply UT 0 0 1 0 0 1 0 0 0 1
Apply UC 0 1 0 0 0 0 1 0 0 0
Apply UG 1 0 0 1 0 0 0 1 0 0

Fig. 2. Example of converting a DNA sequence to numerical sequences

The most common way to apply Fourier analysis to DNA sequences is to
decompose them first into four binary indicator sequences, apply the Fourier
transform to each of these sequences, and then sum the Fourier coefficients [19].

Following the notation of Voss [21], a binary indicator sequence is obtained by
using a projection operator Uα which selects the elements of the sequence that are
equal to the symbol α, namely Uα(xj) = 1 if xj = α and 0 otherwise. Using the
operators UA, UT , UC and UG then results in four binary sequences. An example
is given in Figure 2. For each of the indicator sequences, we can then calculate
the magnitudes of the Fourier coefficients ‖Fα

n ‖ for each α ∈ {A, T, C, G}, and
the sum of these magnitudes represents a global measure of periodicity for the
given sequence:

∑

α

‖Fα
n ‖

The magnitudes ‖Fα
n ‖ are calculated as

√

F r
n

2 + F i
n

2, where F r
n and F i

n denote
the real and imaginary part of Fn respectively. The coefficients Fn are calculated
with the standard formula of the discrete Fourier transform

Fn =
N−1∑

k=0

fk cos
(

i2πnk

N

)

− i
N−1∑

k=0

fk sin
(

i2πnk

N

)

where fk is the value of the indicator sequence at position k and N denotes the
length of the signal.

A well known characteristic when applying Fourier analysis to DNA coding
sequences is the observation of a peak at frequency n/N = 1/3 in the Fourier
spectrum [17,21]. The peak at this frequency is a direct result from the fact that
coding sequences consist of codons, combined with the fact that the codons are
not equally used. As a result, this peak is a recognition of the boundary between
codons, rather than a recognition of an exact repeat of a triplet. The latter
would not only lead to a peak at frequency1 n/N = 1/3, but also to peaks at
its harmonics which are integer multiples of the frequency 1/3. As a result, the
height of the peak at frequency 1/3 can be chosen as an indicator of the type of
sequence one is confronted with: sequences with higher values for this frequency
will be more likely to code for proteins than sequences with a low value.

1 To be notationally correct, we should clarify that the unity in this frequency is one
in three nucleotides. However, we will just use the abbreviation 1/3 during the rest
of the text.

Enhancing Coding Potential Prediction for Short Sequences 111

3 Combining Complementary Sequence Features for
Coding Potential Prediction

In this work, we explore a new approach to combine both strengths of Markov
models and methods based on signal processing. To this end, we construct a new
set of features, derived from these methods and combine them with a discrimi-
native classifier (a linear support vector machine, [3,20]) to discriminate between
coding and non coding sequences. In discriminative learning, the posterior p(c|S)
is modelled directly, instead of solving a more general problem as in generative
learning, where the intermediate step p(S|c) is modelled [12].

In order to incorporate features that capture the characteristics of Markov
models, we construct sets of features that represent the composition of the DNA
sequences. These features can be represented as k-mers (subwords of length k
over the DNA alphabet {A, T, C, G}), each feature denoting the frequency of
the given subword in the sequence. Due to the fact that an unknown sequence
can be in one of three reading frames we construct both reading frame dependent
as reading frame independent feature sets.

In a similar way, features can be derived from signal processing techniques. For
each transform, we extract a number of features that capture the transformed
signal in the DNA sequence. Combining both types of features results in the
following set of 5992 features:

– Markov-based features:
• Frame-dependent k-mers. For each of the three possible reading frames

k-mer frequencies (1 ≤ k ≤ 3) were calculated, resulting in 252 features.
• In-frame k-mers. Assuming the sequence is in reading frame 0 (start of

the sequence coincides with the start of a codon), in-frame k-mer fre-
quencies (4 ≤ k ≤ 6) were calculated, resulting in a set of 5376 features.

• Frameless k-mers. For each possible k-mer (1 ≤ k ≤ 3), the global fre-
quencies of occurrence are calculated (i.e. without taking into account
the reading frame). This results in 84 features.

– Features based on signal processing methods:
• Features extracted from the Fourier transform: a) for each of the four

indicator sequences, the magnitude of the peak at frequency 1/3 in the
Fourier spectrum (4 features, see Voss (1992) for details), b) the global
magnitude at frequency 1/3, which is the sum of all four magnitudes of
the indicator sequences (1 feature), and c) the signal to noise ratio of
the peak at frequency 1/3 (1 feature, see Tiwari et al., 1997 for details).

• Features extracted from the Z transform: the Z curve parameters are
calculated for the frequencies of frame-dependent k-mers (1 ≤ k ≤ 3),
using the Z-transform of DNA sequences, as exemplified in Gao and
Zhang (2004). This results in a set of 189 features.

• Features extracted from the “run” transform: for each of the nontrivial
subsets of {A, T, C, G} a new sequence is constructed by replacing each
base present in the subset with a 1 and replacing each base not in the
subset with a 0. Using this transform of the sequence, the number of

112 Y. Saeys and Y. Van de Peer

runs of 1’s of length 1, 2, 3, 4, 5 and greater than 5 are then counted.
This results in a set of 84 features [4].

– Additional feature:
• A feature was added that denotes if the sequence (assuming it is in

reading frame 0) contains an in-frame stop codon, or not (ORF feature).
This feature is used as a post-processing step after applying the LSVM
classification to filter out false positive predictions.

4 Parallel Feature Selection for Coding Potential
Prediction

One could, however, wonder if all these features are equally important or nec-
essary to discriminate between coding and non coding sequences. In particular,
when combining all different types of features to model sequence biases, chances
are high that some features may be redundant or irrelevant. In order to investi-
gate this, feature selection was performed. In feature selection, one seeks a mini-
mal subset of relevant features that achieves maximal classification performance.
Benefits of applying feature selection include better classification performance,
faster classification models (because less features have to be taken into account),
smaller databases (less features are needed to describe the training instances),
and the ability to gain more insight into the process that is being modeled.
A good introduction to feature selection can be found in [9] and [7]. Further-
more, feature selection is becoming more and more widespread in bioinformatics
[14,15,6] where it is often a necessity to include a feature selection method in
the setup, in order to obtain optimal results.

In our work, we adopted a Markov blanket based filter approach, introduced
by Koller and Sahami [10]. This algorithm has a solid mathematical basis, and
has the advantage of being fast and taking into account feature dependencies.
The algorithm eliminates features whose information content is subsumed by
some number of the remaining features. The central idea of the algorithm is a
Markov blanket. Let X denote the full set of features, C the class attribute, and
M some set of features that does not contain Xi. Then M is a Markov blanket
for Xi if Xi is conditionally independent of (X ∪ C) − M − {Xi} given M . An
approximate algorithm is then suggested that, starting from the full feature set,
iteratively removes the feature with the “best” Markov blanket. Figure 3 shows
the pseudo code of the algorithm.

In a first, preparatory step, the cross-entropy of the class distribution given
pairs of features is calculated for every feature pair. In a next step, for each
feature a possible Markov blanket is defined by selecting the K features Xj

for which the class C and Xi are as most conditionally independent as possi-
ble given Xj . The parameter K determines the size of the Markov blanket and
exponentially increases running time as K gets larger (in our experiments we
chose K = 1). In a second step, the expected cross-entropy δG(Xi|Mi) is used to

Enhancing Coding Potential Prediction for Short Sequences 113

Algorithm KS (Koller-Sahami)

1. Calculate the cross-entropy of the class distribution given pairs of
features
γij = KL(p(C|Xi = xi, Xj = xj), p(C|Xj = xj))
of every pair of features Xi and Xj

2. Instantiate G to X and iterate the following steps until some
pre-specified number of features have been eliminated:
– For each feature Xi ∈ X, let Mi be the set of K features Xj in

G\{Xi} for which γij is smallest
– Compute δG(Xi|Mi) for each i
– Choose the i for which this quantity is minimal, and define

G = G\{Xi}.

Fig. 3. Pseudo code for the Markov blanket filter approach of Koller and Sahami

approximate how close Mi is to being a Markov blanket for Xi. This quantity is
defined as:

δG(Xi|Mi) =
∑

xMi
,xi

p(Mi = xMi , Xi = xi) · KLfM ,fi

with
KLfM ,fi = KL(p(C|M = xM , Xi = xi), p(C|M = xM))

where the Kullback-Leibler divergence KL between two distributions μ and σ
over a set Ω is defined as

KL(μ, σ) =
∑

x∈Ω

μ(x) log
μ(x)
σ(x)

In a last step, the feature for which Mi most closely resembles a Markov blanket
is eliminated and the process is repeated. In the limit, the elimination of features
can be iterated until the empty set of features is reached.

To cope with our large set of features (5992 features) in a reasonable amount
of time, we designed a parallel version of the algorithm. This parallelization is
based on the fact that most of the time in the algorithm is spent in calculating
the matrices of correlations and expected cross-entropies between features. As
the calculation of the expected cross-entropies requires the calculation of the full
feature correlation matrix, we first need to calculate the matrix of correlations.
This matrix calculation (only the upper diagonal part has to be calculated) can
be sped up in a linear way using n processors in parallel. When all n processors
finish the calculation of their part of the matrix, the different matrix results are
gathered, and the second parallel phase of the algorithm starts. In a similar way
as the correlation matrix is calculated, the matrix of expected cross-entropies is
calculated in parallel. Upon completing the calculation of this last matrix, the
last phase of the algorithm is started, which consists of (sequentially) eliminating
the worst feature in an iterative way.

114 Y. Saeys and Y. Van de Peer

In essence, the Markov blanket feature selection method returns a ranking
of the features, which can be used afterwards to eliminate features. As we have
no prior knowledge on the size of a good feature set for the problem of coding
potential prediction, various feature subset sizes were evaluated, ranging from
10 features to the full set of 5992 features. The following set of feature subset
sizes was evaluated: {10, 20, 50, 100, 150, 200, 250, 500, 750, 1000, 1500, 2000,
2500, 5992}.

5 Results

For our experiments, we used data from the Human genome2. The following
procedure was used to extract the datasets for coding potential prediction. In
a first step, the dataset was cleaned by removing genes with wrong start or
stop codons, in-frame stop codons, or genes whose length was not a multiple
of three. Next, coding exons were extracted as positive learning examples, and
introns and UTR sequences were extracted as negative learning examples. As
we were interested in analyzing the behavior of algorithms for short exons, all
sequences were divided into length classes (similar to Gao and Zhang, 2004): less
than 42 nucleotides (nt), [42-63nt[, [63-87nt[, [87-108nt[, [108-129nt[, [129-162nt[,
[162-192nt[and 192 or more nt.

For testing purposes we adopted the following strategy. For each length class
in the range [42-192nt[, an equal number of negative examples was added to
the positive examples to obtain a balanced dataset. In the case of insufficient
non coding sequences for a particular length class, additional sequences were
extracted from the length class of 192 or more. This yields, for each length class,
a balanced dataset, which was independently split five times in half, obtaining
five replications of a two-fold crossvalidation to test on. For each of these ten
folds, all the other available data (including the data from all other length classes)
was used as additional training data, as is traditionally done in the training of
Markov models. Table 1 summarizes the number of sequences and training data
used for each length class.

The performance of several algorithms was compared for various (short) se-
quence lengths. To this end, we compared our method (denoted as SVM) to
three existing techniques for coding potential prediction: an 8th order Interpo-
lated Markov Model (IMM-8), the Fourier method described by Tiwari using the
signal-to-noise ratio of the peak at frequency 1/3 (denoted as SNR [19]), and
the recent Z-curve method from Gao and Zhang, denoted as ZCURVE [5].

As input features for the SVM, all features mentioned earlier are combined,
resulting in a set of 5992 features describing each sequence fragment. Features
that depend on the length were length-normalized, and before training the SVM
all features were scaled between 0 and 1. The C-parameter of the SVM was
tuned using a 5-fold cross-validation of the training set. For the ORF-feature,
we applied a post-processing step to the algorithm, ensuring that sequences with
2 The data we used is publicly available on the TIGR website http://www.tigr.org/

software/traindata.shtml

Enhancing Coding Potential Prediction for Short Sequences 115

Table 1. Characteristics of the dataset. For each length class, the total number of
exons and the total amount of training data (in kiloBases (kB)) is shown.

Length class # of exons Training data

[42-63[838 10,481 kB
[63-87[1,648 10,481 kB
[87-108[1,655 10,481 kB
[108-129[1,592 10,481 kB
[129-162[2,026 10,481 kB
[162-192[1,227 10,481 kB

Table 2. Comparison of the classification performance of the different methods. Clas-
sifiers were evaluated using two measures: FP-rate at a TP-rate (sensitivity) of 95%
(Se95), and the area under the ROC curve (AUC). For each experiment, the mean and
standard deviation are shown.

Measure Length IMM-8 SNR ZCURVE SVM

Se95

[42-63[35.36 (1.52) 87.82 (1.79) 25.08 (1.54) 12.97 (2.05)
[63-87[23.84 (1.03) 83.69 (1.16) 13.46 (1.06) 7.21 (1.78)
[87-108[31.29 (1.22) 75.55 (1.15) 14.19 (1.50) 3.12 (1.21)
[108-129[12.10 (0.87) 72.72 (1.24) 5.98 (0.83) 1.35 (0.98)
[129-162[6.74 (1.06) 56.84 (1.27) 3.69 (1.01) 0.84 (0.86)
[162-192[5.08 (0.99) 49.41 (1.25) 2.29 (0.86) 0.22 (0.44)

AUC

[42-63[89.95 (0.67) 69.17 (1.20) 93.22 (0.86) 96.78 (1.02)
[63-87[93.65 (0.65) 74.86 (0.93) 96.91 (0.43) 98.75 (0.74)
[87-108[89.06 (0.74) 80.90 (0.70) 96.45 (0.84) 99.41 (0.54)
[108-129[97.25 (0.49) 84.00 (0.49) 98.65 (0.39) 99.69 (0.45)
[129-162[98.63 (0.43) 88.20 (0.60) 99.24 (0.41) 99.83 (0.37)
[162-192[98.99 (0.41) 90.42 (0.58) 99.50 (0.38) 99.96 (0.17)

in-frame stop codons are always predicted as negatives. This was done by setting
the output of the SVM to a very large negative value. For the implementation,
we made use of the SVMlight package [8].

5.1 Comparison of Classifiers

All results were obtained using five replications of a two-fold crossvalidation, as
explained earlier. Furthermore, a statistical test (a combined 5x2 crossvalidation
F test, [1]) was used to asses the significance of the differences among the algo-
rithms compared. Table 2 shows the classification performance of the different
methods. For each length class and method combination, the result shown is
the false positive rate (FPR) at a true positive rate (TPR, sensitivity) of 95%
(denoted as Se95) and the area under the ROC curve (AUC, [13]).

From the results, it can be observed that the new model (combining features
from signal processing and Markov models) outperforms the existing techniques.
Moreover, all differences were found to be statistically significant using the

116 Y. Saeys and Y. Van de Peer

combined 5x2 cv F test. The worst results were obtained using the signal-to-
noise ratio of the Fourier transform of the DNA sequence (SNR). This can be
explained by the fact that this method only looks at the inherent periodicity in
the sequence. As this signal grows stronger with increasing sequence length, it
is no surprise that the method deteriorates when short sequence fragments are
analyzed. The other method based on signal processing (ZCURVE) performs
extremely well, and even outperforms the widely used IMM, while at the same
time needing far less parameters than the IMM.

These results justify that a combined approach for coding potential prediction
provides a better model to detect coding potential in short (and even longer)
sequences.

5.2 Effect of Feature Selection

In order to study the effect of feature selection, we compared the original classifier
(SVM without feature selection) to a version using the Markov blanket based
feature selection. For each of the previously determined fixed feature subset
sizes, we constructed models, and evaluated them using the same cross-validation
scheme as was used when comparing the other classifiers. The results of this
comparison are shown in Table 3. For each length class, we compare the version
without feature selection (denoted as SVM) to the best feature subset found
(SVMFSS BEST). For this subset, both the Se95 and the AUC measure are
displayed, as well as the size of the optimal feature subset (the number of features
it contains). Furthermore, we included a comparison with a minimal subset of
features (SVMFSS MIN) such that the classification performance did not differ
significantly from the one obtained by SVMFSS BEST.

From these results, it can be observed that feature selection is always ben-
eficial in terms of classification performance. Furthermore, it is clear that the
classification performance is achieved using only a small fraction of the features,
giving evidence for the fact that many features in the combined feature sub-
set were either irrelevant or redundant. Overall, the global feature set could be
approximately reduced to a set containing only 8% of the original features.

Features that are highly ranked include ORF and in-frame stop codon fre-
quencies, features related to AT-composition, nucleotide composition at the first
codon position (especially nucleotides G and T) and the signal-to-noise ratio of
the peak at frequency 1/3 in the Fourier spectrum.

6 Concluding Remarks and Future Work

In this paper we presented a new framework to combine features from signal
processing and Markov models for coding potential prediction. We integrated
different characteristics of the sequence at the feature level, and used a dis-
criminative classifier to make a decision, thereby combining all the different
features. Our results indicate that combining these different characteristics is
a good choice, as it significantly increases the classification performance, com-
pared to existing techniques. In a second step, we analyzed the effect of feature

Enhancing Coding Potential Prediction for Short Sequences 117

Table 3. Effect of feature selection for coding potential prediction. For each length
class, the results without feature selection (denoted as SVM) are compared to two
versions using feature selection. One version that shows the results for the best feature
subset (denoted as SVMFSS BESt), and one version for the minimal feature subset
for which the classification performance did not differ significantly from the result
obtained using the optimal feature subset. For all algorithms the Se95 measure is
shown, complemented with the size of the feature subsets for the variants using feature
selection.

Length SVM SVMFSS best SVMFSS min

Se95 Se95 Size Se95 Size

[42-63[12.97 11.91 1000 13.54 500
[63-87[7.21 5.09 750 7.19 250
[87-108[3.12 2.40 1500 2.82 1000
[108-129[1.35 1.23 1500 1.29 500
[129-162[0.84 0.48 1500 0.57 1000
[162-192[0.22 0.22 all 0.28 500

selection for this particular problem. We showed that feature selection proves to
be very beneficial, both in terms of classification performance and reduction of
the number of features needed by the classifier, especially in the case of shorter
sequences.

In future work, we will elaborate more on optimizing the performance of the
combined classifier, e.g. by using a more complex kernel for the SVM that would
enable us to model feature dependencies. From a more biological point of view,
future research will focus on the selected features, and their biological relevance.

References

1. Alpaydin, E.: A Combined 5x2 cv F Test for Comparing Supervised Classification
Learning Algorithms. Neural Computation 11(8) (1999) 1885–1892

2. Borodovsky, M., McIninch, J.: Genemark: parallel gene recognition for both dna
strands. Computers and Chemistry 17 (1993) 123–133

3. Boser, B., Guyon, I., Vapnik, V.N.: A training algorithm for optimal margin clas-
sifiers. Proceedings of COLT (Haussler,D. ,ed.), ACN Press (1992) 144–152

4. Fickett, J., Tung, C.: Assessment of protein coding measures. Nucleic Acids Re-
search 20 (1992) 6441–6450

5. Gao, F., Zhang, C.: Comparison of various algorithms for recognizing short coding
sequences of human genes. Bioinformatics 20(5) (2004) 673–681

6. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.N.: Gene Selection for Cancer Classi-
fication using Support Vector Machines. Machine Learning 46(1-3) (2002) 389–422

7. Guyon, I., Elisseeff, A.: An Introduction to Variable and Feature Selection. Journal
of Machine Learning Research 3 (2003) 1157–182

8. Joachims, T.: Making large-scale support vector machine learning practical. B.
Schölkopf, C. Burges, A. Smola. Advances in Kernel Methods: Support Vector
Machines, MIT Press, Cambridge, MA (1998)

118 Y. Saeys and Y. Van de Peer

9. Kohavi, R., John, G.: Wrappers for feature subset selection. Artificial Intelligence
97(1-2) (1997) 273–324

10. Koller, D., Sahami, M.: Toward optimal feature selection. Proc. Thirteenth Inter-
national Conference on Machine Learning (1996) 284-292

11. Majoros, W.H., Pertea, M., Salzberg, S.L.: TigrScan and GlimmerHMM: two open
source ab initio eukaryotic gene-finders. Bioinformatics 20(16) (2004) 2878-2879.

12. Ng, A.Y., Jordan, M.: On discriminative vs. generative classifiers: a com-parison
of logistic regression and Nave Bayes. Proc. NIPS 14 (2002).

