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Foreword 

According to Wikipedia, “Scientists include theoreticians who mainly develop new models to explain 
existing data and experimentalists who mainly test models by making measurements—though in 
practice the division between these activities is not clear-cut, and many scientists perform both.” The 
domain-specific language that many scientists use to define their models is mathematics, and since the 
early days of computing science, the holy grail has been to close the semantic gap between scientific 
models and executable code as much as possible. It is becoming increasingly clear that all scientists are 
practicing applied mathematics, and some scientists, such as theoretical physicists, are behaviorally 
indistinguishable from pure mathematicians. The more we can make programming look like 
mathematics, the more helpful we make it to scientists and engineers. 

John Backus wrote the design for the “IBM Mathematical Formula Translating System,” which 
later became the language FORTAN, in the early 1950s. Still today, FORTRAN is popular within the 
scientific community for writing efficient numeric computations. The second oldest programming 
language, Lisp, was invented by John McCarthy in 1958. Like FORTRAN, Lisp was also inspired by 
mathematics, in this case by Alonzo Church’s lambda calculus. Today, Lisp is still popular in the 
scientific community for writing high-level symbolic computations. 

Interestingly, despite their common roots in mathematics, one can consider FORTRAN as the 
mother of all imperative and object-oriented languages and Lisp as the mother of all declarative 
languages. Their differences can be accounted to point of view: FORTRAN starts close to the machine 
with numbers and moves upward toward the mathematics, adding layers of abstraction where possible. 
Lisp starts with the mathematics with symbols and grows downward to the machine, peeling off layers of 
abstraction when necessary. But just as the previous quote remarks that the division between theoretical 
and experimental scientists is not clear-cut, in practice many programming problems require both 
imperative and declarative aspects. 

Functional programming today is a close-kept secret amongst researchers, hackers, and elite 
programmers at banks and financial institutions, chip designers, graphic artists, and architects. As the 
grandchildren of Lisp, functional programming languages allow developers to write concise programs 
that are extremely close to the mathematical models they develop to understand the universe, the 
human genome, the pricing of options, the location of oil, the serving of advertisements on web pages, 
or the writing of fault-tolerant distributed systems. However, to the uninformed developer, functional 
programming seems a cruel and unnatural act, effete mumbo jumbo. The academic and mathematical 
origins of functional programming plays up in scary big words such as type inference, structural types, 
closures, currying, continuations, principal types, monads, inference, impredicative higher-ranked types, 
and so on. Even worse, most pure functional languages today are not well integrated with mainstream 
professional tools and IDEs, libraries, and frameworks. 

Imperative programming today is the tool of choice for scientific programmers who simulate 
fluid dynamics, chemical reactions, mechanical models, and commercial software developers who write 
operating systems, enterprise applications, and shrink-wrapped software such as word processors, 
spreadsheets, games, media players, and so on. Imperative languages typically have great tool support, 
debuggers, profilers, refactoring editors, unit test frameworks, and so on, and large standard numeric 
libraries that have been perfected over decades by domain experts. As grandchildren of FORTRAN, they 
focus on machine operations first and build abstractions upward. Compared to functional languages, 
their syntax is unnecessarily verbose, and they lack modern features emerging from the mathematics of 
computing itself, such as closures, type inference, anonymous and structural types, and pattern 
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matching. These features are essential for the kind of compositional development that makes functional 
programming so powerful. 

F# is unique amongst both imperative and declarative languages in that it is the golden middle 
road where these two extremes converge. F# takes the best features of both paradigms and tastefully 
combines them in a highly productive and elegant language that both scientists and developers identify 
with. F# makes programmers better mathematicians and mathematicians better programmers. 

  

Erik Meijer 
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Introduction 

F# is a typed functional programming language for the .NET Framework which allows you to write 
simple code to solve complex problems. It combines the succinctness, expressivity, and 
compositionality of typed functional programming with the runtime support, libraries, 
interoperability, tools, and object model of .NET. The aim of this book is to help you become an expert 
in using F# and the .NET Framework. 

Functional programming has long inspired researchers, students, and programmers alike with its 
simplicity and expressive power. Applied functional programming is booming: a new generation of 
typed functional languages is reaching maturity; some functional language constructs have been 
integrated into languages such as C#, Python, and Visual Basic; and there is now a substantial pool of 
expertise in the pragmatic application of functional programming techniques. There is also strong 
evidence that functional programming offers significant productivity gains in important application 
areas such as data access, financial modeling, statistical analysis, machine learning, software 
verification, and bio-informatics. More recently, functional programming is part of the rise of 
declarative programming models, especially in the data query, concurrent, reactive, and parallel 
programming domains. 

F# differs from many functional languages in that it embraces imperative and object-oriented 
(OO) programming. It also provides a missing link between compiled and dynamic languages, 
combining the idioms and programming styles typical of dynamic languages with the performance 
and robustness of a compiled language. The F# designers have adopted a design philosophy that allows 
you to take the best and most productive aspects of these paradigms and combine them while still 
placing primary emphasis on functional programming techniques. This book helps you understand the 
power that F# offers through this combination. 

F# and .NET offer an approach to computing that will continue to surprise and delight, and 
mastering functional programming techniques will help you become a better programmer regardless 
of the language you use. There has been no better time to learn functional programming, and F# offers 
the best route to learn and apply functional programming on the .NET platform. 

F# now a supported language from Microsoft through tools such as Visual Studio, making 
functional programming is now a viable choice for many mainstream and professional programming 
activities. The lead designer of the F# language, Don Syme, is one of the authors of this book. This book 
benefits from his authority on F# and .NET and from all the authors’ years of experience with F# and 
other programming languages. 

The Genesis of F# 
F# began in 2002, when Don Syme and others at Microsoft Research decided to ensure that the ML 
approach to pragmatic but theoretically based language design found a high-quality expression for the 
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.NET platform. The project was closely associated with the design and implementation of Generics for the 

.NET Common Language Runtime. The first stabilized, supported version of F# is F# 2.0, and this is the 
version of the language described in this book and is also the version included with Visual Studio 2010. 

F# shares a core language with the programming language OCaml, and in some ways it can be 
considered an OCaml for .NET. F# wouldn’t exist without OCaml, which in turn comes from the ML 
family of programming languages, which dates back to 1974. F# also draws from Haskell, particularly 
with regard to two advanced language features: sequence expressions  and workflows. Strong 
connections still exist between the designers of these languages, and their user communities overlap.  

Despite the similarities to OCaml and Haskell, programming with F# is quite different. In 
particular, the F# approach to type inference, OO programming, and dynamic language techniques is 
substantially different from all other mainstream functional languages. Programming in F# tends to 
be more object-oriented than in other functional languages. Programming also tends to be more 
flexible. F# embraces .NET techniques such as dynamic loading, dynamic typing, and reflection, and it 
adds techniques such as expression quotation and active patterns. We cover these topics in this book 
and use them in many application areas. 

F# also owes a lot to the designers of .NET, whose vision of language interoperability between 
C++, Visual Basic, and the language that eventually became C# is still rocking the computer industry. 
Today, F# draws much from the broader community around the Common Language Infrastructure 
(CLI). This standard is implemented by the Microsoft .NET Framework, Mono, and Microsoft’s client-
side execution environment Silverlight. F# is able to leverage libraries and techniques developed by 
Microsoft, the broader .NET community, the highly active open source community centered around 
Mono, and open source and cross-platform implementation of the ECMA CLI standard that works well 
on Windows, Mac, and Linux environments. These include hundreds of important libraries and major 
implementation stacks such as language-integrated queries using Microsoft’s LINQ. 

About This Book 
This book is structured in two halves: Chapters 2 to 10 deal with the F# language and basic techniques 
and libraries associated with the .NET Framework. Chapters 11 to 19 deal with applied techniques 
ranging from building applications to software engineering and design issues. 

Throughout this book, we address both programming constructs  and programming techniques. Our 
approach is driven by examples: we show code, and then we explain it. Frequently, we give reference 
material describing the constructs used in the code and related constructs you may use in similar 
programming tasks. We’ve found that an example-driven approach helps bring out the essence of a 
language and how the language constructs work together. You can find a complete syntax guide in the 
appendix, and we encourage you to reference this while reading the book. 

The book’s chapters are as follows: 

Chapter 2, “Getting Started with F# and .NET,” begins by introducing F# Interactive, a tool you can 
use to interactively evaluate F# expressions and declarations and that we encourage you to use 
while reading this book. In this chapter, you use F# Interactive to explore some basic F# and .NET 
constructs, and we introduce many concepts that are described in more detail in later chapters. 

Chapter 3, “Introducing Functional Programming,” focuses on the basic constructs of typed 
functional programming, including arithmetic and string primitives, type inference, tuples, lists, 
options, function values, aggregate operators, recursive functions, function pipelines, function 
compositions, pattern matching, sequences, and some simple examples of type definitions. 

Chapter 4, “Introducing Imperative Programming,” introduces the basic constructs used for 
imperative programming in F#. Although the use of imperative programming is often minimized 
with F#, it’s used heavily in some programming tasks such as scripting. You learn about loops, 
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arrays, mutability mutable records, locals and reference cells, the imperative .NET collections, 
exceptions, and the basics of .NET I/O. 

Chapter 5, “Mastering Types and Generics,” covers types in more depth, especially the more advanced 
topics of generic type variables and subtyping. You learn techniques that you can use to make your 
code generic and how to understand and clarify type error messages reported by the F# compiler. 

Chapter 6, “Working with Objects and Modules,” introduces object-oriented programming in F#. 
You learn how to define concrete object types to implement data structures, how to use OO 
notational devices such as method overloading with your F# types, and how to create objects with 
mutable state. You then learn how to define object interface types and a range of techniques to 
implement objects, including object expressions, constructor functions, delegation, and 
implementation inheritance. 

Chapter 7, “Encapsulating and Packaging Your Code,” shows the techniques you can use to hide 
implementation details and package code fragments together into .NET assemblies. You also learn 
how to use the F# command-line compiler tools and how to build libraries that can be shared across 
multiple projects. Finally, we cover some of the techniques you can use to build installers and 
deploy F# applications. 

Chapter 8, “Mastering F#: Common Techniques,” looks at a number of important coding patterns in 
F#, including how to customize the hashing and comparison semantics of new type definitions, how 
to precompute and cache intermediary results, and how to create lazy values. You also learn how to 
clean up resources using the .NET idioms for disposing of objects, how to avoid stack overflows 
through the use of tail calls, and how to subscribe to .NET events and publish new .NET-compatible 
events from F# code. 

Chapter 9, “Introducing Language-Oriented Programming,” looks at what is effectively a fourth 
programming paradigm supported by F#: the manipulation of structured data and language 
fragments using a variety of concrete and abstract representations. In this chapter, you learn how to 
use XML as a concrete language format, how to convert XML to typed abstract syntax 
representations, how to design and work with abstract syntax representations, and how to use F# 
active patterns to hide representations. You also learn three advanced features of F# programming: 
F# computation expressions (also called workflows), F# reflection, and F# quotations. These are 
used in later chapters, particularly Chapters 13 and 15. 

Chapter 10, “Using the F# and .NET Libraries,” gives an overview of the libraries most frequently 
used with F#, including the .NET Framework and the extra libraries added by F#. 

Chapters 11 to 19 deal with applied topics in F# programming. Chapter 11, “Working with Windows 
Forms and Controls,” shows how to design and build graphical user interface applications using F# 
and the .NET Windows Forms library. We also show how to design new controls using standard OO 
design patterns and how to script applications using the controls offered by the .NET libraries directly. 

Chapter 12, “Working with Symbolic Representations,” applies some of the techniques from 
Chapters 9 and 11 in two case studies. The first is symbolic expression differentiation and rendering, 
an extended version of a commonly used case study in symbolic programming. The second is 
verifying circuits with propositional logic; you learn how to use symbolic techniques to represent 
digital circuits, specify properties of these circuits, and verify these properties using binary decision 
diagrams (BDDs). 

Chapter 13, “Reactive, Asynchronous, and Parallel Programming,” shows how you can use F# for 
programs that have multiple logical threads of execution and that react to inputs and messages. You 
first learn how to construct basic background tasks that support progress reporting and 
cancellation. You then learn how to use F# asynchronous workflows to build scalable, massively 
concurrent reactive programs that make good use of the .NET thread pool and other .NET 
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concurrency-related resources. This chapter concentrates on message-passing techniques that 
avoid or minimize the use of shared memory. However, you also learn the fundamentals of 
concurrent programming with shared memory using .NET. 

Chapter 14, “Building Web Applications,” shows how to use F# with ASP.NET to write server-side 
scripts that respond to web requests. You learn how to serve web-page content using ASP.NET 
controls. We also describe how projects such as the WebSharper Platform let you write Ajax-style, 
client-based Rich Internet Applications in F#. 

Chapter 15, “Working with Data,” looks at several dimensions of querying and accessing data from 
F#. You first learn how functional programming relates to querying in-memory data structures, 
especially via the LINQ paradigm supported by .NET and F#. You then look at how to use F# in 
conjunction with relational databases, particularly through the use of the ADO.NET and LINQ-to-
SQL technologies that are part of the .NET Framework. 

Chapter 16, “Lexing and Parsing,” shows how to deal with concrete language formats in addition to 
those already discussed in Chapter 9. In particular, you learn how to use the F# tools to generate 
lexers and parsers from declarative specifications and how to use combinator techniques to build 
declarative specifications of binary format readers. 

Chapter 17, “Interoperating with C and COM,” shows how to use F# and .NET to interoperate with 
software that exports a native API. You learn more about the .NET Common Language Runtime, 
how memory management works, and how to use the .NET Platform Invoke mechanisms from F#. 

Chapter 18, “Debugging and Testing F# Programs,” shows the primary tools and techniques you can 
use to eliminate bugs from your F# programs. You learn how to use the .NET and Visual Studio 
debugging tools with F#, how to use F# Interactive for exploratory development and testing, and 
how to use the NUnit testing framework with F# code. 

Chapter 19, “Designing F# Libraries,” gives our advice on methodology and design issues for writing 
libraries in F#. You learn how to write vanilla .NET libraries that make relatively little use of F# 
constructs at their boundaries in order to appear as natural as possible to other .NET programmers. 
We then cover functional programming design methodology and how to combine it with the OO 
design techniques specified by the standard .NET Framework design guidelines. 

The appendix, “F# Brief Language Guide,” gives a compact guide to all key F# language constructs 
and the key operators used in F# programming. 

Because of space limitations, we only partially address some important aspects of programming 
with F#. It’s easy to access hundreds of other libraries with F# that aren’t covered in this book, 
including Managed DirectX, Windows Presentation Foundation (WPF), Windows Communication 
Foundation (WCF), Windows Workflow Foundation (WWF), Irrlicht, the Mono Unix bindings, the 
Firebird.NET database bindings, several advanced SQL Server APIs, and mathematical libraries such 
as Extreme Optimization and NMath. There are also hundreds of open-source projects related to .NET 
programming, some with a specific focus on F#. F# can also be used with alternative implementations 
of the CLI such as Mono and Silverlight, topics we address only tangentially in this book. Quotation 
meta-programming is described only briefly in Chapter 9, and some topics in functional programming 
such as the design and implementation of applicative data structures aren’t covered at all. Also, some 
software engineering issues such as performance tuning are largely omitted. Many of these topics are 
addressed in more detail in Beginning F# by Robert Pickering, also published by Apress, and originally 
titled Foundations of F#. The first edition of this book was published under the title Expert F#, and the 
title was revised at the suggestion of the publisher. 
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Who This Book Is For 
We assume you have some programming knowledge and experience. If you don’t have experience with 
F#, you’ll still be familiar with many of the ideas it uses. However, you may also encounter some new 
and challenging ideas. For example, if you’ve been taught that OO design and programming are the 
only ways to think about software, then programming in F# may be a reeducation. F# fully supports OO 
development, but F# programming combines elements of both functional and OO design. OO patterns 
such as implementation inheritance play a less prominent role than you may have previously 
experienced. Chapter 6 covers many of these topics in depth. 

The following notes will help you set a path through this book, depending on your background: 

C++, C#, Java, and Visual Basic: If you’ve programmed in a typed OO language, you may find that 
functional programming, type inference, and F# type parameters take a while to get used to. 
However, you’ll soon see how to use these to be a more productive programmer. Be sure to read 
Chapters 2, 3, 5, and 6 carefully. 

Python, Scheme, Ruby, and dynamically typed languages: F# is statically typed and type-safe. As a 
result, F# development environments can discover many errors while you program, and the F# 
compiler can more aggressively optimize your code. If you’ve primarily programmed in an untyped 
language such as Python, Scheme, or Ruby, you may think that static types are inflexible and wordy. 
However, F# static types are relatively nonintrusive, and you’ll find the language strikes a balance 
between expressivity and type safety. You’ll also see how type inference lets you recover 
succinctness despite working in a statically typed language. Be sure to read Chapters 2 to 6 carefully, 
paying particular attention to the ways in which types are used and defined. 

Typed functional languages: If you’re familiar with Haskell, OCaml, or Standard ML, you’ll find the 
core of F# readily familiar, with some syntactic differences. However, F# embraces .NET, including 
the .NET object model, and it may take you a while to learn how to use objects effectively and how 
to use the .NET libraries themselves. This is best done by learning how F# approaches OO 
programming in Chapters 6 to 8 and then exploring the applied .NET programming material in 
Chapters 10 to 19, referring to earlier chapters where necessary. Haskell programmers also need to 
learn the F# approach to imperative programming, described in Chapter 4, because many .NET 
libraries require a degree of imperative coding to create, configure, connect, and dispose of objects. 

We strongly encourage you to use this book in conjunction with a development environment that 
supports F# directly, such as Visual Studio 2005 or Visual Studio 2008. In particular, the interactive type 
inference in the F# Visual Studio environment is exceptionally helpful for understanding F# code: with 
a simple mouse movement, you can examine the inferred types of the sample programs. These types 
play a key role in understanding the behavior of the code. 

■ Note You can download and install F# from www.fsharp.net. You can download all the code samples used in 
this book from www.expert-fsharp.com; they were prepared and checked with F# 2.0. As with all books, it’s 

inevitable that minor errors may exist in the text. An active errata and list of updates will be published at 

www.expert-fsharp.com. 
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Getting Started with F# and .NET 

This chapter covers simple interactive programming with F# and .NET. To begin, you should download 
and install a version of the F# distribution from www.fsharp.net. You may also have a version on your 
machine already. The sections that follow use F# Interactive, a tool you can use to execute fragments of 
F# code interactively and a convenient way to explore the language. Along the way, you see examples of 
the most important F# language constructs and many important libraries.  

Creating Your First F# Program 
Listing 2-1 shows your first complete F# program. You may not follow it all at first glance, but we explain 
it piece by piece after the listing. 

Listing 2-1. Analyzing a String for Duplicate Words 

/// Split a string into words at spaces 
let splitAtSpaces (text: string) =  
    text.Split ' '  
    |> Array.toList  
 
/// Analyze a string for duplicate words 
let wordCount text = 
    let words = splitAtSpaces text 
    let wordSet = Set.ofList words 
    let numWords = words.Length 
    let numDups  = words.Length - wordSet.Count 
    (numWords,numDups) 
 
/// Analyze a string for duplicate words and display the results. 
let showWordCount text = 
    let numWords,numDups = wordCount text 
    printfn "--> %d words in the text" numWords 
    printfn "--> %d duplicate words" numDups 
 

You can paste this program into F# Interactive, which you can start by using the command line, by 
running fsi.exe from the F# distribution, or by using an interactive environment such as Visual Studio. 
If you’re running from the command line, remember to enter ;; to terminate the interactive entry – you 
don’t need to do this in Visual Studio or other interactive environments. 
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C:\Users\dsyme\Desktop> fsi.exe 
 
Microsoft (R) F# 2.0 Interactive build 4.0.30319.1 
Copyright (c) Microsoft Corporation. All Rights Reserved. 
 
For help type #help;;  
 
> <paste in the earlier program here> ;; 
 
val splitAtSpaces : string -> string[] 
val wordCount : string -> int * int 
val showWordCount : string -> unit 

Here, F# Interactive reports the type of the functions  splitAtSpaces, wordCount, and showWordCount 
(you learn more about types in a moment). The keyword val stands for value; in F# programming, 
functions are just values, a topic we return to in Chapter 3. Also, sometimes F# Interactive shows a little 
more information than we show in this book (such as some internal details of the generated values); if 
you’re trying out these code snippets, then you can ignore that additional information. For now, let’s use 
the wordCount function interactively: 

> let (numWords,numDups) = wordCount "All the king's horses and all the king's men";; 
val numWords : int 
val numDups  : int 
 
> numWords;; 
val it : int = 9 
 
> numDups;; 
val it : int = 2 
 
> numWords - numDups;; 
val it : int = 7 

This code shows the results of executing the function wordCount and binding its two results to the names 
numWords and numDups, respectively. You can examine the values by entering each as a single expression, 
which assigns the result to a value called it and displays the value. Examining the values shows that the 
given text contains nine words: two duplicates and seven words that occur only once. showWordCount 
prints the results instead of returning them as a value: 

> showWordCount "Couldn't put Humpty together again";; 
--> 5 words in the text 
--> 0 duplicate words 

From the output you can more or less see what the code does. Now that you’ve done that, let’s go 
through the program in detail. 
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■ Tip You can start F# Interactive in Visual Studio by selecting View ➤ Other Windowsand then selecting F# 
Interactive. A tool window appears, and you can send text to F# Interactive by selecting the text and pressing 

Alt+Enter. 

Documenting Code Using XMLDocs 
Let's start with the definition of the wordCount function in Listing 2-1. The first line of the definition isn’t 
code but a comment: 
 
/// Analyze a string for duplicate words  
 

Comments are either lines starting with // or blocks enclosed by  (* and *). Comment lines 
beginning with three slashes (///) are XMLDoc comments and can, if necessary, include extra XML tags 
and markup. The comments from a program can be collected into a single .xml file and processed with 
additional tools or can be converted immediately to HTML by the F# command-line compiler (fsc.exe). 
Chapter 7 covers using the F# command-line compiler in more detail. 

Using let 
Now, look at the first two lines of the function wordCount in Listing 2-1. These lines define the function 
wordCount and the local value words, both using the keyword let: 
 
let wordCount (text: string) = 
    let words = ... 
 

let is the single most important keyword you use in F# programming: it’s used to define data, 
computed values, functions, and procedures. The left of a let binding is often a simple identifier but can 
also be a pattern. (See the “Using Tuples” section for examples.) It can also be a function name followed 
by a list of argument names, as in the case of wordCount, which takes one argument: text. The right of a 
let binding (after the =) is an expression. 