13. Provost, F., Fawcett, T.: Analysis and visualization of classifier performance: Com-
parison under imprecise class and cost distributions. Proc. Third International
Conference on Knowledge Discovery and Data Mining (1997) 43–48

14. Saeys, Y., Degroeve, S., Aeyels, D., Rouzé, P., Van de Peer, Y.: Selecting relevant
features for gene structure prediction. Proc. of the Thirteenth Benelearn conference
(2004) 103–109

15. Saeys, Y., Degroeve, S., Van de Peer, Y.: Digging into acceptor splice site predic-
tion: an iterative feature selection approach. Proc. Eighth Conference on Principles
and Practice of Knowledge Discovery in Databases (PKDD) (2004) 386–397

16. Salzberg, S., Delcher, A., Kasif, S., White, O.: Microbial gene identification using
interpolated markov models. Nucleic Acids Research 26 (1998) 544–548

17. Silverman, B., Linsker, R.: A measure of dna periodicity. J. Theor. Biol. 118 (1986)
295–300

18. Stanke, M., Schöffmann, O., Morgenstern, B., Waack, S.: Gene prediction in eu-
karyotes with a generalized hidden Markov model that uses hints from external
sources. BMC Bioinformatics 7, 62 (2006)

19. Tiwari, S., Ramachandran, S., Bhattacharya, A., Bhattacharya, S., Ramaswamy,
R.: Prediction of probable genes by fourier analysis of genomic sequences. Comput.
Appl. Biosci. 13 (1997) 263–270

20. Vapnik, V.: The nature of statistical learning theory. Springer-Verlag (1995)
21. Voss, R.: Evolution of long-range fractal correlations and 1/f noise in dna base

sequences. Phys. Rev. Lett. 68 (1992) 3805–3808

The NetGenerator Algorithm:

Reconstruction of Gene Regulatory Networks

Susanne Toepfer1, Reinhard Guthke2, Dominik Driesch1, Dirk Woetzel1,
and Michael Pfaff1

1 BioControl Jena GmbH, Wildenbruchstr. 15, D-07745 Jena, Germany
susanne.toepfer@biocontrol-jena.com

2 Leibniz Institute for Natural Product Research and Infection Biology -
Hans Knoell Institute, Beutenbergstr. 11a, D-07745 Jena, Germany

Abstract. Mathematical models of gene regulatory networks aim to
capture the causal regulatory relationships by fitting the network models
to monitored time courses of gene expression levels. In this paper, the
NetGenerator algorithm is presented that generates mathematical
models in form of linear or nonlinear differential equation systems. The
problem of finding the most likely interactions between genes is solved by
a structure identification method. This can also be effectively supported
by the incorporation of available expert knowledge. Using favorable pa-
rameter identification methods from a system identification point of view
allows to fit accurate and sparsely connected models. By the inclusion
of higher order submodels, the algorithm enables the identification of
gene-gene interactions with significantly time delayed gene regulation.

1 Introduction

Gene regulatory networks control biological functions by regulating the level of
gene expression. Discovering and understanding the complex causal relationships
within gene regulatory networks has become a major issue in systems biology,
computational biology and bioinformatics. Today, large-scale measurement tech-
nologies open new opportunities to gain so far unavailable information about
the regulatory mechanisms that underlie specific biological processes as e.g. re-
actions to different developmental and environmental conditions. For example,
DNA microarray experiments today allow to monitor the output of gene regu-
latory networks by measuring the gene expression levels of thousands of genes.
Gene expression time courses describe the temporal changes of expression levels
that are caused by the dynamic nature of regulatory interactions. Analyzing
such time series data by reverse engineering techniques allows to provide insight
into the dynamic processes and to generate hypotheses of the causal structure
of specific functional modules of gene regulatory networks.

Using data-driven reverse engineering techniques, structural information is
typically inferred by firstly fitting the parameters of a given mathematical model
to the available time series data and subsequently interpreting the resulting
model structure. In order to infer biologically meaningful models, at least the
following conditions have to be met:

K. Tuyls et al. (Eds.): KDECB 2006, LNBI 4366, pp. 119–130, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

120 S. Toepfer et al.

– The mathematical model has to provide an acceptable simplification that
leads to an adequate description of the regulatory processes for a certain
level of abstraction.

– An appropriate identification algorithm must allow to reverse engineer
gene regulatory networks by fitting the model output to the time series
observations.

– The time series data have to cover the main regulatory effects of a considered
gene regulatory network function with respect to both the gene expression
levels and the relevant external input signals.

There exists a large amount of model architectures and corresponding identifi-
cation schemes for the data-based reconstruction of gene regulatory networks. The
different modeling approaches address different aspects of the biological mecha-
nisms. Well-known mathematical models are e.g. directed graphs, Bayesian
networks, differential equation systems, stochastic models, Boolean networks and
rule-based models [1]. All these models can be interpreted as networks of interact-
ing nodes. Eachnode has a corresponding node function (e.g. conditional probabil-
ity distribution, Boolean function, weighted sum) that processes the information
coming from other nodes or external inputs. The gene-gene interactions are rep-
resented by model parameters that quantify the information processing between
the nodes. While in principle the models allow the nodes to interact with each
other, it is assumed that in regulatory networks the transcription of many genes
is controlled only by a limited number of other gene products. Therefore, in this
context it is the general aim of identification to estimate the small subset of rele-
vant model parameters out of the set of all possible ones. The relevant parameters
are those that are required to generate an adequate fit of the model output to the
measured time courses. It is assumed that these relevant parameters coincide with
the gene-gene interactions of the underlying gene regulatory network.

In general, the results of data-based modeling critically depend on the quality
and quantity of the given data. The data from microarray experiments are cor-
rupted by measurement noise of often unknown characteristics and unfavorable
signal-to-noise ratios. Also, because of the high costs, the number of available
consecutive time points is still strongly limited. Further, there are hundreds or
thousands of genes that are monitored simultaneously. Therefore, without the
inclusion of additional mathematical or biological constraints, the relevant model
parameters cannot be uniquely estimated from the available data [2].

Methods to cope with this problem using mathematical constraints are first
resampling of time courses based on interpolation of time series data [3] and
second singular value decomposition based methods [4]. Biological constraints
can be taken into account by clustering co-expressed genes and subsequent gen-
eration of network models based on clustered time courses. Here, co-expressed
genes are assumed to be co-regulated by the same processes [5,6,7]. An addi-
tional biologically motivated approach, as used in the NetGenerator algorithm,
employs search strategies that are directly based on the assumption of limited
connectivity between genes [8,9].

The NetGenerator Algorithm: Reconstruction of Gene Regulatory Networks 121

In this paper, the NetGenerator algorithm is described that infers gene regu-
latory networks from gene expression time series data. The algorithm uses a
structure identification method including a search strategy to identify parsimo-
nious models in form of differential equation systems (Sect. 2.1). Model structure
(Sect. 2.2) and parameter identification (Sect. 2.3) are performed using appro-
priate approaches from system identification theory. Searching for a suitable
model structure can be supported by the integration of available expert know-
ledge (Sect. 2.4). The identification algorithm allows to generate models with an
accurate fitting to the observed time courses while the models remain sufficiently
simple and interpretable. Section 3 provides an overview of some NetGenerator
applications presented in former publications. The focus of this paper is however
a detailed description of the NetGenerator algorithm.

2 The NetGenerator Algorithm

2.1 Modeling Approach

The NetGenerator modeling approach is based on systems of either linear or
nonlinear differential equations

ẋi(t) =
qs∑

j=1

wi,jxj(t) +
p∑

l=1

bi,lul(t), (1)

ẋi(t) = aig

⎛

⎝
qs∑

j=1,j �=i

wi,jxj(t) +
p∑

l=1

bi,lul(t) + ci

⎞

⎠ + wi,ixi(t). (2)

Here, the continuous-valued state variable xi describes the expression level of
gene i. The parameters wi,j are the elements of the gene-gene interaction ma-
trix W that has positive entries for inducers, negative entries for repressors and
zero entries if there is no impact of gene j on gene i. The input variable ul

represents the lth environmental factor. The parameters bi,l of the input ma-
trix B quantify how the environmental factor ul affects the expression level xi.
The change in the expression level xi at each time point depends on a weighted
sum of the influential factors. In the nonlinear differential equations (2), the non-
linear function g represents a nonlinear monotonic sigmoidal activation function.
ai and ci are additional parameters of this model.

The overall model consists of a set of qs coupled equations (1) and (2). Such
a system models the regulatory interactions between q genes with q ≤ qs. While
each gene expression time series is typically modeled by a single equation, the
NetGenerator algorithm makes it possible to use more than one differential equa-
tion for this purpose. The correlated equations increase the dynamic order of
the submodel and allow to identify more complex dynamic behavior. The over-
all model can be subdivided into q submodels or nodes each consisting of the
equations that correspond to a single time series (Fig. 1).

122 S. Toepfer et al.

Given the model architecture and suitable, directly measured or preprocessed
time series data for the gene expressions and the external inputs, the Net-
Generator algorithm generates sparse interaction and input matrices W and
B. The determination of the relevant non-zero model parameters is based upon
a strategy that separates the model structure identification problem from the
model parameter identification problem.

submodel 1

submodel 2

submodel 3

submodel q

intermediate
state

�

�

�

�

�

1 1

2

4

3

2

4

3() ((

() ((), ())

() ((), ())

() ((), ())

() ((),

), ())

())
q qs s

x t f t t

x t f t t

x t f t t

x t

x t f t

f

t

t t

x

x u

x u

x u

x u

u

.

.

.

.

.
.
..

Fig. 1. The model underlying the NetGenerator algorithm: The q submodels that
model the q gene expression time series can each consist of one or more differential
equations. In case of higher order submodels, intermediate states are included.

2.2 Model Structure Identification

The model structure is given by the links between the network nodes (con-
nectivity) that correspond to the non-zero parameters in the matrices W and
B. The NetGenerator structure identification method aims to detect suitable
model structures. This is supported by applying favorable parameter identifica-
tion methods from a system identification point of view.

The NetGenerator algorithm is characterized by the separate identification of
the q submodels. In an outer optimization loop, in each iteration step a single
time series is identified and the overall model is extended by the newly optimized
submodel. However, the given gene expression time series are not identified in a
predefined order. Instead this order itself is optimized within an inner optimiza-
tion loop. Thus, in each iteration step of the inner loop, the identification of all
time series (that have not been identified up to this point) is tested and finally
the best one selected. Within a single iteration step of the inner optimization
loop, the actual submodel structure identification is performed using a search
strategy.

The NetGenerator structure identification method therefore consists of three
interlocking parts. First, the outer optimization loop carries out the separate
identification of the time series. Second, the inner optimization loop optimizes
the time series identification order. Third, the submodel structure identification
is performed by a search strategy. The following pseudo code illustrates these
three parts of the NetGenerator algorithm.

The NetGenerator Algorithm: Reconstruction of Gene Regulatory Networks 123

NetGenerator algorithm
Input: q time series
Output: Network model consisting of q submodels
% 1st part: outer optimization loop
for actSubmodel=1 to q

% 2nd part: inner optimization loop
for actTimeSeries=indexNotYetIdentifiedTimeSeries

% 3rd part: submodel structure identification
% based on a search strategy
submodels(actTimeSeries)=funIdentification(actTimeSeries)

end; % inner optimization loop
bestSubmodel=funSelectBest(submodels)
improvedBestSubmodel=funImprove(bestSubmodel)
model(actSubmodel)= improvedBestSubmodel

end; % outer optimization loop

Optimization of the time series identification order. The aim of this optimization
in the second part is to obtain suitable conditions for parameter identification.
This order optimization results in the first selection of simple models that need
only few influential factors to be adequately included. In contrast, more complex
time series that require many influential factors to be considered in the model
are identified later. The advantage of this procedure can be illustrated by the
three different types of connections that are present in the interaction matrix W
(Fig. 2). Forward connections are positioned in the lower triangular part of the
square matrix W . Local feedbacks form the main diagonal of the matrix and
backward connections (global feedbacks) form the upper triangular matrix. It
should be mentioned that in the final model forward and backward connections
have no biological meaning since the order of the final submodels can be ar-
bitrarily permuted. Their order during identification is only relevant with respect
to parameter identification.

1,1 1,2 1,3 1,4 1,5 1,

2,1 2,2 2,3 2,4 2,5 2,

3,1 3,2 3,3 3,4 3,5 3,

4,4,1 4,2 4,3 4,4 4,5

...

...

...

...

s

s

s

s

q

q

q

q

w w w w w w

w w w w w w

w w w w w w

ww w w w w

model graph

backward connections

local feedbacks

forward connections

gene regulatory matrix W

..
.

..
.

..
.

..
.

..
.

..
.

Fig. 2. Forward connections, local feedbacks, backward connections (global feedbacks)
with respect to their position in the interaction matrix as well as their direction in the
model graph

124 S. Toepfer et al.

Now, it is assumed that the submodel for gene i has to be identified and that
this gene is regulated by another gene j. Here, the following two cases can be
distinguished:

– The time series of gene j has not been identified yet. The corresponding
interaction parameter wi,j is an element of the upper triangular matrix, i.e.
a backward connection is included. In this case, the time series of gene j is
only known at the measured time points. Thus, the simulation of the sub-
model required for parameter identification (Sect. 2.3) has to rely on inter-
polated measurement data. Two facts are less favorable here. The measured
expression levels are corrupted by noise and the measured time course can
considerably differ from the one estimated later. In this case, the estimated
parameters and potentially the submodel structure may not be optimal.

– The time series of gene j has already been identified. The parameter wi,j

is an element of the lower triangular matrix. That parameter corresponds
to a forward connection. For the simulation of the submodel of gene i the
simulated time series of gene j instead of the measured one can be used.

Since the measurement data from microarray experiments include consider-
able noise levels and the model architecture is only a rough simplification of
biological regulatory networks, the use of interpolated measurement data for
model simulation and parameter identification has disadvantages. Interpolated
measurement data are required when backward connections are included into the
submodel. Fitting simple time series using only few gene-gene interactions first
minimizes the number of critical backward connections during the identifica-
tion process. Forward connections allow to take into account the actual modeled
time courses and their associated modeling errors. The cases described above
correspond to the prediction error and the output error approach known from
system identification theory [10].

Submodel structure identification. Embedded in the outer and inner optimiza-
tion loop, the NetGenerator algorithm performs the structure identification of
the submodels based on a search strategy. Starting with an initial submodel
structure, the algorithm executes the following steps in an iterative procedure:

1. Modification of the submodel structure by the search strategy
2. Fitting of the relevant submodel parameters to the data
3. Simulation of the resulting model to obtain the submodel output
4. Determination of the modeling error

The search strategy applied in the first step provides combinations of in-
fluential nodes (genes) and external inputs that are to be examined and com-
pared. All q + p potential influential factors1 are described by the set Z =
[x1, . . . , xqs , u1, . . . , up].

1 Note that the qs − q intermediate states that result from submodels with more than
one equation are not allowed to influence other nodes.

The NetGenerator Algorithm: Reconstruction of Gene Regulatory Networks 125

Testing all possible combinations of influential factors or non-zero parameters
is an impractical task even for very small networks. Therefore, the NetGenerator
algorithm employs a heuristic search strategy that makes reasonable restrictions
on the search space. Possible solutions are directed towards simple, plausible and
interpretable model structures. The search is performed by applying a number
of growing and pruning procedures that modify a given submodel structure,
e.g. the initial one. The growing and pruning procedures modify the submodel
complexity with respect to the number of gene-gene interactions, the number of
external inputs and the dynamic order of the submodel. The model selection is
controlled by a number of stopping criterions.

Initial submodel. Each submodel structure optimization starts with a simple
initial submodel that represents a first order lag element. The initial submodel
of gene i has two non-zero parameters: the local feedback parameter wi,i that
describes the self-regulation of gene i and the parameter bi,1 that quantifies the
impact of the first external input on the expression of gene i.

Modification of the submodel complexity. The NetGenerator algorithm selects
subsets of relevant model parameters by searching in two directions: model grow-
ing (forward selection) and model pruning (backward elimination). Forward se-
lection is based on the assumption that the best intermediate solution is part of
the best final solution. Since this assumption does not have to be true, backward
elimination is applied in order to remove unimportant interactions.

1. Model growing (forward selection): A forward selection of the most likely
interactions is performed by adding new gene-gene interactions or environ-
mental factors. Starting with a given submodel structure with n non-zero
parameters, all possible solutions with n + 1 non-zero parameters are exam-
ined. The best solution with respect to the model fit is retained and further
expanded within the next iteration until a stopping criterion is met.

Selecting gene-gene interactions, forward connections are preferred while
backward connections are only included if other connectivities cannot pro-
vide acceptable solutions.

2. Model pruning (backward elimination): Backward elimination removes gene-
gene interactions and environmental factors from the submodel structure. In
order to decrease model complexity, all possible solutions that result from the
removal of one interaction are considered. Again, the best solution is retained
and tested for possible further removals until a stopping criterion is met. If
interactions are removed, the algorithm ensures that the decreased model
structures remain biologically plausible. For example, structures with only
one local feedback parameter are meaningless and are generally excluded.

3. Inclusion or removal of additional time lag elements: The third possibility
to obtain improved model fits is to adapt the type of dynamic dependency
between the interacting genes. The general model structure involves first
order dynamics for all submodels. In order to overcome this limitation, the
NetGenerator algorithm allows to include submodels that consist of R differ-
ential equations and that represent lag elements of the order R. The search

126 S. Toepfer et al.

strategy tests different dynamic orders up to a predefined maximum dy-
namic order and selects the best fitting one. Although the dynamic behavior
of the included higher order submodels can differ significantly, their allowed
parameterization is strongly restricted to transfer functions with R equal
poles and no or only one zero. Higher order submodels are well suited to
identify regulatory interactions that are characterized by significant time
delays. They preserve the connectivity of the network model. It should be
mentioned that oscillating submodels are not taken into account since the
associated submodel complexity would allow them to adapt to highly com-
plex time courses solely based on submodel dynamics instead of submodel
connectivity.

Stopping criterion. In order to avoid overfitting and to reach specific user-defined
model characteristics, the inclusion or removal of interactions is tied to a number
of conditions: (i) An increase in submodel complexity must lead to a considerably
improved model fit. (ii) A decreased submodel complexity must lead only to a
marginally worsened model fit. (iii) The number of relevant submodel parameters
must be smaller than the number of data points in the corresponding time series.
(iv) The number of submodel interactions must not exceed a predefined limit.

2.3 Model Parameter Identification

Model parameter identification for a given submodel structure is a repeatedly
executed operation of the algorithm. The parameter identification is carried out
using a constrained nonlinear optimization based on gradient methods. Here,
the mean square error between the model output and the expression data is
minimized. All local feedback parameters wi,i are constrained by the condition
wi,i < 0, i.e. the generated submodels are locally stable. It should be mentioned
that even for the linear differential equation systems nonlinear optimization is ap-
plied. Linear regression methods require information about the time derivatives.
However, estimating the time derivatives from sparsely sampled and noisy time
courses is extremely unreliable. This problem coincides with the unfavorable op-
timization of submodels that include backward connections. Nevertheless, the
time derivatives are used for parameter initialization, since linear least squares
regression is applied to obtain the initial parameters for the nonlinear optimiza-
tion. Here, time derivatives are calculated based on a Hermite interpolation.
These time derivatives are only used to find initial parameter values. The para-
meter initialization of the nonlinear model according to (2) is done in the same
way. Its additional parameters are initialized so that they provide a linear sub-
model output for a wide operating range. The initial conditions x(0) are not
subject to an optimization method; they are directly derived from the measured
time courses.

2.4 Integration of Expert Knowledge

Because of the high complexity of gene regulatory networks and the serious lim-
itations of the measurement data, it is of great advantage to incorporate into the

The NetGenerator Algorithm: Reconstruction of Gene Regulatory Networks 127

network model as much biological knowledge as possible. The search strategy is
based on the assumption that each gene interacts with only a limited number
of other genes. However, the structure identification method also allows to in-
troduce specific expert knowledge about the existence or absence of gene-gene
interactions or external inputs. Figure 3 illustrates this kind of information and
shows the corresponding model graph. The structure identification algorithm
ensures that all examined submodel structures are consistent with the expert
knowledge put into the model. The possibility to constrain the given model
structure can also be used to test different hypotheses extracted in former net-
work reconstruction studies, i.e. the effects of different hypotheses on the model
structure can be assessed.

3

5
7

8

2

interaction

no interaction

Genes

1

2

3

4

5

6

7

8

1

-

-

-

-

-

-

-

-

2

-

-

1

-

-

-

-

-

3

-

-

-

-

0

-

-

-

4

-

-

-

-

-

-

-

-

5

-

-

-

-

-

-

-

0

6

-

-

-

-

-

-

-

-

7

-

-

1

-

-

-

-

1

8

-

-

-

-

-

-

-

-

Fig. 3. Prior knowledge about interactions between eight genes with the corresponding
model graph (- no prior knowledge, 1 interaction exists, 0 interaction does not exist)

3 Applications

The NetGenerator algorithm has been applied to generate hypotheses about gene
regulatory interactions of different biological networks from gene expression time
series data. In all cases, an comprehensive clustering analysis was performed.
The main kinetics were extracted by primarily fuzzy clustering the differentially
expressed genes. Clustering analysis included the optimization of the number
of clusters by evaluating cluster validity indices and using specific knowledge
from databases. Network reconstruction was performed by detecting the regu-
latory interactions between cluster-representative genes. The selection of these
representative genes was based on their fuzzy membership degree to clusters, on
biological expert knowledge and also on methods such as gene description text
mining. As a result of clustering, the NetGenerator algorithm discovered the rela-
tionships between 4 and 10 main kinetics characterizing the biological processes.
The available time series contained between 5 and 9 measurements. For several
applications, alternative network models were generated and analyzed based on
different initializations of the algorithm and the integration of different prior
knowledge. For some applications, the robustness of network reconstruction was
analyzed by bootstrap studies performing a large number of identification runs

128 S. Toepfer et al.

with artificially perturbed data. The resulting models included between 8 and
22 interaction parameters that were compared with knowledge not yet included
into the network. The following applications have been published:

– Immune response of peripheral blood mononuclear cells to bacterial infection
with heat-killed pathogenic E. coli [2] (Fig. 4)

– Stress response during recombinant protein expression in E. coli [11]
– Effect of LiCl stimulation on hepatocytes [12]
– Stress response to a temperature shift in A. fumigatus [13]
– Effect of culture media on primary mouse hepatocytes [14]

In [15], the use of the NetGenerator algorithm for network model based analy-
sis of a bioartificial liver cell system is reported. In contrast to the applica-
tions listed above, relationships between the kinetics of biochemical variables
and amino acids were analyzed.

Infection

IL1A

NFKBIE

STAT1

STAT5A

HLA-DMA CD59

0 1 2 3 4
-6

-4

-2

0

2

[h]t

S
T
A

T
5
A

0 1 2 3 4
-4

-2

0

2

[h]t

H
L
A

-D
M

A

0 1 2 3 4
-6

-4

-2

0

2

[h]t

N
F

K
B

IE

0 1 2 3 4
-6

-4

-2

0

2

[h]t

S
T
A

T
1

0 1 2 3 4
0

2

4

6

[h]t

IL
1

A

0 1 2 3 4
0

2

4

6

[h]t

C
D

5
9

Fig. 4. Graph and simulated output of the inferred network model in [2]

4 Discussion

The NetGenerator algorithm presented in this paper has been devised to reverse
engineer gene regulatory network models consisting of differential equations. The
advantages of these models lie in their capability to explicitly present dynamic
system behavior and to model the dynamics at continuous-valued expression
levels, rather than just using the two levels on and off. Well-known other iden-
tification methods to infer such dynamic systems are least squares methods [3],
singular value decomposition based methods [4], genetic algorithms [7], simu-
lated annealing [5] and search strategies [8,16]. Since most of these approaches
rely on linear regression methods, they suffer from the drawback of requiring
the time derivatives that have to be calculated from sparsely sampled and noisy
measurement data. The NetGenerator algorithm proposed employs nonlinear op-
timization to estimate the parameters of examined submodel structures. Besides

The NetGenerator Algorithm: Reconstruction of Gene Regulatory Networks 129

the accurate fitting that can be obtained due to favorably set system theoretical
conditions, it also allows the optimization of higher order submodels. These
submodels enable the identification of significantly time delayed gene regulation.
This feature is very important, since it is known that there can be a considerable
time delay between the expression of one gene and the observation of its effects
[17]. With the inclusion of intermediate states, it is possible to consider a wider
range of biologically meaningful dynamic dependencies between genes.

Due to the limitations of available data, it is extremely important to find an
adequate subset of genes, gene clusters or cluster-representative genes for net-
work reconstruction. This selection has to include as much expert knowledge
as possible. The applications presented in Sect. 3 use clustering in order to pre-
process the given time courses. If the quality and quantity of the data is seriously
limited and if no further knowledge is available, for two very similar time courses,
it does not make sense to derive different connectivities for the corresponding
genes. Even though gene-specific information can be lost and co-expressed genes
do not have to be regulated by the same biological process, similar expression
patterns should still be clustered. The major benefit of clustering is the inherent
reduction of dimensionality and noise.

In reverse engineering, in general, a small modeling error alone provides no
guarantee that the model obtained will show structural equivalence to the ac-
tual gene regulatory network analyzed. Differential equation systems are rough
representations of biological processes, since the complex regulatory effects of
intermediate products are simplified to linear or specific nonlinear dynamic
relationships between genes [18]. Further, data delivered by DNA microarray
experiments in most cases do not contain enough information to reconstruct
more complex models. Therefore, as long as data availability is not considerably
improved, the resulting models will not be adequate to make precise predic-
tions with respect to the gene regulatory response to modified experimental
conditions.

For these reasons, the NetGenerator algorithm allows to generate hypotheses
on the most likely activating or repressing interactions of the underlying network.
In order to provide further support for these hypotheses, additional specifically
designed experiments are required. Integrating diverse biological knowledge can
substantially improve the results of network reconstruction. A limitation of the
presented algorithm is its relatively long calculation time for larger networks (e.g.
with more than 15 genes) caused by the exhaustive search strategy used within
the outer and inner optimization loop. Instead of this search strategy, in general
all methods that allow model structure optimization (e.g. genetic algorithms and
genetic programming) could be incorporated and combined with the constrained
nonlinear optimization. The problem of getting stuck into a local minimum is
reduced by using bootstrap techniques and repeated runs of the NetGenerator
algorithm with different configurations. However, the NetGenerator algorithm
presented allows to reconstruct very sparsely connected network models with a
high accuracy of model fitting.

130 S. Toepfer et al.

References

1. De Jong, H.: Modeling and Simulation of Genetic Regulatory Systems: A Literature
Review. Report (2000)

2. Guthke, R., Moeller, U., Hoffmann, M., Thies, F., Toepfer, S.: Dynamic Network
Reconstruction from Gene Expression Data applied to Immune Resonse during
Bacterial Infection. Bioinformatics 21 (2005) 1626–34

3. D’haeseleer, P., Wen, X., Fuhrmann, S., Somogyi, R.: Linear Modeling of mRNA
Expression Levels During CNS Development and Injury. Pacific Symposium on
Biocomputing 4 (1999) 41–52

4. Yeung, M. K. S., Tegne, J., Collins, J. J.: Reverse Engineering Gene Networks using
Singular Value Decomposition and Robust Regression. Proc. Natl. Acad. Sci. 99
(2002) 6163–68

5. Mjolsness, E., Mann, T., Castano, R., Wold, B.: From Coexpression to Coregu-
lation: An Approach to Inferring Transcriptional Regulation among Gene Classes
from Large-Scale Expression Data. Advances in Neural Information Processing
Systems 12 (2000) 928–34

6. D’haeseleer, P., Liang, S.,Somogyi, R.: Genetic Network Inference: From Co-
Expression Clustering to Reverse Engineering. Bioinformatics 16 (2000) 707–26

7. Wahde, M., Hertz, J.: Coarse-Grained Reverse Engineering of Genetic Regulatory
Networks. Biosystems 55 (2000) 129–36

8. van Someren, E.P., Wessels, L.F.A., Reinders, M.J.T., Backer, E.: Searching for
Limited Connectivity in Genetic Network Models. International Conference on
Systems Biology (2001)

9. Bonneau, R., Reiss, D.J., Shannon, P., Facciotti, M., Hood, L., Baliga, N.S., Thors-
son, V.: The Inferelator: An Algorithm for Learning Parsimonious Regulatory Net-
works from Systems-Biology Data Sets de novo. Genome Biology 7 (2006)

10. Nelles, O.: Nonlinear System Identification. Springer (2001)
11. Schmidt-Heck, W., Guthke, R., Toepfer, S., Reischer, H., Duerrschmid, K., Bayer,

K.: Reverse Engineering of the Stress Response during Expression of a Recombinant
Protein. Proc. EUNITE Symp. (2004) 407–12

12. Zellmer, S., Schmidt-Heck, W., Gaunitz, F., Baldysiak-Figiel, A., Guthke, R., Geb-
hardt, R.: Dynamic Network Reconstruction from Gene Expression Data Describ-
ing the Effect of LiCl Stimulation on Hepatocytes. Journal of Integrative Bioinfor-
matics (2005)

13. Guthke, R., Kniemeyer, O., Albrecht, D., Brakhage, A.A., Moeller, U.: Discovery
of Gene Regulatory Networks in Aspergillus fumigatus. Lecture Notes in Bioinfor-
matics (2006) (submitted)

14. Schmidt-Heck, W., Zellmer, S., Gebhardt, R., Guthke, R.: Effect of Culture Media
on Primary Mouse Hepatocytes Identified by Dynamic Network Reconstruction
from Gene Expression Data. Lecture Notes in Bioinformatics (2006) (submitted)

15. Schmidt-Heck, W., Zellmer, S., Gaunitz, F., Gebhardt, R., Guthke, R.: Data-based
Extraction of Hypotheses about Gene Regulatory Networks in Liver Cells. Euro-
pean Symposium on Nature-inspired Smart Information Systems (2005)

16. Chen, T., He, H.L., Church, G.M.: Modeling Gene Expression with Differential
Equations. Pacific Symposium on Biocomputing 4 (1999) 29–40

17. Li, X.,Rao, S., Jiang, W., Li, C., Xiao, Y., Guo, Z., Zhang, Q., Wang, L., Du, L.,
Li, J., Li, L., Zhang, T., Wang, Q.K.: Discovery of Time-Delayed Gene Regulatory
Networks based on Temporal Gene Expression Profiling. Bioinformatics 7 (2006)

18. Wessels, L., van Someren, E., Reinders, M.: A Comparison of Genetic Network
Models. Proc. of Pac. Symp. on Biocomputing (2001)

On the Neuronal Morphology-Function

Relationship: A Synthetic Approach

Ben Torben-Nielsen, Karl Tuyls, and Eric O. Postma

MICC, Universiteit Maastricht, The Netherlands
B.Torben-Nielsen@micc.unimaas.nl

Abstract. Recent investigations emphasized the role of dendrites in the
information processing and computational capabilities of a single neuron.
On a local electro physiological level, it is known which computations can
be done in dendrites. However, it is still largely unknown how the com-
plete dendritic morphology contributes to the function of a single neuron.
In this study we present a synthetic approach to investigate the relation-
ship between morphology and function. Our approach is implemented in
a software tool and an experiment is presented. In the experiment we
generate morphologies that approximate the functional properties of the
Nucleus Laminaris. We discuss the possibilities and limitations of our
synthesized approach.

1 Introduction

Since the pioneering work of Rall in the 60s, the role of dendrites in neural com-
putation has become more and more prominent (e.g., [12,17,22]). It is observed
that the dendritic morphology strongly influences these capabilities, suggesting
a relationship between neuronal morphology and the functional capabilities in
single neurons.

On a limited local and biophysical level there are several functions and compu-
tations known that result from the morphology of neurons. Here, it is important
to make the distinction between functions that arise from the passive (intrin-
sic) properties of neuronal morphology (e.g., lengths and diameters) or functions
arising from the active properties (e.g., voltage-gated ion channels) of neurons.
We discuss only the function resulting from passive properties, as a passive model
of a neuron is a good approximation of the active model [25,17], while keeping
the model straight-forward. It is known that passive dendrites can act as delay
lines when signals attenuate as they propagate through a dendrite [17]; they can
facilitate shunting inhibition by the relative location of inhibitory synapses with
respect to the excitatory synapses [23,17]; they can perform local “operations”
like logical operations as branching points in the dendritic tree act like a logical
ADD function [12]. For a small number of neurons it is known that their mor-
phology mainly optimizes specific connectivity [24]. Neurons whose function is
connectivity are beyond the scope of this paper. For the majority of neurons, it is
largely unknown how the morphology influences function at the level of a single
neuron [22]; at least, in terms of single neuron dendritic morphology influencing

K. Tuyls et al. (Eds.): KDECB 2006, LNBI 4366, pp. 131–144, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

132 B. Torben-Nielsen, K. Tuyls, and E.O. Postma

spiking behaviour. Several studies reported strong evidence of a relationship be-
tween morphology and function of a single neuron: both in experimental as in
computational studies (e.g., [1,25]) is was revealed that different morphologies
trigger different neuronal responses (including different neurons within a specific
class or type). Thus, the morphology-function relationship is the synthesis of (i)
neuronal function, (ii) neuronal morphology, and (iii) electro physiological prop-
erties. In this paper we present a synthetic approach to investigate the so-called
morphology-function relationship.

An experiment is presented in which we try to find a neuronal morphology
that exhibits electro physiological properties similar to the Nucleus Laminaris
neurons. This type of neuron which is located in the auditory brainstem of mainly
birds has the function of an auditory coincidence detector, and is one of the few
neurons of which the function, morphology, and electro physiological properties
are understood [22]. Therefore, this particular type of neuron was suited for our
study. The advantage of a synthetic approach over a conventional experimental
approach in this type of study is that the investigator has full control over all
parameters [11], and is not limited to small availability of biological data [4].

The remainder of this report is outlined as follows. In the next Section (2) we
present a motivational, real-life example of the morphology-function relationship.
Section 3 introduces our synthesized approach and the experimental set-up of
the experiment. Section 4 presents the results while we conclude with discussion
of the obtained results and this type of study in Section 5.

2 Morphology-Function Relationship: Motivational
Example

The morphology-function relationship is defined as the synthesis of (i) neuronal
function, (ii) neuronal morphology, and (iii) electro physiological properties. To
clarify this notion, we present a real-life example of the relationship between
form and function: neuronal remodelling in holometabolous animals.

Holometabolous animals are animals that go through different life phases
which require different behaviours. For instance, the moth (a holometabolous
animal) lives as caterpillar (i.e., larval), pupal and adult. The behaviours (i.e.,
neuronal function) required during these stages are completely different: the slow
crawling movement of the caterpillar in contrast to the near oscillatory move-
ment of the wings during flight. The emergence of the appropriate behaviour in
the specific life phase is accommodated by morphological changes in the post em-
bryonic brain, the so-called remodelling. Remodelling is the consequence of three
structural alterations: neuron death, neuron growth, and reshaping of neurons.
The third alteration takes place in the motor neurons which go from slowly
firing neurons to oscillatory spiking neurons [8]. Indeed, an interplay between
morphological changes and physiological changes was observed. Nevertheless,
“there is little known about how the physiological changes accompany struc-
tural remodelling” [8]. Yet, as pointed out in [7]: “dendritic remodelling might
also be important for modifications of the intrinsic properties of motor neuron”,

On the Neuronal Morphology-Function Relationship: A Synthetic Approach 133

implying that morphological changes affect the passive information processing
due to changing intrinsic properties of a dendrite (e.g., [18,29,25]). The last
statement enforces the notion of the morphology-function relationship as it is
empirically proven that a neuron exhibits a certain behaviour with a certain
shape, exhibits different behaviour when morphologically changed.

3 Synthetic Approach and Methods

We adopt the synthetic approach for two reasons. First, in an synthetic experi-
mental set-up the experimenter has full control over all the parameters. Conse-
quently, it is a straight-forward process to make little changes and investigate the
influence of these small alterations. With biological data and living tissues the
level of control is too little to explore all possibilities on short time-scale. Second,
if biological data is available there is no vast amount as to perform “proper” sta-
tistics. This issue is especially problematic when concerning morphometric data
[2]. In our synthetic approach we use virtual neurons, i.e., digitized representa-
tion of neurons with an emphasis on their morphology.

In our synthetic approach we combine descriptive and computational mod-
elling. Descriptive modelling does not include any underlying mechanisms and
is used here for the generation of virtual neurons. Several tools show the success
of descriptive modelling to obtain realistic virtual morphologies, e.g., L-Neuron
[5], Neuron PRM [15] , and NeuGen [9]. Computational modelling is more de-
tailed and incorporates underlying mechanisms, albeit abstracted for the sake of
tractability. In our approach computational modelling is used to perform elec-
tro physiological simulations. The remainder of this section first presents a tool -
EvOL-Neuron - we developed that implements our approach. Then, we present
an experiment in which we explore a mapping between function and morphology.

3.1 EvOL-Neuron

Our synthetic approach is based on the principle that we can generate all neu-
ronal structures (i.e., 3D tree structure with bounded size) and explore these
structures as to find structures that obey predefined criteria. This principle is
implemented in a tool called EvOL-Neuron [27]. EvOL-Neuron consists of
two (intertwined) phases: generation and optimization. In the first phase, candi-
date virtual neurons are generated. The second phase then searches for specific
structures. The two phases are explained below.

First, we use L-Systems to generate virtual neuron morphologies. L-System
is a mathematical formalism of rule rewriting named after its inventor Aristid
Lindenmayer [16,20]. Originally designed for describing the branched structures
of plant morphology, it is highly suitable for describing virtual neuron morphol-
ogy. The idea of L-Systems is simple and powerful: an axiom defines the initial
starting point, and the production rules define how to rewrite the axiom. In cy-
cles, all the symbols currently stored in the L-System are rewritten according to
the production rules. This rewriting process is repeated a predefined number of

134 B. Torben-Nielsen, K. Tuyls, and E.O. Postma

times and results in a long, iteratively built string. L-Systems in itself is nothing
more than a way of generating a long string from a parsimonious description. In
essence, L-Systems have no semantics. A meaning is given by an interpretation
scheme. In the case of virtual neurons, an L-system needs to be interpreted as a
3D structure (resembling neuron morphology). We adopt the Rotation-Elevation
interpretation to create 3D structures. In this interpretation, three-dimensional
directions are represented in terms of two angles: the rotation and elevation
angles [27]. Figure 1 illustrates how a complex structure is generated from a
small L-System description. The description used to generate the structures is
displayed in the inlay and contains one axiom (axiom 0) and one rule (A). The
resulting structure is illustrated after one to four rewriting cycles and illustrates
the increasing complexity with more rewriting cycles. In out study we always use
four rewriting cycles. This number is chosen as less cycles result in structures
with insufficient complexity while more cycles are computationally too expensive
to use in the optimization phase.

soma = 0,0,0
axiom_0=#(1)H(0,0)[A]
A=F(1)[+(45)F(1)][-(45)F(1)]A

Fig. 1. Illustration of the geometric interpretation. The figures illustrate the devel-
opment of a structure after rewriting cycle 1 to 4. The inlay contains the L-System
description of the structures. In the description, the soma defines the spatial position
of he soma (which is not used yet); axiom 0 is the first (and only) axiom; A is the first
(and only) production rule.

Second, the optimization (search and selection) is done with Evolutionary
Computation (EC). EC is a pragmatic programming method inspired by Dar-
winian evolution to explore large solution spaces [10,13,19]. EC exploits the
principle of survival of the fittest. Applied to virtual neurons this means that
generated neurons are the individuals in a population of candidate virtual neu-
rons. The L-System describing a specific individual is called the genome of that
individual. In EC, the evolution starts with initially random genomes and hence
random morphologies. Now, all evolved individuals are tested with respect to
their biological accuracy and are assigned a fitness. Similarly with Darwinian
evolution, the best individuals are allowed to reproduce (by means of selection,
cross-over, and mutation). The application of this artificial evolution ensures
that individuals gradually reach the predefined criteria. The evolution is allowed
to proceed until a predefined fitness is reached, yielding a neuron that obeys this
fitness.

On the Neuronal Morphology-Function Relationship: A Synthetic Approach 135

A schematic overview of the methodology underlying EvOL-Neuron is illus-
trated in Figure 2. In summary, electro physiological properties of real neurons
are used as prototype, i.e., the goal of the optimization phase. Virtual neurons
are encoded as L-System, compared to the prototype functionality and assigned
a fitness. On the basis of the fitness value a new population of virtual neu-
rons is constructed until they match with the biological neuron corresponding
to predefined properties1.

L-System

Real Neuron Virtual Neuron

Compare

B
R
E
E
D
I
N
G

Population n

Population n+1

Fitness

Selection

Crossover

Mutation

Fig. 2. Evolutionary Computation applied in EvOL-Neuron. In generations (cycles),
an initially random set of virtual neurons is refined and compared to predefined criteria.
This process terminates when a virtual neuron is found that obeys the predefined
criteria or a predefined number of cycles is reached.

3.2 Experiment Description

In the experiment we conducted we tried to automatically find a relationship
between function and morphology of the Nucleus Laminaris (NL) neurons. Neu-
rons from the NL, which are found in the brain stem of most avian animals,
are one of the few neurons of which we understand the morphology-function
mapping [22]. NL neurons are bipolar neurons with their two dendrites going to
either side - left or right - to connect to the auditory afferents in the projection
area (schematically illustrated in Figure 3). When the dendrites make it to the
projection area (i.e., area in the brain where the auditory afferents terminate;
in a synthetic context referred to as “target zones”) they are branching heavily.
They fire only when synaptic input is converging at the soma at exactly the
same moment; when input is coming from only one of the sides, independent of
the strength of this signal, the neuron will not fire.

Thus, these neurons have two phenomenological functional properties. First,
they have non-linear summation of synaptic input in the distant part of the den-
drites. More specific, the synaptic inputs on a single dendritic branch (i.e., spa-
tially close to each other) will reduce the driving-force in that dendritic branch,
and thus saturate. To avoid this reduction in driving force (in order to generate
1 The prototype software can be found at:
http://www.cs.unimaas.nl/b.torben-nielsen/evol-neuron/main.php

136 B. Torben-Nielsen, K. Tuyls, and E.O. Postma

a spike in the soma), synapses need to be spatially distributed over different
dendritic branches in the target zone. Despite the fact that too much reduction
in driving force must be avoided, it is of high importance that multiple synaptic
inputs are summed non-linearly (on a single dendritic branch) as the neuron
will otherwise spike from multiple inputs originating from one side. Therefore,
we refer to the first property as saturation in single dendritic branches. Second,
linear summation of input signals takes place at the soma when input signals are
coming from both sides2. In this paper we try to find 3D structures that exhibit
these two properties.

Soma

P
ro

je
ct

io
n
 a

re
a

Fig. 3. Schematic illustration of the Nucleus Laminaris neurons. The soma (circle) is
located in between of the left and the right auditory projection areas. Bipolar dendrites
grow in direction of the auditory projection areas where they branch.

3.3 Fitness Assessment

As mentioned earlier in this section, EvOL-Neuron searches for morphologies
on the base of survival of the fittest. Here, we explain how we assess the fit-
ness of a specific morphology. As we are interested in finding any structure that
serves a specific functional (i.e., electro-physiological) goal, we need to run a de-
tailed physiological simulation and use recordings from this simulation to assess
a fitness value. As neuronal simulator we used NEURON, a software package
that allows the experimenter to set-up a detailed neuronal morphology and run
electro-physiological recordings on this morphology [6]. A connection between
EvOL-Neuron and NEURON was made by generation in EvOL-Neuron of
a script that is readable in NEURON (the so-called hoc-file), execute this script
by NEURON and capture the output generated by NEURON to process the
outputted information further in EvOL-Neuron. The script contains a cell de-
scription with morphological details and electro physiological properties of the
modelled cell, and, general simulation settings for NEURON. We used a passive
model for the dendrites and Hodgkin-Huxley channels for the soma. The number
of compartments in each dendritic segment was set to 5, and when a segment
intersected with the predefined target zone (see Figure 3) we added 2 synaptic
connections to the segment. Synapses were made of Exp2Syn objects in Neuron
that were connected to a pulse generator (NetStim object) through the NetCon
object. The input consisted of a single pulse generated after 1 ms. The remaining
simulation settings we use in NEURON are listed in Table 1.
2 In this paper we present a phenomenological explanation of the NL functions. For a

technical description of NL functions we refer the reader to [1,26].