Values and Immutability 

In other languages, a local value is called a local variable. However, in F#, you can’t change the immediate 
value of locals after they’ve been initialized unless the local is explicitly marked as mutable, a topic we 
return to in Chapter 4. For this reason, F# programmers and the language specification tend to prefer the 
term value to variable. 

As you’ll see in Chapter 4, data indirectly referenced by a local value can still be mutable even if the local 
value isn’t; for example, a local value that is a handle to a hash table can’t be changed to refer to a 
different table, but the contents of the table itself can be changed by invoking operations that add and 
remove elements from the table. But many values and data structures in F# programming are completely 
immutable; in other words, neither the local value nor its contents can be changed through external 
mutation. These are usually just called immutable values. For example, all basic .NET types such as 
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integers, strings, and System.DateTime values are immutable, and the F# library defines a range of 
immutable data structures such as Set and Map, based on binary trees. 

Immutable values offer many advantages. At first it may seem strange to define values you can’t change. 
However, knowing a value is immutable means you rarely need to think about the value’s object identity—
you can pass such values to routines and know they won’t be mutated. You can also pass them between 
multiple threads without worrying about unsafe concurrent access to the values, discussed in Chapter 13.  

Understanding Types 
F# is a typed language, so it’s reasonable to ask what the type of wordCount is. F# Interactive has shown it 
already: 

val wordCount : string -> int * int 

This indicates that wordCount takes one argument of type string and returns int * int, which is F#’s 
way of saying “a pair of integers.” The keyword val stands for value, and the symbol -> indicates that 
wordCount is a function. No explicit type is given in the program for the type of the argument text, 
because the full type for wordCount is inferred from its definition. We discuss type inference further in the 
“What Is Type Inference?” sidebar and in more detail in later chapters. 

Types are significant in both F# and .NET programming more generally for reasons that range from 
performance to coding productivity and interoperability. Types are used to help structure libraries, to 
guide you through the complexity of an API, and to place constraints on code to ensure that it can be 
implemented efficiently. Unlike in many other typed languages, F#’s type system is both simple and 
powerful because it uses orthogonal, composable constructs such as tuples and functions to form 
succinct and descriptive types. Furthermore, type inference means you almost never have to write types 
in your program, although doing so can be useful.  

Table 2-1 shows some of the most important type constructors. Chapters 3 and 4 discuss all these 
types in more detail. 

Table 2-1. Some Important Types and Type Constructors and Their Corresponding Values 

Family of Types Examples Description 

int int 32-bit integers. For example: -3, 0, 127. 

type option int option, option<int> A value of the given type or the special value None. 
For example: Some 3, Some "3", None. 

type list int list, list<int> An immutable linked list of values of the given type. 
All elements of the list must have the same type. For 
example: [], [3;2;1]. 

type1 -> type2 int -> string A function type, representing a value that accepts 
values of the first type and computes results of the 
second type. For example: (fun x -> x+1). 
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Family of Types Examples Description 

type1 * ... * typeN int * string A tuple type, such as a pair, triple, or larger 
combination of types. For example: (1,"3"), 
(3,2,1). 

type [] int[] An array type, indicating a flat, fixed-size mutable 
collection of values of type type. 

unit unit A type containing a single value (), akin to void in 
many imperative languages. 

'T 'T, 'a, 'Key, 'Value A variable type, used in generic code. 

Some type constructors, such as list and option, are generic, which means they can be used to form 
a range of types by instantiating the generic variables, such as int list, string list, int list list, and 
so on. You can write instantiations of generic types using either prefix notation (such as int list) or 
postfix notation (such as list<int>). Variable types such as 'a and 'T are placeholders for any type. 
Chapters 3 and 5 discuss generics and variable types in more detail. 
 

What Is Type Inference? 

Type inference works by analyzing your code to collect constraints. These are collected over the scope of 
particular parts of your program, such as each file for the F# command-line compiler and each chunk 
entered in F# Interactive. These constraints must be consistent, thus ensuring that your program is well-
typed; you get a type error if not. Constraints are collected from top to bottom, left to right, and outside in. 
This is important because long identifier lookups, method overloading, and some other elements of the 
language are resolved using the normalized form of the constraint information available at the place where 
each construct is used. 

Type inference also automatically generalizes your code, which means that when your code is reusable 
and generic in certain obvious ways, it’s given a suitable generic type without your needing to write down 
the generic type. Automatic generalization is the key to succinct but reusable typed programming. Chapter 
5 discusses automatic generalization. 

Calling Functions 
Functions are at the heart of most F# programming. It’s not surprising that the first thing the wordCount 
function does is call a function—in this case, the splitAtSpaces function, which is the first function 
defined in the program: 
 
let wordCount (text: string) = 
    let words = splitAtSpaces text 
 

Let’s first investigate the splitAtSpaces function by running F# Interactive: 
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> splitAtSpaces "hello world";; 
val it : string list = [ "hello"; "world" ] 

You can see that splitAtSpaces breaks the given text into words, splitting at spaces.  
In the earlier code, you can also see examples of the following: 

• Literal characters such as ' ' and 'a' 

• Literal strings such as "hello world" 

• Literal lists of strings such as the returned value [ "hello"; "world" ] 

Chapter 3 covers literals and lists in detail. Lists are an important data structure in F#, and you see 
many examples of their use in this book. 

Lightweight Syntax  
The F# compiler and F# Interactive use the indentation of F# code to determine where constructs start 
and finish. The indentation rules are very intuitive; we discuss them in the appendix, which is a guide to 
the F# syntax. Listing 2-2 shows a fully qualified version of the wordCount function. 

Listing 2-2. A Version of the wordCount Function Using Explicit “in” Tokens 

/// Analyze a string for duplicate words 
let wordCount text = 
    let words = splitAtSpaces text in 
    let wordSet = Set.ofList words in 
    let numWords = words.Length in 
    let numDups  = words.Length - wordSet.Count in 
    (numWords,numDups) 
 

Double semicolons (;;) are still required to terminate entries to F# Interactive. However, if you’re 
using an interactive development environment such as Visual Studio, then the environment typically 
adds them automatically when code is selected and executed. We show the double semicolons in the 
interactive code snippets used in this book, although not in the larger samples. 

Sometimes it’s convenient to write let definitions on a single line. You can do this by separating the 
expression that follows a definition from the definition itself using in. For example: 
 
let powerOfFour n = 
    let nSquared = n * n in nSquared * nSquared 
 

Here’s an example use of the function: 

> powerOfFour 3;; 

val it : int = 81 

Indeed, let pat = expr1 in expr2 is the true primitive construct in the language, where pat stands for 
pattern and expr1 and expr2 stand for expressions. The F# compiler inserts the in if expr2 is column-
aligned with the let keyword on a subsequent line. 
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■ Tip We recommend that you use four-space indentation for F# code. Tab characters can’t be used, and the F# 

tools give an error if they’re encountered. Most F# editors convert uses of the Tab key to spaces automatically.  

Understanding Scope 
Local values such as words and wordCount can’t be accessed outside their scope. In the case of variables 
defined using let, the scope of the value is the entire expression that follows the definition, although not 
the definition itself. Here are two examples of invalid definitions that try to access variables outside their 
scope. As you can see, let definitions follow a sequential, top-down order, which helps ensure that 
programs are well-formed and free from many bugs related to uninitialized values:   
 
let badDefinition1 = 
    let words = splitAtSpaces text 
                              ^^^^  error: text is not defined 
    let text = "We three kings" 
    words.Length;; 
 

gives 

      let words = splitAtSpaces text 
  ------------------------------^^^^ 
 
stdin(19,31): error FS0039: The value or constructor 'text' is not defined 

and 

 
let badDefinition2 = badDefinition2+1;; 
 

gives 

let badDefinition2 = badDefinition2+1 
  ------------------^^^^^^^^^^^^^^^  
 
stdin(21,19): error FS0039: The value or constructor 'badDefinition2' is not defined 

Within function definitions, you can outscope values by declaring another value of the same name. 
For example, the following function computes (n*n*n*n)+2: 
 
let powerOfFourPlusTwo n = 
    let n = n * n 
    let n = n * n 
    let n = n + 2 
    n 
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This code is equivalent to the following: 
 
let powerOfFourPlusTwo n = 
    let n1 = n * n 
    let n2 = n1 * n1 
    let n3 = n2 + 2 
    n3 
 

Outscoping a value doesn’t change the original value; it just means the name of the value is no 
longer accessible from the current scope. 

Because let bindings are only one kind of expression, you can use them in a nested fashion. For 
example: 
 
let powerOfFourPlusTwoTimesSix n = 
    let n3 = 
        let n1 = n * n 
        let n2 = n1 * n1 
        n2 + 2 
    let n4 = n3 * 6 
    n4 
 
Here, n1 and n2 are values defined locally by let bindings within the expression that defines n3. These 
local values aren’t available for use outside their scope. For example, the following code gives an error: 
 
let invalidFunction n = 
    let n3 = 
        let n1 = n + n 
        let n2 = n1 * n1 
        n1 * n2 
    let n4 = n1 + n2 + n3     // Error! n3 is in scope, but n1 and n2 are not! 
    n4 
 

Local scoping is used for many purposes in F# programming, especially to hide implementation 
details that you don’t want revealed outside your functions or other objects. Chapter 7 covers this topic 
in more detail. 

Using Data Structures 
The next portion of the code is as follows: 
 
let wordCount (text : string) = 
    let words = splitAtSpaces text 
    let wordSet = Set.ofList words 
    ... 
 
This gives you your first taste of using data structures from F# code. The last of these lines lies at the 
heart of the computation performed by wordCount. It uses the function Set.ofList from the F# library to 
convert the given words to a concrete data structure that is, in effect, much like the mathematical notion 
of a set, although internally it’s implemented using a data structure based on trees. You can see the 
results of converting data to a set by using F# Interactive: 
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> Set.ofList ["b";"a";"b";"b";"c" ];; 
val it : Set<string> = seq [ "a"; "b"; "c" ] 
 
> Set.toList (Set.ofList ["abc"; "ABC"]);; 
val it : string list = [ "ABC"; "abc" ] 

Here you can see several things: 

• F# Interactive prints the contents of structured values such as lists and sets. 

• Duplicate elements are removed by the conversion. 

• The elements in the set are ordered. 

• The default ordering on strings used by sets is case sensitive. 

What Is Set in Set.ofList? 

The name Set references the F# module Microsoft.FSharp.Collections.Set in the F# library. This 
contains operations associated with values of the Set<_> type. It’s common for types to have a separate 
module that contains associated operations. All modules under the Microsoft.FSharp namespaces Core, 
Collections, Text, and Control can be referenced by simple one-word prefixes, such as Set.ofList. 
Other modules under these namespaces include List, Option, and Array. 

Using Properties and the Dot-Notation 
The next two lines of the wordCount function compute the result you’re after—the number of duplicate 
words. This is done by using two properties, Length and Count, of the values you’ve computed: 
 
  let numWords = words.Length 
  let numDups = words.Length - wordSet.Count 
 

F# performs resolution on property names at compile time (or interactively when you’re using F# 
Interactive, where there is no distinction between compile time and runtime). This is done using 
compile-time knowledge of the type of the expression on the left of the dot—in this case, words and 
wordSet. Sometimes, a type annotation is required in your code in order to resolve the potential 
ambiguity among possible property names. For example, the following code uses a type annotation to 
note that inp refers to a list. This allows the F# type system to infer that Length refers to a property 
associated with values of the list type: 
 
let length (inp : 'T list) = inp.Length 
 
Here, the 'T indicates that the length function is generic; that is, it can be used with any type of list. 
Chapters 3 and 5 cover generic code in more detail.  

As you can see from the use of the dot-notation, F# is both a functional language and an object-
oriented language. In particular, properties are a kind of member, a general term used for any 
functionality associated with a type or value. Members referenced by prefixing a type name are called 
static members, and members associated with a particular value of a type are called instance members; in 
other words, instance members are accessed through an object on the left of the dot. We discuss the 
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distinction between values, properties, and methods later in this chapter, and Chapter 6 discusses 
members in full. 

■ Note Type annotations can be useful documentation and, when used, should generally be added at the point 

where a variable is declared. 

Sometimes, explicitly named functions play the role of members. For example, you could write the 
earlier code as follows: 
 
let numWords = List.length words 
let numDups = List.length words - Set.count wordSet 
 

You see both styles in F# code. Some F# libraries don’t use members at all or use them only 
sparingly. However, judiciously using members and properties can greatly reduce the need for trivial 
get/set functions in libraries, can make client code much more readable, and can allow programmers 
who use environments such as Visual Studio to easily and intuitively explore the primary features of 
libraries they write. 

If your code doesn’t contain enough type annotations to resolve the dot-notation, you see an error 
such as the following: 

> let length inp = inp.Length;; 
 
  let length inp = inp.Length;; 
  ----------------^^^^ 
 
stdin(1,17): error: Lookup on object of indeterminate type. A type annotation may 
be needed prior to this program point to constrain the type of the object. This 
may allow the lookup to be resolved. 

You can resolve this by adding a type annotation as shown earlier. 

Using Tuples 
The final part of the wordCount function returns the results numWords and numDups as a tuple: 
 
let numWords = words.Length 
let numDups  = words.Length - wordSet.Count 
(numWords,numDups) 
 

Tuples are the simplest but perhaps most useful of all F# data structures. A tuple expression is a 
number of expressions grouped together to form a new expression: 
 
let site1 = ("www.cnn.com",10) 
let site2 = ("news.bbc.com",5) 
let site3 = ("www.msnbc.com",4) 
let sites = (site1,site2,site3) 
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Here, the inferred types of site1 and sites are as follows: 
 
val site1 : string * int 
val sites : (string * int) * (string * int) * (string * int) 
 

Tuples can be decomposed into their constituent components in two ways. For pairs—that is, tuples 
with two elements—you can explicitly call the functions fst and snd, which, as their abbreviated names 
imply, extract the first and second parts of the pair: 

> fst site1 
val it : string = "www.cnn.com" 
 
> let relevance = snd site1 
val relevance : int 
 
> relevance;; 
val it : int = 10 

The functions fst and snd are defined in the F# library and are always available for use by F# 
programs. Here are their simple definitions: 
 
let fst (a,b) = a 
let snd (a,b) = b 
 

More commonly, tuples are decomposed using patterns, as in the following code: 
 
let url,relevance = site1 
let site1,site2,site3 = sites 
 
In this case, the names in the tuples on the left of the definitions are bound to the respective elements of 
the tuple value on the right, so again url gets the value "www.cnn.com" and relevance gets the value 10. 

Tuple values are typed, and strictly speaking there are an arbitrary number of families of tuple types: 
one for pairs holding two values, one for triples holding three values, and so on. This means if you try to 
use a triple where a pair is expected, you get a type-checking error before your code is run: 

> let a,b = (1,2,3);; 
error: this pattern matches values of type 'int * int' but is here used 
with values of type 'int * int * int'. The tuples have different lengths. 

Tuples are often used to return multiple values from functions, as in the wordCount example earlier. 
They’re also often used for multiple arguments to functions, and frequently the tupled output of one 
function becomes the tupled input of another function. Here is an example that shows a different way of 
writing the showWordCount function defined and used earlier: 
 
let showResults (numWords,numDups) = 
    printfn "--> %d words in the text" numWords 
    printfn "--> %d duplicate words" numDups 
 
let showWordCount text = showResults (wordCount text) 
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The function showResults accepts a pair as input, decomposed into numWords and numDups, matching the 
results of wordCount. 

Values and Objects 

In F#, everything is a value. In some other languages, everything is an object. In practice, you can use the 
words largely interchangeably, although F# programmers tend to reserve object for special kinds of values: 

F# thus supports objects, but not all values are referred to as objects. Chapter 4 discusses identity and 
mutation further. 

Using Imperative Code 
The showWordCount and showResults functions defined in the previous section output results using a 
library function called printfn: 
 
printfn "--> %d words in the text" numWords 
printfn "--> %d duplicate words" numDups 
 
If you’re familiar with OCaml, C, and C++, printfn will look familiar as a variant of printf— printfn also 
adds a newline character at the end of printing. Here, the pattern %d is a placeholder for an integer, and 
the rest of the text is output verbatim to the console.  

F# also supports related functions such as printf, sprintf, and fprintf, which are discussed further 
in Chapter 4. Unlike C/C++, printf is a type-safe text formatter, where the F# compiler checks that the 
subsequent arguments match the requirements of the placeholders. There are also other ways to format 
text with F#. For example, you can use the .NET libraries directly: 
 
System.Console.WriteLine("--> {0} words in the text", box(numWords)) 
System.Console.WriteLine("--> {0} duplicate words", box(numDups)) 
 
Here, {0} acts as the placeholder, although no checks are made that the arguments match the 
placeholder before the code is run. The use of printfn also shows how you can use sequential 
expressions to cause effects in the outside world. 

As with let ... in ... expressions, it’s sometimes convenient to write sequential code on a single 
line. You can do this by separating two expressions with a semicolon (;), and again this is a primitive 
construct of the language. The first expression is evaluated (usually for its side effects), its result is 
discarded, and the overall expression evaluates to the result of the second. Here is a simpler example of 
this construct: 

• Values whose observable properties change as the program executes, usually 
through the explicit mutation of underlying in-memory data or through external 
state changes 

• Values that refer to data or state that reveals an identity, such as a unique integer 
stamp or the underlying .NET object identity, where that identity may differ from 
otherwise identical values 

• Values that can be queried to reveal additional functionality, through the use of 
casts, conversions, and interfaces 
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let two = (printfn "Hello World"; 1+1) 
let four = two + two 
 
When executed, this code prints Hello World precisely once, when the right side of the definition of two 
is executed. F# doesn’t have statements as such: the fragment (printfn "Hello World"; 1+1) is an 
expression, but when evaluated, the first part of the expression causes a side effect, and its result is 
discarded. It’s also often convenient to use parentheses to delimit sequential code. The code from the 
script could in theory be parenthesized with a semicolon added to make the primitive constructs 
involved more apparent: 
 
(printfn "--> %d words in the text" numWords; 
 printfn "--> %d duplicate words" numDups) 

■ Note The token ; is used to write sequential code within expressions, and ;; is used to terminate interactions 
with the F# Interactive session. Semicolons are optional when the individual fragments of your sequential code are 

placed on separate lines beginning at the same column position. 

Using .NET Libraries from F# 
The true value of F# lies not just in what you can do inside the language but also in what you can connect 
to outside the language. For example, F# doesn’t come with a GUI library. Instead, F# is connected to 
.NET and via .NET to most of the significant programming technologies available on major computing 
platforms. You’ve already seen one use of the .NET libraries, in the first function defined earlier: 
 
/// Split a string into words at spaces 
let splitAtSpaces (text: string) =  
    text.Split ' '  
    |> Array.toList  
 
Here, text.Split is a call to a .NET library instance method called Split defined on all string objects.  

To emphasize this, the second sample uses two of the powerful libraries that come with the .NET 
Framework: System.Net and System.Windows.Forms. The full sample is in Listing 2-3 and is a script for use 
with F# Interactive. 

Listing 2-3. Using the .NET Framework Windows Forms and Networking Libraries from F# 

open System.Windows.Forms 
 
let form = new Form(Visible=true,TopMost=true,Text="Welcome to F#") 
 
let textB = new RichTextBox(Dock=DockStyle.Fill, Text="Here is some initial text") 
form.Controls.Add textB 
 
open System.IO 
open System.Net 
 
/// Get the contents of the URL via a web request 
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let http (url: string) = 
    let req = System.Net.WebRequest.Create(url) 
    let resp = req.GetResponse() 
    let stream = resp.GetResponseStream() 
    let reader = new StreamReader(stream) 
    let html = reader.ReadToEnd() 
    resp.Close() 
    html 
 
let google = http "http://www.google.com" 
textB.Text <- http "http://news.bbc.co.uk" 
 

This example uses several important .NET libraries and helps you explore some interesting F# 
language constructs. The following sections walk you through this listing. 

Using open to Access Namespaces and Modules 
The first thing you see in the sample is the use of open to access functionality from the namespace 
System.Windows.Forms: 
 
open System.Windows.Forms 
 

Chapter 7 discusses namespaces in more detail. The earlier declaration means you can access any 
content under this path without quoting the long path. If it didn’t use open, you’d have to write the 
following, which is obviously a little verbose: 
 
let form = new System.Windows.Forms.Form(Visible=true,TopMost=true, 
                                         Text="Welcome to F#") 
 

You can also use open to access the contents of an F# module without using long paths. Chapter 7 
discusses modules in more detail. 

More About open 

Using open is an easy way to access the contents of namespaces and modules. However, there are some 
subtleties. For example, open doesn’t actually load or reference a library—instead, it reveals functionality 
from already-loaded libraries. You load libraries by referring to a particular DLL using #r in a script or -r as 
a command-line option.  

Libraries and namespaces are orthogonal concepts: multiple libraries can contribute functionality to the 
same namespace, and each library can contribute functionality to multiple namespaces. Often, one 
particular library contributes most of the functionality in a particular namespace. For example, most of the 
functionality in the System.Windows.Forms namespace comes from a library called 
System.Windows.Forms.dll. As it happens, this library is automatically referenced by F#, which is why 
you haven’t needed an explicit reference to the library so far. You can place your code in a namespace by 
using a namespace declaration at the top of your file, as discussed further in Chapter 7. 

If two namespaces have types, subnamespaces, and/or modules with identical names, then when you 
open these, you can access the contents of both using the same shortened paths. For example, the 
namespace System contains a type String, and the namespace Microsoft.FSharp.Core contains a 
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module String. In this case, long identifier lookups such as List.map search the values and members 
under both of these, preferring the most recently opened if there is an ambiguity. 

Finally, if you ever have name collisions, you can define your own short aliases for modules and types, 
such as by using module MyString = My.Modules.String and type SysString = System.String. 

Using new and Setting Properties 
The next lines of the sample script use the keyword new to create a top-level window (called a form) and 
set it to be visible. If you run this code in F# Interactive, you see a top-level window appear with the title 
text Welcome to F#: 
 
let form = new Form(Visible=true,TopMost=true,Text="Welcome to F#") 
 
Here, new is shorthand for calling a function associated with the type System.Windows.Forms.Form that 
constructs a value of the given type—these functions are called constructors. Not all F# and .NET types 
use constructors; you also see values being constructed using names such as Create or via one or more 
functions in a related module such as String.init or Array.init. You see examples of each throughout 
this book. 

A form is an object; that is, its properties change during the course of execution, and it’s a handle 
that mediates access to external resources (the display device, mouse, and so on). Sophisticated objects 
such as forms often need to be configured, either by passing in configuration parameters at construction 
or by adjusting properties from their default values after construction. The arguments Visible=true, 
TopMost=true, and Text="Welcome to F#" set the initial values for three properties of the form. The labels 
Visible, TopMost, and Text must correspond to either named arguments of the constructor being called 
or properties on the return result of the operation. In this case, all three are object properties, and the 
arguments indicate initial values for the object properties. 

Most properties on graphical objects can be adjusted dynamically. You set the value of a property 
dynamically using the notation obj.Property <- value. For example, you could also construct the form 
object as follows: 
 
open System.Windows.Forms 
let form = new Form() 
form.Visible <- true 
form.TopMost <- true 
form.Text <- "Welcome to F#" 
 

Likewise, you can watch the title of the form change by running the following code in F# Interactive: 
 
form.Text <- "Programming is Fun!" 
 

Setting properties dynamically is frequently used to configure objects, such as forms, that support 
many potential configuration parameters that evolve over time. 

The object created here is bound to the name form. Binding this value to a new name doesn’t create 
a new form; rather, two different handles now refer to the same object (they’re said to alias the same 
object). For example, the following code sets the title of the same form, despite its being accessed via a 
different name: 
 
let form2 = form 
form2.Text <- "F# Forms are Fun" 
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Values, Methods, and Properties 

Here are the differences between values, methods, and properties: 

 

The next part of the sample creates a new RichTextBox control and stores it in a variable called 
textB: 
 
let textB = new RichTextBox(Dock= DockStyle.Fill) 
form.Controls.Add(textB) 
 

A control is typically an object with a visible representation—or, more generally, an object that reacts 
to operating system events related to the windowing system. A form is one such control, but there are many 
others. A RichTextBox control is one that can contain formatted text, much like a word processor. 

Fetching a Web Page 
The second half of Listing 2-3 uses the System.Net library to define a function http to read HTML web 
pages. You can investigate the operation of the implementation of the function by entering the following 
lines into F# Interactive: 

> open System;; 
> open System.IO;; 
> open System.Net;; 
 
> let req = WebRequest.Create("http://www.microsoft.com");; 
val req : WebRequest 
 
> let resp = req.GetResponse();; 
val resp : WebResponse 
 
> let stream = resp.GetResponseStream();; 

• Simple values: Functions, parameters, and top-level items defined using let or 
pattern matching. Examples: form, text, wordCount. 

• Methods: Function values associated with types. Interfaces, classes, and record 
and union types can all have associated methods. Methods can be overloaded 
(see Chapter 6) and must be applied immediately to their arguments. Examples: 
System.Net.WebRequest.Create and resp.GetResponseStream. 

• Properties: A shorthand for invoking method members that read or write underlying 
data. Interfaces, classes, and record and union types can all have associated 
properties. Examples: System.DateTime.Now and form.TopMost. 

• Indexer properties: A property can take arguments, in which case it’s an indexer 
property. Indexer properties named Item can be accessed using the .[_] syntax. 
Examples: vector.[3] and matrix.[3,4]. 
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val stream : Stream 
 
> let reader = new StreamReader(stream);; 
val reader : StreamReader 
 
> let html = reader.ReadToEnd();; 
val html : string 
 
> textB.Text <- html;; 

The final line sets the contents of the text-box form to the HTML contents of the Microsoft home page. 
Let’s look at this code line by line. 

The first line of the code creates a WebRequest object using the static method Create, a member of 
the type System.Net.WebRequest. The result of this operation is an object that acts as a handle to a 
running request to fetch a web page—you could, for example, abandon the request or check to see 
whether the request has completed. The second line calls the instance method GetResponse. The 
remaining lines of the sample get a stream of data from the response to the request using 
resp.GetResponseStream(), make an object to read this stream using new StreamReader(stream), and 
read the full text from this stream. Chapter 4 covers .NET I/O in more detail; for now, you can test by 
experimentation in F# Interactive that these actions do indeed fetch the HTML contents of a web page. 
The inferred type for http that wraps up this sequence as a function is as follows: 

val http : string -> string 

■ Note Static members are items qualified by a concrete type or module. Examples include 
System.String.Compare, System.DateTime.Now, and List.map. Instance members are methods, properties, and 

values qualified by an expression. Examples include form.Visible, resp.GetResponseStream(), and 

cell.contents. 
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XML Help in Visual Studio 

In a rich editor such as Visual Studio, you can easily find out more about the functionality of .NET libraries 
by hovering your mouse over the identifiers in your source code. For example, if you hover over Dock in 
textB.Dock, you see the XML help shown here: 

 
 

Summary 
This chapter looked at some simple interactive programming with F# and .NET. Along the way, you met 
many of the constructs you use in day-to-day F# programming. In the next chapter, you take a closer 
look at these and other constructs that are used to perform compositional and succinct functional 
programming in F#. 

■ Note In Chapter 3, you use some of the functions defined in this chapter. If you’re using F# Interactive, you may 

want to leave your session open as you proceed. 
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Creating Your First F# Program—
Introducing Functional 
Programming 

F# is effective and productive primarily because it’s built on the tried and tested constructs of functional 
programming. This chapter covers the core building blocks of functional programming with F#, 
including simple types and function values, pattern matching, lists, options, and sequences; as well as 
how to declare some of your own simple types. Chapters 4 through 6 cover imperative programming, 
generics, and object-oriented programming. 

Getting Started with F# Arithmetic 
We first cover the most common base types of data manipulated in F# code, beginning with the basics of 
F# arithmetic. 

Basic Literals 
Table 3-1 lists the basic numeric types used in F# code and their corresponding literal forms. The table 
also lists the non-numeric types bool and unit. 

Table 3-1. Basic Types and Literals 

Type Description Sample Literals .NET Name 

bool True/false values true, false System.Boolean 

byte 8-bit unsigned integers 0uy, 19uy, 0xFFuy System.Byte 

sbyte 8-bit signed integers 0y, 19y, 0xFFy System.SByte 

int16 16-bit signed integers 0s, 19s, 0x0800s System.Int16 
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Type Description Sample Literals .NET Name 

uint16 16-bit unsigned integers 0us, 19us, 0x0800us System.UInt16 

int, int32 32-bit signed integers 0, 19, 0x0800, 0b0001 System.Int32 

uint32 32-bit unsigned integers 0u, 19u, 0x0800u System.UInt32 

int64 64-bit signed integers 0L, 19L, 0x0800L System.Int64 

uint64 64-bit unsigned integers 0UL, 19UL, 0x0800UL System.UInt64 

nativeint Machine-sized signed integers 0n, 19n, 0x0800n System.IntPtr 

unativeint Machine-sized unsigned integers 0un, 19un, 0x0800un System.UIntPtr 

single, float32 32-bit  IEEE floating-point 0.0f, 19.7f, 1.3e4f System.Single 

double, float 64-bit  IEEE floating-point 0.0, 19.7, 1.3e4 System.Double 

decimal High-precision decimal values 0M, 19M, 19.03M System.Decimal 

bigint Arbitrarily large integers 0I, 19I Math.BigInt 

bignum Arbitrary-precision rationals 0N, 19N Math.BigNum 

unit The type with only one value () Core.Unit 

Arithmetic Operators 
Table 3-2 lists the most commonly used arithmetic operators. These are overloaded to work with all the 
numeric types listed in Table 3-1. 

Table 3-2. Arithmetic Operators and Examples 

Operator  Description Sample Use on int Sample Use on float 
+ Unchecked addition 1 + 2 1.0 + 2.0 

- Unchecked subtraction 12 - 5 12.3 - 5.4 

* Unchecked multiplication 2 * 3 2.4 * 3.9 

/ Division 5 / 2 5.0 / 2.0 

% Modulus 5 % 2 5.4 % 2.0 

- Unary negation -(5+2) -(5.4+2.4) 
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The behavior of these and other operators can be extended for user-defined types, a topic covered 
in Chapter 6. In F#, addition, subtraction, and multiplication over integers are unchecked; that is, if 
overflow or underflow occurs beyond the representable range, then wraparound occurs. For example, 
2147483647 is the largest representable 32-bit integer of the int type: 

> 2147483647+1;; 
val it : int = -2147483648 

You can access checked versions of arithmetic operators that raise System.OverflowException 
exceptions by opening the Microsoft.FSharp.Core.Operators.Checked module. If avoiding overflow is a 
priority, then using the decimal, bigint, and bignum types is recommended. Division by zero raises a 
System.DivideByZeroException exception, except in the case of floating-point numbers, where it returns 
one of the special floating-point numbers Infinity and -Infinity. Operator overloading interacts with 
type inference—if a use of an overloaded operator isn’t otherwise constrained to work on a particular 
type, then F# assumes it works on 32-bit integers.  

To constrain a use of an operator to a particular type, you must give a type annotation that has the 
effect of telling the compiler the type on the left of the two arguments to the binary operator. For example, 
in the absence of additional type information, the following function is assumed to work with integers: 

> let squareAndAdd a b = a * a + b;; 
val squareAndAdd : int -> int -> int 

A single type annotation on a is sufficient to indicate that a * a is an operation on float values and 
thus returns a float value, and that a * a + b is also an operation on float: 

> let squareAndAdd (a:float) b = a * a + b;; 
val squareAndAdd : float -> float -> float 

If you want, you can also give full type annotations for the arguments and return type of a function: 

> let squareAndAdd (a:float) (b:float) : float = a * a + b;; 
val squareAndAdd : float -> float -> float 

Bitwise Operations 
All the integer types listed in Table 3-1 support bitwise manipulations on their underlying 
representations. Table 3-3 shows the bitwise manipulation operators. 
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Table 3-3. Bitwise Arithmetic Operators and Examples 