On the Neuronal Morphology-Function Relationship: A Synthetic Approach 137

Table 1. Configuration of the simulation in NEURON

Er −65 mV

g pas 0.0001 pS

e pas −65 mV

Ra 35.4 Ωcm

Cm 1 pF μm2

τ rise/decay 0.1 ms, 1 ms

Simulation time 20 ms

dt 0.025 ms

As we want to achieve a specific functionality (i.e., electro-physiological re-
sponse) we record the membrane potential at the soma. The membrane potential
should reflect the two physiological properties of NL neurons: saturation in the
dendrites and linear summation in the soma. Saturation in the dendrites is a
property directly related to the morphology: synaptic inputs should be spatially
distributed or saturation occurs. Therefore, we only need to base the fitness
function on the linear summation in the soma. The following formula is used to
calculate the fitness value for a given 3D structure (from Stiefel and Sejnowski,
personal communication and [26]).

F = −Mr + Ml − Mrl

Mrl
− α

(
Ml

Mr
+

Mr

Ml

)

β log (Mrl)

In the above formula Mr, Ml, and Mrl are the responses measured in the
soma when input was provided on the left side (Ml), right side (Mr) or both
sides simultaneous (Mrl). This response is measured in three different simula-
tions. Furthermore, α and β are scalars that define the relative importance of
the entities in the formula. The fitness function rewards linear summation and
balanced input from both sides. There are no direct morphological constraints
imposed upon the 3D structures. However, generated structures that do not obey
intrinsic neuronal properties (i.e., bifurcations instead of n-furcations, specific
asymmetry and non-increasing diameters away from the soma) are assigned a
low fitness and no electro physiological simulation is performed in NEURON.
Once a structure is used in a functional simulation we test whether the outcome
is realistic: by allowing every 3D tree structure the outcome of a simulation
can be unrealistic (e.g., when non-natural changes in diameter occur, the elec-
tro physiological response can be highly unpredictable). Unrealistic simulation
outcomes also receive a low fitness. The structures that fulfilled these criteria
then receive a small reward inverse proportional with their size which intro-
duces a biases towards smaller (i.e., short total length) structures. These extra
checks and constraints are required as every 3D structure is considered as a
candidate.

138 B. Torben-Nielsen, K. Tuyls, and E.O. Postma

4 Results

We performed eight evolutionary runs and they all yielded a good solution ac-
cording to our fitness function. Here, we discuss the result of one run which is
representative for the results of all runs. Figure 4 illustrates the development
of the fitness function of the best individual. The fitness values lower than −98
represent a fitness as determined by the heuristics; higher values are computed
by the fitness function as given in the previous section.

0 100 200 300 400 500 600 700 800 900 1000
−300

−250

−200

−150

−100

−50

0

Generation

F
itn

es
s

100 200 300 400 500 600 700 800 900 1000
13

13.05

13.1

13.15

13.2

13.25

13.3

13.35

13.4

13.45

13.5

Generation

Fig. 4. Fitness development of the best individual of a particular run. Left: top line
illustrates the fitness value of the best individual of a generation while the bottom
line illustrates the average fitness in a generation. The drop in average fitness (around
generation 185) is caused by an erroneous calculation and assessed a extremely low
value. Right: detail of the fitness development. The fitness is slowly increasing but no
spectacular increase is observed.

We optimized structures to obtain two particular physiological properties:
saturation and linear summation at the soma. Figure 5 (left) illustrates the
linear summation effect as observed in the generated structure. It is not a perfect
summation, but reaches to 88.4% of the sum of both inputs alone. Nevertheless,
it is clear that a strong summation is obtained. It must be noted that this
result comes from a structure without tapering, as the symbol to update the
diameter of a structure was taken out of the evolved description by the genetic
algorithm3. By means of the addition of two extra symbols to the evolved L-
System description we added taper to the resulting structure. Figure 5 (right)
illustrates the near-optimal linear summation effect (98.9%) for this structure.
In the remainder of this section, we will discuss the result found by the algortihm
and not the manually modified result.

The saturation effect can be observed when adding more synapses to the
dendritic segments that already had a connection (because they entered the
target area). The saturation effect is illustrated in Figure 6. We added 3 and
8 synapses to have a total of 5 and 10 synapses, respectively. As illustrated
3 In our implementation, it is hard to get a specific symbol back in the description

once it is taken out. This is due to the particular design of the mutation operator.

On the Neuronal Morphology-Function Relationship: A Synthetic Approach 139

0 100 200 300 400 500 600 700 800
−70

−60

−50

−40

−30

−20

−10

0

Time (simulation steps)

V
 (

m
V

)
12/e999

ML=31.3
MR=31.2
MLR=55.2, (88.4%)

0 100 200 300 400 500 600 700 800

−60

−50

−40

−30

−20

−10

0

Time (simulation steps)

V
 (

m
V

)

12/mod3 prune

ML=5.49
MR=6.68
MLR=12, (98.9%)

Fig. 5. Linear summation effect measured in the soma. Left: result found in an evolved
structure, summation is 88.4% of the sum of the inputs. Right: result found in a man-
ually modified structure; modification was the addition of two symbols (see text),
summation is 98.9% of the sum of the inputs.

in Figure 6 (left) this has only a minor effect on the membrane potential in
the soma. Only a slightly slower decay is observed when a total of 10 synapses
are connected. Figure 6 (right) illustrates the saturation effect in the dendritic
segment with the synaptic inputs. Again, a slightly slower decay can be observed
for more inputs. Thus, we achieved strong linear summation and nearly perfect
saturation.

0 2 4 6 8 10 12 14 16 18 20

−60

−50

−40

−30

−20

−10

0

Time (ms)

V
 (

m
V

)

12/e999/R213,S

std (2)
5
10

0 2 4 6 8 10 12 14 16 18 20
−70

−60

−50

−40

−30

−20

−10

0

Time (ms)

V
 (

m
V

)

12/e999/R213

std (2)
5
10

Fig. 6. Saturation effect obtained by a resulting structure. Left: saturation recorded in
the soma. Right: saturation recorded in the dendrites. Details in the text.

We obtained a morphology that, when used in electro physiological simula-
tions, obeys our functional requirements. Figure 7 (left) illustrates the evolved
neuron that possesses our two predefined electro physiological properties.
Figure 7 (right) illustrates the XY projection and the target zones (depicted
as lines). It can be observed that the evolved structure does not resemble NL
morphology. However, at an abstract level the neuron has three morphological

140 B. Torben-Nielsen, K. Tuyls, and E.O. Postma

features in common with NL neurons. First, the dimension is in accordance to
NL neuron dimensions. Second, the structure has bipolar dendrites as does the
NL neuron. Third, the evolved structure has some terminals in the target zone.
In NL neurons all terminals are in the same area, but having terminals in the
target zone is a prerequisite. Nevertheless, it is still clear that the evolved struc-
ture does not resemble a biological neuron: an unnatural symmetry between left
and right and abnormal contraction ratio. We can conclude that the relation
between neuronal morphology and function is not trivial. We discuss this point
further in the next section.

5 Discussion

This paper aims at presenting a new, synthesized approach to study the
morphology-function relationship. An import question then arises: What can
we learn from this type of study? Firstly, supported by our result is that this
synthesized approach will provide new insights into morphology. One of these
insights is that morphology is not trivial: there is no such thing as one morphol-
ogy that can produce a specific functional property. Thus, there is no one-to-one
mapping in the morphology-function relationship. Moreover, with this synthetic
approach (implemented in EvOL-Neuron) we can investigate the targeted re-
lationship in both directions. Morphologies can be generated as to resemble real
neurons [27], and the emerging physiological functionality can be analysed. The
inverse is possible as well as we demonstrated in this report: functionality can
be optimized and we can analyse the morphology supporting this functionality.
Furthermore, this type of study allows us to test hypotheses about neuronal
morphology in relation to functionality of that particular neuron. Suppose new
biological evidence is released and specific functionality is attributed to a partic-
ular morphology. We can test this by approximating the morphology and check
whether the described functionality emerges. Probably, it is possible as well to
generate hypotheses when additional biological constraints can be captured in
our modelling study.

Several modelling studies aim at investigating the morphology-function rela-
tionship and thus the effect of morphology on electro physiology of a neuron. The
modelling approach to investigate this relation goes from studying the effect of
theoretical branching patterns on neuronal firing [29] to the employment of com-
plete virtual neurons and observing differences in electro physiological responses
after slightly changing the morphology [14]. One study that has the same ap-
proach as outlined is this paper (i.e., optimization of morphologies that obey elec-
tro physiological requirements) is reported in [26]. They successfully generated
virtual neurons for the linear summation task (as used in this paper) and the spike
order detection task. In their study there is a striking match between the evolved
morphology for the linear summation task and the morphology of Nucleus Lami-
naris neurons; a match that we did not obtain. The main difference between our
study and the study reported in [26] is the algorithm by which a candidate mor-
phology is generated. They use an algorithm based on L-Neuron [3] which uses

On the Neuronal Morphology-Function Relationship: A Synthetic Approach 141

−400
−200

0
200

400

−400

−200

0

200

400
−200

−100

0

100

200

X

d12, e999

Y

Z

−300 −200 −100 0 100 200 300
−250

−200

−150

−100

−50

0

50

100

150

200

250
d12, e999

X

Y

Fig. 7. The evolved structure that obeys our predefined function requirements. Left:
3D view. Right: 2D XY projection.

sampling of parameters from empirical distributions to generate virtual neurons
(so called a priori limitation strategy [28]). Consequently, the only candidates mor-
phologies they can generate are morphologies that statistically fit with biological
neurons. To put it differently, if they optimize for a specific function, the evolved
morphology will reflect sampled data, and will thus resemble known neuronal mor-
phologies. In this light, is it less surprising that they had a good matching between
their generated virtual neuron and the Nucleus Laminaris neuron which function
they tried to approximate. We argue that the a priori limitation strategy is rather
constraining the search for a mapping between morphology and function. Con-
trastingly, we use an algorithm that considers all 3D structures as candidates, and
are thus unbiased towards specific solutions (i.e., morphologies) [28]. We consider
this unbiased nature of our generation algorithm an advantage in the study of the
morphology-function relationship.

As we just pointed out the advantages of our approach we also observe lim-
itations of the synthetic approach.By using a descriptive model to generate
morphologies, we do not include any underlying mechanisms of neuronal de-
velopment. We are aware that these biological constraints heavily determine the
final shape of the neuron. For instance, a parsimonious principle will be obeyed
in the brain as there is only a limited amount of neuronal building blocks like
micro-tubules and F-actin [21]. Energy consumption, and genetic borders are
also known to limit the size of neurons [21]. Nevertheless, we can add extra -
superficial - requirements to the fitness function to capture some underlying bio-
logical principles. Figure 8 illustrates four XY projections of structures that were
found when we only assessed a structure’s fitness on the basis of morphological
properties representing morphological properties of NL neurons. The rationale
was to evolve small (i.e., short total length) structures displaying basic proper-
ties of neurons (i.e., only bifurcations) with as many segments as possible in the

142 B. Torben-Nielsen, K. Tuyls, and E.O. Postma

−100 −50 0 50
−300

−200

−100

0

100

200

300
A

−50 0 50
−300

−200

−100

0

100

200

300
B

−1000 −500 0 500
−300

−200

−100

0

100

200

300
C

−200 0 2
−300

−200

−100

0

100

200

300
D

Fig. 8. 3D Structures evolved when only morphological constraints were used in the
optimization

target zones and with a preference for dendrites ending in the target zone. Both
Figure 8 (a) and (b) actually resemble NL morphology. Figure 8 (c) receives a
high fitness as well but exploits the fact that we did not penalize cycles (recall
these are projection in XY; only trees can be generated with EvOL-Neuron)
and does not resemble neuronal morphology. Finally, Figure 8 (d) illustrates the
strength of EC: this structure receives a high fitness as it has a great number of
dendrites ending in the target zones (the two “balls” around Y 200 and -200).
In the future, we want to combine a functional assessment with a morphological
assessment to evolve structures that fulfill a specific function while resembling
plausible neuronal morphology.

We can conclude that EvOL-Neuron (in combination with a physiological
simulator) is a useful tool to investigate the neuronal morphology-function rela-
tionship. It allows the exploration of large parameter spaces, both morphological
and functional. As a first result, we showed the non-triviality of neuronal mor-
phologies. In future studies we will incorporate more biological constraints to ad-
vance us in the understanding of the relation between morphology and function.

Acknowledgements

The research reported here is part of the Interactive Collaborative Information
Systems (ICIS) project, supported by the Dutch Ministry of Economic Affairs,
grant nr: BSIK03024. The authors wish to thank Dr. Klaus Stiefel for discussions
on this topic.

References

1. Hagai Agmon-Snir, Catherine E. Carr, and John Rinzel. The role of dendrites in
auditory coincidence detection. Nature, 393:268–272, 1998.

2. Giorgio A. Ascoli. Mobilizing the base of neuroscience data: the case of neuronal
morphologies. Nature Neuroscience Reviews, 7:318–324, 2006.

3. Giorgio A. Ascoli and Jeffrey L. Krichmar. L-Neuron: a modeling tool for the
efficient generation and parsimonious description of dendritic morphology. Neuro-
computing, 32-33:1003–1011, 2000.

On the Neuronal Morphology-Function Relationship: A Synthetic Approach 143

4. Giorgio A. Ascoli, Jeffrey L. Krichmar, Slawomir J. Nasuto, and Stephen L. Senft.
Generation, description and storage of dendritic morphology. Phil. Trans. R. Soc.
Lond. B, 356:1131–1145, 2001.

5. Giorgio A. Ascoli, Jeffrey L. Krichmar, Ruggero Scorcioni, Slawomir J. Nasuto, and
Stephen L. Senft. Computer generation and quantitative morphometric analysis
of virtual neurons. Anat. Embryol., 204:283–301, 2001.

6. N. Carnevale and M. Hines. The NEURON book. Cambridge University Press,
2006.

7. Christos Consoulas, Carsten Duch, Ronald J. Bayline, and Richard B. Levine.
Behavioral transformations during metamorphosis: remodeling of neural and motor
systems. Brain research bulletin, 53 (5):571–583, 2000.

8. Carsten Duch and R.B. Levine. Remodeling of membrane properties and den-
dritic architecture accompanies the postembryonic conversion of a slow into a fast
motorneuron. J. NeuroScience, 20(18):6950–6961, 2000.

9. J.P. Eberhard, A. Wanner, and G. Wittum. NeuGen: a toold for the generation of
realistic morphology of cortical neurons and neural networks in 3d. Neurocomput-
ing, XX:in press, 2006.

10. John Holland. Adaptation in Natural and Artificial Systems. University of Michigan
Press, 1975.

11. William L. Kath. Computational Modelling of Dendrites. J. Neurobiol, 64:91–99,
2005.

12. Christif Koch and Idan Segev. The role of single neurons in information processing.
Nature Neuroscience, 3:1171–1177, 2000.

13. John Koza. Genetic programming: On the programming of computers by means of
Natural Selection. MIT Press, Cambridge, 1992.

14. Jeffrey L. Krichmar, Slawomir J. Nasuto, Ruggero Scorcioni, and Stuart D. Wash-
ington. Effects of dendritic morphology on CA3 pyramidal cell electrophysiology:
a simulation study. Brain Res., 941:11–28, 2002.

15. Jyh-Ming Lien, Marco Morales, and Nacy M. Amato. Neuron PRM: A Framework
for Constructing Cortical Networks. Neurocomputing, 52–54:191–197, 2003.

16. A. Lindenmayer. Mathematical models for cellular interactions in development i
& ii. Journal of Theoretical Biology, 18:280–315, 1968.

17. Michael London and Michael Häusser. Dendritic computation. Annu. Rev. Neu-
rosci., 25:5003–532, 2005.

18. Zachary F. Mainen and Terrence J. Sejnowski. Influence of dendritic structure on
firing pattern in model neocortical neurons. Nature, 382:363–366, 1996.

19. M. Mitchell. An Introduction to Genetic Algorithms. Cambridge, MA: MIT Press,
1996.

20. Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The algorithmic beauty of
plants. Springer-Verlag, 1990.

21. E.K. Scott and L. Luo. How do dendrites take their shape? Nature (neuroscience),
4:(4)359–365, 2001.

22. Idan Segev. Sound grounds for computing dendrites. Nature, 393:207–208, 1998.
23. Idan Segev and Michael London. Untangling dendrites with quantitative models.

Science, 290:744–749, 2000.
24. Armen Stepanyants and Dmitri B. Chklovskii. Neurogeometry and potential synap-

tic connectivity. Trends in Neurosciences, 28(7):387–394, 2005.
25. Volker Steuber, Erik De Schutter, and Dieter Jaeger. Passive model of neurons

in the deep cerebellar nuclei: the effect of reconstruction errors. Neurocomputing,
58–60:563–568, 2004.

144 B. Torben-Nielsen, K. Tuyls, and E.O. Postma

26. Klaus M. Stiefel and Terrence J. Sejnowski. Mapping function onto neuronal mor-
phology. j. Neurophysiol, XX:XX, 2006 (in press).

27. Benjamin Torben-Nielsen, Karl Tuyls, and Eric O. Postma. Shaping realistic neu-
ronal morphologies: An evolutionary computation method. In International Joint
Conference on Neural Networks (IJCNN2006), Vancouver, Canada, 2006.

28. Benjamin Torben-Nielsen, Karl Tuyls, and Eric O. Postma. EvOL-Neuron: Neu-
ronal Morphology Generation. submitted.

29. Arjen van Ooyen, Jacob Diujnhouwer, Michiel W. H. Remme, and Jaap van Pelt.
The effect of dendritic topology on firing patterns in model neurons. Network:
Computation in Neural Systems, 13:311–325, 2002.

Analyzing Stigmergetic Algorithms Through

Automata Games

Peter Vrancx�, Katja Verbeeck, and Ann Nowé

Computational Modeling Lab,
Vrije Universiteit Brussel

{pvrancx, kaverbee, ann.nowe}@vub.ac.be

Abstract. Stigmergy describes a class of mechanisms that mediate an-
imal to animal interaction through the environment. Recently this con-
cept has proved interesting for use in multi-agent systems, as it provides a
simple framework for agent interaction and coordination. However, deter-
mining the global system behavior that will arise from local stigmergetic
interactions is a complex problem. In this paper stigmergetic mecha-
nisms are modeled using simple reinforcement learners, called learning
automata.We show that using automata to model stigmergy, the learn-
ing problem can be asymptotically approximated by an automata game.
Existing convergence results for automata games enables us to under-
stand these stigmergetic methods and predict their global behavior. A
simple multi-pheromone example is described and analyzed through its
corresponding automata game.

1 Introduction

The concept of stigmergy [13] was first introduced by entomologist Paul Grassé
[5] to describe indirect interactions between termites building a nest. Generally
stigmergy is defined as a class of mechanisms that mediate animal to animal
interaction through the environment. The idea behind stigmergy is that indi-
viduals coordinate their actions by locally modifying the environment rather
than by direct interaction. The changed environmental situation caused by one
animal, will stimulate others to perform certain actions. This concept has been
used to explain the coordinated behavior of social insects such as termites, ants
and bees.

Recently the notion of stigmergy has gained interest in the domains of multi-
agent systems and agent based computing [15,8,14,10]. Algorithms such as Ant
Colony Optimization (ACO) [4] model aspects of social insect behavior to coor-
dinate agent behavior and cooperation. The concept of stigmergy is promising
in this context, as it provides a relatively simple framework for agent communi-
cation and coordination. One of the main problems that arises, however, is the
difficulty of determining the global system behavior that will arise from local
stigmergetic interactions.
� Funded by a Ph.D grant of the Institute for the Promotion of Innovation through

Science and Technology in Flanders (IWT Vlaanderen).

K. Tuyls et al. (Eds.): KDECB 2006, LNBI 4366, pp. 145–156, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

146 P. Vrancx, K. Verbeeck, and A. Nowé

In this paper we propose to model stigmergetic communication by networks
of learning automata (LA)[7]. One of the main advantages of LA is the exis-
tence of convergence proofs for many possible interaction schemes. Using LA as
a model for stigmergy allows us to transfer some of these insights to stigmergetic
algorithms. A principal contribution of LA theory is that a set of decentralized
learning automata is able to control a finite Markov Chain with unknown tran-
sition probabilities and rewards [16]. The similarity between this approach and
simple Ant Colony Optimization algorithms was already shown in [15]. Here we
will use and extend this result to more general stigmergetic methods.

We show that a modification of the interconnected network of learning
automata used in [16] is also able to model multi-pheromone ant algorithms. We
show how this new model can still be asymptotically approached by automata
games as was the case in [16,15]. The large advantage of this is that existing au-
tomata theory[11] will allow us to analyze stigmergetic algorithms in terms of their
global behaviour. In case of simple single type pheromone updates as in the S-ACO
model, convergence is guaranteed to a global optimum as long as the underlying
network satisfies some ergodic assumption. In case of multi-type pheromone up-
dates convergence is still assured to possibly suboptimal attractor points.

The remainder of this paper is organized as follows. We first introduce stigmer-
getic algorithms. We focus on 2 methods; a simple algorithm that uses stigmergy
to coordinate agent behavior and a more complex multi-type method that allows
for agent competition. We then define learning automata and automata games.
In section 4, we explain how a set of interconnected LA can model the stigmer-
getic algorithms given in section 2. Learning automata theory is then used to
analyze the corresponding automata games. Finally we demonstrate our result
on a simple multi-pheromone example.

2 Stigmergetic Algorithms

Several different approaches have been proposed to apply stigmergy to multi-
agent systems. A commonly used method is to let agents communicate by using
artificial pheromones. Agents can observe and alter local pheromone values which
guide action selection. This system has been used in optimization [3] and man-
ufacturing control [14,2], among others. An example of this type of algorithm is
given in the next subsection.

Other algorithms are based on termite and wasp nest building behavior [12]
or ant brood sorting [1,6]. In these systems an individual’s actions (e.g. build-
ing, depositing dirt, picking up brood) modify the local environment and cause
reactions of other workers (i.e building more, moving brood, etc.).

In most of the algorithms based on the systems mentioned above a set of
common elements can be isolated:

– The agent environment is subdivided in a number of discrete locations, which
agents can visit.

– Each location contains a local state that can be accessed and updated by
agents visiting that location.

Analyzing Stigmergetic Algorithms Through Automata Games 147

– Agents can perform actions in the location they visit. The probability of an
action is determined by an agent based on the local state.

– An interconnection scheme between locations is defined, allowing agents to
travel between locations.

We will try to accommodate these recurring elements using our learning au-
tomata framework.

2.1 A Simple Stigmergetic Algorithm

In this section we describe an algorithm called S-ACO (Simple Ant Colony Op-
timization). The algorithm was proposed in [4] to study the basic properties of
ant colony optimization algorithms. It contains all the basic mechanisms used in
algorithms that employ artificial pheromones.

The goal of the S-ACO algorithm is to find the minimum cost path between 2
nodes in a weighted graph. The algorithm uses a colony of very simple ant-
like agents. These agents travel through the graph starting from the source
node, until they reach the destination node. In all nodes a pheromone value
is associated with the outgoing edges. When an agent arrives in the node it
reads these values and uses them to assign a probability to each edge. This
probability is used to choose an edge to follow to the next node. When all agents
have reached the goal state they return to the source node and the pheromone
value τij on each edge ij is updated using the following formula:

τij ← ρτij + Δτij (1)

The pheromone update described above consists of two parts. First the
pheromones on the edges are multiplied with a factor ρ ∈ [0, 1] . This simulates
pheromone evaporation and prevents the pheromones from increasing without
bound. After evaporation a new amount of pheromone Δτ is added. The amount
of new pheromones is determined by the paths found by the ant agents. Edges
that are used in lower cost paths receive more pheromones than those used in
high cost paths. By using this system the ant agents are able to coordinate their
behavior until all agents follow the same shortest path.

2.2 Noncooperative Algorithms

The algorithm described in the previous section is one of the simplest stigmer-
getic algorithms possible. All agents have the same goal and they alter their
environment (by leaving pheromones) to share information and coordinate their
actions. The agents do not influence each other’s reward, however. Each agent
builds it own path, and the feedback it gets is based solely on the cost of this
path. The paths followed by other agents do not influence this feedback.

In this paper we also examine more complex problems where agents can have
different goals and directly influence each other’s reward. Examples of these algo-
rithms can be found in multi-pheromone algorithms. These systems use not one,
but several pheromone gradients to guide agents. One such system was proposed

148 P. Vrancx, K. Verbeeck, and A. Nowé

ENVIRONMENT

INPUT

OUTPUTINPUT

OUTPUT

A, r, p, U

a in Ar in {0,1}

A, r

AUTOMATON

.
Environment

1

n n

1
r

r

a

aLA

1

n

LA

(a) (b)

Fig. 1. (a) A Single Learning Automata - Environment pair. (b) Multiple automata
sharing an environment in an Automata Game.

in[9] to let different colonies of agents find disjoint paths in a network. Another
multi-pheromone system was proposed in [10]. Here the different pheromones
guide agents to different locations.

Depending on their current goal, different agents can prefer different actions
in the same location. Furthermore it is possible that agent goals conflict and
agents influence each other’s rewards. In the disjoint paths problem mentioned
above for instance, different agents compete for the use of network resources and
an agent’s reward is determined by how many other agents use the same network
links.

3 Learning Automata

Learning Automata are simple reinforcement learners originally introduced to
study human behavior. The objective of an automaton is to learn an optimal
action, based on past experience. Formally the automaton is described by a
quadruple {A, r, p, U} where A = {a1, . . . , an} is the set of possible actions the
automaton can perform, p is the probability distribution over these actions, r is
a random variable between 0 and 1 representing the evironmental response, and
U is a learning scheme used to update p.

A single automaton is connected in a feedback loop with its environment.
Actions chosen by the automaton are given as input to the environment and the
environmental response to this action serves as input to the automaton. This
situation is represented in Figure 1(a).

Several automaton update schemes with different properties have been stud-
ied. Important examples of linear update schemes are linear reward-penalty, lin-
ear reward-inaction and linear reward-ε-penalty. The philosophy of these schemes
is essentially to increase the probability of an action when it results in a suc-
cess and to decrease it when the response is a failure. The general algorithm is
given by:

pi(t + 1) = pi(t) +αreward r(t)(1 − pi(t))
−αpenalty(1 − r(t))pi(t) (2)
if ai is the action taken at time step t

Analyzing Stigmergetic Algorithms Through Automata Games 149

pj(t + 1) = pj(t) −αreward r(t)pj(t)
+αpenalty(1 − r(t))[(l − 1)−1 − pj(t)] (3)
if aj �= ai

with l the number of actions of the action set A. The constants αreward and
αpenalty are the reward and penalty parameters respectively. When αreward =
αpenalty the algorithm is referred to as linear reward-penalty (LR−P), when
αpenalty = 0 it is referred to as linear reward-inaction (LR−I) and when αpenalty

is small compared to αreward it is called linear reward-ε-penalty (LR−εP).

3.1 Automata Games

Automata games, [7,11] were introduced to see if learning automata could be
interconnected so as to exhibit group behavior that is attractive for either mod-
eling or controlling complex systems.

As visualized in Figure 1(b), a play a(t) = (a1(t) . . . an(t)) of n automata
is a set of strategies chosen by the automata at stage t. Correspondingly, the
outcome is now a vector r(t) = (r1(t) . . . rn(t)). At every instance, all automata
update their probability distributions based on the responses of the environ-
ment. Each automaton participating in the game operates without information
concerning the number of participants, their strategies, their payoffs or actions.
The asymptotic behaviour of a learning automata game is already studied well.
In zero-sum games the LR−I scheme converges to the equilibrium point if it exist
in pure strategies, while the LR−εP scheme can approach a mixed equilibrium
arbitrarily close [7,11]. In general non zero sum games [7,11] it is shown that
when the automata use a LR−I scheme and the game is such that a unique pure
equilibrium point exists, convergence is guaranteed. In cases where the game
matrix has more than one pure equilibrium, which equilibrium is found depends
on the initial conditions.

4 Analyzing Stigmergy Through Automata Games

The use of learning automata as a model for stigmergetic communication was
first introduced in [15]. In this paper a LA model for S-ACO type algorithms
was introduced. One limitation of this approach is that all agents must share
the same goal, to avoid that the LAs are updated using conflicting responses.
In this paper we aim to generalize this idea by allowing agents to have different
goals. This could for instance be used to model the multiple pheromones systems
descibed in section 2.2.

4.1 A Model for S-ACO

The idea behind the LA model of [15] is to move decision making from the agents
to the local environment states. Each local state contains one learning automata.
When an agent visits a location it activates the learning automaton that resides

150 P. Vrancx, K. Verbeeck, and A. Nowé

in that location. This automaton then decides the action the agent should take
in that location. Transition to the next location triggers an automaton from that
location to become active and take some action.

Agents themselves can then be viewed as dummy mobile agents, that walk
around in the graph of interconnected locations, make local LA active and bring
information so that the LA involved can update their local state. Multiple agents
can collaborate by using the same automata. The learning automaton LAi active
in location i is not informed of the one-step reward ri

j(k) resulting from its action
ak, leading to state j. When the agent visits location i again, LAi receives
two pieces of data: 1) the cumulative reward received by the agent up to the
current time step and 2) the current global time. From these, LAi computes the
incremental reward generated since the last visit and the corresponding elapsed
global time. The environment response or the input to LAi is then taken to be:

ri(ni + 1) =
Ri

k(ni + 1)
ηi

k(ni + 1)
(4)

where Ri
k(ni + 1) is the cumulative total reward generated for action ak in state

i and ηi
k(ni + 1) the cumulative total time elapsed1.

When comparing the update pheromone update rule given in Equation 1
with the update scheme of the interconnected LA model, see Equations 2 and
3, the commonalities are obvious. Indeed, the trail update rule of Equation 1
is actually a reward-penalty (LR−P) update. The pheromone trail in S-ACO is
updated with an amount which depends on the total length or cost of the path.
So depending on the quality of the path visited, the pheromone trail is rewarded
or penalized. In fact, the dummy agents play the role of the ants here.

The LA model described above is based on the LA algorithm introduced by
Wheeler and Narendra [16] to solve Markov Decision Problems. The only differ-
ence is that here multiple dummy agents co-exist, so that multiple automata can
be activated at the same time. In [15] it is shown that the system is approached
by a limiting automata game just as is the case for the original model in [16]
when the following assumption is fulfilled: The Markov chain corresponding to
each pure policy α is ergodic2 This actually means that the agents should con-
tinue to visit each location. So there are no transient states and for each pure
policy α a limiting distribution π(α) = (π1(α) . . . πN (α)) exists, with N the
number of locations in the environment. Using these limiting distributions we
can formulate the expected reward per step for each policy as follows:

J(α) =
N∑

i=1

πi(α)
N∑

j=1

T i
j (α)ri

j(α) (5)

1 The one step reward is normalized so that r stays in [0, 1].
2 Note that the policies we consider, are limited to stationary, nonrandomized policies.

Under the assumption that the Markov chain corresponding to each policy α is
ergodic, it can be shown that the best strategy in any state is a pure strategy,
independent of the time at which the state is occupied [16].

Analyzing Stigmergetic Algorithms Through Automata Games 151

where T i
j (α) and reward ri

j(α) are respectively the transition probability to state
j and immediate reward when action α is chosen in state i.

This also allows us to write down the limiting automata game as follows: each
learning automata is assumed to be a player and each joint action or play of the
game corresponds with a pure policy α. The resulting payoff is given by J(α)
defined in Equation 5. For the model described here, the limiting automata game
is proved to have a unique equilibrium [16]. As described in section 3.1, LR−I

automata are able to converge to this optimal point. In the extended model we
will loose the guarantee to find optimal equilibria or policies, but we are still
able to show convergence to a local optimum.

4.2 A Model for Noncooperative Stigmergy

One limitation of the above model is that all agents must share the same goal, to
avoid that the LA are updated using conflicting responses. We now extend the
model to allow agents to have different goals. Therefore in the extended model,
each location contains one or more learning automata, corresponding to different
goals agents are trying to achieve. When an agent visits a location it activates
the learning automaton corresponding to its goal. For each agent, one LA in
its current location is active at each time step and the transition to the next
location triggers an automaton from that location to become active and take
some action. The update of the LA is completely the same as before. Using the
cumulative reward and the current global time that the agent brings on its next
visit, the environment response β given in Equation 4, is computed and used in
the update scheme of Equations 2 and 3.

To see how this model can still be approached by a limiting game, we redefine
the notion of a state, i.e. locations and states are no longer the same. Since
agents have competing goals, we are going to include the other agents in the
defintion of our state space. For every combination of all agent’s locations we
get another joint state. When one or more agents move to another location, a
transition to another joint state takes place. In this joint state space we can just
as above write down the limiting automata game. This is demonstrated on a
simple grid world problem in the next section.

4.3 Examples

We first demonstrate our analysis on the small grid world problem shown in
Figure 2(a). The game consists of only two grid locations L1 and L2. Two
agents A and B try to coordinate their behavior in order to receive the maximum
reward. Each time step both agents take one of 2 possible actions. If an agent
chooses action 0 it stays in the same location, if it chooses action 1 it moves to
the other grid location. The transitions in the grid are stochastic. An agent has
a probability of 0.9 to arrive in the chosen location and a probability of 0.1 to
arrive in the other one. The reward function for both agents is as follows:

r(t) =
{

1 if agent 1 is in location 1 and agent 2 is in location 2
0.01 else

152 P. Vrancx, K. Verbeeck, and A. Nowé

A2

B2

A1

B1

0 0
1

1

{L1,L1} {L1,L2}

{L2,L1} {L2,L2}

{0,1}

{1,0}

{0,1}

{1,0}

{1,1}

{1,1}

{0,0}

{0,0}{0,0}

{0,0}

(a) (b)

Fig. 2. (a)The grid-world game with 2 grid locations and 2 non-mobile LA in every
location. (b) Markov game representation of the same game.

We apply the LA model described in the previous section to this grid game.
Each agent has a learning automaton in both locations. This learning automaton
decides the action the corresponding agent takes in that state and is updated
with the cumulative reward whenever the agent visits its location.

The game described above can be transformed to a Markov game by consider-
ing the product space of the locations and actions. A state in the Markov game
consists of the locations of both agents, e.g. S1 = {L1, L1} when both agents
are in grid cel 1. The actions that can be taken to move between these states are
the joint actions taken by all agents. Figure 2(b) represents the markov game
corresponding to our grid world problem.

Because automata in the stigmergy framework are associated with the possible
agent location, rather than the Markov game states, it is not possible to learn
all possible policies. For instance the automaton A1, associated with location
L1 is present state S1 = {L1, L1} as well as state S2 = {L1, L2}. Therefore it
is not possible for agent A to learn a different action in state S1 and S2. This
corresponds to an agent associating actions with locations, without modeling
the other agents.

To analyze the grid world problem we determine the automata game corre-
sponding to the problem. As stated in Section 4.1 , we can calculate the expected
reward for each policy in the Markov game, provided that the corresponding
markov chain is ergodic. Here the chain is ergodic and we can calculate tran-
sition probabilities from the data of the grid world problem. For instance in
location {L1, L1} with joint action {0, 0} chosen, the probability to stay in state
{L1, L1} is 0.81. The probabilities corresponding with moves to states {L1, L2},
{L2, L1} and {L2, L2} are 0.09, 0.09 and 0.01 respectively. The transition prob-
abilities for all states and joint action pairs can be calulated this way. With
the transition probabilities and the rewards known, we can use Equation 5 to
calculate the expected reward.

The complete game is shown in Table 1. Columns 1 through 4 show the play
selected by the automata, columns 5 to 8 show the Markov game policy corre-
sponding to this play chosen. This policy maps one joint action to each state
in the Markov game. Finally column 9 shows the expected reward for the given

Analyzing Stigmergetic Algorithms Through Automata Games 153

Table 1. Possible LA actions with the corresponding policies in the Markov game and
their expected reward. The unique equilibrium reward is indicated in bold.

Agent A Agent B Policy Expected reward
A1 A2 B1 B2 {L1, L1} {L1, L2} {L2, L1} {L2, L2}
0 0 0 0 {0, 0} {0, 0} {0, 0} {0, 0} 0.2575
0 0 0 1 {0, 0} {0, 1} {0, 0} {0, 1} 0.0595
0 0 1 0 {0, 1} {0, 0} {0, 1} {0, 0} 0.4555
0 0 1 1 {0, 1} {0, 1} {0, 1} {0, 1} 0.2575
0 1 0 0 {0, 0} {0, 0} {1, 0} {1, 0} 0.4555
0 1 0 1 {0, 0} {0, 1} {1, 0} {1, 1} 0.0991
0 1 1 0 {0, 1} {0, 0} {1, 1} {1, 0} 0.8119
0 1 1 1 {0, 1} {0, 1} {1, 1} {1, 1} 0.4555
1 0 0 0 {1, 0} {1, 0} {0, 0} {0, 0} 0.0595
1 0 0 1 {1, 0} {1, 1} {0, 0} {0, 1} 0.0199
1 0 1 0 {1, 1} {1, 0} {0, 1} {0, 0} 0.0991
1 0 1 1 {1, 1} {1, 1} {0, 1} {0, 1} 0.0595
1 1 0 0 {1, 0} {1, 0} {1, 0} {1, 0} 0.2575
1 1 0 1 {1, 0} {1, 1} {1, 0} {1, 1} 0.0595
1 1 1 0 {1, 1} {1, 0} {1, 1} {1, 0} 0.4555
1 1 1 1 {1, 1} {1, 1} {1, 1} {1, 1} 0.2575

policy. If all automata in the grid use the Reward-Inaction learning scheme, the
automata are guaranteed to converge to an equilibrium. In this case there is only
one, optimal equilibrium, so the automata will learn the optimal action.

Figure 3 shows the probability of action 0 for the automata in the game. It
can be seen that the automata A1 and B2 converge to action 0, while A2 and
B1 converge to action 1. This corresponds to the equilibrium policy indicated in
Table 1.

We now demonstrate our approach experimentally on a larger grid world
game, shown in Figure 4 . This game was inspired by the disjoint paths algo-
rithms mentioned in Section 2.2. The game consists of a 3 × 3 grid and four
agents who are trying to reach their goal state. The agents start in the corners
of the grid, i.e. squares 0, 2, 6 and 9. Agents 1 and 2 are trying to reach goal B,
while agents 3 and 4 try to reach goal A.

If multiple players attempt to move to the same square, different from their
goal state, the moves fail and the agents are bounced back to their previous
states. The agents’ goal is to find a shortest path to the goal state without
interfering with each other.

The reward function used here for each agent i is the following:

ri(t) =

⎧
⎨

⎩

1 if agent i reached the goal state
0.001 if both agents reached a different non-goal state
0 if both agents reached the same non-goal state

When all agents have reached the goal, they are put back in their initial states.

154 P. Vrancx, K. Verbeeck, and A. Nowé

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

pr
ob

ab
ili

ty
 o

f a
ct

io
n

0

runtime

Grid World Game

A1
A2
B1
B2

Fig. 3. Probability of action 0 for the 4 automata in the grid world game of section 4.3

A6

B6

A8

B8

A3

B3

A4

B4

A5

B5

A2

B2

A1

B1

A0

B0

Agent
3

Agent
2

A7

B7

Agent
1

Agent
4

GOAL A

GOAL B

A6

B6

A8

B8

A3

B3

A4

B4

A5

B5

A2

B2

A1

B1

A0

B0

Agent
3

Agent
2

A7

B7

Agent
1

Agent
4

GOAL A

GOAL B

(a) (b)

Fig. 4. (a) The grid-world game with 4 mobile agents in their initial state and 2 non-
mobile LA in every grid location. (b) Solution found by agents using the LA algorithm.

Using the LA model we place 2 learning automata in each location. These
correspond to the goal locations A and B. Agents 1 and 2 use the automata
corresponding to goal B, while agents 3 and 4 share the LA corresponding to
goal B. Each automaton has as many actions as its location has neighbors. When
an agent leaves a grid location, the action chosen by the automaton determines
the neighbor location it travels to. Transitions in the grid are again stochastic,
with agent having a probability of 0.9 of arriving in the chosen location and a
0.1 probability of arriving in a randomly chosen neighbor location.

Figure 4(b) shows the result found by the LA model with all automata us-
ing the LR−I update scheme. This result is an equilibrium solution corresponding

Analyzing Stigmergetic Algorithms Through Automata Games 155

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 500 1000 1500 2000 2500

av
er

ag
e

co
lli

si
on

s

episodes

Grid World: Average Collisions

"CollResults.txt" using 1:2

Fig. 5. The average number of collision in each iteration of the gridworld game using
αpenalty = 0.06. Average taken over 100 game runs.

to non-conflicting paths to the goal locations. As can be seen in Figure 5 the
algorithm minimizes the number of collisions over time. Eliminating collisions
entirely is not possible in this case, due to the stochastic transitions.

5 Conclusion

In this paper we model 2 types of stigmergetic mechanisms as interconnected
models of learning automata. These models can be asymptotically approached
by an automata game as was the case in [16,15]. The large advantage of this is
that existing automata theory [11] allows us to analyze stigmergetic algorithms
in terms of their global behaviour. In case of simple single type pheromone
updates as in the S-ACO model, convergence is guarenteed to a global optimum
as long as the underlying network satisfies some ergodic assumption. In case
of noncooperative updates convergence is still assured to local attractor points.
As far as we know the analysis method we present here is one the first formal
analysis tool for stigmergetic mechanisms. Of course, further study is necessary
to see whether the approximations are still good enough in larger networks.

References

1. R. Beckers, OE Holland, and J.L. Deneubourg. From local actions to global tasks:
Stigmergy and collective robotics. Artificial Life IV, 181:189, 1994.

2. S. Brueckner. Return from the Ant: Synthetic Ecosystems for Manufacturing Con-
trol. PhD thesis, PhD Dissertation, Humboldt-Universitat Berlin, Germany (2000),
1999.

3. M. Dorigo, E. Bonabeau, and G. Theraulaz. Ant algorithms and stigmergy. FU-
TURE GENER COMPUT SYST, 16(8):851–871, 2000.

156 P. Vrancx, K. Verbeeck, and A. Nowé

4. M. Dorigo and T. Stützle. Ant Colony Optimization. Bradford Books, 2004.
5. P.P. Grassé. La reconstruction du nid et les coordinations interindividuelles chez

Bellicositermes natalensis et Cubitermes sp. la théorie de la stigmergie: Essai
d’interprétation du comportement des termites constructeurs. Insectes Sociaux,
6(1):41–80, 1959.

6. O. Holland and C. Melhuish. Stigmergy, self-organization, and sorting in collective
robotics. Artificial Life, 5(2):173–202, 1999.

7. K. Narendra and M. Thathachar. Learning Automata: An Introduction. Prentice-
Hall International, Inc, 1989.

8. A. Nowé, K. Verbeeck, and M. Peeters. Learning automata as a basis for multi-
agent reinforcement learning. Lecture Notes in Computer Science, 3898:71–85,
2006.

9. A. Nowé, K. Verbeeck, and P. Vrancx. Multi-type ant colony: The edge disjoint
paths problem. Lecture Notes in Computer Science: ANTS 2004, 3172:202 – 213,
2004.

10. L. Panait and S. Luke. A pheromone-based utility model for collaborative foraging.
Autonomous Agents and Multiagent Systems, 2004. AAMAS 2004. Proceedings of
the Third International Joint Conference on, pages 36–43, 2004.

11. M.A.L. Thathachar and P.S. Sastry. Networks of Learning Automata: Techniques
for Online Stochastic Optimization. Kluwer Academic Publishers, 2004.

12. G. Theraulaz and E. Bonabeau. Modelling the collective building of complex
architectures in social insects with lattice swarms. Journal of Theoretical Biology,
177(4):381–400, 1995.

13. G. Theraulaz and E. Bonabeau. A brief history of stigmergy. Artificial Life,
5(2):97–116, 1999.

14. P. Valckenears and M. Kollingbaum. Multi-agent coordination and control using
stigmergy applied to manufacturing control. Mutli-agents systems and applications,
pages 317–334, 2001.