Operator  Description Sample Use Result 
&&& Bitwise “and” 0x65 &&& 0x0F 0x05 

||| Bitwise “or” 0x65 ||| 0x18 0x7D 

ˆˆˆ Bitwise “exclusive or” 0x65 ˆˆˆ 0x0F 0x6A 

~~~ Bitwise negation ~~~0x65 0xFFFFFF9a 

<<< Left shift 0x01 <<< 3 0x08 

>>> Right shift (arithmetic if signed) 0x65 >>> 3 0x0C 

The following sample shows how to use these operators to encode 32-bit integers into 1, 2, or 5 
bytes, represented by returning a list of integers. Integers in the range 0 to 127 return a list of length 1: 
 
let encode (n: int32) = 
    if   (n >= 0    && n <= 0x7F)   then [ n ] 
    elif (n >= 0x80 && n <= 0x3FFF) then [ (0x80 ||| (n >>> 8)) &&& 0xFF; 
                                           (n &&& 0xFF) ] 
    else  [ 0xC0; ((n >>> 24) &&& 0xFF); 
                  ((n >>> 16) &&& 0xFF); 
                  ((n >>> 8)  &&& 0xFF); 
                   (n         &&& 0xFF) ] 
 

Here’s an example of the function in action: 

> encode 32;; 
val it : int32 list = [32] 
 
> encode 320;; 
val it : int32 list = [129; 64] 
 
> encode 32000;; 
val it : int32 list = [192; 0; 0; 125; 0] 

Arithmetic Conversions 
Numeric types aren’t implicitly converted—conversions between different numeric types must be made 
explicitly. You do this by using overloaded conversion operators. These work the same way as 
overloaded infix operators such as + and *. Table 3-4 shows the primary conversion operators. 
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Table 3-4. Overloaded Arithmetic Conversions and Examples 

Operator Description Sample Use Result 

sbyte Convert/truncate to sbyte sbyte (-17) -17y 

byte Convert/truncate to byte byte 255 255uy 

int16 Convert/truncate to int16 int16 0 0s 

uint16 Convert/truncate to uint16 uint16 65535 65535us 

int/int32 Convert/truncate to int32 int 17.8 17 

uint32 Convert/truncate to uint32 uint32 12 12u 

int64 Convert/truncate to int64 int64 (-100.4) -100L 

uint64 Convert/truncate to uint64 uint64 1 1UL 

float32 Convert to float32/single float32 65 65.0f 

float Convert to float/double float 65 65.0 

These conversions are all unchecked in the sense that they won’t raise exceptions. Again, the 
Microsoft.FSharp.Core.Operators.Checked module has corresponding definitions of these operators. An 
alternative is to use the .NET static methods contained in the type System.Convert, such as 
System.Convert.ToDouble( ). These do perform checking, which means they raise an exception if the 
source number can’t be represented within the numeric range of the target type. As with many .NET 
constructs, uses of System.Convert methods may require type annotations to resolve overloading, 
discussed further in Chapters 5 and 6. 

Arithmetic Comparisons 
When used with numeric values, the binary comparison operators =, <>, <, <=, >, >=, min, and max perform 
comparisons according to the natural ordering for each particular numeric type. You can also use these 
operators on other data types, such as to compare lists of integers, and you can customize their behavior 
for new types you define. Chapter 5 discusses generic comparison in detail, and Chapter 8 discusses 
customizing generic comparison. 

When used with floating-point values, these operators implement the IEEE semantics for NaN (Not a 
Number) values. For example, (NaN = NaN) is false, as are (NaN <= NaN) and (NaN < NaN). 

Overloaded Math Functions 
The module Microsoft.FSharp.Core.Operators includes the definition of a number of useful overloaded 
math operators. These are shown in Table 3-5 and are overloaded either on a suitable range of integer 
types or on the basic floating-point types. 
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Table 3-5. Overloaded Math Functions and Examples 

Function Description Sample Use Result 

abs Absolute value of signed numeric types abs (-10.0f) 10.0f 

cos, sin, tan Trigonometric functions cos 0.0 1.0 

cosh, sinh, tanh Hyperbolic trigonometric functions cosh 1.0 1.543080635 

acos, asin, atan, atan2 Inverse trigonometric functions acos 1.0 0.0 

ceil, floor Round up, round down ceil 1.001 2.0 

truncate Round toward zero truncate 8.9 8.0 

exp, log, log10 Exponent, logarithm, base-10 logarithm exp 1.0 2.718281828 

( ** ) Power 2.0 ** 4.0 16.0 

Introducing Simple Strings 
The F# type string is an abbreviation for the .NET type System.String and represents a sequence of 
Unicode UTF-16 characters. The following sections briefly introduce strings and the most useful 
functions for formatting them. 

Working with String Literals and Primitives 
Table 3-6 shows the different forms for writing string literals.  

Table 3-6. String and Character Literals 

Example Kind Type 

"Humpty Dumpty" String string 

"c:\\Program Files" String string 

@"c:\Program Files" Verbatim string string 

"xyZy3d2"B Literal byte array byte [] 

'c' Character char 

Table 3-7 shows the escape characters you can use in strings and characters. 



CHAPTER 3 ■  CREATING YOUR FIRST F# PROGRAM 

 

31 

 

Table 3-7. Escape Characters in Nonverbatim Strings 

Escape Character ASCII/Unicode Value Examples 

\n New line 10 "\n" 

\r Carriage return 13 "\r" 

\t Tab 9 "\t" 

\b Backspace 8  

\NNN Trigraph NNN "\032" (space) 

\uNNNN Unicode character NNNN "\u00a9" (©) 

\UNNNNNNNN Long Unicode character NNNN NNNN "\U00002260" (_) 

As shown in Table 3-6, a literal form is also available for arrays of bytes: the characters are 
interpreted as ASCII characters, and non-ASCII characters can be embedded using escape codes. This 
can be useful when you’re working with binary protocols: 

> "MAGIC"B;; 
val it : byte [] = [|77uy; 65uy; 71uy; 73uy; 67uy|] 

Verbatim string literals are particularly useful for file and path names that contain the backslash 
character (\): 

> let dir  = @"c:\Program Files";; 
val dir : string 

You can also use multiline string literals: 

> let s = "All the kings horses 
- and all the kings men";; 
val s : string 

The operator .[] is used to access the elements of a string, and the property Length retrieves its 
length: 
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> let s = "Couldn't put Humpty";; 
val s : string 
 
> s.Length;; 
val it : int = 19 
 
> s.[13];; 
val it : char = 'H' 

The operator .[index..index] can be used to take substrings: 

> let s = "Couldn't put Humpty";; 
val s : string 
 
> s.[13..16];; 
val it : string = "Hump" 

Strings are immutable; that is, a string value can’t be modified after it’s built. For example, the 
Substring method on the string type doesn’t modify the original string but returns a new string 
representing the result. As mentioned in Chapter 2, immutability is a key concept for many F# values, 
and you encounter it many places in this book. If you attempt to mutate a string, you get an error like the 
one shown here: 

> let s = "Couldn't put Humpty";; 
val s : string = "Couldn't put Humpty" 
 
> s.[13] <- 'h';; 
 
  s.[13] <- 'h';; 
  ^^ 
stdin(75,0): error: FS0001: Type error in the use of the overloaded operator 
'set_Item'. The type 'string' does not support any operators named 'set_Item' 

Building Strings 
The simplest way to build strings is via concatenation using the + operator: 

> "Couldn't put Humpty" + " " + "together again";; 
val it : string = "Couldn't put Humpty together again" 

 
You can also build strings using objects of the .NET type System.Text.StringBuilder. These objects 

are mutable buffers that you can use to accumulate and modify text, and they’re more efficient than 
repeated uses of the + operator. Here’s an example: 
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> let buf = new System.Text.StringBuilder();; 
val buf : System.Text.StringBuilder 
 
> buf.Append("Humpty Dumpty");; 
 
> buf.Append(" sat on the wall");; 
 
> buf.ToString();; 
val it : string = "Humpty Dumpty sat on the wall" 

■ Note For compatibility with OCaml, the ^ operator can also be used for string concatenation, although it’s 

generally used only when cross-compiling code with OCaml. 

Working with Lists and Options 
Some of the foundational data structures of F# coding are tuples, lists, and options. The following 
sections discuss these and some related topics by example. 

Using F# Lists 
F# lists are a common data structure used in functional programming. You saw some examples of 
concrete lists in Chapter 2. Table 3-8 shows the primitive constructs for building lists. 

Table 3-8. Some List-Related Language Constructs and Operators 

Operator/Expression Description Examples 

[] The empty list [] 

expr :: expr “Cons” an element with a list 1 :: [2; 3] 

[expr; ...; expr] A list value [1; 2; 3] 

[expr .. expr] A range of integers [1 .. 99] 

[ for x in list … ] A generated list (see end of chapter) [ for x in 1..99 -> x * x ] 

expr @ expr Concatenates two lists [1; 2] @ [3] 

Here are some basic list values: 
 
let oddPrimes = [3; 5; 7; 11] 
let morePrimes = [13; 17] 
let primes = 2 :: (oddPrimes @ morePrimes) 
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The value and type of primes are as follows: 

val primes : int list = [2; 3; 5; 7; 11; 13; 17] 

Lists are immutable: the cons :: and append @ operations don’t modify the original lists; instead, 
they create new lists. You can see this in the following interactive session: 

> let people = [ "Adam"; "Dominic"; "James" ];; 
val people : string list 
 
> people;; 
val it : string list = [ "Adam"; "Dominic"; "James" ] 
 
> "Chris" :: people;; 
val it : string list = [ "Chris"; "Adam"; "Dominic"; "James" ] 
 
> people;; 
val it : string list = [ "Adam"; "Dominic"; "James" ] 

Note that people has not been changed by the construction of a new list using the cons operator. F# 
lists are represented in memory as linked lists; each F# list value is a cons cell containing a value plus a 
pointer to the next chain in the list, or else it’s a special nil object. When you create a new list using the 
:: operator, then the tail of the new list points to the old list, which ensures that the inner memory 
associated with lists is often reused as part of multiple list values.  

You can decompose lists from the head downward by using pattern matching. You saw some simple 
examples of pattern matching on tuples in Chapter 2, and we look at pattern matching in more detail in 
“Getting Started with Pattern Matching” later in this chapter. Here is an example of using pattern 
matching with lists: 
 
let printFirst primes = 
    match primes with 
    | h :: t -> printfn "The first prime in the list is %d" h 
    | [] -> printfn "No primes found in the list" 

> printFirst oddPrimes;; 
The first prime in the list is 3 
val it : unit = () 

The first line after the match is a pattern-matching rule that matches the input primes against the 
pattern h :: t. If primes is a nonempty list, then the match is successful, and the first printfn is 
executed with h bound to the head of the list and t to its tail. The second line considers the case where 
primes is an empty list. Note that the :: and [] symbols can be used both to build up lists in expressions 
and to decompose them in pattern matching. The F# library also includes a module List that contains 
some useful functions related to programming with lists. You see many of these functions in the next 
section and throughout this book. Table 3-9 shows some of them. 

F# lists aren’t appropriate for all circumstances; for example, very large data structures should 
probably be represented using arrays or other data structures or even managed by an external tool such 
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as a relational database. We discuss a number of immutable data structures in the “Some Common 
Immutable Data Structures” sidebar. 

Table 3-9. Some Sample Functions in the List Module 

Function Type Description 

List.length 'T list -> int Returns the length of the list. 

List.head 'T list -> 'T Returns the first element of a nonempty 
list. 

List.tail 'T list -> 'T list Returns all the elements of a nonempty 
list except the first. 

List.init int -> (int -> 'T) -> 'T list Returns a new list. The length of the new 
list is specified by the first parameter. 
The second parameter must be a 
generating function that maps list 
indexes to values. 

List.append 'T list -> 'T list -> 'T list Returns a new list containing the 
elements of the first list followed by the 
elements of the second list. 

List.filter ('T -> bool) -> 'T list -> 'T list Returns a new list containing only those 
elements of the original list where the 
function returns true. 

List.map ('T -> 'U ) -> 'T list -> 'U list Creates a new list by applying a function 
to each element of the original list. 

List.iter ('T -> unit) -> 'T list -> unit Executes the given function for each 
element of the list. 

List.unzip ('T * 'U) list -> 'T list * 'U list Returns two new lists containing the first 
and second elements of the pairs in the 
input list. 

List.zip 'T list -> 'U list -> ('T * 'U) list Returns a new list containing the elements 
of the two input lists combined pairwise. 
The input lists must be the same length; 
otherwise, an exception is raised. 

List.toArray 'T list -> 'T[] Creates an array from the given list. 

List.ofArray 'T[]    -> 'T list Creates a list from the given array. 
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Here are examples of how to use some of the functions from Table 3-9. The last two examples use 
function values, which we cover in more detail in “Introducing Function Values” later in this chapter. 

> List.head [5; 4; 3];; 
val it : int = 5 
 
> List.tail [5; 4; 3];; 
val it : int list = [ 4; 3 ] 
 
> List.map (fun x -> x*x) [1; 2; 3];; 
val it : int list = [ 1; 4; 9 ] 
 
> List.filter (fun x -> x % 3 = 0) [2; 3; 5; 7; 9];; 
val it : int list = [ 3; 9 ] 

Some Common Immutable Data Structures 

Data structures are generally divided between mutable and immutable, a distinction touched on in Chapter 
2 and covered in more detail in Chapter 4. Immutable data structures are sometimes called persistent or 
simply functional. Here are some of the immutable data structures commonly used with F#: 

• Tuple values and option values: These are immutable and are basic workhorses of 
F# programming. 

• Immutable linked lists of type 'T list: These are cheap to access from the left 
end. They’re inefficient for random-access lookup because the list must be 
traversed from the left for each lookup—that is, random-access lookup is O(n), 
where n is the number of elements in the collection. The full name of this type is 
Microsoft.FSharp.Collections.List<'T>. 

• Immutable sets based on balanced trees: Chapter 2 shows some example uses of 
immutable sets, and an implementation is provided via the type Set<'T> in the F# 
library namespace Microsoft.FSharp.Collections. These are cheap to add, 
access, and union, with O(log(n)) access times, where n is the number of elements 
in the collection. Because the type is immutable, internal nodes can be shared 
between different sets. 

• Immutable maps based on balanced trees: These are similar to immutable sets but 
associate keys with values (that is, they’re immutable dictionaries). One 
implementation of these is provided via the F# library type Map<'Key,'Value> in 
Microsoft.FSharp.Collections. As with sets, these have O(log(n)) access times. 

Chapter 4 covers imperative programming and mutable data structures. 
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Using F# Option Values 
Like lists and tuples, option values are simple constructs frequently used as workhorses in F# coding. An 
option is simply either a value Some(v) or the absence of a value None. For example, options are useful for 
returning the value of a search where you may or may not have a result. You see in the section “Defining 
Discriminated Unions” that the option type is defined in the F# library as follows: 
 
type 'T option = 
    | None 
    | Some of 'T 
 

The following is a data structure that uses options to represent the (optional) parents of some well-
known characters: 

> let people = [ ("Adam", None); 
                 ("Eve" , None); 
                 ("Cain", Some("Adam","Eve")); 
                 ("Abel", Some("Adam","Eve")) ];; 
val people : (string * (string *string) option) list 

Pattern matching is frequently used to examine option values: 

> let showParents (name,parents) = 
      match parents with 
      | Some(dad,mum) -> printfn "%s has father %s, mother %s" name dad mum 
      | None          -> printfn "%s has no parents!" name;; 
val showParents : (string * (string * string) option) -> unit 
 
> showParents ("Adam",None);; 
Adam has no parents 
val it : unit = () 

The F# library also includes a module Option that contains useful functions for programming with 
options. Table 3-10 shows some of these. Although it’s easy to code them by hand using pattern 
matching, it can also be useful to learn and rely on the standard definitions. 

Table 3-10. Some Sample Functions in the Option Module 

Function Type Description 

Option.get 'T option -> 'T Returns the value of a Some option; otherwise 
raises an exception. 

Option.isNone 'T option -> bool Returns true for a None option. 

Option.map ('T -> 'U) -> 'T option -> 
'U option 

Given None, returns None. Given Some(x), returns 
Some(f x), where f is the given function. 

Option.iter ('T -> unit) -> 'T option -> 
unit 

Applies the given function to the value of a Some 
option; otherwise, does nothing. 
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Using Option Values for Control 
You can use option values for both data and control; they’re often used to represent the success or 
failure of a computation. This can be useful when you’re catching an exception, as shown in the 
following example (which uses the function http from Chapter 2): 
 
let fetch url = 
    try Some (http url) 
    with :? System.Net.WebException -> None 
 

Chapter 4 describes exceptions in more detail—what matters here is that if a network error occurs 
during the HTTP request, the exception is caught, and the result of the fetch function is the value None. 
Successful web page requests return a Some value. Option values can then be discriminated and 
decomposed using pattern matching, as shown here: 

> match (fetch "http://www.nature.com") with 
  | Some text -> printfn "text = %s" text 
  | None -> printfn "**** no web page found";; 
text = <HTML> ... </HTML>  (note: the HTML is shown here if connected to the web) 
val it : unit = () 

Working with Conditionals: && and || 
A basic control construct in F# programming is if/then/elif/else. Here’s an example: 
 
let round x = 
    if x >= 100 then 100 
    elif x < 0 then 0 
    else x 
 

Conditionals are really shorthand for pattern matching; for example, the previous code could be 
written like this: 
 
let round x = 
    match x with 
    | _ when x >= 100 -> 100 
    | _ when x < 0    -> 0 
    | _               -> x 
 

Conditionals are always guarded by a  Boolean-valued expression. You can build them using && and 
|| (the “and” and “or” operators) as well as any library functions that return Boolean values: 
 
let round2 (x, y) = 
    if x >= 100 || y >= 100 then 100,100 
    elif x < 0 || y < 0 then 0,0 
    else x,y 
 

The operators && and || have the usual short-circuit behavior in that the second argument of && is 
evaluated only if the first evaluates to true, and likewise, the second argument of || is evaluated only if 
the first evaluates to false.  
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Defining Recursive Functions 
One of the fundamental building blocks of computation in F# is recursion. The following code shows a 
simple, well-known recursive function: 

> let rec factorial n = if n <= 1 then 1 else n * factorial (n-1);; 
val factorial : int -> int 
 
> factorial 5;; 
val it : int = 120 

This example shows that a recursive function is simply one that can call itself as part of its own 
definition. Recursive functions are introduced by let rec. Functions aren’t recursive by default, because 
it’s wise to isolate recursive functions to help you control the complexity of your algorithms and keep 
your code maintainable. It may help to visualize the execution of factorial 5 in the following way (note 
that in reality, F# executes the function using efficient native code): 

factorial 5 
= 5 * factorial 4 
= 5 * (4 * factorial 3) 
= 5 * (4 * (3 * factorial 2)) 
= 5 * (4 * (3 * (2 * factorial 1 ))) 
= 5 * (4 * (3 * (2 * 1))) 
= 5 * (4 * (3 * 2)) 
= 5 * (4 * 6) 
= 5 * 24 
= 120 

As with all calls, the execution of the currently executing instance of the function is suspended while 
a recursive call is made. 

Many of the operators you’ve encountered so far can be coded as recursive functions. For example, 
the following is one possible implementation of List.length: 
 
let rec length l = 
    match l with 
    | [] -> 0 
    | h :: t -> 1 + length t 
 

Likewise, many functions such as List.iter are often implemented using recursive functions. 
Recursion is sometimes used as a means of programming particular patterns of control. For 

example, the following code repeatedly fetches the HTML for a particular web page, printing each time 
it’s fetched: 
 
let rec repeatFetch url n = 
    if n > 0 then 
        let html = http url 
        printfn "fetched <<< %s >>> on iteration %d" html n 
        repeatFetch url (n-1) 
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Recursion is powerful but not always the ideal way to encode either data manipulations or control 
constructs, at least if other techniques are readily available. For example, the previous program could be 
implemented using a for loop, as explained in Chapter 4, which would be clearer. Likewise, you should 
typically avoid explicit recursion if an operator is available that captures the pattern of recursion being 
used. For example, many explicit loops and recursive functions can be replaced by uses of functions 
such as List.map and Array.map. 

A typical error with recursion is to forget to decrement a variable at the recursive call. For example, 
we incorrectly entered the following nonterminating function when writing this chapter: 
 
let rec badFactorial n = if n <= 0 then 1 else n * badFactorial n 
 

You should always check your recursive calls to ensure that the function is tending toward 
termination—that is, that the arguments are approaching the base case. This is called well-founded 
recursion. 

You can define multiple recursive functions simultaneously by separating the definitions with and. 
These are called mutually recursive functions. For example: 
 
let rec even n = (n = 0u) || odd(n-1u) 
and     odd n = (n <> 0u) && even(n-1u) 
 

This gives the following types: 

val even : uint32 -> bool 
val odd : uint32 -> bool 

Of course, a more efficient, nonrecursive implementation of these is available! 
 
let even (n:uint32) = (n % 2u) = 0u 
let odd  (n:uint32) = (n % 2u) = 1u 
 

You must sometimes take care with recursive functions to ensure that they’re tail recursive, or else 
the computation stack of your program may be exhausted by large inputs. This is particularly important 
for library functions or functions that operate over large data structures with very large numbers of 
recursive calls. Indeed, the implementation of length shown previously isn’t tail recursive. Chapter 8 
discusses tail recursion in depth. 

Introducing Function Values 
This section covers the foundational building block of F# functional programming: function values. We 
begin with a simple and well-known example: using function values to transform one list into another. 

One of the primary uses of F# lists is as a general-purpose, concrete data structure for storing 
ordered input lists and ordered results. Input lists are often transformed to output lists using aggregate 
operations that transform, select, filter, and categorize elements of the list according to a range of 
criteria. These aggregate operations provide an excellent introduction to how to use function values. 
Let’s take a closer look at this in the following code sample, which continues from the definition of http 
from Listing 2-2 in Chapter 2: 



CHAPTER 3 ■  CREATING YOUR FIRST F# PROGRAM 

 

41 

 

> let sites = [ "http://www.live.com"; 
                "http://www.google.com" ];; 
val sites : string list 
 
> let fetch url = (url, http url);; 
val fetch : string -> string * string 
 
> List.map fetch sites;; 
val it : (string * string) list 
= [ ("http://www.live.com", "<html>...</html>"); 
    ("http://www.google.com", "<html>...</html>"); ] 

The first interaction defines sites as a literal list of URLs, and the second defines the function fetch. 
The third calls the aggregate operation List.map. This accepts the function value fetch as the first 
argument and the list sites as the second argument. The function applies fetch to each element of the 
list and collects the results in a new list. 

Types are one useful way to help learn what a function does. Here’s the type of List.map: 

> List.map;; 
val it: ('T -> 'U) -> 'T list -> 'U list 

This says List.map accepts a function value as the first argument and a list as the second argument, 
and it returns a list as the result. The function argument can have any type 'T -> 'U, and the elements of 
the input list must have a corresponding type 'T. The symbols 'T and 'U are called type parameters, and 
functions that accept type parameters are called generic. Chapter 5 discusses type parameters in detail. 

■ Tip You can often deduce the behavior of a function from its type, especially if its type involves type 
parameters. For example, look at the type of List.map. Using type parameters, you can observe that the type 'T 
list of the input list is related to the type 'T accepted by the function passed as the first parameter. Similarly, the 

type 'U returned by this function is related to the type 'U list of the value returned by List.map. From this, it’s 
reasonable to conclude that List.map calls the function parameter for items in the list and constructs its result 

using the values returned. 

Using Anonymous Function Values 
Function values are so common in F# programming that it’s convenient to define them without giving 
them names. Here is a simple example: 
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> let primes = [2; 3; 5; 7];; 
val primes : int list 
 
> let primeCubes = List.map (fun n -> n * n * n) primes;; 
val primeCubes: int list 
 
> primeCubes;; 
val it : int list = [8; 27; 125; 343] 

The definition of primeCubes uses the anonymous function value (fun n -> n * n * n). Such values 
are similar to function definitions but are unnamed and appear as an expression rather than as a let 
declaration. fun is a keyword meaning function, n represents the argument to the function, and n * n * 
n is the result of the function. The overall type of the anonymous function expression is int -> int. You 
could use this technique to avoid defining the intermediary function fetch in the earlier sample: 
 
let resultsOfFetch = List.map (fun url -> (url, http url)) sites 
 

You see anonymous functions throughout this book. Here is another example: 

> List.map (fun (_,p) -> String.length p) resultsOfFetch;; 
val it : int list = [3932; 2827 ] 

Here you see two things: 

• The argument of the anonymous function is a tuple pattern. Using a tuple pattern 
automatically extracts the second element from each tuple and gives it the name p 
within the body of the anonymous function. 

• Part of the tuple pattern is a wildcard pattern, indicated by an underscore. This 
indicates that you don’t care what the first part of the tuple is; you’re interested 
only in extracting the length from the second part of the pair. 

Computing with Aggregate Operators 
Functions such as List.map are called aggregate operators, and they’re powerful constructs, especially 
when combined with the other features of F#. Here is a longer example that uses the aggregate operators 
Array.filter and List.map to count the number of URL links in an HTML page and then collects stats on 
a group of pages (this sample uses the function http defined in Chapter 2): 
 
let delimiters = [| ' '; '\n'; '\t'; '<'; '>'; '=' |] 
let getWords (s: string) = s.Split delimiters 
let getStats site = 
    let url = "http://" + site 
    let html = http url 
    let hwords = html |> getWords 
    let hrefs = html |> getWords |> Array.filter (fun s -> s = "href") 
    (site,html.Length, hwords.Length, hrefs.Length) 
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Here, you use the function getStats with three web pages: 

> let sites = [ "www.live.com";"www.google.com";"search.yahoo.com" ];; 
val sites : string list 
 
> sites |> List.map getStats;; 
val it : (string * int * int * int) list 
  = [("www.live.com", 7728, 1156, 10); 
     ("www.google.com", 2685, 496, 14); 
     ("search.yahoo.com", 10715, 1771, 38)] 

The function getStats computes the length of the HTML for the given web site, the number of 
words in the text of that HTML, and the approximate number of links on that page. 