15. K. Verbeeck and A. Nowe. Colonies of learning automata. Systems, Man and
Cybernetics, Part B, IEEE Transactions on, 32(6):772–780, 2002.

16. R. Wheeler Jr and K. Narendra. Decentralized learning in finite Markov chains.
Automatic Control, IEEE Transactions on, 31(6):519–526, 1986.

The Identification of Dynamic Gene-Protein Networks

Ronald L. Westra1, Goele Hollanders2, Geert Jan Bex2,
Marc Gyssens2, and Karl Tuyls1

1 Department of Mathematics and Computer Science,
Maastricht University and Transnational University of Limburg,

Maastricht, The Netherlands
2 Department of Mathematics, Physics, and Computer Science,
Hasselt University and Transnational University of Limburg,

Hasselt, Belgium
westra@math.unimaas.nl

Abstract. In this study we will focus on piecewise linear state space models
for gene-protein interaction networks. We will follow the dynamical systems ap-
proach with special interest for partitioned state spaces. From the observation that
the dynamics in natural systems tends to punctuated equilibria, we will focus on
piecewise linear models and sparse and hierarchic interactions, as, for instance,
described by Glass, Kauffman, and de Jong. Next, the paper is concerned with the
identification (also known as reverse engineering and reconstruction) of dynamic
genetic networks from microarray data. We will describe exact and robust meth-
ods for computing the interaction matrix in the special case of piecewise linear
models with sparse and hierarchic interactions from partial observations. Finally,
we will analyze and evaluate this approach with regard to its performance and
robustness towards intrinsic and extrinsic noise.

Keywords: piecewise linear model, robust identification, hierarchical networks,
microarrays, gene regulatory networks.

1 Introduction and Problem Statement

This paper is concerned with the identification of dynamic gene-protein interaction net-
works with intrinsic and extrinsic noise from empirical data, such as a set of microarray
time series. Prerequisite for the successful reconstruction of these networks is the way in
which the dynamics of their interactions is modeled. In the past few decades, a number
of different formalisms for modeling the interactions amongst genes and proteins have
been presented. Some authors focus on specific detailed processes such as the circadian
rhythms in Drosophila and Neurospora [9,10], or the cell cycle in Schizosaccharomyces
(fission yeast) [12]. Others try to provide a general platform for modeling the interac-
tions between genes and proteins. For a thorough overview, consult de Jong in [2],
Bower in [1], and others [5,11]. We will focus on dynamical models, and not discuss
static models where the relations between genes are considered fixed in time. A dynam-
ical model can be described using continuous time, or discrete events (or time). Given
the discrete nature of the data we have at our disposal to derive the models, a discrete
event model seems most appropriate. In discrete event simulation models, the detailed

K. Tuyls et al. (Eds.): KDECB 2006, LNBI 4366, pp. 157–170, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

158 R.L. Westra et al.

biochemical interactions are studied. Considering a large number of constituents, the
approach aims to derive macroscopic quantities. More information on discrete event
modeling can be found in [1].

2 Modeling Dynamic Gene-Protein Interactions as a Piecewise
Linear System

A frequent approach to modeling the dynamical interactions amongst genes and pro-
teins is to consider them as biochemical reactions, and thus represent them as ‘rate
equations’, i.e. as a set of differential equations, expressing the time derivative of the
concentration of each constituent of the reaction as some rational function of the con-
centrations of all the constituents involved. In case of biochemical interactions between
genes and proteins, the applicability of the concept of rate equations is valid only for
genes with sufficient high transcription rates. This is confirmed by recent experimen-
tal findings by Swain and Elowitz [4,16,18,19]. A practical problem is that the precise
details of most reactions are unknown, and therefore cannot be modeled as rate equa-
tions. This could be compensated by a well-defined parametrized generic form of the
interactions, in which the parameters can be estimated from sufficient empirical data. A
generic form based on rational positive functions is proposed by J. van Schuppen [21].
However, in the few cases where parts of such interaction networks have been described
from experimental analysis, like the circadian rhythms in certain amoeba [9], or the cell
cycle in fission yeast [12], it is clear that such forms have a too extensive syntax to be
of any practical use.

Let us for now ignore these problems, and consider the dynamics of gene-RNA-
protein networks. When we assume a stochastic differential equation as a model for the
dynamics of the interaction network, the relation can be expressed as

ẋ = f (x, u|θ) + ξ(t) (1)

Here, x(t), called the state-vector, denotes the N gene expressions and RNA/protein
densities at time t—possibly involving higher order time derivatives; u(t) denotes the P
controlled inputs to the system, such as the timing and concentrations of toxic agents
administered to the system observed; and ξ(t) denotes a stochastic Gaussian white noise
term. This expression involves a parameter vector θ that contains the coupling constants
between gene expressions and protein densities. We can consider this system as being
represented by the state vector x(t) that wanders through the N-dimensional space of all
possible configurations. In the formalism of dynamic systems theory, x will eventually
enter an area of attraction, and become subject to the influence of an attractor. An at-
tractor here can be a uniform convergent attractor, a limit cycle, or a ‘strange attractor’.
We can understand the entire space as being partitioned into cells, with each cell having
an attractor or a repeller. Thus, the behavior of x can be described by motion through
this collection of cells, swiftly moving through cells of repellers, until they enter the
basin of attraction of an attractor. Under the effects of external agents via the vector u(t)
or by stochastic fluctuations via ξ(t) they can leave this cell, and start wandering again,
thereby repeating the process. Now, a vital assumption is that in each cell the behavior
is governed by its specific (un)stable equilibrium point. In that case, it is possible to

The Identification of Dynamic Gene-Protein Networks 159

approximate the dynamics of Equation (1) in cell �—for x near the �-th equilibrium x(�)
eq

and small u—(except the noise term) as:

ẋ(t) ≈ ∂ f (x(�)
eq , u)

∂x
(x − x(�)

eq) +
∂ f (x(�)

eq , u)

∂u
u ≡ A�x(t) + B�u(t) + c� (2)

Thus, the qualitative behavioral dynamics of gene-protein interactions is characterized
as predominantly linear behavior near the stable equilibria—called the steady states,
interrupted by abrupt transitions where the system quickly relaxes to a new steady state,
either externally induced or by process noise.

In biology, such behavior is frequently observed, as, for instance, in embryonic
growth where the organism develops by transitions through a number of well-defined
‘checkpoints’. Within each such checkpoint, the system is in relative equilibrium, see
[20]. We will follow the view of piecewise linear behavior (PWL). This approach cor-
responds to the piecewise linear models introduced by Glass and Kauffman [8], and the
qualitative piecewise linear models described by de Jong et al. [2,3].

3 Identification of Dynamic Networks Using Piecewise Linear
Models

Next, we will be concerned with the identification (also known as reverse engineer-
ing) of piecewise linear gene regulatory systems from microarray data. We consider the
case where time series of genome-wide expression data are available. The nature of our
problem—few microarray experiments and lots of genes—implies that we are dealing
with poor data, where the number of measurements is a priori insufficient to identify
all parameters of the system. One standard approach to circumvent this problem is by
dimension reduction through the clustering of related genes. A different perspective is
offered by including some characteristics of the biological problem, such as the hierar-
chy and sparsity of the networks. The case of the identification of a simple linear sys-
tem with sparse and hierarchic interactions is discussed by Peeters and Westra [14,23],
and Yeung et al. [24]. In realistic situations, this model is too simple however. As was
pointed out by Øyehaug et al. [13], such systems tend to behave in a switch-like man-
ner, and they determine the switching timepoints using complex biological modeling.
In contrast, we will determine the switching timepoints by identifying sparse piecewise
linear systems. As a consequence, our focus is on modeling the subsystems between
the switching points rather than on the dynamics of the switching points themselves, as,
e.g., in Plahte et al. [15]. More concretely, our main aim is to obtain the local gene-gene
interaction matrices A�, that directly relate to the graph of the gene regulatory network.
Additionally, the matrices B� provide information on the coupling of genes to specific
inputs.

3.1 General Dynamics of Switching Subsystems

In what follows, let us assume a dynamical input-output system Σ that switches irregu-
larly between K linear time-invariant subsystems {Σ1, Σ2, . . . , ΣK}.

160 R.L. Westra et al.

Let S = {s1, s2, . . . , sK−1} denote the set of—unknown—switching times, i.e., the
time instants t = s� when the system switches from subsystem Σ�, to Σ�+1. Similarly as
with the simple linear networks, we assume empirical data X = (x[1], . . . , x[M]), U =
(u[1], . . . , u[M]), and Ẋ = (ẋ[1], . . . , ẋ[M]) at M sampling times T = {t1, t2, . . . , tM},
representing full observations of the N states and P inputs, and x[k] ≡ x(tk). The interval
between two sample instants is denoted as τk = tk+1−tk. Here, we assume that the system
is sampled on regular time intervals, i.e., that the sample intervals are equal to τ. Within
one subsystem Σ�, the effect of the inputs u(t) is represented as a state-space system of
first-order differential (for continuous time systems) or difference equations (for discrete
time systems), using an internal vector x(t) spanning the so-called subspace. In our case,
this represents the observed gene expressions. In the case of continuous time and in the
absence of noise, this system can be written as:

ẋ(t) = A�x(t) + B̃�ũ(t), (3)

with B̃� = (B�| − A�e�), ũT = (uT , 1), where e� indicates the equilibrium point of the
�-th subsystem and A� and B� refer to Equation (2). We will use this linear expression,
and from here on drop the tilde. A general disadvantage is that the time evolution of
the different genes, i.e., xν(t), ν = 1, . . . , n, will strongly correlate, thus obscuring their
true relation. This can be avoided by using Equation (3) with time series of triplets
ξ[k] ≡ (x[k], u[k], ẋ[k]) with a sufficient amount of statistically independent and vary-
ing inputs u(tk). Practically, this opens the way to combining distinct empirical sets.
However, a practical disadvantage of Equation 3 is that the derivative ẋ(tk) can only be
approximated from the measurements, such as ẋ[k] ≈ (x[k] − x[k − 1])/(tk − tk−1).

We furthermore assume that the system matrices in these equations are constant dur-
ing intervals [s�, s�+1[, and abruptly change at the transition between the intervals at
t = s�+1. We assume that on the time scale τ, the system has relaxed to its new state.
This means that we do not observe mixed states, which would severely complicate the
problem of identification, e.g., see [22]. This is accomplished by defining weights wk,�

as the degree to which observation k belongs to subsystem Σ�. If observation ξ[k] be-
longs to system Σ� then wk� = 1. Non-integer values in [0,1] can be interpreted as the
fuzzy membership of observation k to system Σ�. Since we assume that the subsystems
{Σ1, Σ2, .., ΣK} act disjointly and subsequently, the result can be improved by matching
the weights to a block function structure; i.e., wkl = 1 for tk ∈ [sl, sl+1[and wkl = 0 else-
where. This may, however, introduce other problems, for instance if the same subsystem
is revisited at different switching intervals. These considerations lead to the constraints
CMK on w:

CMK(w) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w1,1 = 1,wM,K = 1,
∀k,�wk,� ∈ [0, 1],
∀k
∑

l wk,� = 1,
∀�∑M−1

k=1 |wk+1,1 − wk,1| = 1,
∀�∑M−1

k=1 |wk+1,� − wk,�| = 2,
∀�∑M−1

k=1 |wk+1,K − wk,K | = 1.

(4)

The Identification of Dynamic Gene-Protein Networks 161

3.2 Combining the System Matrices {A, B} with the Subsystem Weightmatrix W

The assumption that the switching times between the linear subsystems are completely
known suits various experimental conditions, as, for instance, when toxic agents are
administered. In many biological situations, however, the exact timing between subsys-
tems is not known, as during embryonic growth and in many metabolical processes.

When a sufficiently accurate record of estimates of the state derivatives Ẋ is available,
we can simply rewrite this problem as a special case of the method described in the case
of a simple linear problem as in [14]. In fact, by exploiting the data D = {X,U, Ẋ}, the
problem can be stated as a linear equation in terms of new matrices H1 and H2 as

Ẋ = H1X + H2U. (5)

In this equation the matrices H1 and H2 relate to the—unknown—system matrices
{A1, B1, . . . , AK , BK} and ditto unknown weights {wkl} as

vec(H1) = W · vec(A), (6)

vec(H2) = W · vec(B). (7)

The matrices A, B, and W are composed as follows:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1
...

AK

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B1
...

BK

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, W = w ⊗ IN2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w1,1IN2 · · · w1,K IN2

...
...

...
wM,1IN2 · · · wM,K IN2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (8)

where ⊗ is the Kronecker-product, and IN2 is the N2 × N2 identity matrix. Note that
Equation (5) is not anymore a linear problem, as the unknown matrices A, B, and W
appear in a non-linear way in the equation. This equation is exactly of the type of
simple linear networks as in [14]. Therefore, its solution method is fully applicable, so
that an efficient and accurate algorithm is available for solving this problem in terms of
H1 and H2. However, the problem has now shifted to solving two additional non-linear
equations:

W � A = H1, (9)

W � B = H2. (10)

where A, B, and W have to be solved from the known—i.e., computed—matrices H1

and H2. The operation � makes the relations in Equations (6) and (7) explicit. This is
an underdetermined set of equations that can only be solved by additional information,
such as assuming sparsity for A, and a block structure for W, as defined in Equation (4).

3.3 Identification of PWL Models with Unknown Switching and Regular
Sampling from Poor Empirical Data

We will now focus on the general case, that the genome wide expressions X, their
derivatives Ẋ, and the external inputs U are available as empirical dataD. In this case,
the objective of system identification is to compute concurrently the system parameters

162 R.L. Westra et al.

A, B, and weights W (and hence the switching times S). Equation (5) provides us with
the general state space equations for a PWL system.

In practical experimental conditions, white process and measuring noise adds to the
right-hand side. The fit between the empirical data and the system model can be quan-
tified by the weighted difference between observed and expected expression profiles
expressed as a linear Lp-criterion:

Esys(A, B,w|D) =
∑

k,l

wkl‖Al x[k] + Blu[k] − ẋ[k]‖p (11)

Here, (A, B) represent the set of system parameters, and D ≡ {X,U, Ẋ} the observed
data, i.e., the measured genome-wide expressions X, their fluxes Ẋ, and the external
inputs U. The criterion furthermore involves the relation between the k-th observation
and the �-th subsystem Σ�; namely the weight wk� and the distance dk� between observed
and the expected value of observation k relative to subsystem model Σ�.

In order to handle the underdetermined character of the problem, we furthermore
employ the sparsity and the hierarchy of the underlying biology. This means that the
matrices A� and B� are row-sparse, but not necessarily collum-sparse, as some genes—
called the master-genes or source-genes—control a large part of the entire genome.
Under a wide range of conditions, this problem is equal to minimization of the L1-norm
of the rows of A� and B� as argued by J. J. Fuchs [7]. This implies a global minimization
such as

Esparse(A|D) =
∑

�

‖vec(AT
�)‖1 ≡ ‖A‖1 (12)

under the constraints that {X,U, Ẋ} satisfy Equation (5).
The problem of estimating the system parameters can thus formally be defined as the

search for the vectors A∗, B∗ and w∗ that globally minimize E. This can be formulated
as a quadratic programming problem, as follows:

QP: given the dataD, compute the system matrices A, B and the weight matrix w:

(A∗, B∗,w∗) = arg min(A,B)∈RN(P+N),w∈RKM E(A, B,w|D)
subject to:
E(A, B|D) = λ1Esys(A, B,w|D) + λ2Esparse(A|D) + λ3Esparse(B|D),
CMK(w).

(13)

for selected λ’s with: λ1 + λ2 + λ3 = 1, and the constraints CMK(w) in Equation (4).
This is a regularized (or scalarized) convex quadratic optimization problem that is not
well posed because it has a nonsingular Jacobian at the optimum, and becomes ill-
conditioned as the iterates approach optimality. Instead of this quadratic programming
problem we will therefore study the following two coupled linear programming prob-
lems associated to the original QP:

LP1: given the weight matrix w̃ compute the system matrices (A∗, B∗):

(A∗, B∗) = arg min(A,B)∈RN(P+N) E(A, B, w̃|D)
subject to:
E(A, B|D) = λ1Esys(A, B,w|D) + λ2Esparse(A|D) + λ3Esparse(B|D)

(14)

The Identification of Dynamic Gene-Protein Networks 163

LP2: given system matrices (Ã�, B̃�) apply the L1-norm d̃kl = ‖ẋ[k]−Ã�x[k]−B̃�u[k]‖1
to compute the weight matrix w∗:

w∗ = arg minw∈RKM Esys(Ã, B̃,w|D) =
∑M−1

k=1
∑K

l=1 d̃klwkl

subject to:
CMK(w).

(15)

LP1 is a regularized optimization. J. J. Fuchs [6,7] has described conditions under
which the regularization drives the optimization problem towards the global solution.
Though these conditions do not strictly apply here, we find that this approach succeeds
in numerical simulations. Both LP-problems can be solved efficiently with a partial
dual simplex method as in [14], or by using large-scale or interior-points methods. The
algorithm to estimate the system parameters {A, B} and w consists of iteratively solving
the two optimizations LP1 and LP2 subsequently, until the criterion has sufficiently
converged. Though the solution of the original quadratic programming problem QP in
Equation (13) is also the global solution of the two coupled LP-problems LP1 and LP2,
there can also exist local solutions to the couple {LP1,LP2}, unfortunately.

3.4 Construction and Control of the Subsystem Weightmatrix

For small values of the regularization terms in E in LP1 (Equation (14)), i.e., λ2, λ3 �
λ1, and a simultaneous, extreme under-determined system, i.e., #Σ� � N, the tandem
{LP1,LP2} proposed above, runs into problems. The problem amounts to the degree
of freedom that formulation LP1 offers to match empirical data D with system Σ =
(A, B) in order to minimize the distance to the model space d(D, Σ). It is well-known
that at least Mmin ∝ log(N) measurements are required for a good reconstruction of
sparse matrices A and B, see for instance [6,7,24]. Therefore, when #Σ� � Mmin, the
heavily under-determined system has a high degree of freedom to match the data with
the model. This will cause the tandem {LP1,LP2} to halt as the criterion d(D, Σ) ≈ 0
has been reached.

Avoiding this problem requires (i) the restriction of the maximum number of subsys-
tems to K < M/log(N), and (ii) the careful control of the weight matrix w during the
iteration, such that each subsystem Σ� has at least Mmin elements, i.e., #Σ� ≥ Mmin. For
this reason, the following iteration is performed for initializing the weight matrix:

1. Assign the current measurement k to 1, and the current system � to 1. Initianlize w
to the M × K null matrix: w = 0.

2. The first Mmin measurements are assigned to the current—i.e., first—subsystem:
w(11 = 1, . . . ,wMmin,1 = 1. Now the current measurement k is set to Mmin + 1.

3. The current measurement, ξk = (x[k], u[k], ẋ[k]), belongs to the current subsystem
Σ� if d(ξk, Σ j) is minimized by j = �. In that case: (i) it is assigned to the current
system by setting wk� = 1, and (ii) the next measurement is considered, i.e., k is
increased, and step 3 is repeated.

4. If another system Σj is closer to ξk, then this system is assigned to the current
system: � = j, and measurement k is considered as the first of Mmin measurements
assigned directly to this subsystem, i.e., wk� = 1, . . . ,wk+Mmin−1,� = 1, k is set to
k + Mmin, and step 3 is repeated.

164 R.L. Westra et al.

This iteration process is continued as long as there are unassigned measurements. When
the final subsystem has less then Mmin elements, these are discarded. Finally, all mea-
surements will belong to some subsystem, while w obeys all constraints defined in
Equation (4). One of the advantages of this matching algorithm is that it requires no
advance knowledge of the number of subsystems.

3.5 A Tandem for Network Reconstruction Using the Subsystem Weight Matrix

The procedure for constructing and managing the subsystem weight matrix w, defined
in Section 3.4, allows for an efficient tandem approach to solving the identification
problem.

The non-linear problem Ẋ = H1X + H2U, defined in Equation (5), can be solved in
terms of H1 and H2, but not in terms of A, B, and W. It is a bilinear problem in terms of A
and B for fixed W, otherwise it is a not well-posed quadratic problem. For these reasons,
we again split the problem and follow a tandem approach as discussed in Section 3.2.
However, in the present tandem the construction of the subsystem weight matrix w is
performed by the matching approach defined above, rather than by the LP2 defined in
Equation (15). Both amount to a solution obeying the weight constraints in Equation (4),
but the matching algorithm will prevent too underdetermined systems that will prema-
turely halt the iteration as they generate a fictitious match with the model. The compu-
tation of the system matrices (A, B) is again performed by the robust L1 identification
in LP1, with λ1 = 0, and λ2 = λ3. The tandem is controlled by the distance between
the data and the model: d(D, Σ)) = Esys(A, B,W |D), defined in Equation (11). If this
quantity has converged below a pre-specified threshold, the iteration is terminated.

4 Numerical Experiments and Performance of the Approach

The approach described in the previous section resulted in an efficient and fast algo-
rithm that is able to estimate accurately the gene-gene coupling matrix based on several
genome-wide measurements, and that is robust towards measurement noise.

All experiments were performed on a PC with an Intel Pentium M processor of
1.73 GHz and 1 GB RAM memory under Windows XP Professional, using Matlab 6.5
Release 13 including the Optimization Toolbox. The latter’s routine linprogwas used
to solve LP problems; its default solution method is a primal-dual interior point method,
but an active set method can optionally be used, too. For larger problems, it turned
out to be essential for obtaining reasonable computation times that the LP problems
were solved by application of the active set method on the dual problem formulation.
Therefore, this method was adopted throughout all the experiments.

Since results can depend on the particularities of given data and the original system
that generated it, all experiments have been performed on a number of independent
runs on randomly selected data and systems. Hence they convey the behavior of our ap-
proach “on average”. The number of independent runs is 50 for each of the experiments
described below.

In line with the definitions above, we use the parameters N, M, K to quantify the size
and complexity of the input. In addition, the sparsity of the local interaction matrix A is

The Identification of Dynamic Gene-Protein Networks 165

measured by the number of non-zero entries per row and denoted by k (which should
be much smaller than N). To complete the system’s data set, some stochastic Gaussian
white noise is added to the input data set. It is normally distributed with zero mean and
some standard deviationσ that determines the noise level. To quantify the quality of the
resulting approximation Aest of A∗, a performance measure is introduced: the number
of errors Ne.

These errors are generated in the reconstruction by the failure of the algorithm to
identify the true non-zero elements of the original sparse matrix A∗. These errors stem
from false positives and false negatives in the reconstructed matrix Aest. Their numbers
are added up to produce the total number of errors Ne.

The success of the algorithm depends on different factors. First, for a certain num-
ber of genes, a sufficient number of measurements has to be available. Therefore, the
minimal number of measurements required for a certain number of genes, denoted by
Mmin, has been determined. This is the number of measurements so that the total system
error, Ne, is acceptably small. Figure 1 represents the values for Mmin as a function of
the number of genes.

Fig. 1. Minimal number of required measurements Mmin as a function of the number of genes N

For comparability reasons, the number of genes in all the following experiments has
been fixed to N = 150. Consequently, the associated minimal number of measurements
has been fixed to Mmin = 90 (see Figure 1).

Second, the number of errors Ne depends on the noise level σ. Figure 2 shows how
this noise level influences the error rate in our approach. As to be expected, the error
increases if the noise level increases, and vice versa.

The numerical experiments consist of the comparison of the reconstructed network
with the—known—original network structure, and they clearly reveal the range where
the approach is effective.

166 R.L. Westra et al.

Fig. 2. Number of errors Ne as a function of the noise level σ, with N = 150, M = Mmin and k = 1

Fig. 3. Number of errors Ne as a function of the number of non-zero elements per row k for a
single subsystem (K = 1), with N = 150 and M = Mmin

A basic assumption in the approach is the sparsity of the underlying gene-gene cou-
pling matrix, represented by the number of non-zero entries per row, k. If k rises above
a certain threshold, the performance of the approach is abruptly and severely affected
(see Figure 3).

For relatively moderate noise levels and a high degree of sparsity—i.e., a small number
k of non-zero elements in the rows of matrix A∗—the approach allows one to reconstruct a
sparse matrix with great accuracy from a relative small number of observations M � N.
For example, A∗ with rows of 150 components of which all but 3 are equal to zero, can
be efficiently reconstructed from just 90 independent measurements (Figure 4).

Figure 4 shows an initial increase, followed by a decrease. Finally, Ne jumps abruptly
to zero above a certain threshold value for M. To explain this phenomenon, remember
that the number of errors Ne is the sum of the false positives and the false negatives
in the gene interaction matrix. The false positives correspond to the non-zero values

The Identification of Dynamic Gene-Protein Networks 167

Fig. 4. Number of errors Ne as a function of the number of measurements M, with N = 150
and k = 1

Fig. 5. The distribution of the error measure δ for partioning M = 200 measurements into sub-
systems, with N = 150. Two subsystems were identified.

in the matrix Aest that should be zero, and vice-versa for the false negatives. Turning
back to Figure 4, the initial increase is caused by false positives. Indeed, as long as
M < M′min, where M′min is the minimal number of required measurements in the case of
a single row, k ≈ M′min. As soon as M reaches M′min, the system becomes completely
determined, whence k drops to its proper value. Observe that M′min < Mmin due to the
absence of effects related to the composition of rows. Notice that the false negatives
decrease monotonously over the entire range of M.

Finally, some experiments concerning multiple subsystems were performed. Figure 5
shows the accuracy of the partioning of the available measurements into different sub-
systems. The error measure δ shown in Figure 5 is defined as the cumulative distance

168 R.L. Westra et al.

Fig. 6. The CPU time used by the reconstruction algorithm (in seconds) as a function of the
number of genes N

in terms of time stamps between erroneously classified measurements and the switching
point of the class they belong to, relative to the total number of measurements. In the
experiment illustrated by Figure 5, two subsystems were identified.

5 Discussion

In this work, we have presented an approach for modeling and identifying gene regula-
tory networks from near genome-wide expression profiles with a relative small amount
of time instances using a piecewise linear state space model. The state space model is a
rich and flexible metaphor from mathematical systems theory that, applied to this case,
allows for hierarchical activation through master genes, representing the effects of mul-
tiple external inputs, hidden states such as none-observed genes or protein densities,
and the effects of process and measurement noise. For this piecewise linear state space
modeling, we have presented an identification technique, based on a linear program-
ming problem. This approach resulted in an efficient and fast algorithm that is able to
accurately estimate the gene-gene coupling matrix for a large number of genes based
on only several hundred genome-wide measurements, and that is robust towards mea-
surement noise. Figure 6 shows the CPU time used by the algorithm as a function of
the number of genes N.

In future work, a few difficulties with regard to the system identifiability of this
approach, i.e., the potential to reconstruct the interaction network from empirical data,
will have to be addressed.

1. Due to the huge costs and efforts involved in the experiments, only a limited number
of time points are available in the data. Together with the high dimensionality of
the system, this makes the problem severely under-determined.

2. In the time series, many genes exhibit strong correlation in their time-evolution,
which is not per se indicative for a strong coupling between these genes, but rather

The Identification of Dynamic Gene-Protein Networks 169

induced by the over-all dynamics of the ensemble of genes. This can be avoided by
persistently exciting inputs.

3. Not all genes are observed in the experiment, and certainly most of the RNAs and
proteins are not considered. Therefore, there are many hidden states.

4. Effects of stochastic fluctuations on genes with low transcription factors are severe
and will obscure their true dependencies.

5. Because the identification techniques work on the rows, the hierarchical principle
does not cause a problem, as the gene-gene interaction matrix is highly row-sparse
but not column-sparse. In fact, the method utilizes the sparsity of the matrix as an
implicit constraint, namely that the value of the components of the matrix should
be zero.

With this approach, it is possible to reconstruct the steady states and the associated
switching times of a metabolic processes from a set of micro-array experiments. In each
steady state the gene-gene interaction matrix defines the network topology. The micro-
array technique exhibits a strong increase in efficiency and a simultaneous decrease in
associated costs. In the near future, this will enable the registration of large time series
of genome wide expression profiles and associated protein densities. The future avail-
ability of such data makes the further development of the mathematical modeling and
associated identification of dynamic gene expression, such as the approach presented
here, an important condition for deducing and understanding the underlying interac-
tions between genes and their environment.

References

1. Bower J.M., Bolouri H.(Editors), Computational Modeling of Genetic and Biochemical Net-
works, MIT Press, 2001.

2. de Jong H., Modeling and Simulation of Genetic RegulatorySystems: A Literature Review,
Journal of Computational Biology, 2002, Volume 9, Number 1, pp. 67–103

3. de Jong H., Gouze J.L., Hernandez C., Page M., Sari T., Geiselmann J., Qualitative simu-
lation of genetic regulatory networks usingpiecewise-linear models, Bull Math Biol. 2004
Mar;66(2): pp 301–40.

4. Elowitz M.B., Levine A.J., Siggia E.D., Swain P.S., Stochastic gene expression in a single
cell, Science, vol.297, August 16, 2002, pp.1183–1186.

5. Endy, D, Brent, R. (2001) Modeling Cellular Behavior, Nature 2001 Jan 18; 409(6818):391-5.
6. Fuchs J.J. (2003), More on sparse representations in arbitrary bases, in: Proc. 13th IFAC

Symp. on System Identification, Sysid 2003, Rotterdam, The Netherlands, August 27-29,
2003, pp. 1357–1362.

7. Fuchs J.J. (2004), On sparse representations in arbitrary redundant bases, IEEE Trans. on IT,
June 2004.

8. Glass L., Kauffman S.A. (1973), The Logical Analysis of Continuous Non-linear Biochemi-
cal Control Networks, J.Theor.Biol., 1973 Vol. 39(1), pp. 103–129

9. Goldbeter A (2002) Computational approaches to cellular rhythms. Nature 420, 238-45
10. Gonze D, Halloy J, and Goldbeter A (2004) Stochastic models for circadian oscillations :

Emergence of a biological rhythm. Int J Quantum Chem 98, pp 228–238.
11. Hasty J., McMillen D., Isaacs F., Collins J. J., (2001), Computational studies of gene regula-

tory networks: in numero molecular biology,Nature Reviews Genetics, vol. 2, no. 4, pp. 268–
279, 2001.

170 R.L. Westra et al.

12. Novak B, Tyson JJ (1997) Modeling the control of DNA replication in fission yeast, PNAS,
USA, Vol. 94, pp. 9147-9152, August 1997.

13. Leiv Øyehaug, Erik Plahte, Stig W. Omholt, Targeted reduction of complex models with time
scale hierarchy–a case study, Mathematical Biosciences, 185, 123-152, 2003.

14. Peeters R.L.M., Westra R.L., On the identification of sparse gene regulatory networks, Proc.
of the 16th Intern. Symp. on Mathematical Theory of Networks and Systems (MTNS2004)
Leuven, Belgium July 5-9, 2004

15. Plahte E, Mestl T, Omholt SW, A methodological basis for description and analysis of sys-
tems with complex switch-like interactions, Journal of Mathematical Biology, 36, 321-348,
1998.

16. Rosenfeld N, Young JW, Alon U, Swain PS, Elowitz MB, Gene regulation at the single-cell
level, Science 307 (2005) pp 1962.

17. Somogyi R., Fuhrman S., Askenazi M., Wuensche A. (1997). The Gene Expression Ma-
trix: Towards the Extraction of Genetic Network Architectures. Nonlinear Analysis, Proc. of
Second World Cong. of Nonlinear Analysis (WCNA96) 30(3) pp 1815–1824.

18. Swain P.S., Efficient attenuation of stochasticity in gene expression through post-
transcriptional control, J Mol Biol 344 (2004) pp 965.

19. Swain P.S., Elowitz MB, Siggia ED, Intrinsic and extrinsic contributions to stochasticity in
gene expression, PNAS 99 (2002) pp 12795.

20. Steuer R. (2004), Effects of stochasticity in models of the cell cycle:from quantized cycle
times to noise-induced oscillations, Journal of Theoretical Biology 228 (2004) 293-301.

21. van Schuppen J.H. (2004), System theory of rational positive systems for cell reaction net-
works, CWI Report MAS-E0421, December 2004, ISSN 1386-3703

22. Verdult V., Verhaegen M., Subspace Identification of Piecewise Linear Systems, In Proc.
43rd IEEE Conference on Decision and Control (CDC), pp 3838–3843, Atlantis, Paradise
Island, Bahamas, December 2004.

23. Westra R.L.,(2005a), Piecewise Linear Dynamic Modeling and Identification of Gene-
Protein Interaction Networks, Nisis/JCB Workshop reverse engineering, Jena, June 10, 2005.

24. Yeung M.K.S., Tegnér J., Collins J.J., Reverse engineering gene networks using singular
value decomposition and robust regression, Proc. Nat. Acad. Science, vol. 99, no. 9, 2002,
pp. 6163–6168.

Sparse Gene Regulatory Network Identification

R.L.M. Peeters and S. Zeemering

Department of Mathematics, Universiteit Maastricht,
P.O. Box 616, 6200 MD Maastricht, The Netherlands

ralf.peeters@math.unimaas.nl, zeemering@math.unimaas.nl

Abstract. In this paper a novel method is presented for the identifica-
tion of sparse dynamical interaction networks, such as gene regulatory
networks. This method uses mixed L2/L1 minimization: nonlinear least
squares optimization to achieve an optimal fit between the model in state
space form and the data, and L1-minimization of the parameter vector
to find the sparsest such model possible. In this approach, in contrast
to previous research, the dynamical aspects of the model are taken into
account, which gives rise to a nonlinear estimation problem. The set-
up allows for the identification of structured or partially sparse models,
so that available prior knowledge on interactions can be incorporated.
To investigate the potential for applications, the algorithm is tested on
artificial gene regulatory networks.

1 Introduction

The number of nonzero parameters in a model determines the sparsity of that
model, which may be defined as the proportion of zero parameters among the
total number of model parameters. The question of how to obtain an accurate
sparse model is relevant for many applications. In this paper we investigate an
application in systems biology: to determine the dominant interactions between
a large number of genes. See [12]. It becomes especially relevant to take sparsity
into account at an early stage of the system identification procedure in situa-
tions where only a limited amount of input-output data is available, possibly of
relatively low quality (due to high noise levels, limited opportunity to carry out
experiments, high costs involved, etc.).

In this paper an approach to sparse system identification is advocated which
employs an L2-norm to optimize the fit between a model and the data (using a con-
ventional least squares criterion with respect to the vector of prediction errors) and
an L1-norm to minimize the size of the parameter vector to achieve model sparsity.
The set of models under consideration is that of state space models in innovations
form, using either a full parameterization or a structured parameterization. The
sparse system identification procedure allows one to deal with identifiability prob-
lems and parameter redundancy, for instance due to a very limited amount of avail-
able measurement data. The approach is motivated by applications in the area of
reverse engineering of gene regulatory networks and inspired by a similar technique
described in a static linear setting in the work of [26]. See also [4] and [14] and the

K. Tuyls et al. (Eds.): KDECB 2006, LNBI 4366, pp. 171–182, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

172 R.L.M. Peeters and S. Zeemering

references mentioned there. Note that in such applications it typically holds that
the number of genes is large (hundreds to thousands), the interaction network
is sparse (a gene will be directly influenced by at most 10 to 20 other genes;
when it comes to dominant influences this number is even less), the amount of
gene expression data obtained from micro-array experiments is small (although
the gene expression levels are measured for many genes, the number of time in-
stants involved is usually less than 20), the data are quite noisy (with noise levels
up to 30 percent), and the underlying process is in reality nonlinear exhibiting
various modes or equilibrium states. However, the situation is currently rapidly
improving by the development of new measurement technology, which makes it
worthwhile to anticipate such progress and to develop appropriate estimation
techniques.

2 Problem Definition

The model class considered here is the class of discrete-time linear time-invariant
(LTI) state-space models in innovations form, described by the equations

x[k + 1] = Ax[k] + Bu[k] + Ke[k], (1)
y[k] = Cx[k] + Du[k] + e[k]. (2)

Here, at each time instant k ∈ Z, the n-vector x[k] denotes the state, the m-vector
u[k] denotes the exogenous input, the p-vector e[k] denotes the noise input, and
the p-vector y[k] denotes the output. It is assumed that a record of input-output
observations is available with respect to the exogenous input signal {u[k]} and
the output signal {y[k]}. This i/o data record can be used to identify the state-
space matrices (A, B, C, D, K). The noise input {e[k]} is assumed to constitute
a zero mean white noise stationary process with constant covariance Σ > 0;
this is the innovations process from which the model class derives its name. As
usual, it is further assumed that: (i) minimality holds; (ii) A is asymptotically
stable; (iii) A − KC is asymptotically stable; (iv) for each k the innovation e[k]
is independent from the state x[�] and the input u[�] at time instants � ≤ k, and
also from the output y[�] at time instants � < k. For a further background on
this model class and its use in system identification, see [16], [11] and [21]; see
also [15] and [17].

When modelling gene regulatory networks we shall restrict the model class to
the form

x[k + 1] = Ax[k] + Bu[k], (3)
y[k] = Cx[k] + e[k] (4)

with K = 0, D = 0, C = I (the identity matrix), and x[k] representing the gene
expressions. Then A denotes the gene interaction matrix, y[k] the measured gene
expressions and u[k] the input to the microarray experiment. See [26] and [20]
for similar model classes. In this model class process noise is disregarded, but
measurement noise is taken into account.

Sparse Gene Regulatory Network Identification 173

Although the focus in this paper is on the identification of sparse gene regula-
tory networks with the model class (3)-(4), the developed system identification
method is applicable to the general class. In the following sections we will there-
fore describe the method for this general class (1)-(2). We will return to the class
of sparse gene regulatory networks in the experiments.

3 Technical Background

To identify the system (A, B, C, D, K) and the noise covariance Σ from an avail-
able record of i/o data, we consider the class of prediction error methods (PEM).
The one-step-ahead predictor associated with an estimate (Â, B̂, Ĉ, D̂, K̂) of
(A, B, C, D, K) is given by the equations

x̂[k + 1] = (Â − K̂Ĉ)x̂[k] + (B̂ − K̂D̂)u[k] + K̂y[k], (5)
ŷ[k] = Ĉx̂[k] + D̂u[k]. (6)

It gives rise to a prediction error process {ê[k]} according to

ê[k] = ŷ[k] − y[k] = Ĉx̂[k] + D̂u[k] − y[k]. (7)

In a practical situation (A, B, C, D, K) is estimated by minimization of the non-
linear least squares criterion of fit

V =
1
M

M∑

k=1

‖ê[k]‖2
2 (8)

over the set of matrices (Â, B̂, Ĉ, D̂, K̂), where M denotes the size of the data
record. It is known that for M → ∞ the unique global minimum value of V
occurs at (Â, B̂, Ĉ, D̂, K̂) = (A, B, C, D, K) and at systems that cannot be dis-
tinguished from (A, B, C, D, K) from an input-output point of view. One impor-
tant potential drawback of the approach is that the prediction error criterion V
is notorious for the many local minima it may possess, especially when noise is
present and the size M of the data record is small. When an iterative local search
method is employed to minimize V , this makes it necessary either to come up
with a good initial estimate (such as may be provided by subspace identifica-
tion methods; cf. [1], [2], [13], [18], [23]) or to use a sufficiently large number of
different initial estimates.

Depending on the chosen parameterization of the model class, there are sev-
eral factors which contribute to identifiability problems that may arise in the
prediction error identification framework described above. One well known pos-
sible source of unidentifiability involves state-space basis tranformations, as they
do not affect the input-output behaviour of a model. This phenomenon is well
understood and can be handled for instance by using canonical forms. In a sit-
uation where the number of measurements M is too small, or when the input
signals are not sufficiently exciting, there will be subset of dimension > 0 of

174 R.L.M. Peeters and S. Zeemering

models that are all consistent with the data, thus causing unidentifiability. With
the current state-of-the-art of data acquisition in genetics, such a situation is in
fact typical when modelling gene regulatory networks, see e.g., [22], [26], [20].
In this paper we shall deal with this issue by investigating whether it is possible
to use additional prior information about the sparsity of a model to select a
relevant model from this class.

In a static and entirely linear estimation setting, a number of results are
available in the literature which show that minimization of an L1-criterion un-
der certain conditions yields a model which is as sparse as possible (i.e., which
has as few nonzero parameters as possible). See, e.g., [3], [7], [8] and the ref-
erences given there. These ideas have first been introduced in the context of
dynamical models for reverse engineering of gene regulatory networks in [26]
and they have been slightly extended in [20]. However, those approaches are
restricted to a linear estimation framework by making simplifications which do
not take the dynamics fully into account. It is the purpose of the present paper
to investigate the merits of an L1-minimization technique in the context of pre-
diction error identification of state-space models in innovations form, and gene
regulatory networks in particular, in situations where unidentifiability caused by
data shortage occurs and where the estimation problem is nonlinear.

4 A Prediction Error Method for Sparse System
Identification

The basic idea behind the sparse system identification approach investigated in
this paper is to first strive for an optimal fit between the data and the model
in the conventional nonlinear least squares sense (as achieved by minimization
of the criterion V), and then to search within the set of models that minimize
V for a sparse one by minimizing the L1-norm of the parameter vector. The pa-
rameterizations of (A, B, C, D, K) considered in this approach concern the class
of structured models, where a certain selection of entries of (A, B, C, D, K) are
given fixed prespecified values, while all the remaining entries of (A, B, C, D, K)
are collected in a single parameter vector θ. This includes the case of full para-
meterizations (where no entries have a prespecified value), the case of structured
models as discussed in [5] (where a selection of entries are fixed to zero), and
many well-known canonical forms (such as modal forms and companion forms,
both in the scalar and in the multivariable situation; here some selected entries
are fixed to zero while other entries are fixed to 1). It also includes the kind of
models proposed for gene regulatory networks in Section 2. Note that the gen-
erality and flexibility of this set-up allows one to directly incorporate available
prior knowledge on the presence or absence of specific gene interactions in a
convenient way.

At a given system (A, B, C, D, K) corresponding to a parameter vector θ ∈
R

N , any Gauss-Newton type local search method requires the computation of the
corresponding error vector ê = (ê[1]T , ê[2]T , . . . , ê[M]T)T and of its associated
pM ×N Jacobian matrix Ĵ = ∂ê/∂θ. The latter can be achieved with the help of

Sparse Gene Regulatory Network Identification 175

the sensitivity system which is obtained by partial differentiation of the equations
of the prediction error filter (cf., e.g., [10], [19], [9] and [24]).

The kernel of the Jacobian matrix Ĵ consists of those directions in the pa-
rameter space (at the system at hand) for which the entire error vector ê does
not change in first order approximation. (Note: then V does not change in first
order approximation either.) The kernel of Ĵ is a meaningful concept which can
be used in the case of both fully parametrized and structured systems and also
in the case of ‘poor data’ (i.e., with few measurements and/or lack of excitation).
The orthogonal complement of the kernel of Ĵ determines the subspace of the
parameter space in which the search directions generated by Gauss-Newton type
methods are contained, see [25].

The above observations lead to the following two key elements of the sparse
system identification method proposed and investigated in this paper:

(1) The orthogonal complement of the kernel of Ĵ is locally employed as the
subspace in which to select a search direction for improving the nonlinear
least squares prediction error criterion V (such as, e.g., achieved by Gauss-
Newton type optimization methods).

(2) The kernel of Ĵ is locally employed as the subspace in which to select a
search direction for improving the L1-norm of the parameter vector θ.