The previous code sample extensively uses the |> operator to pipeline operations, discussed in the 
“Pipelining with |>” sidebar. The F# library design ensures that a common, consistent set of aggregate 
operations is defined for each structured type. Table 3-11 shows how the same design patterns occur for 
the map abstraction. 

Table 3-11. A Recurring Aggregate Operator Design Pattern from the F# Library 

Operator Type 

List.map ('T -> 'U) -> 'T list -> 'U list 

Array.map ('T -> 'U) -> 'T [] -> 'U [] 

Option.map ('T -> 'U) -> 'T option -> 'U option 

Seq.map ('T -> 'U) -> seq<'T> -> seq<'U> 

You may see types that define methods such as Map that provide a slightly more succinct way of 
transforming data. For example, this might allow you to write a transformation like so: 
 
site.Map getStats 
 

This may require the use of a type annotation. Both styles are used in F# programming, depending 
on the methods and properties available for a particular data type. 
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Pipelining with |> 

The |> forward pipe operator is perhaps the most important operator in F# programming. Its definition is 
deceptively simple: 

let (|>) x f = f x 

Here is how to use the operator to compute the cubes of three numbers: 

[1;2;3] |> List.map (fun x -> x * x * x) 

This produces [1;8;27], just as if you had written this: 

List.map (fun x -> x * x * x) [1;2;3] 

In a sense, |> is function application in reverse. However, using |> has distinct advantages: 

• Clarity: When used in conjunction with operators such as List.map, the |> 
operator allows you to perform the data transformations and iterations in a 
forward-chaining, pipelined style. 

• Type inference: Using the |> operator lets type information flow from input objects 
to the functions manipulating those objects. F# uses information collected from 
type inference to resolve some language constructs such as property accesses 
and method overloading. This relies on information being propagated left to right 
through the text of a program. In particular, typing information to the right of a 
position isn’t taken into account when resolving property access and overloads. 

For completeness, here is the type of the operator: 

val (|>) : 'T -> ('T -> 'U) -> 'U 
 

Composing Functions with >> 
You saw earlier how to use the |> forward pipe operator to pipe values through a number of functions. 
This was a small example of the process of computing with functions, an essential and powerful 
programming technique in F#. This section covers ways to compute new function values from existing 
ones using compositional techniques. First, let’s look at function composition. For example, consider 
the following code: 
 
let google = http "http://www.google.com" 
google |> getWords |> List.filter (fun s -> s = "href") |> List.length 
 

You can rewrite this code using function composition as follows: 
 
let countLinks = getWords >> List.filter (fun s -> s = "href") >> List.length 
google |> countLinks 
 

You define countLinks as the composition of three function values using the >> forward composition 
operator. This operator is defined in the F# library as follows: 
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let (>>) f g x = g(f(x)) 
 

You can see from the definition that f >> g gives a function value that first applies f to the x and 
then applies g. Here is the type of >>: 

val (>>) : ('T -> 'U) -> ('U -> 'c) -> ('T -> 'c) 

Note that >> is typically applied to only two arguments: those on either side of the binary operator, 
here named f and g. The final argument x is typically supplied at a later point.  

F# is good at optimizing basic constructions of pipelines and composition sequences from 
functions—for example, the function countLinks shown earlier becomes a single function calling the 
three functions in the pipeline in sequence. This means sequences of compositions can be used with 
relatively low overhead. 

Building Functions with Partial Application 
Composing functions is just one way to compute interesting new functions. Another useful way is to use 
partial application. Here’s an example: 
 
let shift (dx,dy) (px,py) = (px + dx, py + dy) 
let shiftRight = shift (1,0) 
let shiftUp    = shift (0,1) 
let shiftLeft  = shift (-1,0) 
let shiftDown  = shift (0,-1) 
 

The last four functions are defined by calling shift with only one argument, in each case leaving a 
residue function that expects an additional argument. F# Interactive reports the types as follows: 

val shift : int * int -> int * int -> int * int 
val shiftRight : int * int -> int * int 
val shiftLeft  : int * int -> int * int 
val shiftUp    : int * int -> int * int 
val shiftDown  : int * int -> int * int 

Here is an example of how to use shiftRight and how to apply shift to new arguments (2,2): 

> shiftRight (10,10);; 
val it : int * int = (11,10) 
 
> List.map (shift (2,2)) [ (0,0); (1,0); (1,1); (0,1) ];; 
val it : int * int list = [ (2,2); (3,2); (3,3); (2,3) ] 

In the second example, the function shift takes two pairs as arguments. You bind the first 
parameter to (2, 2). The result of this partial application is a function that takes one remaining tuple 
parameter and returns the value shifted by two units in each direction. This resulting function can now 
be used in conjunction with List.map. 
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Using Local Functions 
Partial application is one way in which functions can be computed rather than simply defined. This 
technique becomes very powerful when combined with additional local definitions. Here’s a simple and 
practical example, representing an idiom common in graphics programming: 
 
open System.Drawing;; 
let remap (r1: Rectangle) (r2: Rectangle) = 
    let scalex = float r2.Width / float r1.Width 
    let scaley = float r2.Height / float r1.Height 
    let mapx x = int (float r2.Left + truncate (float (x - r1.Left) * scalex)) 
    let mapy y = int (float r2.Top + truncate (float (y - r1.Top) * scaley)) 
    let mapp (p: Point) = Point(mapx p.X, mapy p.Y) 
    mapp 
 

The function remap computes a new function value mapp that maps points in one rectangle to points 
in another. F# Interactive reports the type as follows: 

val remap : Rectangle -> Rectangle -> (Point -> Point) 

The type Rectangle is defined in the .NET library System.Drawing.dll and represents rectangles 
specified by integer coordinates. The computations on the interior of the transformation are performed 
in floating point to improve precision. You can use this as follows: 

> let mapp = remap (Rectangle(100,100,100,100)) (Rectangle(50,50,200,200));; 
val mapp : Point -> Point 
 
> mapp (Point(100,100));; 
val it : Point = X=50,Y=50 
 
> mapp (Point(150,150));; 
val it : Point = X=150,Y=150 
 
> mapp (Point(200,200));; 
val it : Point = X=250,Y=250 

The intermediate values scalex and scaley are computed only once, despite the fact that you’ve 
called the resulting function mapp three times. It may be helpful to think of mapp as a function object 
being generated by the remap function. 

In the previous example, mapx, mapy, and mapp are local functions—functions defined locally as part 
of the implementation of remap. Local functions can be context dependent; in other words, they can be 
defined in terms of any values and parameters that happen to be in scope. Here, mapx is defined in terms 
of scalex, scaley, r1, and r2. 
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■ Note Local and partially applied functions are, if necessary, implemented by taking the closure of the variables 
they depend on and storing them away until needed. In optimized F# code, the F# compiler often avoids this and 
instead passes extra arguments to the function implementations. Closure is a powerful technique that is used 

frequently in this book. It’s often used in conjunction with functions, as in this chapter, but is also used with object 

expressions, sequence expressions, and class definitions. 

Using Functions as Abstract Values 
The function remap from the previous section generates values of type Point -> Point. You can think of 
this type as a way of representing “the family of transformations for the type Point.” Many useful 
concepts can be modeled using function types and values. For example: 

• The type unit -> unit is frequently used to model actions: operations that run 
and perform some unspecified side effect. For example, consider the expression 
(fun () -> printfn "Hello World"). 

• Types of the form type -> type -> int are frequently used to model comparison 
functions over the type type. You also see type * type -> int used for this 
purpose, where a tuple is accepted as the first argument. In both cases, a negative 
result indicates less than, zero indicates equals, and a positive result indicates 
greater than. Many collection types accept such a value as a configuration 
parameter. For example, the F# compare function performs generic comparison on 
values (see Chapter 5). 

• Types of the form type -> unit are frequently used to model callbacks. Callbacks 
are often run in response to a system event, such as when a user clicks a user 
interface element. In this case, the parameter sent to the handler has some 
specific type, such as System.Windows.Forms.MouseEventArgs. 

• Types of the form unit -> type are frequently used to model delayed 
computations, which are values that, when required, produce a value of type type. 
For example, a threading library can accept such a function value and execute it 
on a different thread, eventually producing a value of type type. Delayed 
computations are related to lazy computations and sequence expressions, 
discussed in “Using Sequence Expressions.” 

• Types of the form type -> unit are frequently used to model sinks, which are 
values that, when required, consume a value of type type. For example, a logging 
API may use a sink to consume values and write them to a log file. 

• Types of the form type1 -> type2 are frequently used to model transformers, 
which are functions that transform each element of a collection. You see this 
pattern in the map operator for many common collection types. 

• Types of the form type1 -> type2 -> type2 are frequently used to model visitor 
accumulating functions, which are functions that visit each element of a collection 
(type type1) and accumulate a result (type type2). For example, a visitor function 
that accumulates integers into a set of integers has type int -> Set<int> -> 
Set<int>. 
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■ Note The power of function types to model many different concepts is part of the enduring appeal of functional 
programming. This is one of the refreshing features F# brings to object-oriented programming: many simple 
abstractions are modeled in very simple ways and often have simple implementations through orthogonal, unified 
constructs such as anonymous function values and function compositions. 

Iterating with Aggregate Operators 
It’s common to use data to drive control. In functional programming, the distinction between data and 
control is often blurred: function values can be used as data, and data can influence control flow. One 
example is using a function such as List.iter to iterate over a list: 
 
let sites = [ "http://www.live.com"; 
              "http://www.google.com"; 
              "http://search.yahoo.com" ] 
 
sites |> List.iter (fun site -> printfn "%s, length = %d" site (http site).Length) 
 

List.iter simply calls the given function (here an anonymous function) for each element in the 
input list. Here is its type: 

val iter : ('T -> unit) -> 'T list -> unit 

Many additional aggregate iteration techniques are defined in the F# and .NET libraries, particularly 
by using values of type seq<type>, discussed in “Getting Started with Sequences” later in this chapter. 

Abstracting Control with Functions 
As a second example of how you can abstract control using functions, let’s consider the common pattern 
of timing the execution of an operation (measured in wall-clock time). First, let’s explore how to use 
System.DateTime.Now to get the wall-clock time: 

> open System;; 
> let start = DateTime.Now;; 
val start : DateTime  
 
> http "http://www.newscientist.com";; 
val it : string = "<html>...</html>" 
 
> let finish = DateTime.Now;; 
val finish : DateTime  
 
> let elapsed = finish - start;; 
val elapsed : TimeSpan  
 
> elapsed;; 
val it : TimeSpan = 00:00:01.9799671 
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Note that the type TimeSpan has been inferred from the use of the overloaded operator in the 
expression finish - start. Chapter 6 discusses overloaded operators in depth. You can now wrap up 
this technique as a function time that acts as a new control operator: 
 
open System 
let time f = 
    let start = DateTime.Now 
    let res = f() 
    let finish = DateTime.Now 
    (res, finish - start) 
 

This function runs the input function f but takes the time on either side of the call. It then returns 
both the result of the function and the elapsed time. The inferred type is as follows: 

val time : (unit -> 'T) -> 'T * TimeSpan 

Here 'T is a type variable that stands for any type, and thus the function can be used to time 
functions that return any kind of result. Note that F# automatically infers a generic type for the function, 
a technique called automatic generalization that lies at the heart of F# type inference. Chapter 5 
discusses automatic generalization in detail. Here is an example of using the time function, which again 
reuses the http function defined in Chapter 2: 

> time (fun () -> http "http://www.newscientist.com");; 
val it : string * TimeSpan = ...   (The HTML text and time will be shown here) 

Using .NET Methods as First-Class Functions 
You can use existing .NET methods as first-class functions. For example: 

> open System.IO;; 
> [@"C:\Program Files"; @"C:\Windows"] |> List.map Directory.GetDirectories;; 
 
val it : string [] list = 
  [ [|"C:\\Program Files\\Adobe"; "C:\\Program Files\\Apoint"; 
      "C:\\Program Files\\CA"; "C:\\Program Files\\CE Remote Tools"; ...]; ... ] 

Sometimes you need to add extra type information to indicate which overload of the method is 
required. Chapter 6 discusses method overloading in more detail. For example, the following causes 
an error: 
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> open System;; 
> let f = Console.WriteLine;; 
 
C:\misc\test.ml(11,8): error: FS0041: The method WriteLine is overloaded. 
Possible matches are shown below. Resolve the overloading by adding further 
type annotations to the arguments. 
 
Possible overload: 'Console.WriteLine(bool value) : unit'. 
 
Possible overload: 'Console.WriteLine(char value) : unit'. 
... 

However, the following succeeds: 

> let f = (Console.WriteLine : string -> unit);; 
val f : string -> unit 

Getting Started with Pattern Matching 
One important tool in F# programming is pattern matching, a general construct that combines 
decomposition and control. In the previous sections, you got a taste of how you can use pattern 
matching with tuple, list, and option values. However, you can also use pattern matching in many other 
situations. You see many other examples of pattern matching in this book, but let’s start with some 
simple pattern matching over strings and integers. As you’ve already seen, pattern matches on explicit 
values are introduced using the match ... with ... construct: 
 
let urlFilter url agent = 
    match (url,agent) with 
    | "http://www.control.org", 99 -> true 
    | "http://www.kaos.org"   , _  -> false 
    | _, 86 -> true 
    | _ -> false 
 

The inferred type of the function is as follows: 

val urlFilter : string -> int -> bool 

The expression (url,agent) after the keyword match is a tuple of type (string*int). Each rule of the 
match is introduced with a | followed by a pattern, then ->, and then a result expression. When 
executed, the patterns of the rules are used one by one, and the first successful pattern match 
determines which result expression is used. In the previous example, the first pattern matches if url and 
agent are "http://www.control.org" and 99, respectively. The next matches if url is 
"http://www.kaos.org". The third pattern matches if agent is 86. The last three rules all use wildcard 
patterns represented by the underscore character; these match all inputs. 
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The overall conditions under which urlFilter returns true can be determined by reading through 
the pattern match: agent 99 can access "http://www.control.org", no one can access 
"http://www.kaos.org", and, excluding the latter, agent 86 can access anything. 

Patterns are a rich and powerful technique for simultaneous data analysis and decomposition. 
Table 3-12 summarizes all the ways to form patterns in F#; many of these involve building up patterns 
from other patterns. The sections that follow look at some of these constructs, and Chapter 9 covers 
active patterns. 

Table 3-12. Different Ways to Form Patterns 

General Form Kind Example 

(pat, ... ,pat) Tuple pattern (1,2,("3",x)) 

[pat; ... ;pat] List pattern [x;y;z] 

[| pat; ...; pat |] Array pattern [| "cmd"; arg1; arg2 |] 

{ id=pat; ...; id=pat } Record pattern { X=1; Y=2 } 

Tag(pat, ... ,pat) Tagged union or active pattern Point(x,y) 

pat | pat “Or” pattern [x] | ["X";x] 

pat & pat “And” pattern [p] & [Point(x,y)] 

pat as id Named pattern [x] as inp 

id Variable pattern x 

_ Wildcard pattern _ 

Any literal Constant pattern 36, "36", 
27L,System.DayOfWeek.Monday 

:? type Type test pattern :? string 

null Null test pattern null 

Matching on Structured Values 
Pattern matching can be used to decompose structured values. Here is an example where you match 
nested tuple values: 
 
> let highLow a b = 
    match (a,b) with 
    | ("lo", lo), ("hi", hi) -> (lo,hi) 
    | ("hi", hi), ("lo", lo) -> (lo,hi) 
    | _ -> failwith "expected a both a high and low value";; 
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The match examines two pairs and looks at the strings in the first element of each, returning the 
associated values: 

> highLow ("hi",300) ("lo",100);; 
val it : int * int = (100,300) 

The first rule matches if the first parts of the input pairs are the strings "lo" and "hi", respectively. It 
then returns a pair made from the respective second parts of the tuples. The second rule is the mirror of 
this in case the values appeared in reverse order. 

The final cases of both of the previous examples use wildcard patterns to cover remaining cases. 
This makes the patterns exhaustive. Frequently, no wildcard is needed to ensure this, because for many 
input types F# is able to determine whether the given set of rules is sufficient to cover all possibilities for 
the given shape of data. However, if a match isn’t exhaustive, a warning is given: 

> let urlFilter3 url agent = 
      match url,agent with 
      | "http://www.control.org", 86 -> true 
      | "http://www.kaos.org", _ -> false;; 
 
  match url,agent with 
  ^^^^^^^^^^^^^^^^^^^^ 
warning: Incomplete pattern matches on this expression. ... 

In these cases, it may be necessary to add an extra exception-throwing clause to indicate to the F# 
compiler that the given inputs aren’t expected: 
 
let urlFilter4 url agent = 
    match url,agent with 
    | "http://www.control.org", 86 -> true 
    | "http://www.kaos.org", _ -> false 
    | _ -> failwith "unexpected input" 
 

Nonexhaustive matches are automatically augmented by a default case where a 
MatchFailureException is thrown. Chapter 4 discusses exceptions. 

F# is frequently able to determine whether pattern-matching rules are redundant, such as if a rule 
can never be selected because previous rules subsume all such cases. In this case, a warning is given. For 
example: 

> let urlFilter2 url agent = 
      match url,agent with 
      | "http://www.control.org", _ -> true 
      | "http://www.control.org", 86 -> true 
      | _ -> false;; 
 
     | "http://www.control.org", 86 -> true 
     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 
warning: This rule will never be matched. 
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■ Tip Use wildcard patterns with care. F# can often determine whether a match is exhaustive, and the use of 
wildcard patterns effectively disables this analysis for any particular pattern match. Sometimes it’s better to write 
out the extra cases of a match as explicit patterns, because you can then adjust your code when new kinds of 

input data are introduced. 

Guarding Rules and Combining Patterns 
Individual rules of a match can be guarded by a condition that is executed if the pattern itself succeeds. 
Here is a simple use of this mechanism to record the three clauses of computing the sign of an integer: 
 
let sign x = 
    match x with 
    | _ when x < 0 -> -1 
    | _ when x > 0 ->  1 
    | _ -> 0 
 

You can combine two patterns to represent two possible paths for matching: 
 
let getValue a = 
    match a with 
    | (("lo" | "low") ,v) -> v 
    | ("hi",v) | ("high",v) -> v 
    | _ -> failwith "expected a both a high and low value" 
 

Here, the pattern ("lo" | "low") matches either string. The pattern ("hi",v) | ("high",v) plays 
essentially the same role by matching pairs values where the left of the pair is "hi" or "high" and by 
binding the value v on either side of the pattern. 

■ Note Individual patterns can’t bind the same variables twice. For example, a pattern (x,x) isn’t permitted, 
although (x,y) when x = y is permitted. Furthermore, each side of an “or” pattern must bind the same set of 

variables, and these variables must have the same types. 

Getting Started with Sequences 
Many programming tasks require the iteration, aggregation, and transformation of data streamed from 
various sources. One important and general way to code these tasks is in terms of values of the .NET type 
System.Collections.Generic.IEnumerable<type>, which is typically abbreviated to seq<type> in F# code. 
A seq<type> is a value that can be iterated, producing results of type type on demand. Sequences are 
used to wrap collections, computations, and data streams and are frequently used to represent the 
results of database queries. The following sections present some simple examples of working with 
seq<type> values. 
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Using Range Expressions 
You can generate simple sequences using range expressions. For integer ranges, these take the form of 
seq {n .. m} for the integer expressions n and m: 

> seq {0 .. 2};; 
val it : seq<int> = seq [ 0; 1; 2; ] 

You can also specify range expressions using other numeric types, such as double and single: 

> seq {-100.0 .. 100.0};; 
val it : seq<double> = seq [ -100.0; -99.0; -98.0; ... ] 

By default, F# Interactive shows the value of a sequence only to a limited depth. seq<'T> values are 
lazy in the sense that they compute and return the successive elements on demand. This means you can 
create sequences representing very large ranges, and the elements of the sequence are computed only if 
they’re required by a subsequent computation. In the next example, you don’t actually create a concrete 
data structure containing one trillion elements but rather a sequence value that has the potential to yield 
this number of elements on demand. The default printing performed by F# Interactive forces this 
computation up to depth 4: 

> seq {1I .. 1000000000000I};; 
val it : seq<bigint> = seq [1I; 2I; 3I; 4I; ... ] 

The default increment for range expressions is always 1. A different increment can be used via range 
expressions of the form seq { n .. skip .. m }: 

> seq { 1 .. 2 .. 5 };; 
val it : seq<int> = seq [ 1; 3; 5 ] 
 
> seq { 1 .. -2 .. -5 };; 
val it : seq<int> = seq [ 1; -1; -3; -5 ] 

If the skip causes the final element to be overshot, then the final element isn’t included in the result: 

> seq { 0 .. 2 .. 5 };; 
val it : seq<int> = seq [ 0; 2; 4 ] 

The (..) and (.. ..) operators are overloaded operators in the same sense as (+) and (-), which 
means their behavior can be altered for user-defined types. Chapter 6 discusses this in more detail. 
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Iterating a Sequence 
You can iterate sequences using the for ... in ... do construct, as well as the Seq.iter aggregate 
operator discussed in the next section. Here is a simple example of the first: 

> let range = seq {0 .. 2 .. 6};; 
val range : seq<int> 
 
> for i in range do 
      printfn "i = %d" i;; 
i = 0 
i = 2 
i = 4 
i = 6 

This construct forces the iteration of the entire seq. Use it with care when you’re working with 
sequences that may yield a large number of elements. 

Transforming Sequences with Aggregate Operators 
Any value of type seq<type> can be iterated and transformed using functions in the 
Microsoft.FSharp.Collections.Seq module. For example: 

> let range = seq {0 .. 10};; 
val range : seq<int> 
 
> range |> Seq.map (fun i -> (i,i*i));; 
val it : seq<int * int> = seq [ (0, 0); (1, 1); (2, 4); (3, 9) ... ] 

Table 3-13 shows some important functions in this library module. The following operators 
necessarily evaluate all the elements of the input seq immediately: 

• Seq.iter: This iterates all elements, applying a function to each one. 

• Seq.toList: This iterates all elements, building a new list. 

• Seq.toArray: This iterates all elements, building a new array. 

Most of the other operators in the Seq module return one or more seq<type> values and force the 
computation of elements in any input seq<type> values only on demand. 
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Table 3-13. Some Important Functions and Aggregate Operators from the Seq Module 

Operator Type 

Seq.append : seq<'T> -> seq<'T> -> seq<'T> 

Seq.concat : seq< seq<'T> >  -> seq<'T> 

Seq.choose : ('T -> 'U option) -> seq<'T> -> seq<'U> 

Seq.delay : (unit -> seq<'T>) -> seq<'T> 

Seq.empty seq<'T> 

Seq.iter : ('T -> unit) -> seq<'T> -> unit 

Seq.filter : ('T -> bool) -> seq<'T> -> seq<'T> 

Seq.map : ('T -> 'U) -> seq<'T> -> seq<'U> 

Seq.singleton : 'T -> seq<'T> 

Seq.truncate : int -> seq<'T> -> seq<'T> 

Seq.toList : seq<'T> -> 'T list 

Seq.ofList : 'T list -> seq<'T> 

Seq.toArray : seq<'T> -> 'T[] 

Seq.ofArray : 'T[] -> seq<'T> 

Which Types Can Be Used as Sequences? 
Table 3-13 includes many uses of types such as seq<'T>. When a type appears as the type of an 
argument, the function accepts any value that’s compatible with this type. Chapter 5 explains the 
notions of subtyping and compatibility in more detail; the concept should be familiar to OO 
programmers because it’s the same as that used by other .NET languages such as C#, which itself is close 
to that used by Java. In practice, you can easily discover which types are compatible with which by using 
F# Interactive and tools such as Visual Studio: when you hover over a type name, the compatible types 
are shown. You can also refer to the online documentation for the F# libraries and the .NET Framework, 
which you can easily search using the major search engines. 

Here are some of the types compatible with seq<'T>: 

• Array types: For example, int[] is compatible with seq<int>. 

• F# list types: For example, int list is compatible with seq<int>. 

• All other F# and .NET collection types: For example, 
System.Collections.Generic.SortedList<string> is compatible with seq<string>. 

The following types aren’t directly type compatible with seq<'T> but can be converted readily into 
sequences when needed: 
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• Some .NET types are compatible with a somewhat deprecated nongeneric .NET 
1.0 construct called System.Collections.IEnumerable (note the absence of any 
generic parameter) but aren’t compatible with the newer .NET construct 
System.Collections.Generic.IEnumerable<type>, called seq<type> in F# code. 

• Some .NET types such as System.Text.RegularExpressions.MatchCollection 
support only a GetEnumerator method and can’t be used directly as values of type 
seq<type>. However, you can convert them into sequences by using them in 
conjunction with the sequence expression syntax mentioned earlier, such as seq { 
for x in matchCollection -> x } or for x in matchCollection do .... 

Expressions of the form for pat in seq are described in the section “Using Sequence Expressions” 
and in Chapter 4. 

Using Lazy Sequences from External Sources 
Sequences are frequently used to represent the process of streaming data from an external source, such 
as from a database query or from a computer’s file system. For example, the following recursive function 
constructs a seq<string> that represents the process of recursively reading the names of all the files 
under a given path. The return types of Directory.GetFiles and Directory.GetDirectories are string[]; 
and as noted earlier, this type is always compatible with seq<string>: 
 
open System.IO 
let rec allFiles dir = 
    Seq.append 
        (dir |> Directory.GetFiles) 
        (dir |> Directory.GetDirectories |> Seq.map allFiles |> Seq.concat) 
 

This gives the following type: 

val allFiles : string -> seq<string> 

Here is an example of the function being used on one of our machines: 

> allFiles @"c:\WINDOWS\system32";; 
val it : seq<string> = 
       = seq ["c:\\WINDOWS\\system32\\$winnt$.inf"; 
              "c:\\WINDOWS\\system32\\12520437.cpx"; 
              "c:\\WINDOWS\\system32\\12520850.cpx"; 
              "c:\\WINDOWS\\system32\\6to4svc.dll"; ...] 

The allFiles function is interesting partly because it shows many aspects of F# working seamlessly 
together: 

• Functions as values: The function allFiles is recursive and is used as a first-class 
function value within its own definition. 

• Pipelining: The pipelining operator |> provides a natural way to present the 
transformations applied to each subdirectory name. 
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• Type inference: Type inference computes all types in the obvious way, without any 
type annotations. 

• NET interoperability: The System.IO.Directory operations provide intuitive 
primitives, which can then be incorporated in powerful ways using succinct F# 
programs. 

• Laziness where needed: The function Seq.map applies the argument function lazily 
(on demand), which means subdirectories aren’t read until required. 

One subtlety with programming with on-demand or lazy values like sequences is that side effects such 
as reading and writing from an external store shouldn’t in general happen until the lazy sequence value is 
consumed. For example, the previous allFiles function reads the top-level directory C:\ as soon as 
allFiles is applied to its argument. This may not be appropriate if the contents of C:\ are changing. You 
can delay the computation of the sequence by using the library function Seq.delay or by using a sequence 
expression, covered in the next section, where delays are inserted automatically by the F# compiler. 

Using Sequence Expressions 
Aggregate operators are a powerful way of working with seq<type> values. However, F# also provides a 
convenient and compact syntax called sequence expressions for specifying sequence values that can be 
built using operations such as choose, map, filter, and concat. You can also use sequence expressions to 
specify the shapes of lists and arrays. It’s valuable to learn how to use sequence expressions: 

• They’re a compact way of specifying interesting data and generative processes. 

• They’re used to specify database queries when using data-access layers such as 
Microsoft’s Language Integrated Queries (LINQ). See Chapter 15 for examples of 
using sequence expressions this way. 

• They’re one particular use of computation expressions, a more general concept 
that has several uses in F# programming. Chapter 9 discusses computation 
expressions, and we show how to use them for asynchronous and parallel 
programming in Chapter 13. 

Creating Sequence Expressions Using for 
The simplest form of a sequence expression is seq { for value in expr .. expr -> expr }. Here, -> 
should be read “yield.” This is a shorthand way of writing Seq.map over a range expression. For example, 
you can generate an enumeration of numbers and their squares as follows: 

> let squares = seq { for i in 0 .. 10 -> (i,i*i) };; 
val squares : seq<int * int>  
 
> squares;; 
val it : seq<int * int> = [ (0,0); (1,1); (2,4); (3,9); ... ] 

The more complete form of this construct is seq { for pattern in seq -> expression }. The 
pattern allows you to decompose the values yielded by the input enumerable. For example, you can 
consume the elements of squares using the pattern (i,iSquared): 
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> seq { for (i,iSquared) in squares -> (i,iSquared,i*iSquared) };; 
val it : seq<int * int * int> = [ (0,0,0); (1,1,1); (2,4,8); (3,9,27); ... ] 

The input seq can be a seq<type> or any type supporting a GetEnumerator method. (The latter is 
supported because some important types from the .NET libraries support this method without directly 
supporting the seq interface.)  

Enriching Sequence Expressions with Additional Logic 
A sequence expression often begins with for ... in ..., but you can use additional constructs. For 
example: 

• A secondary iteration: for pattern in seq do seq-expr 

• A filter: if expression then seq-expr 

• A conditional: if expression then seq-expr else seq-expr 

• A let binding: let pattern = expression in seq-expr 

Secondary iterations generate additional sequences, all of which are collected and concatenated 
together. Filters let you skip elements that don’t satisfy a given predicate. To see both of these in action, 
the following computes a checkerboard set of coordinates for a rectangular grid: 
 
let checkerboardCoordinates n =  
   seq { for row in 1 .. n do 
             for col in 1 .. n do 
                 if (row+col) % 2 = 0 then 
                     yield (row,col) } 

> checkerboardCoordinates 3;; 
val it : seq<(int * int)> = seq [(1, 1); (1, 3); (2, 2); (3, 1); ...] 

Using let clauses in sequence expressions allows you to compute intermediary results. For 
example, the following code gets the creation time and last-access time for each file in a directory: 
 
let fileInfo dir = 
    seq { for file in Directory.GetFiles dir do 
              let creationTime = File.GetCreationTime file  
              let lastAccessTime = File.GetLastAccessTime file 
              yield (file,creationTime,lastAccessTime) } 
 

In the previous examples, each step of the iteration produces zero or one result. The final yield of a 
sequence expression can also be another sequence, signified through the use of the yield! keyword. The 
following sample shows how to redefine the allFiles function from the previous section using a 
sequence expression. Note that multiple generators can be included in one sequence expression; the 
results are implicitly collated together using Seq.append: 
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let rec allFiles dir = 
    seq { for file in Directory.GetFiles dir do 
              yield file 
          for subdir in Directory.GetDirectories dir do  
              yield! allFiles subdir } 

Generating Lists and Arrays Using Sequence Expressions  
You can also use range and sequence expressions to build list and array values. The syntax is identical, 
except the surrounding braces are replaced by the usual [ ] for lists and [|  |] for arrays (Chapter 4 
discusses arrays in more detail): 

> [ 1 .. 4 ];; 
val it: int list = [ 1; 2; 3; 4 ] 
 
> [ for i in 0 .. 3 -> (i,i*i) ];; 
val it : (int * int) list = [ (0,0); (1,1); (2,4); (3,9) ] 
 
> [| for i in 0 .. 3 -> (i,i*i) |];; 
val it : (int * int) [] = [ (0,0); (1,1); (2,4); (3,9) ] 

■ Caution F# lists and arrays are finite data structures built immediately rather than on demand, so you must 
take care that the length of the sequence is suitable. For example, [ 1I .. 1000000000I ] attempts to build a 

list that is one billion elements long. 

Exploring Some Simple Type Definitions 
F# is a typed language, and you often need to declare new shapes of types via type definitions and type 
abbreviations. This chapter covers only some of the simpler type definitions that are useful and succinct 
workhorses for functional programming. F# also lets you define a range of sophisticated type definitions 
related to object-oriented programming, discussed in Chapter 6. However, these aren’t often required in 
basic functional programming. 

Defining Type Abbreviations 
Type abbreviations are the simplest type definitions: 
 
type index = int 
type flags = int64 
type results = string * TimeSpan * int * int 
 

It’s common to use lowercase names for type abbreviations, but it’s certainly not compulsory. Type 
abbreviations can be generic: 
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type StringMap<'T> = Microsoft.FSharp.Collections.Map<string,'T> 
type Projections<'T,'U> = ('T -> 'U) * ('U -> 'T) 
 

Type abbreviations aren’t concrete, because they simply alias an existing type. They’re expanded 
during the process of compiling F# code to the format shared between multiple .NET languages. The 
difference can, for example, be detected by other .NET languages; because of this, a number of 
restrictions apply to type abbreviations. For example, you can’t augment them with additional members, 
as can be done for concrete types such as records, discriminated unions, and classes. In addition, you 
can’t truly hide a type abbreviation using a signature (see Chapter 7). 

Defining Records 
The simplest concrete type definitions are records. Here’s an example: 
 
type Person = 
    { Name: string; 
      DateOfBirth: System.DateTime; } 
 

You can construct record values by using the record labels: 

> { Name = "Bill"; DateOfBirth = new System.DateTime(1962,09,02) };; 
val it : Person = { Name="Bill"; DateOfBirth = 09/02/1962 } 

Should there be a conflict between labels among multiple records, you can also construct record 
values by using an explicit type annotation: 

> ({ Name = "Anna"; DateOfBirth = new System.DateTime(1968,07,23) } : Person);; 
val it : Person = { Name="Anna"; DateOfBirth = 23/07/1968 } 

Record values are often used to return results from functions: 
 
type PageStats = 
    { Site: string; 
      Time: System.TimeSpan; 
      Length: int; 
      NumWords: int; 
      NumHRefs: int } 
 

This technique works well when returning a large number of heterogeneous results: 
 
let stats site = 
    let url = "http://" + site 
    let html,t = time (fun () -> http url) 
    let hwords = html |> getWords 
    let hrefs = hWords |> List.filter (fun s -> s = "href") 
    { Site=site; Time=t; Length=html.Length; 
      NumWords=hwords.Length; NumHRefs=hrefs.Length } 
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Here is the type of stats: 

val stats  : string -> PageStats 

Here is how F# Interactive shows the results of applying the function: 

> stats "www.live.com";; 
val it : PageStats = { Site="www.live.com"; Time=0.872623628; 
                       Length=7728, NumWords=1156; NumHRefs=10; } 

Handling Non-Unique Record Field Names 
Record labels need not be unique among multiple record types. Here is an example: 
 
type Person = 
    { Name: string; 
      DateOfBirth: System.DateTime; } 
 
type Company = 
    { Name: string; 
      Address: string; } 
 

When record names are non-unique, constructions of record values may need to use object 
expressions in order to indicate the name of the record type, thus disambiguating the construction. For 
example, consider the following type definitions: 
 
type Dot = { X: int; Y: int } 
type Point = { X: float; Y: float } 
 

On lookup, record labels are accessed using the dot (.) notation in the same way as properties. One 
slight difference is that in the absence of further qualifying information, the type of the object being 
accessed is inferred from the record label. This is based on the latest set of record labels in scope from 
record definitions and uses of open. For example, given the previous definitions, you have the following: 

> let coords1 (p:Point) = (p.X,p.Y);; 
val coords1 : Point -> float * float 
 
> let coords2 (d:Dot) = (d.X,d.Y);; 
val coords2 : Dot -> int * int 
 
> let dist p = sqrt (p.X * p.X + p.Y * p.Y);; // use of X and Y implies type "Point" 
val dist : Point -> float 
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The accesses to the labels X and Y in the first two definitions have been resolved using the type 
information provided by the type annotations. The accesses in the third definition have been resolved 
using the default interpretation of record field labels in the absence of any other qualifying information. 

Cloning Records 
Records support a convenient syntax to clone all the values in the record, creating a new value with 
some values replaced. Here is a simple example: 
 
type Point3D = { X: float; Y: float; Z: float } 
let p1 = { X=3.0; Y=4.0; Z=5.0 } 

> let p2 = { p1 with Y=0.0; Z=0.0 };; 
val p2 : Point3D 

The definition of p2 is identical to this: 
 
let p2 = { X=p1.X; Y=0.0; Z=0.0 } 
 

This expression form doesn’t mutate the values of a record, even if the fields of the original record 
are mutable. 

Defining Discriminated Unions 
The second kind of concrete type definition discussed in this section is a discriminated union. Here is a 
very simple example: 
 
type Route = int 
type Make = string 
type Model = string 
type Transport = 
    | Car of Make * Model 
    | Bicycle 
    | Bus of Route 
 

Each alternative of a discriminated union is called a discriminator. You can build values by using the 
discriminator  much as if it were a function: 

> let nick = Car("BMW","360");; 
val nick : Transport 
 
> let don = [ Bicycle; Bus 8 ];; 
val don  : Transport list 
 
> let james = [ Car ("Ford","Fiesta"); Bicycle ];; 
val james  : Transport list 
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You can also use discriminators  in pattern matching: 
 
let averageSpeed (tr: Transport) = 
    match tr with 
    | Car _ -> 35 
    | Bicycle -> 16 
    | Bus _ -> 24 
 

Several of the types you’ve already met are defined as discriminated unions. For example, the 'T 
option type is defined as follows: 
 
type 'T option = 
    | None 
    | Some of 'T 
 

Discriminated unions can include recursive references (the same is true of records and other type 
definitions). This is frequently used when representing structured languages via discriminated unions, a 
topic covered in depth in Chapter 9: 
 
type Proposition = 
    | True 
    | And of Proposition * Proposition 
    | Or of Proposition * Proposition 
    | Not of Proposition 
 

Recursive functions can be used to traverse such a type. For example: 
 
let rec eval (p: Proposition) = 
    match p with 
    | True -> true 
    | And(p1,p2) -> eval p1 && eval p2 
    | Or (p1,p2) -> eval p1 || eval p2 
    | Not(p1) -> not (eval p1) 
 

The F# type of immutable lists is defined in this way: 
 
type 'T list = 
    | ([]) 
    | (::) of 'T * 'T list 
 

A broad range of tree-like data structures are conveniently represented as discriminated unions. For 
example: 
 
type Tree<'T> = 
    | Tree of 'T * Tree<'T> * Tree<'T> 
    | Tip of 'T 
 

You can use recursive functions to compute properties of trees: 
 
let rec size tree = 
    match tree with 
    | Tree(_,l,r) -> 1 + size l + size r 
    | Tip _ -> 1 
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Here is the inferred type of size: 

val size : Tree<'T> -> int 

Here is an example of a constructed tree term and the use of the size function: 

> let small = Tree("1",Tree("2",Tip("a"),Tip("b")),Tip("c"));; 
val small : Tree<string>  
 
> small;; 
val it : Tree<string> = Tree ("1",Tree ("2",Tip("a"),Tip("b")),Tip("c")) 
 
> size small;; 
val it : int = 5 

Chapters 8, 9, and 12 discuss symbolic manipulation based on trees. 

■ Note Discriminated unions are a powerful and important construct and are useful when modeling a finite, 
sealed set of choices. This makes them a perfect fit for many constructs that arise in applications and symbolic 
analysis libraries. They are, by design, nonextensible: subsequent modules can’t add new cases to a discriminated 
union. This is deliberate: you get strong and useful guarantees by placing a limit on the range of possible values 

for a type. Extensible types can be defined through the use of records of functions and object interface types, 

discussed in Chapters 5 and 6. 

Using Discriminated Unions as Records 
Discriminated union types with only one data tag are an effective way to implement record-like types: 
 
type Point3D = Vector3D of float * float * float 
let origin = Vector3D(0.,0.,0.) 
let unitX  = Vector3D(1.,0.,0.) 
let unitY  = Vector3D(0.,1.,0.) 
let unitZ  = Vector3D(0.,0.,1.) 
 

These are particularly effective because they can be decomposed using succinct patterns in the 
same way as tuple arguments: 
 
let length (Vector3D(dx,dy,dz)) = sqrt(dx*dx+dy*dy+dz*dz) 
 

This technique is most useful for record-like values where there is some natural order on the 
constituent elements of the value (as shown earlier) or where the elements have different types. 
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Defining Multiple Types Simultaneously 
Multiple types can be declared together to give a mutually recursive collection of types, including 
record types, discriminated unions, and abbreviations. The type definitions must be separated by the 
keyword and: 
 
type Node = 
    { Name : string; 
      Links : Link list } 
and Link = 
    | Dangling 
    | Link of Node 

Summary 
F# is a multiparadigm language, and this chapter looked at the core language constructs used for 
functional programming. The next chapter explores how to use F# for imperative programming: how to 
use mutable state, raise and handle exceptions, and perform I/O. 
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Introducing Imperative 
Programming 

In Chapter 3, you saw some of the simple but powerful data types and language constructs that make up 
F# functional programming. The functional programming paradigm is strongly associated with 
“programming without side effects,” called pure functional programming. In this paradigm, programs 
compute the result of a mathematical expression and don’t cause any side effects, except perhaps 
reporting the result of the computation. The formulas used in spreadsheets are often pure, as is the core 
of functional programming languages such as Haskell. F# isn’t, however, a pure functional language. For 
example, you can write programs that mutate data, perform I/O communications, start threads, and 
raise exceptions. Furthermore, the F# type system doesn’t enforce a strict distinction between 
expressions that perform these actions and expressions that don’t. 

Programming with side effects is called imperative programming. This chapter looks more closely at 
a number of constructs related to imperative programming. It describes how to use loops, mutable data, 
arrays, and some common input/output techniques. 

If your primary programming experience has been with an imperative language such as C, C#, or 
Java, you may initially find yourself using imperative constructs fairly frequently in F#. However, over 
time, F# programmers generally learn how to perform many routine programming tasks within the side-
effect-free subset of the language. F# programmers tend to use side effects in the following situations: 

• When scripting and prototyping using F# Interactive 

• When working with .NET library components that use side effects heavily, such as 
GUI libraries and I/O libraries 

• When initializing complex data structures 

• When using inherently imperative, efficient data structures such as hash tables 
and hash sets 

• When locally optimizing routines in a way that improves the performance of the 
functional version of the routine 

When working with very large data structures or in scenarios where the allocation of data structures 
must be minimized for performance reasons 

Some F# programmers don’t use any imperative techniques except as part of the external wrapper 
for their programs. Adopting this form of pure functional programming for a time is an excellent way to 
hone your functional programming techniques. 
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■ Tip Programming with fewer side effects is attractive for many reasons. For example, eliminating unnecessary 
side effects nearly always reduces the complexity of your code, so it leads to fewer bugs. Another thing 
experienced functional programmers appreciate is that the programmer or compiler can easily adjust the order in 

which expressions are computed. A lack of side effects also helps you reason about your code: it’s easier to 
visually check when two programs are equivalent, and it’s easier to make radical adjustments to your code without 
introducing new, subtle bugs. Programs that are free from side effects can often be computed on demand as 

necessary, often by making very small, local changes to your code to introduce the use of delayed data structures. 
Finally, side effects such as mutation are difficult to use when data is accessed concurrently from multiple 

threads, as you see in Chapter 13. 

Imperative Looping and Iterating 
Three looping constructs are available to help simplify writing iterative code with side effects: 

• Simple for loops: for var = start-expr to end-expr do expr  

• Simple while loops: while expr do expr  

• Sequence loops: for pattern in expr do expr  

All three constructs are for writing imperative programs, indicated partly by the fact that in all cases 
the body of the loop must have a return type of unit. Note that unit is the F# type that corresponds to 
void in imperative languages such as C, and it has the single value (). The following sections cover these 
three constructs in more detail. 

Simple for Loops 
Simple for loops are the most efficient way to iterate over integer ranges. This is illustrated here by a 
replacement implementation of the repeatFetch function from Chapter 2: 
 
let repeatFetch url n = 
    for i = 1 to n do 
        let html = http url 
        printf "fetched <<< %s >>>\n" html 
    printf "Done!\n" 
 

This loop is executed for successive values of i over the given range, including both start and end 
indexes. 

Simple while Loops 
The second looping construct is a while loop, which repeats until a given guard is false. For example, 
here is a way to keep your computer busy until the weekend: 
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open System 
 
let loopUntilSaturday() = 
    while (DateTime.Now.DayOfWeek <> DayOfWeek.Saturday) do 
        printf "Still working!\n" 
 
    printf "Saturday at last!\n" 
 

When executing this code in F# Interactive, you can interrupt its execution by using Ctrl+C. 

More Iteration Loops over Sequences 
As discussed in Chapter 3, any values compatible with the type seq<type> can be iterated using the for 
pattern in seq do ... construct. The input seq may be an F# list value, any seq<type>, or a value of any 
type supporting a GetEnumerator method. Here are some simple examples: 

> for (b,pj) in [ ("Banana 1",true); ("Banana 2",false) ] do 
      if pj then printfn "%s is in pyjamas today!" b;; 
Banana 1 is in pyjamas today! 

The following example iterates the results of a regular expression match. The type returned by the 
.NET method System.Text.RegularExpressions.Regex.Matches is a MatchCollection, which for reasons 
known best to the .NET designers doesn’t directly support the seq<Match> interface. It does, however, 
support a GetEnumerator method that permits iteration over the individual results of the operation, each 
of which is of type Match; the F# compiler inserts the conversions necessary to view the collection as a 
seq<Match> and perform the iteration. You learn more about using the .NET Regular Expression library in 
Chapter 10: 

> open System.Text.RegularExpressions;; 
> for m in (Regex.Matches("All the Pretty Horses","[a-zA-Z]+")) do 
      printf "res = %s\n" m.Value;; 
res = All 
res = the 
res = Pretty 
res = Horses 

Using Mutable Records 
The simplest mutable data structures in F# are mutable records. In Chapter 3, you saw some simple 
examples of immutable records. A record is mutable if one or more of its fields is labeled mutable. This 
means record fields can be updated using the <- operator: that is, the same syntax used to set a property. 
Mutable fields are generally used for records that implement the internal state of objects, discussed in 
Chapters 6 and 7. 

For example, the following code defines a record used to count the number of times an event occurs 
and the number of times the event satisfies a particular criterion: 
 



CHAPTER 4 ■ INTRODUCING IMPERATIVE PROGRAMMING 

 

70 

 

type DiscreteEventCounter = 
    { mutable Total: int; 
      mutable Positive: int; 
      Name : string } 
 
let recordEvent (s: DiscreteEventCounter) isPositive = 
    s.Total <- s.Total+1 
    if isPositive then s.Positive <- s.Positive+1 
 
let reportStatus (s: DiscreteEventCounter) = 
    printfn "We have %d %s out of %d" s.Positive s.Name s.Total 
 
let newCounter nm = 
    { Total = 0; 
      Positive = 0; 
      Name = nm } 
 

You can use this type as follows (this example uses the http function from Chapter 2): 
 
let longPageCounter = newCounter "long page(s)" 
 
let fetch url = 
    let page = http url 
    recordEvent longPageCounter (page.Length > 10000) 
    page 
 

Every call to the function fetch mutates the mutable record fields in the global variable 
longPageCounter. For example: 

> fetch "http://www.smh.com.au" |> ignore;; 
val it : unit = () 
 
> fetch "http://www.theage.com.au"  |> ignore;; 
val it : unit = () 
 
> reportStatus longPageCounter;; 
We have 1 long page(s) out of 2 
val it : unit = () 

Record types can also support members (for example, properties and methods) and give implicit 
implementations of interfaces, discussed in Chapter 6. Practically speaking, this means you can use 
them as one way to implement object-oriented abstractions. 

Mutable Reference Cells 
One particularly useful mutable record is the general-purpose type of mutable reference cells, or ref cells 
for short. These often play much the same role as pointers in other imperative programming languages. 
You can see how to use mutable reference cells in the following example: 
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> let cell1 = ref 1;; 
val cell1 : int ref = {contents = 1;} 
 
> !cell1;; 
val it : int = 1 
 
> cell1 := 3;; 
val it : unit = () 
 
> cell1;; 
val it : int ref = {contents = 3;} 
 
> !cell1;; 
val it : int = 3 

The key type is 'T ref, and its main operators are ref, !, and :=. The types of these operators are as 
follows: 

val ref  : 'T -> 'T ref 
val (:=) : 'T ref -> 'T -> unit 
val (!)  : 'T ref -> 'T 

These allocate a reference cell, mutate the cell, and read the cell, respectively. The operation cell1 
:= 3 is the key one; after this operation, the value returned by evaluating the expression !cell1 is 
changed. You can also use either the contents field or the Value property to access the value of a 
reference cell. 

Both the 'T ref type and its operations are defined in the F# library as simple record data structures 
with a single mutable field: 
 
type 'T ref = { mutable contents: 'T } 
let (!) r = r.contents 
let (:=) r v = r.contents <- v 
let ref v = { contents = v } 
 

The type 'T ref is a synonym for a type Microsoft.FSharp.Core.Ref<'T> defined in this way. 

Which Data Structures Are Mutable? 

It’s useful to know which data structures are mutable and which aren’t. If a data structure can be mutated, 
then this is typically evident in the types of operations you can perform on that structure. For example, if a 
data structure Table<'Key,'Value> has an operation like the following, then in practice you can be sure 
that updates to the data structure modify the data structure itself: 

val add : Table<'Key,'Value> -> 'Key -> 'Value -> unit 
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That is, the updates to the data structure are destructive, and no value is returned from the operation; the 
result is the type unit, which is akin to void in C and many other languages. Likewise, the following 
member indicates the data structure is almost certainly mutable: 

member Add : 'Key * 'Value -> unit 

In both cases, the presence of unit as a return type is a sure sign that an operation performs some side 
effects. In contrast, operations on immutable data structures typically return a new instance of the data 
structure when an operation such as add is performed. For example: 

val add : 'Key -> 'Value -> Table<'Key,'Value> -> Table<'Key,'Value> 

Or for example: 

member Add : 'Key * 'Value -> Table<'Key,'Value> 

As discussed in Chapter 3, immutable data structures are also called functional or persistent. The latter 
name is used because the original table isn’t modified when adding an element. Well-crafted persistent 
data structures don’t duplicate the actual memory used to store the data structure every time an addition is 
made; instead, internal nodes can be shared between the old and new data structures. Example persistent 
data structures in the F# library are F# lists, options, tuples, and the types Microsoft.FSharp. 
Collections.Map<'Key,'Value> and Microsoft.FSharp.Collections.Set<'Key>. Most data 
structures in the .NET libraries aren’t persistent, although if you’re careful, you can use them as persistent 
data structures by accessing them in read-only mode and copying them where necessary. 

Avoiding Aliasing 
Like all mutable data structures, two mutable record values or two values of type 'T ref may refer to the 
same reference cell—this is called aliasing. Aliasing of immutable data structures isn’t a problem; no 