There are many ways to build an actual sparse system identification algorithm
from these two key elements. Algorithms may differ with respect to the amount
of iterations of these two types, and the combinations and order in which they
occur. For instance: one may perform steps in the two subspaces ker(Ĵ) and
ker(Ĵ)⊥ simultaneously at each iteration; one may perform steps in the two
subspaces alternatingly; one may first perform optimization of V by only taking
steps in subspaces of the type ker(Ĵ)⊥ and then minimize the L1-norm of θ

Fig. 1. The iteration scheme: optimization of V in the first step (L2) and optimization
of the L1-norm of θ in the next (L1). The contours of the criterion V are shown. It can
be seen that a step in the L1-direction influences the value of V .

176 R.L.M. Peeters and S. Zeemering

afterwards by taking steps in subspaces of the type ker(Ĵ). In the latter case, the
value of V may deteriorate after a number of steps, so that it becomes necessary
to incorporate intermediate optimization steps focused on the re-minimization
of V , as shown in Figure 1.

Other aspects in which algorithms may differ are: the computation of the
search directions in the two subspaces (e.g., depending on the actual Gauss-
Newton type method used); the computation of the corresponding step sizes in
the computed directions.

5 Mixed L2/L1-Minimization

Suppose that an i/o data record is given, which stems from a system with matrices
(A, B, C, D, K) and covariance Σ for the innovations process. At a given system
(Â, B̂, Ĉ, D̂, K̂) corresponding to a current parameter vector θ, one may compute
the error vector ê(θ) by running the associated prediction error filter and the Jaco-
bian matrix Ĵ(θ) by running the associated sensitivity system. Then the gradient
of the criterion of fit V = ‖ê‖2

2/M is given up to a scalar factor by ĴT ê and the
Gauss-Newton (GN) method produces a search direction s given by

s = −(ĴT Ĵ)−1ĴT ê. (9)

Next, to improve the value of V , the parameter vector θ is modified according
to

θnew = θ + αs (10)

for some step size parameter α > 0. In the undamped GN method α = 1, but to
achieve good convergence behavior it is preferred to determine α by a suitable
line minimization procedure (cf. [6]).

Note that ker(Ĵ) is the space in which the error vector ê does not change
locally around θ in first order approximation. We seek to improve the value of
‖θ‖1 by computing a search direction in ker(Ĵ), as this will not affect the value
of V in first approximation. This leads to the following optimization problem:

minimize ‖θ + s‖1 subject to: Ĵs = 0 (11)

which can be rewritten as an LP problem in standard form. It clearly admits a
finite feasible solution and can be solved with standard LP software. If s∗ is an
optimal solution giving an improved value, then ‖θ + βs∗‖1 gives an improved
value too for all 0 < β < 1. An actual choice of β should take into account that
second and higher order changes in V do not significantly compromise the quality
of the fit between the data and the model. It also must be tuned in such a way that
convergence of the overall optimization algorithm can be guaranteed to a point for
which ‖θ‖1 is minimal among the set of points for which V is (locally) minimal.

One practical heuristic way by which one may attempt to achieve this, is to
restrict the maximal relative change in the value of V that is allowed to occur
when a value for β is chosen. However, it is not easy to choose an appropriate
bound which guarantees monotonic convergence: several experiments have been

Sparse Gene Regulatory Network Identification 177

carried out which exhibit chaotic iteration behavior or cyclic behavior near a
local optimum value. For a bound that is not restrictive enough, it has been
witnessed that an increase of ‖θ‖1 may happen instead of a decrease, resulting
as the net effect of an optimization step with respect to ‖θ‖1 followed by an
optimization step with respect to V . Also, early in the iteration process the
step s∗ for β = 1 may sometimes be large and produce so many zero entries in
the matrices (A, B, C, D, K) that non-minimality occurs. This once again makes
clear that the choice of β should be treated with care.

6 Experiments and Results

The experiments are focused on identifying artificially generated sparse gene
networks, selected from the model class described in Section 2. In this model
class only A and B are considered sparse, C is the identity matrix (the output y
concerns state observations) and D and K are zero. The original data generating
system however, is assumed to be a continuous-time system. This means that to
perform experiments, the continuous-time system (Ac, Bc, Cc), with Ac and Bc

sparse, has to be converted to a discrete-time system (Ad, Bd, Cd), with a certain
sampling time T . For small T the discrete-time matrix Ad can be approximated
by the following first order approximation:

Ad = eAcT ≈ I + AcT.

The exogenous input for the converted system is chosen to be a uniform random
signal. The algorithm is tested on situations with Gaussian noise. The initial
estimate is either the true system or close to the true system (and in the model
class). To find an optimal solution the tested algorithm first uses nonlinear least
squares optimization to converge to a (local) minimum of V and then alternates
between L1-optimization of θ (1 step) to improve sparsity and nonlinear least
squares optimization of V (10 steps). Computations are performed in MATLAB.

Previous experiments on small networks with sufficient data have shown that
the 2-step optimization algorithm produces appropriate sparse models. However,
convergence of the algorithm to a local minimum of ‖θ‖1 on a manifold where V
attains a minimum value, appears to be slow. This is not surprising since the pro-
posed minimization technique for ‖θ‖1 employs the tangent space to the manifold
and is in essence a gradient technique. The experiments on these small networks
have been extended to larger networks with few data, in this particular case
to sparse artificial gene networks. The general structure chosen for these gene
networks and the structure of the interaction matrix Ac are shown in Figure 2.
This structure provides a certain amount of sparsity that increases with the
number of genes (Table 1).

The models included in the experiments are networks with n = 10 or n = 20
genes, 1 input, 10 or 20 outputs and Gaussian measurement noise. The ini-
tial estimate is chosen to correspond to the underlying data generating system.

178 R.L.M. Peeters and S. Zeemering

1 6 11 16 20

1

6

11

16

20

Fig. 2. The structure of a network of 20 genes (left) and the corresponding structure
of the interaction matrix Ac (right). The structure consists of groups of 5 genes. Each
group has a central gene that is connected to the 4 other genes and to the central gene
of the neighboring group. Each gene is connected to itself. All connections are made in
both directions.

Table 1. The number of genes and the sparsity of the matrix Ac using the structure
described in Figure 2

Number of genes Total entries in Ac Non-zero entries in Ac Sparsity of Ac

5 25 13 48%
10 100 28 72%
20 400 58 85.5%
40 1600 118 92.63%
100 10000 298 97.02%
...

...
...

...

The number of artificially generated gene expressions measurements per gene
is M = 5 in the case of 10 genes and M = 10 in the case of 20 genes. Two
important insights emerged from these experiments:

1. In the initial phase of the estimation procedure when V is first minimized,
the initial value of ‖θ‖1 may change dramatically.

2. The generated gene expression trajectories are often highly correlated,
which makes it difficult to determine the interactions of certain genes.

The first aspect is illustrated in Figure 3. The startup procedure minimizes V
without taking the value of ‖θ‖1 into account. Note that the initial value which
corresponds to the underlying data generating system is likely not to yield a
minimum of V , due to lack of measurements and the presence of noise. Instead,
the parameters in matrix A and B are adjusted to account for these deviations.
Putting emphasis on the minimization of V apparently leads to a (significantly)
higher value of ‖θ‖1. Despite a sparse initial guess, the number of iterations
required to subsequently minimize the value of ‖θ‖1 is large.

Sparse Gene Regulatory Network Identification 179

0 1000 2000 3000 4000 5000 6000 7000 8000
30

35

40

45

50

55

60

65

70

75

80

iterations

L1
−

no
rm

 o
f t

he
ta

Fig. 3. The startup procedure leads to an increase in the value of ‖θ‖1. (The marker *
denotes the the L1-norm of the original solution.) The number of genes in this example
is 50.

The second problem is of a more fundamental nature. The small number
of measurements for each gene can lead to highly correlated gene expression
profiles, as illustrated in Figure 4. The cause of this problem lies of course in the
limited number of measurements, but also in the structure of the model and the
characteristics of the input signal. The result is that a certain gene trajectory
(the series of measured gene expressions) is often linearly proportional to an
other gene trajectory. The fact that the algorithm favours sparse models (and

1 2 3 4 5 6
−1.5

−1

−0.5

0

0.5

1

1.5

(a)

ge
ne

 e
xp

re
ss

io
n

le
ve

l

1 2 3 4 5 6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(b)

no
rm

al
iz

ed
 g

en
e

ex
pr

es
si

on
 le

ve
l

Fig. 4. (a): Gene expression trajectories of length 5 (when excluding the zero inital
state) generated by a 10 gene network structured as in Figure 2. (b): Normalized gene
expression trajectories (all trajectories are scaled to length 1). It can be seen that there
are two distinct groups of highly correlated trajectories.

180 R.L.M. Peeters and S. Zeemering

consequently a sparse matrix A) means that among the correlated genes the gene
with the largest excitations in its trajectory will have a corresponding column
in A with nonzero entries on the row indices of the correlated genes, while the
other correlated genes will have corresponding columns consisting of zeros. This
implies that the interactions that these genes have in the original system cannot
be properly distinguished as they are lumped together in a limited number of
interaction coefficients.

7 Conclusions and Discussion

The strategy to minimize the L1-norm of the parameter vector θ over the set of
models which minimize the nonlinear least squares prediction error V , has inter-
esting properties which make it worthwhile to pursue this approach. For large
sparse models with poor data, previous experiments in the literature have shown
in a linear estimation setting that sparse models can be quite well retrieved. In
the current approach, the dynamical aspects are properly taken into account, in
contrast to previous work where simplifications are made to arrive at a linear
estimation problem.

Computation of search directions for L1-norm optimization can be performed
effectively and fast, as this involves the solution of an LP problem. The same
holds for numerical optimization of the nonlinear least squares criterion V with
a Gauss-Newton type iterative local search method. There are however some
convergence issues to be dealt with when the two optimization problems are
combined. Nevertheless, the method in the form presented here can already be
used for models consisting of several hundreds of genes, producing results in
reasonable time without having to resort to special hardware and software.

The sparse estimation method is applicable to structured models where only
a selected subset of entries from the system matrices (A, B, C, D, K) requires
estimation. In addition, the presented method has been extended along the lines
of [20] to deal with situations in which only a specified part of the parameter
vector is required to be sparse while the other part of the parameter is not
penalized. This makes it possible to incorporate certain interactions in a model
in an unconditional fashion, and in this way to incorporate prior knowledge on
the existence of such interaction from other studies. A particularly interesting
application is the identification of sparse gene regulatory networks, where the
gene interaction matrix is assumed to be sparse.

The results from the experiments on sparse gene regulatory networks show
that there are two important issues to deal with. First, the tolerances in the two
steps of the algorithm require online adaptation to balance the joint optimization
of V and ‖θ‖1, so that a small initial value for ‖θ‖1 does not get discarded
completely when minimizing V in the startup phase of the algorithm. Second,
and more important, the trajectories of the artificially generated gene expressions
for each gene have to be more or less uncorrelated to ensure that the interactions
of each gene can be identified. The solution for this second problem could be
found by designing more appropriate sparse gene regulatory networks and input

Sparse Gene Regulatory Network Identification 181

signals. Another possibility is that this is a fundamental problem that cannot
easily be solved. It may be possible to create artificial circumstances in which
the (short) gene expression trajectories are sufficiently uncorrelated to identify
their individual interactions, but in real life experiments there is no way to
enforce this correlation condition. A useful approach to this problem can be to
determine which gene expression trajectories are highly correlated and to treat
those genes as one single gene (that is to cluster those genes) before identifying
the network.

References

1. D. Bauer, Subspace algorithms, Proceedings of the 13th IFAC Symposium on
System Identification, Rotterdam, The Netherlands, pp. 1030–1041, 2003.

2. D. Bauer, Asymptotic Properties of Subspace Estimators, Automatica 41(3), Spe-
cial Issue on Data-Based Modeling and System Identification, pp. 359–376, 2005.

3. P. Bloomfield and W.L. Steiger, Least Absolute Deviations: Theory, Applica-
tions, and Algorithms, Birkhäuser, Boston, 1983.

4. P. D’haeseleer, S. Liang and R. Somogyi, Genetic Network Inference: From
Co-Expression Clustering to Reverse Engineering, Bioinformatics 16(8), pp. 707–
726, 2000.

5. J.-M. Dion, C. Commault and J. van der Woude, Generic properties and
control of linear structured systems: a survey, Automatica 39, pp. 1125–1144, 2003.

6. R. Fletcher, Practical Methods of Optimization, John Wiley and Sons Ltd.,
Chichester, 1987.

7. J.-J. Fuchs, More on sparse representations in arbitrary bases, Proceedings of the
13th IFAC Symposium on System Identification, Rotterdam, The Netherlands, pp.
1357–1362, 2003.

8. J.-J. Fuchs, On sparse representations in arbitrary redundant bases, IEEE Trans-
actions on Information Theory IT-50(6), pp. 1341–1344, 2004.

9. W.S. Gray and E.I. Verriest, Optimality properties of balanced realizations:
Minimum sensitivity, Proceedings of the 26th IEEE Conference on Decision and
Control, Los Angeles, CA, USA, pp. 124–128, 1987.

10. N.K. Gupta and R.K. Mehra, Computational aspects of maximum likelihood
estimation and reduction is sensitivity function calculations, IEEE Transactions
on Automatic Control AC-19, pp. 774–783, 1974.

11. E.J. Hannan and M. Deistler, The Statistical Theory of Linear Systems, John
Wiley and Sons, New York, 1988.

12. H. Kitano, Systems Biology: a brief overview, Science, 295, pp. 1662–1664, 2002.
13. W.E. Larimore, System identification, reduced order filters and modeling via

canonical variate analysis, in: H.S. Rao and P. Dorato (eds.), Proceedings of the
1983 American Control Conference 2, Piscataway, NJ, pp. 445–451, 1983.

14. R. Laubenbacher, B. Stigler, A computational algebra approach to the reverse-
engineering of gene regulatory networks, Journal of Theoretical Biology 229, pp.
523–537, 2004.

15. L. Ljung, MATLAB System Identification Toolbox Users Guide, Version 6, The
Mathworks, 2004.

16. L. Ljung, System Identification: Theory for the User (2nd ed.), Prentice-Hall Inc.,
Englewood Cliffs, NJ, 1999.

182 R.L.M. Peeters and S. Zeemering

17. B. Ninness, A. Wills and S. Gibson, The University of Newcastle Identification
Toolbox (UNIT), Proceedings of the 16th IFAC World Congress, Prague, 2005.

18. P. van Overschee and B. de Moor, Subspace Identification for Linear Systems,
Kluwer Academic Publishers, 1996.

19. R.L.M. Peeters, System identification based on Riemannian geometry: theory
and algorithms. Tinbergen Institute Research Series 64, Thesis Publishers, Ams-
terdam, 1994.

20. R.L.M. Peeters and R.L. Westra, On the identification of sparse gene regula-
tory networks, Proceedings of the 16th International Symposium on the Mathemat-
ical Theory of Networks and Systems, Leuven, Belgium, 2004.

21. T.S. Söderström and P. Stoica, System Identification, Prentice-Hall, New
York, 1989.

22. J. Tegnér, M.K.S. Yeung, J. Hasty and J.J. Collins, Reverse engineering
gene networks: Integrating genetic perturbations with dynamical modeling, Pro-
ceedings of the National Academy of Science 100(10), pp. 5944–5949, 2003.

23. M. Verhaegen, Identification of the deterministic part of MIMO state space mod-
els given in innovations form from input-output data, Automatica 30, pp. 61–74,
1994.

24. E.I. Verriest and W.S. Gray, A geometric approach to the minimum sensitivity
design problem, SIAM Journal on Control and Optimization 33(3), pp. 863–881,
1995.

25. A. Wills, B. Ninness and S. Gibson, On Gradient-Based Search for Multivari-
able System Estimates, Proceedings of the 16th IFAC World Congress, Prague,
2005.

26. M.K.S. Yeung, J. Tegnér and J.J. Collins, Reverse engineering gene net-
works using singular value decomposition and robust regression, Proceedings of the
National Academy of Science 99(9), pp. 6163–6168, 2002.

Author Index

Adriaans, Pieter 61
Albrecht, Daniela 22

Bex, Geert Jan 157
Bonet, Isis 10
Brakhage, Axel A. 22

Casas, Gladys 10
Chavez, Maria del C. 10

Driesch, Dominik 119

Grau, Ricardo 10
Guthke, Reinhard 22, 119
Gyssens, Marc 157

Harju, Tero 42
Hollanders, Goele 157

Katrenko, Sophia 61
Kniemeyer, Olaf 22

Li, Chang 42

Majoros, William H. 81
Möller, Ulrich 22
Morgado, Eberto 10

Nowé, Ann 1, 145

Ohler, Uwe 81

Peeters, Ralf L.M. 171
Petre, Ion 42
Pfaff, Michael 119
Postma, Eric O. 131

Rozenberg, Grzegorz 42

Saeys, Yvan 1, 107
Sanchez, Robersy 10

Toepfer, Susanne 119
Torben-Nielsen, Ben 131
Tuyls, Karl 1, 131, 157

Van de Peer, Yves 107
Verbeeck, Katja 145
Vrancx, Peter 145

Westra, Ronald 1, 157
Woetzel, Dirk 119

Zeemering, Stef 171

	Cover
	Frontmatter
	Knowledge Discovery and Emergent Complexity in Bioinformatics
	Introduction
	Machine Learning for Bioinformatics
	Modeling the Interactions Between Genes and Proteins
	Nature-Inspired Computing

	Boolean Algebraic Structures of the Genetic Code: Possibilities of Applications
	Introduction
	The Boolean Algebras in the Set of Four Bases
	The Boolean Algebra in the Set of Codons

	Some Physico-chemical Interpretations and Experimental Confrontations
	Boolean Deductions
	The Hamming Distance

	Possibilities of Applications to Sequence Analysis
	Analysis of Mutant Sequences with a Bayesian Network
	Classifying “True vs. False” Splice Sites in Human Sequences.

	Conclusions
	References

	Discovery of Gene Regulatory Networks in Aspergillus fumigatus
	Introduction
	Material and Methods
	Data
	Clustering and Cluster Validation
	Selection of Cluster-Representative Genes by Gene Description Text Mining
	Selection of Cluster-Representative Genes Using GO Terms
	Dynamic Modeling Using a Search Strategy

	Results and Discussion
	Clustering and Cluster Validation
	Selection of Cluster-Representative Genes by Gene Description Text Mining
	Selection of Cluster-Representative Genes Using GO Terms
	Dynamic Modeling

	Conclusion
	References

	Complexity Measures for Gene Assembly
	Introduction
	Definitions
	Three Models for Gene Assembly
	First Complexity Measure: The Minimal Subset of Operations Sufficient for Gene Assembly
	Second Complexity Measure: Weights Associated with the Assembly Operations
	Third Complexity Measure: Simple Operations
	Fourth Complexity Measure: Parallelism

	Learning Relations from Biomedical Corpora Using Dependency Trees
	Introduction
	Problem Statement and Related Work
	Approach
	Defining Levels

	Experiments
	Datasets
	Data Preprocessing
	Parsers
	Data Sets Analysis

	Results and Discussion
	Conclusions

	Advancing the State of the Art in Computational Gene Prediction
	Introduction
	Background
	The Problem of Finding and Parsing Eukaryotic Protein-Coding Genes
	Hidden Markov Models
	Generalized Hidden Markov Models
	Pair HMMs and Generalized Pair HMMs
	Phylogenetic HMMs
	Ad Hoc “Combiner” Methods

	Limitations of Current Methods
	MLE+Viterbi Is Not Optimal
	Reliance on Precomputed Alignments
	Simplifying Assumptions
	The Existence of Alternative Splicing

	Some Possible Future Directions
	Redefining the Problem
	A Greater Role for Machine Learning
	Focus on Integrative Methods
	Interoperability
	Improved Evaluation Protocols

	Summary and Conclusions
	References

	Enhancing Coding Potential Prediction for Short Sequences Using Complementary Sequence Features and Feature Selection
	Introduction
	Current Techniques for Coding Potential Prediction
	Markov Models for DNA Sequence Modeling
	Methods Based on Signal Processing

	Combining Complementary Sequence Features for Coding Potential Prediction
	Parallel Feature Selection for Coding Potential Prediction
	Results
	Comparison of Classifiers
	Effect of Feature Selection

	Concluding Remarks and Future Work

	The NetGenerator Algorithm: Reconstruction of Gene Regulatory Networks
	Introduction
	The NetGenerator Algorithm
	Modeling Approach
	Model Structure Identification
	Model Parameter Identification
	Integration of Expert Knowledge

	Applications
	Discussion

	On the Neuronal Morphology-Function Relationship: A Synthetic Approach
	Introduction
	Morphology-Function Relationship: Motivational Example
	Synthetic Approach and Methods
	EvOL-Neuron
	Experiment Description
	Fitness Assessment

	Results
	Discussion

	Analyzing Stigmergetic Algorithms Through Automata Games
	Introduction
	Stigmergetic Algorithms
	A Simple Stigmergetic Algorithm
	Noncooperative Algorithms

	Learning Automata
	Automata Games

	Analyzing Stigmergy Through Automata Games
	A Model for S-ACO
	A Model for Noncooperative Stigmergy
	Examples

	Conclusion

	The Identification of Dynamic Gene-Protein Networks
	Introduction and Problem Statement
	Modeling Dynamic Gene-Protein Interactions as a Piecewise Linear System
	Identification of Dynamic Networks Using Piecewise Linear Models
	General Dynamics of Switching Subsystems
	Combining the System Matrices {A,B} with the Subsystem Weightmatrix W
	Identification of PWL Models with Unknown Switching and Regular Sampling from Poor Empirical Data
	Construction and Control of the Subsystem Weightmatrix
	A Tandem for Network Reconstruction Using the Subsystem Weight Matrix

	Numerical Experiments and Performance of the Approach
	Discussion

	Sparse Gene Regulatory Network Identification
	Introduction
	Problem Definition
	Technical Background
	A Prediction Error Method for Sparse System Identification
	Mixed L2/L1-Minimization
	Experiments and Results
	Conclusions and Discussion

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