client consuming or inspecting the data values can detect that the values have been aliased. However, 
aliasing of mutable data can lead to problems in understanding code. In general, it’s good practice to 
ensure that no two values currently in scope directly alias the same mutable data structures. The 
following example continues from earlier and shows how an update to cell1 can affect the value 
returned by !cell2: 

> let cell2 = cell1;; 
val cell2 : int ref = {contents = 3;} 
 
> !cell2;; 
val it : int = 3 
 
> cell1 := 7;; 
val it : unit = () 
 
> !cell2;; 
val it : int 7 
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Hiding Mutable Data 
Mutable data is often hidden behind an encapsulation boundary. Chapter 7 looks at encapsulation in 
more detail, but one easy way to do this is to make data private to a function. For example, the following 
shows how to hide a mutable reference within the inner closure of values referenced by a function value: 
 
let generateStamp = 
    let count = ref 0 
    (fun () -> count := !count + 1; !count) 

val generateStamp: unit -> int 

The line let count = ref 0 is executed once, when the generateStamp function is defined. Here is 
an example of the use of this function: 

> generateStamp();; 
val it : int = 1 
 
> generateStamp();; 
val it : int = 2 

This is a powerful technique for hiding and encapsulating mutable state without resorting to writing 
new type and class definitions. It’s good programming practice in polished code to ensure that all related 
items of mutable state are collected under some named data structure or other entity such as a function. 

Understanding Mutation and Identity 

F# encourages the use of objects whose logical identity (if any) is based purely on the characteristics (for 
example, fields and properties) of the object. For example, the identity of a pair of integers (1,2) is 
determined by the two integers themselves; two tuple values both containing these two integers are for 
practical purposes identical. This is because tuples are immutable and support structural equality, hashing, 
and comparison, discussed further in Chapters 5 and 8. 

Mutable reference cells are different; they can reveal their identities through aliasing and mutation. 
However, not all mutable values necessarily reveal their identity through mutation. For example, 
sometimes mutation is used just to bootstrap a value into its initial configuration, such as when connecting 
the nodes of a graph. These are relatively benign uses of mutation. 

Ultimately, you can detect whether two mutable values are the same object by using the function 
System.Object.ReferenceEquals. You can also use this function on immutable values to detect whether 
two values are represented by the physically same value. But in this circumstance, the results returned by 
the function may change according to the optimization settings you apply to your F# code. 
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Using Mutable Locals 
You saw in the previous section that mutable references must be explicitly dereferenced. F# also 
supports mutable locals that are implicitly dereferenced. These must either be top-level definitions or be 
local variables in a function: 

> let mutable cell1 = 1;; 
val mutable cell1 : int = 1 
 
> cell1;; 
val it : int = 1 
 
> cell1 <- 3;; 
val it : unit = () 
 
> cell1;; 
val it : int = 3 

The following shows how to use a mutable local: 
let sum n m = 
    let mutable res = 0 
    for i = n to m do 
        res <- res + i 
    res 

> sum 3 6;; 
val it : int = 18 

F# places strong restrictions on the use of mutable locals. In particular, unlike mutable references, 
mutable locals are guaranteed to be stack-allocated values, which is important in some situations 
because the .NET garbage collector won’t move stack values. As a result, mutable locals may not be used 
in any inner lambda expressions or other closure constructs, with the exception of top-level mutable 
values, which can be used anywhere, and mutable fields of records and objects, which are associated 
with the heap allocated objects themselves. You learn more about mutable object types in Chapter 6. 
Reference cells and types containing mutable fields can be used instead to make the existence of heap-
allocated imperative state obvious. 

Working with Arrays 
Mutable arrays are a key data structure used as a building block in many high-performance computing 
scenarios. The following example illustrates how to use a one-dimensional array of double values: 
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> let arr = [| 1.0; 1.0; 1.0 |];; 
val arr : float[] 
 
> arr.[1];; 
val it : float = 1.0 
 
> arr.[1] <- 3.0;; 
val it : unit = () 
 
> arr;; 
val it : float[] = [| 1.0; 3.0; 1.0 |] 

F# array values are usually manipulated using functions from the Array module; its full path is 
Microsoft.FSharp.Collections.Array, but you can access it with the short name Array. Arrays are created 
either by using the creation functions in that module (such as Array.init, Array.create, and 
Array.zeroCreate) or by using sequence expressions, as discussed in Chapter 3. Some useful methods are 
also contained in the System.Array class. Table 4-1 shows some common functions from the Array module. 

Table 4-1. Some Important Functions and Aggregate Operators from the Array Module 

Operator Type Explanation 

Array.append : 'T[] -> 'T[] -> 'T[] Returns a new array containing elements of 
the first array followed by elements of the 
second array 

Array.sub : 'T[] -> int -> int -> 'T[] Returns a new array containing a portion of 
elements of the input array 

Array.copy : 'T[] -> 'T[] Returns a copy of the input array 

Array.iter : ('T -> unit) -> 'T[] -> unit Applies a function to all elements of the 
input array 

Array.filter : ('T -> bool) -> 'T[] -> 'T[] Returns a new array containing a selection of 
elements of the input array 

Array.length : 'T[] -> int Returns the length of the input array 

Array.map : ('T -> 'U) -> 'T[] -> 'U[] Returns a new array containing the results of 
applying the function to each element of the 
input array 

Array.fold : ('T -> 'U -> 'T) -> 'T -> 
'U[] -> 'T 

Accumulates left to right over the input array 

Array.foldBack : ('T -> 'U -> 'U) -> 'T[] -> 
'U -> 'U 

Accumulates right to left over the input array 
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F# arrays can be very large, up to the memory limitations of the machine (a 3GB limit applies on 32-
bit systems). For example, the following creates an array of 100 million elements (of total size 
approximately 400MB for a 32-bit machine): 

> let (r : int[]) = Array.zeroCreate 100000000;; 
val r : int [] = ... 

The following attempt to create an array more than 4GB in size causes an OutOfMemoryException on 
one of our machines: 

> let (r : int[]) = Array.zeroCreate 1000000000;; 
System.OutOfMemoryException: Exception of type 'System.OutOfMemoryException' 
was thrown. 

■ Note Arrays of value types (such as int, single, double, int64) are stored flat, so only one object is allocated 
for the entire array. Arrays of other types are stored as an array of object references. Primitive types such as 
integers and floating-point numbers are all value types; many other .NET types are also value types. The .NET 

documentation indicates whether each type is a value type or not. Often, the word struct is used for value types. 
You can also define new struct types directly in F# code, as discussed in Chapter 6. All other types in F# are 

reference types, such as all record, tuple, discriminated union, and class and interface values. 

Generating and Slicing Arrays 
In Chapter 3, you saw in passing that you can use sequence expressions as a way to generate interesting 
array values. For example: 

> let arr = [| for i in 0 .. 5 -> (i,i*i) |];; 
val arr : (int * int) [] = 
  [|(0, 0); (1, 1); (2, 4); (3, 9); (4, 16); (5, 25)|] 

You can also use a convenient syntax for extracting subarrays from existing arrays; this is called slice 
notation. A slice expression for a single-dimensional array has the form arr.[start..finish], where one 
of start and finish may optionally be omitted, and index zero or the index of the last element of the 
array is assumed instead. For example: 
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> let arr = [| for i in 0 .. 5 -> (i,i*i) |];; 
val arr : (int * int) [] = 
  [|(0, 0); (1, 1); (2, 4); (3, 9); (4, 16); (5, 25)|] 
 
> arr.[1..3];; 
val it : (int * int) [] = [| (1, 1); (2, 4); (3, 9); |] 
 
> arr.[..2];; 
val it : (int * int) [] = [| (0, 0); (1, 1); (2, 4); |] 
 
> arr.[3..];; 
val it : (int * int) [] = [| (3, 9); (4, 16); (5, 25) |] 

Slicing syntax is used extensively in the example “Verifying Circuits with Propositional Logic” in 
Chapter 12. You can also use slicing syntax with strings and several other F# types such as vectors and 
matrices, and the operator can be overloaded to work with your own type definitions. The F# library 
definitions of vectors and matrices can be used as a guide. 

■ Note Slices on arrays generate fresh arrays. Sometimes it’s more efficient to use other techniques, such as 
accessing the array via an accessor function or object that performs one or more internal index adjustments before 
looking up the underlying array. If you add support for the slicing operators to your own types, you can choose 

whether they return copies of data structures or an accessor object. 

Two-Dimensional Arrays 
Like other .NET languages, F# directly supports two-dimensional array values that are stored flat: that is, 
where an array of dimensions (N, M) is stored using a contiguous array of N * M elements. The types for 
these values are written using [,], such as in int[,] and double[,], and these types also support slicing 
syntax. Values of these types are created and manipulated using the values in the Array2D module. 
Likewise, there is a module for manipulating three-dimensional array values whose types are written 
int[,,]. You can also use the code in those modules as a template for defining code to manipulate 
arrays of higher dimension. 

Introducing the Imperative .NET Collections 
The .NET Framework comes equipped with an excellent set of imperative collections under the 
namespace System.Collections.Generic. You’ve seen some of these already. The following sections look 
at some simple uses of these collections. 
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Using Resizeable Arrays 
As mentioned in Chapter 3, the .NET Framework comes with a type System.Collections.Generic.List<'T>, 
which, although named List, is better described as a resizeable array. The F# library includes the following 
type abbreviation for this purpose: 
 
type ResizeArray<'T> = System.Collections.Generic.List<'T> 
 

Here is a simple example of using this data structure: 

> let names = new ResizeArray<string>();; 
val names : ResizeArray<string> 
 
> for name in ["Claire"; "Sophie"; "Jane"] do 
      names.Add(name);; 
val it : unit = () 
 
> names.Count;; 
val it : int = 3 
 
> names.[0];; 
val it : string = "Claire" 
 
> names.[1];; 
val it : string = "Sophie" 
 
> names.[2];; 
val it : string = "Jane" 

Resizable arrays use an underlying array for storage and support constant-time random-access 
lookup. In many situations, this makes a resizable array more efficient than an F# list, which supports 
efficient access only from the head (left) of the list. You can find the full set of members supported by 
this type in the .NET documentation. Commonly used properties and members include Add, Count, 
ConvertAll, Insert, BinarySearch, and ToArray. A module ResizeArray is included in the F# library; it 
provides operations over this type in the style of the other F# collections. 

Like other .NET collections, values of type ResizeArray<'T> support the seq<'T> interface. There is also 
an overload of the new constructor for this collection type that lets you specify initial values via a seq<'T>. 
This means you can create and consume instances of this collection type using sequence expressions: 

> let squares = new ResizeArray<int>(seq { for i in 0 .. 100 -> i*i });; 
val squares : ResizeArray<int> 
 
> for x in squares do 
      printfn "square: %d" x;; 
square: 0 
square: 1 
square: 4 
square: 9 
... 
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Using Dictionaries 
The type System.Collections.Generic.Dictionary<'Key,'Value> is an efficient hash-table structure that 
is excellent for storing associations between values. The use of this collection from F# code requires a 
little care, because it must be able to correctly hash the key type. For simple key types such as integers, 
strings, and tuples, the default hashing behavior is adequate. Here is a simple example: 

> open System.Collections.Generic;; 
 
> let capitals = new Dictionary<string, string>(HashIdentity.Structural);; 
val capitals : Dictionary<string,string> = dict [] 
 
> capitals.["USA"] <- "Washington";; 
val it : unit = () 
 
> capitals.["Bangladesh"] <- "Dhaka";; 
val it : unit = () 
 
> capitals.ContainsKey("USA");; 
val it : bool = true 
 
> capitals.ContainsKey("Australia");; 
val it : bool = false 
 
> capitals.Keys;; 
val it : KeyCollection<string,string> = seq["USA"; "Bangladesh"] 
 
> capitals.["USA"];; 
val it : string = "Washington" 

Dictionaries are compatible with the type seq<KeyValuePair<'key,'value>>, where KeyValuePair is a 
type from the System.Collections.Generic namespace and simply supports the properties Key and 
Value. Armed with this knowledge, you can use iteration to perform an operation for each element of the 
collection: 

> for kvp in capitals do 
      printf "%s has capital %s\n" kvp.Key kvp.Value;; 
USA has capital Washington 
Bangladesh has capital Dhaka 
val it : unit = () 

Using Dictionary’s TryGetValue 
The Dictionary  method TryGetValue is of special interest because its use from F# is a little nonstandard. 
This method takes an input value of type 'Key and looks it up in the table. It returns a bool indicating 
whether the lookup succeeded: true if the given key is in the dictionary and false otherwise. The value 
itself is returned via a .NET idiom called an out parameter. From F# code, three ways of using .NET 
methods rely on out parameters: 
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• You may use a local mutable in combination with the address-of operator &. 

• You may use a reference cell. 

• You may simply not give a parameter, and the result is returned as part of a tuple. 

Here’s how you do it using a mutable local: 
 
open System.Collections.Generic 
 
let lookupName nm (dict : Dictionary<string,string>) = 
    let mutable res = "" 
    let foundIt = dict.TryGetValue(nm, &res) 
    if foundIt then res 
    else failwithf "Didn’t find %s" nm 
 

The use of a reference cell can be cleaner. For example: 

> let res = ref "";; 
val res: string ref = {contents = "";} 
 
> capitals.TryGetValue("Australia", res);; 
val it: bool = false 
 
> capitals.TryGetValue("USA", res);; 
val it: bool = true 
 
> res;; 
val it: string ref = {contents = "Washington"} 

Finally, here is the technique where you don’t pass the final parameter, and instead the result is 
returned as part of a tuple: 

> capitals.TryGetValue("Australia");; 
val it: bool * string = (false, null) 
 
> capitals.TryGetValue("USA");; 
val it: bool * string = (true, "Washington") 

Note that the value returned in the second element of the tuple may be null if the lookup fails when 
this technique is used. null values are discussed in the section “Working with null Values” at the end of 
this chapter. 

Using Dictionaries with Compound Keys 
You can use dictionaries with compound keys such as tuple keys of type (int * int). If necessary, you 
can specify the hash function used for these values when creating the instance of the dictionary. The 
default is to use generic hashing, also called structural hashing, a topic covered in more detail in Chapter 
8. If you want to indicate this explicitly, you do so by specifying Microsoft.FSharp.Collections. 
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HashIdentity.Structural when creating the collection instance. In some cases, this can also lead to 
performance improvements, because the F# compiler often generates a hashing function appropriate 
for the compound type. 

Here is an example that uses a dictionary with a compound key type to represent sparse maps: 

> open System.Collections.Generic;; 
> open Microsoft.FSharp.Collections;; 
 
> let sparseMap = new Dictionary<(int * int), float>();; 
val sparseMap : Dictionary <(int * int),float> = dict [] 
 
> sparseMap.[(0,2)] <- 4.0;; 
val it : unit = () 
 
> sparseMap.[(1021,1847)] <- 9.0;; 
val it : unit = () 
 
> sparseMap.Keys;; 
val it : Dictionary.KeyCollection<(int * int),float>  = seq [(0,2); (1021; 1847)] 

Some Other Mutable Data Structures 
Some of the other important mutable data structures in the F# and .NET libraries are as follows: 

• System.Collections.Generic.SortedList<'Key,'Value>: A collection of sorted 
values. Searches are done by a binary search. The underlying data structure is a 
single array. 

• System.Collections.Generic.SortedDictionary<'Key,'Value>: A collection of 
key/value pairs sorted by the key, rather than hashed. Searches are done by a 
binary chop. The underlying data structure is a single array. 

• System.Collections.Generic.Stack<'T>: A variable-sized last-in/first-out (LIFO) 
collection. 

• System.Collections.Generic.Queue<'T>: A variable-sized first-in/first-out (FIFO) 
collection. 

• System.Text.StringBuilder: A mutable structure for building string values. 

• Microsoft.FSharp.Collections.HashSet<'Key>: A hash table structure holding 
only keys and no values. From .NET 3.5, a HashSet<'T> type is available in the 
System.Collections.Generic namespace. 

Exceptions and Controlling Them 
When a routine encounters a problem, it may respond in several ways, such as by recovering internally, 
emitting a warning, returning a marker value or incomplete result, or throwing an exception. The 
following code indicates how an exception can be thrown by some of the code you’ve been using: 
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> let req = System.Net.WebRequest.Create("not a URL");; 
System.UriFormatException: Invalid URI: The format of the URI could not be 
determined. 

Similarly, the GetResponse method also used in the http function may raise a System.Net.WebException 
exception. The exceptions that may be raised by routines are typically recorded in the documentation for 
those routines. Exception values may also be raised explicitly by F# code: 

> (raise (System.InvalidOperationException("not today thank you")) : unit);; 
System.InvalidOperationException: not today thank you 

In F#, exceptions are commonly raised using the F# failwith function: 

> if false then 3 else failwith "hit the wall";; 
System.Exception: hit the wall 

The types of some of the common functions used to raise exceptions are shown here: 

val failwith  : string -> 'T 
val raise : System.Exception -> 'T 
val failwithf  : StringFormat<'T,'U> -> 'T 
val invalidArg  : string -> string -> 'T 

Note that the return types of all these are generic type variables: the functions never return normally 
and instead return by raising an exception. This means they can be used to form an expression of any 
particular type and can be handy when you’re drafting your code. For example, in the following 
example, we’ve left part of the program incomplete: 
 
if (System.DateTime.Now > failwith "not yet decided") then 
    printfn "you've run out of time!" 
 

Table 4-2 shows some of the common exceptions that are raised by failwith and other operations. 

Table 4-2. Common Categories of Exceptions and F# Functions That Raise Them 

Exception Type F# Abbreviation Description Example 

Exception Failure General failure failwith "fail" 

ArgumentException InvalidArgument Bad input invalidArg "x" "y" 

DivideByZeroException  Integer divide by 0 1 / 0 

NullReferenceException  Unexpected null (null : string).Length 
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Catching Exceptions 
You can catch exceptions using the try ... with ... language construct and :? type-test patterns, 
which filter any exception value caught by the with clause. For example: 

> try 
     raise (System.InvalidOperationException ("it's just not my day")) 
  with 
     | :? System.InvalidOperationException -> printfn "caught!";; 
caught! 

Chapter 5 covers these patterns more closely. The following code sample shows how to use try ... 
with ... to catch two kinds of exceptions that may arise from the operations that make up the http 
method, in both cases returning the empty string "" as the incomplete result. Note that try ... with 
... is just an expression, and it may return a result in both branches: 
 
open System.IO 
 
let http(url: string) = 
    try 
        let req = System.Net.WebRequest.Create(url) 
        let resp = req.GetResponse() 
        let stream = resp.GetResponseStream() 
        let reader = new StreamReader(stream) 
        let html = reader.ReadToEnd() 
        html 
    with 
        | :? System.UriFormatException -> "" 
        | :? System.Net.WebException -> "" 
 

When an exception is thrown, a value is created that records information about the exception. 
This value is matched against the earlier type-test patterns. It may also be bound directly and 
manipulated in the with clause of the try ... with constructs. For example, all exception values 
support the Message property: 

> try 
      raise (new System.InvalidOperationException ("invalid operation")) 
  with 
      | err -> printfn "oops, msg = '%s'" err.Message;; 
oops, msg = 'invalid operation' 

Using try . . . finally 
Exceptions may also be processed using the try ... finally ... construct. This guarantees to run the 
finally clause both when an exception is thrown and when the expression evaluates normally. This 
allows you to ensure that resources are disposed after the completion of an operation. For example, you 
can ensure that the web response from the previous example is closed as follows: 
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let httpViaTryFinally(url: string) = 
    let req = System.Net.WebRequest.Create(url) 
    let resp = req.GetResponse() 
    try 
        let stream = resp.GetResponseStream() 
        let reader = new StreamReader(stream) 
        let html = reader.ReadToEnd() 
        html 
    finally 
        resp.Close() 
 

In practice, you can use a shorter form to close and dispose of resources, simply by using a use 
binding instead of a let binding. This closes the response at the end of the scope of the resp variable, a 
technique that is discussed in full in Chapter 8. Here is how the previous function looks using this form: 
 
let httpViaUseBinding(url: string) = 
    let req = System.Net.WebRequest.Create(url) 
    use resp = req.GetResponse() 
    let stream = resp.GetResponseStream() 
    let reader = new StreamReader(stream) 
    let html = reader.ReadToEnd() 
    html 

Defining New Exception Types 
F# lets you define new kinds of exception objects that carry data in a conveniently accessible form. For 
example, here is a declaration of a new class of exceptions and a function that wraps http with a filter 
that catches particular cases: 
 
exception BlockedURL of string 
 
let http2 url = 
    if url = "http://www.kaos.org" 
    then raise(BlockedURL(url)) 
    else http url 
 

You can extract the information from F# exception values, again using pattern matching: 

> try 
     raise(BlockedURL("http://www.kaos.org")) 
  with 
     | BlockedURL(url) -> printf "blocked! url = '%s'\n" url;; 
blocked! url = 'http://www.kaos.org' 

Exception values are always subtypes of the F# type exn, an abbreviation for the .NET type 
System.Exception. The declaration exception BlockedURL of string is shorthand for defining a new 
F# class type BlockedURLException, which is a subtype of System.Exception. Exception types can also 
be defined explicitly by defining new object types. Chapters 5 and 6 look more closely at object types 
and subtyping. 

Table 4-3 summarizes the exception-related language and library constructs. 
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Table 4-3. Exception-Related Language and Library Constructs 

Example Code Kind Notes 

raise expr F# library function Raises the given exception 

failwith expr F# library function Raises an Exception exception 

try expr with rules F# expression Catches expressions matching the 
pattern rules 

try expr finally expr F# expression Executes the finally expression both 
when the computation is successful and 
when an exception is raised 

| :? ArgumentException -> F# pattern rule A rule matching the given .NET exception 
type 

| :? ArgumentException as e -> F# pattern rule A rule matching the given .NET exception 
type and naming it as its stronger type 

| Failure(msg) -> expr F# pattern rule A rule matching the given data-carrying 
F# exception 

| exn -> expr F# pattern rule A rule matching any exception, binding 
the name exn to the exception object 
value 

| exn when expr -> expr F# pattern rule A rule matching the exception under the 
given condition, binding the name exn to 
the exception object value 

Having an Effect: Basic I/O 
Imperative programming and input/output are closely related topics. The following sections show some 
very simple I/O techniques using F# and .NET libraries. 

Very Simple I/O: Reading and Writing Files 
The .NET types System.IO.File and System.IO.Directory contain a number of simple functions  to make 
working with files easy. For example, here’s a way to output lines of text to a file: 

> open System.IO;; 
 
> File.WriteAllLines("test.txt", [| "This is a test file."; 
                                    "It is easy to read." |]);; 
val it : unit = () 
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Many simple file-processing tasks require reading all the lines of a file. You can do this by reading all 
the lines in one action as an array using System.IO.File.ReadAllLines: 

> open System.IO;; 
 
> File.ReadAllLines("test.txt");; 
val it : string [] = [| "This is a test file.";  "It is easy to read." |] 

If necessary, the entire file can be read as a single string using System.IO.File.ReadAllText: 

> File.ReadAllText("test.txt");; 
val it : string = "This is a test file.\r\nIt is easy to read\r\n" 

You can also use the results of System.IO.File.ReadAllLines as part of a list or sequence defined 
using a sequence expression: 

> [ for line in File.ReadAllLines("test.txt") do 
       let words = line.Split [| ' ' |] 
       if words.Length > 3 && words.[2] = "easy" then 
           yield line ];; 
val it : string list = [| "It is easy to read." |] 

.NET I/O via Streams 
The .NET namespace System.IO contains the primary .NET types for reading/writing bytes and text 
to/from data sources. The primary output constructs in this namespace are as follows: 

• System.IO.BinaryWriter: Writes primitive data types as binary values. Create 
using new BinaryWriter(stream). You can create output streams using 
File.Create(filename). 

• System.IO.StreamWriter: Writes textual strings and characters to a stream. The 
text is encoded according to a particular Unicode encoding. Create by using new 
StreamWriter(stream) and its variants or by using File.CreateText(filename). 

• System.IO.StringWriter: Writes textual strings to a StringBuilder, which 
eventually can be used to generate a string. 

Here is a simple example of using System.IO.File.CreateText to create a StreamWriter and write 
two strings: 

> let outp = File.CreateText("playlist.txt");; 
val outp : StreamWriter 
 
> outp.WriteLine("Enchanted");; 
val it : unit = () 
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> outp.WriteLine("Put your records on");; 
val it : unit = () 
 
> outp.Close(); 

These are the primary input constructs in the System.IO namespace: 

• System.IO.BinaryReader: Reads primitive data types as binary values. When 
reading the binary data as a string, it interprets the bytes according to a particular 
Unicode encoding. Create using new BinaryReader(stream). 

• System.IO.StreamReader: Reads a stream as textual strings and characters. The 
bytes are decoded to strings according to a particular Unicode encoding. Create 
by using new StreamReader(stream) and its variants or by using 
File.OpenText(filename). 

• System.IO.StringReader: Reads a string as textual strings and characters. 

Here is a simple example of using System.IO.File.OpenText to create a StreamReader and read two 
strings: 

> let inp = File.OpenText("playlist.txt");; 
val inp : StreamReader 
 
> inp.ReadLine();; 
val it : string = "Enchanted" 
 
> inp.ReadLine();; 
val it : string = "Put your records on" 
 
> inp.Close();; 
val it : unit = () 

■ Tip Whenever you create objects such as a StreamReader that have a Close or Dispose operation or that 
implement the IDisposable interface, you should consider how to eventually close or otherwise dispose of the 

resource. We discuss this later in this chapter and in Chapter 8. 

Some Other I/O-Related Types 
The System.IO namespace contains a number of other types, all of which are useful for corner cases of 
advanced I/O but that you won’t need to use from day to day. For example, the following abstractions 
appear in the .NET documentation: 
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• System.IO.TextReader: Reads textual strings and characters from an unspecified 
source. This is the common functionality implemented by the StreamReader and 
StringReader types and the System.Console.In object. The latter is used to access 
the stdin input. 

• System.IO.TextWriter: Writes textual strings and characters to an unspecified 
output. This is the common functionality implemented by the StreamWriter and 
StringWriter types and the System.Console.Out and System.Console.Error 
objects. The latter are used to access the stdout and stderr output streams. 

• System.IO.Stream: Provides a generic view of a sequence of bytes. 

Some functions that are generic over different kinds of output streams make use of these; for 
example, the formatting function twprintf discussed in the section “Using printf and Friends” writes to 
any System.IO.TextWriter. 

Using System.Console 
Some simple input/output routines are provided in the System.Console class. For example: 

> System.Console.WriteLine("Hello World");; 
Hello World 
 
> System.Console.ReadLine();; 
<enter "I'm still here" here> 
val it : string = "I'm still here" 

The System.Console.Out object can also be used as a TextWriter. 

Using printf and Friends 
Throughout this book, you’ve used the printfn function, which is one way to print strings from F# 
values. This is a powerful, extensible technique for type-safe formatting. A related function called 
sprintf builds strings: 

> sprintf "Name: %s, Age: %d" "Anna" 3;; 
val it : string = "Name: Anna, Age: 3" 

The format strings accepted by printf and sprintf are recognized and parsed by the F# compiler, 
and their use is statically type checked to ensure the arguments given for the formatting holes are 
consistent with the formatting directives. For example, if you use an integer where a string is expected, 
you see a type error: 

> sprintf "Name: %s, Age: %d" 3 10;; 
------------------------------^ 
error: FS0001: This expression was expected to have type string but here  
has type int 
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Several printf-style formatting functions are provided in the Microsoft.FSharp.Text.Printf 
module. Table 4-4 shows the most important of these. 

Table 4-4. Formatting Functions in the Printf Module 

Function(s) Outputs via Type Outputs via Object Example 

printf(n)a TextWriter Console.Out printf "Result: %d" res 

eprintf(n) TextWriter Console.Error eprintf "Result: %d" res 

fprintf(n) TextWriter Any TextWriter twprintf stderr "Error: %d" res 

sprintf string Generates strings sprintf "Error: %d" res 

bprintf(n) StringBuilder Any StringBuilder bprintf buf "Error: %d" res 

a The functions with a suffix n add a new line to the generated text. 

Table 4-5 shows the basic formatting codes for printf-style formatting. 

Table 4-5. Formatting Codes for printf-style String and Output Formatting 

Code Type Accepted Notes 

%b bool Prints true or false 

%s string Prints the string 

%d, %x, %X, %o, %u int/int32 Decimal/hex/octal format for any integer types 

%e, %E, %f, %g float Floating-point formats 

%M decimal See the .NET documentation 

%A Any type Uses structured formatting, discussed in the section 
“Generic Structural Formatting” and in Chapter 5 

%O Any type Uses Object.ToString() 

%a Any type Takes two arguments: one is a formatting function, and 
one is the value to format 

%t Function Runs the function given as an argument 
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Any value can be formatted using a %O or %A pattern; these patterns are extremely useful when you’re 
prototyping or examining data. %O converts the object to a string using the Object.ToString() function 
supported by all values. For example: 

> System.DateTime.Now.ToString();; 
val it : string = "28/06/20.. 17:14:07 PM" 
 
> sprintf "It is now %O" System.DateTime.Now;; 
val it : string = "It is now 28/06/20... 17:14:09" 

■ Note The format strings used with printf are scanned by the F# compiler during type checking, which means 
the use of the formats are type-safe; if you forget arguments, a warning is given, and if your arguments are of the 
wrong type, an error is given. The format strings may also include the usual range of specifiers for padding and 
alignment used by languages such as C, as well as some other interesting specifiers for computed widths and 

precisions. You can find the full details in the F# library documentation for the Printf module. 

Generic Structural Formatting 
Object.ToString() is a somewhat undirected way of formatting data. Structural types such as tuples, 
lists, records, discriminated unions, collections, arrays, and matrices are often poorly formatted by this 
technique. The %A pattern uses .NET reflection to format any F# value as a string based on the structure 
of the value. For example: 

> printf "The result is %A\n" [1;2;3];; 
"The result is [1; 2; 3]" 

Generic structural formatting can be extended to work with any user-defined data types, a topic 
covered on the F# web site. This is covered in detail in the F# library documentation for the printf 
function. 

Cleaning Up with IDisposable, use, and using 
Many constructs in the System.IO namespace need to be closed after use, partly because they hold on to 
operating system resources such as file handles. You can ignore this issue when prototyping code in F# 
Interactive. However, as we touched on earlier in this chapter, in more polished code, you should use 
language constructs such as use var = expr to ensure that the resource is closed at the end of the lexical 
scope where a stream object is active. For example: 
 
let myWriteStringToFile () = 
    use outp = File.CreateText(@"playlist.txt") 
    outp.WriteLine("Enchanted") 
    outp.WriteLine("Put your records on") 
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This is equivalent to the following: 

 
let myWriteStringToFile () = 
    using (File.CreateText(@"playlist.txt")) (fun outp -> 
        outp.WriteLine("Enchanted") 
        outp.WriteLine("Put your records on")) 
 
where the function using has the following definition in the F# library: 
 
let using (ie : #System.IDisposable) f = 
    try f(ie) 
    finally ie.Dispose() 
 

use and using ensure that the underlying stream is closed deterministically and the operating 
system resources are reclaimed when the lexical scope is exited. This happens regardless of whether the 
scope is exited because of normal termination or because of an exception. Chapter 8 covers the language 
construct use, the operator using, and related issues in more detail. 

■ Note If you don’t use using or otherwise explicitly close the stream, the stream is closed when the stream 
object is finalized by the .NET garbage collector. However, it’s generally bad practice to rely on finalization to clean 

up resources this way, because finalization isn’t guaranteed to happen in a deterministic, timely fashion. 

Working with null Values 
The keyword null is used in imperative programming languages as a special, distinguished value of a 
type that represents an uninitialized value or some other kind of special condition. In general, null isn’t 
used in conjunction with types defined in F# code, although it’s common to simulate null with a value of 
the option type. For example: 

> let parents = [("Adam",None); ("Cain",Some("Adam","Eve"))];; 
val parents : (string * (string * string) option) list = ... 

However, reference types defined in other .NET languages do support null; when using .NET APIs, 
you may have to explicitly pass null values to the API and also, where appropriate, test return values for 
null. The .NET Framework documentation specifies when null may be returned from an API. It’s 
recommended that you test for this condition using null pattern tests. For example: 
 
match System.Environment.GetEnvironmentVariable("PATH") with 
| null -> printf "the environment variable PATH is not defined\n" 
| res -> printf "the environment variable PATH is set to %s\n" res 
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The following is a function that incorporates a pattern type test and a null-value test: 
 
let switchOnType (a:obj) = 
    match a with 
    | null                     -> printf "null!" 
    | :? System.Exception as e -> printf "An exception: %s!" e.Message 
    | :? System.Int32 as i     -> printf "An integer: %d!" i 
    | :? System.DateTime as d  -> printf "A date/time: %O!" d 
    | _                        -> printf "Some other kind of object\n" 
 

There are other important sources of null values. For example, the semisafe function 
Array.zeroCreate creates an array whose values are initially null or, in the case of value types, an array 
each of whose entries is the zero bit pattern. This function is included with F# primarily because there is 
no other alternative technique to initialize and create the array values used as building blocks of larger, 
more sophisticated data structures such as queues and hash tables. Of course, you must use this 
function with care, and in general you should hide the array behind an encapsulation boundary and be 
sure the values of the array aren’t referenced before they’re initialized. 

■ Note Although F# generally enables you to code in a null-free style, F# isn’t totally immune to the potential 
existence of null values: they can come from the .NET APIs, and it’s also possible to use Array.zeroCreate and 
other back-door techniques to generate null values for F# types. If necessary, APIs can check for this condition by 

first converting F# values to the obj type by calling box and then testing for null (see the F# Informal Language 
Specification for full details). But in practice, this isn’t required by the vast majority of F# programs; for most 

purposes, the existence of null values can be ignored. 

Some Advice: Functional Programming with Side Effects 
F# stems from a tradition in programming languages where the emphasis has been on declarative and 
functional approaches to programming in which state is made explicit, largely by passing extra parameters. 
Many F# programmers use functional programming techniques first before turning to their imperative 
alternatives, and we encourage you to do the same, for all the reasons listed at the start of this chapter. 

However, F# also integrates imperative and functional programming together in a powerful way. F# 
is actually an extremely succinct imperative programming language! Furthermore, in some cases, no 
good functional techniques exist to solve a problem, or those that do are too experimental for 
production use. This means that in practice, using imperative constructs and libraries is common in F#: 
for example, many of the examples you saw in Chapters 2 and 3 used side effects to report their results or 
to create GUI components. 

Regardless, we still encourage you to think functionally, even about your imperative programming. 
In particular, it’s always helpful to be aware of the potential side effects of your overall program and the 
characteristics of those side effects. The following sections describe five ways to help tame and reduce 
the use of side effects in your programs. 
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Consider Replacing Mutable Locals and Loops with Recursion 
When imperative programmers begin to use F#, they frequently use mutable local variables or reference 
cells heavily as they translate code fragments from their favorite imperative language into F#. The 
resulting code often looks very bad. Over time, they learn to avoid many uses of mutable locals. For 
example, consider the following (naive) implementation of factorization, transliterated from C code: 
 
let factorizeImperative n = 
    let mutable primefactor1 = 1 
    let mutable primefactor2 = n 
    let mutable i = 2 
    let mutable fin = false 
    while (i < n && not fin) do 
        if (n % i = 0) then 
            primefactor1 <- i 
            primefactor2 <- n / i 
            fin <- true 
        i <- i + 1 
 
    if (primefactor1 = 1) then None 
    else Some (primefactor1, primefactor2) 
 

This code can be replaced by the following use of an inner recursive function: 
 
let factorizeRecursive n = 
    let rec find i = 
        if i >= n then None 
        elif (n % i = 0) then Some(i,n / i) 
        else find (i+1) 
    find 2 
 

The second code is not only shorter but also uses no mutation, which makes it easier to reuse and 
maintain. You can also see that the loop terminates (i is increasing toward n) and see the two exit 
conditions for the function (i >= n and n % i = 0). Note that the state i has become an explicit parameter. 

Separate Pure Computation from Side-Effecting Computations 
Where possible, separate out as much of your computation as possible using side-effect-free functional 
programming. For example, sprinkling printf expressions throughout your code may make for a good 
debugging technique but, if not used wisely, can lead to code that is difficult to understand and 
inherently imperative. 

Separate Mutable Data Structures 
A common technique of object-oriented programming is to ensure that mutable data structures are 
private, nonescaping, and, where possible, fully separated, which means there is no chance that 
distinct pieces of code can access each other’s internal state in undesirable ways. Fully separated state 
can even be used inside the implementation of what, to the outside world, appears to be a purely 
functional piece of code. 

For example, where necessary, you can use side effects on private data structures allocated at the 
start of an algorithm and then discard these data structures before returning a result; the overall result is 
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then effectively a side-effect-free function. One example of separation from the F# library is the library’s 
implementation of List.map, which uses mutation internally; the writes occur on an internal, separated 
data structure that no other code can access. Thus, as far as callers are concerned, List.map is pure and 
functional. The following is a second example that divides a sequence of inputs into equivalence classes 
(the F# library function Seq.groupBy does a similar thing): 
 
open System.Collections.Generic 
 
let divideIntoEquivalenceClasses keyf seq = 
 
    // The dictionary to hold the equivalence classes 
    let dict = new Dictionary<'key,ResizeArray<'T>>() 
 
    // Build the groupings 
    seq |> Seq.iter (fun v -> 
        let key = keyf v 
        let ok,prev = dict.TryGetValue(key) 
        if ok then prev.Add(v) 
        else let prev = new ResizeArray<'T>() 
             dict.[key] <- prev 
             prev.Add(v)) 
 
    // Return the sequence-of-sequences. Don't reveal the 
    // internal collections: just reveal them as sequences 
    dict |> Seq.map (fun group -> group.Key, Seq.readonly group.Value) 
 

This uses the Dictionary and ResizeArray mutable data structures internally, but these mutable 
data structures aren’t revealed externally. The inferred type of the overall function is as follows: 

val divideIntoEquivalenceClasses : ('T -> 'key) -> seq<'T> -> seq<'key * seq<'T>> 

Here is an example use: 

> divideIntoEquivalenceClasses (fun n -> n % 3) [ 0 .. 10 ];; 
 
val it : seq<int * seq<int>> 
= seq [(0, seq [0; 3; 6; 9]); (1, seq [1; 4; 7; 10]); (2, seq [2; 5; 8])] 

Not All Side Effects Are Equal 
It’s often helpful to use the weakest set of side effects necessary to achieve your programming task and at 
least be aware when you’re using strong side effects: 
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• Weak side effects are effectively benign given the assumptions you’re making 
about your application. For example, writing to a log file is very useful and is 
essentially benign (if the log file can’t grow arbitrarily large and crash your 
machine!). Similarly, reading data from a stable, unchanging file store on a local 
disk is effectively treating the disk as an extension of read-only memory, so 
reading these files is a weak form of side effect that isn’t difficult to incorporate 
into your programs. 

• Strong side effects have a much more corrosive effect on the correctness and 
operational properties of your program. For example, blocking network I/O is a 
relatively strong side effect by any measure. Performing blocking network I/O in 
the middle of a library routine can have the effect of destroying the responsiveness 
of a GUI application, at least if the routine is invoked by the GUI thread of an 
application. Any constructs that perform synchronization between threads are 
also a major source of strong side effects. 

Whether a particular side effect is stronger or weaker depends very much on your application and 
whether the consequences of the side effect are sufficiently isolated and separated from other entities. 
Strong side effects can and should be used freely in the outer shell of an application or when you’re 
scripting with F# Interactive; otherwise, not much can be achieved. 

When you’re writing larger pieces of code, you should write your application and libraries in such a 
way that most of your code either doesn’t use strong side effects or at least makes it obvious when these 
side effects are being used. Threads and concurrency are commonly used to mediate problems 
associated with strong side effects; Chapter 14 covers these issues in more depth. 

Avoid Combining Imperative Programming and Laziness 
It’s generally thought to be bad style to combine delayed computations (that is, laziness) and side 
effects. This isn’t entirely true; for example, it’s reasonable to set up a read from a file system as a lazy 
computation using sequences. However, it’s relatively easy to make mistakes in this sort of 
programming. For example, consider the following code: 
 
open System.IO 
let reader1, reader2 = 
    let reader = new StreamReader(File.OpenRead("test.txt")) 
    let firstReader() = reader.ReadLine() 
    let secondReader() = reader.ReadLine() 
 
    // Note: we close the stream reader here! 
    // But we are returning function values which use the reader 
    // This is very bad! 
    reader.Close() 
    firstReader, secondReader 
 
// Note: stream reader is now closed! The next line will fail! 
let firstLine = reader1() 
let secondLine = reader2() 
firstLine, secondLine 
 

This code is wrong because the StreamReader object reader is used after the point indicated by the 
comment. The returned function values are then called, and they try to read from the captured variable 
reader. Function values are just one example of delayed computations: other examples are lazy values, 
sequences, and any objects that perform computations on demand. Be careful not to build delayed 
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objects such as reader that represent handles to transient, disposable resources, unless those objects are 
used in a way that respects the lifetime of that resource. 

The previous code can be corrected to avoid using laziness in combination with a transient resource: 
 
open System.IO 
 
let line1, line2 = 
    let reader = new StreamReader(File.OpenRead("test.txt")) 
    let firstLine = reader.ReadLine() 
    let secondLine = reader.ReadLine() 
    reader.Close() 
    firstLine, secondLine 
 

Another technique uses language and/or library constructs that tie the lifetime of an object to some 
larger object. For example, you can use a use binding within a sequence expression, which augments the 
sequence object with the code needed to clean up the resource when iteration is finished or terminates. 
This technique is discussed further in Chapter 8 and shown by example here: 
 
let reader = 
    seq { use reader = new StreamReader(File.OpenRead("test.txt")) 
          while not reader.EndOfStream do 
              yield reader.ReadLine() } 
 

The general lesson is to try to keep your core application pure. Use both delayed computations 
(laziness) and imperative programming (side effects) where appropriate, but be careful about using 
them together. 

Summary 
In this chapter, you learned how to do imperative programming in F#, from some of the basic mutable 
data structures such as reference cells to working with side effects such as exceptions and I/O. You also 
looked at some general principles for avoiding the need for imperative programming and isolating your 
uses of side effects. The next chapter returns to some of the building blocks of both functional and 
imperative programming in F#, with a deeper look at types, type inference, and generics. 
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Mastering Types and Generics 

F# constructs such as lists, tuples, and function values are all generic, which means they can be 
instantiated at multiple different types. For example, int list, string list, and (int * int) list are 
all instantiations of the generic family of F# list types. Likewise, int -> int and string -> int are both 
instantiations of the generic family of F# function types. The F# library and the .NET Framework have 
many other generic types and operations in addition to these. 

Closely related to generics is the notion of subtyping. Generics and subtyping combine to allow you 
to write code that is generic over families of types. This chapter covers .NET and F# types in general and 
generics and subtyping in particular. You show how F# uses automatic generalization to automatically 
infer generic types for your code, and the chapter covers some of the basic generic functions in the F# 
libraries, such as generic comparison, hashing, and binary serialization. 

Understanding Generic Type Variables 
Generic constructs are always represented through the use of type variables, which in F# syntax are written 
'T, 'U, 'a, 'Key, and so on. For example, the definition of the Set type in the F# library begins like this: 
 
type Set<'T> = ... 
 

Values can also be generic. A typical generic value is List.map, whose type is as follows: 

val map : ('T -> 'U) -> 'T list -> 'U list 

Each time you name a generic type or value, the F# type system must infer instantiations for the 
type variables involved. For example, in Chapter 3, you used List.map fetch over an input list, where 
fetch had the following type: 

val fetch : string -> string * string 

In this case, the type variable 'T in the signature of List.map is instantiated to string, and the type 
variable 'U is instantiated to string * string, giving a return type of (string * string) list. 

Generic values and functions such as List.map are common in F# programming; they’re so common 
that you usually don’t even write the declarations of the type variables in the types of these values. 
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However, sometimes the declaration point of these variables is made explicit in output from tools and 
the F# compiler. For example, you may see this: 

val map<'T,'U> : ('T -> 'U) -> 'T list -> 'U list 

Frequently, type variables have an implicit scope, governed by the rules of automatic generalization 
discussed in the section “Writing Generic Functions.” This means you can introduce type variables 
simply by writing them as part of the type annotations of a function: 
 
let rec map (f : 'T -> 'U) (l : 'T list) = 
    match l with 
    | h :: t -> f h :: map f t 
    | [] -> [] 
 

If you want, you can also write the type parameters explicitly on a declaration. You typically have to 
use each type variable at least once in a type annotation in order to relate the type parameters to the 
actual code: 
 
let rec map<'T,'U> (f : 'T -> 'U) (l : 'T list) = 
    match l with 
    | h :: t -> f h :: map f t 
    | [] -> [] 

■ Note By convention, uppercase type-variable names are used for user-declared type parameters, and 
lowercase names are used for inferred type parameters. In general, the style TypeName<'T> is preferred for F# 

types, although for historical reasons the style 'T TypeName is used for list, option, reference and array types. 

Writing Generic Functions 
A key feature of F# is the automatic generalization of code. The combination of automatic generalization 
and type inference makes many programs simpler, more succinct, and more general. It also greatly 
enhances code reuse. Languages without automatic generalization force programmers to compute and 
explicitly write down the most general type of their functions, and often this is so tedious that 
programmers don’t take the time to abstract common patterns of data manipulation and control. 

For example, type parameters are automatically introduced when you write simple functions that 
are independent of some of their arguments: 
 
let getFirst (a,b,c) = a 
 

The inferred type of getFirst is reported as follows: 

val getFirst: 'a * 'b * 'c -> 'a 

Here, getFirst has been automatically inferred to be generic. The function is generic in three type 
variables, where the result type is the first element of the input tuple type. Automatic generalization is 
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applied when a let or member definition doesn’t fully constrain the types of inputs or outputs. You can 
tell automatic generalization has been applied by the presence of type variables in an inferred type and 
ultimately by the fact that you can reuse a construct with multiple types. 

Automatic generalization is particularly useful when taking functions as inputs. For example, the 
following takes two functions as input and applies them to each side of a tuple: 
 
let mapPair f g (x,y) = (f x, g y) 
 

The generalized, inferred type is as follows: 

val mapPair : ('a -> 'b) -> ('c -> 'd) -> ('a * 'c) -> ('b * 'd) 

Understanding Some Important Generic Functions 
The F# and .NET libraries include definitions for some important generic functions. You saw a number 
of these in action in earlier chapters. It’s important to have a working knowledge of these building 
blocks, because often your code will automatically become generic when you use these primitives. 

Generic Comparison 
The first primitives are all related to generic comparison, also often called structural comparison. Every 
time you use operators such as <, >, <=, >=, =, <>, compare, min, and max in F# code, you’re using generic 
comparison. All of these operators are located in the Microsoft.FSharp.Core.Operators module, which is 
opened by default in all F# code. Some important data structures also use generic comparison internally; 
for example, you may also be using generic comparison when you use F# collection types such as 
Microsoft.FSharp.Collections.Set and Microsoft.FSharp.Collections.Map. This is discussed in the 
documentation for these types. The type signatures of the basic generic comparison operators are 
shown here: 

val compare : 'T -> 'T -> int when 'T : comparison 
val (=) : 'T -> 'T -> bool when 'T : equality 
val (<) : 'T -> 'T -> bool when 'T : comparison 
val (<=) : 'T -> 'T  -> bool when 'T : comparison 
val (>) : 'T  -> 'T  -> bool when 'T : comparison 
val (>=) : 'T  -> 'T  -> bool when 'T : comparison 
val (min) : 'T  -> 'T  -> 'T  when 'T : comparison 
val (max) : 'T  -> 'T  -> 'T  when 'T : comparison 

All of these routines are constrained, which means they may only be used on a subset of types that 
are known to support either equality (for =) or ordered comparison (for the others). It may help to think 
of those that implement ordered comparison as being implemented in terms of compare, which returns 0 
if the arguments are equal and returns –1 and 1 for less than and greater than, respectively. 

On ordinary simple types such as integers, generic comparison works by invoking the default .NET 
behavior for these types, giving the natural ordering for these types. For strings, culture-neutral ordinal 
comparison is used, which means the local culture settings on your machine don’t affect string 
comparison (see System.Globalization for more information about local settings). Most other .NET base 
types implement the System.IComparable interface, such as System.DateTime values, and generic 
comparison uses these implementations where necessary. 
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You can also use the comparison operators on most structured types. For example, you can use 
them on F# tuple values, where a lexicographic left-to-right comparison is used: 

> ("abc","def") < ("abc","xyz");; 
val it : bool = true 
 
> compare (10,30) (10,20);; 
val it : int = 1 

Likewise, you can use generic comparison with list and array values: 

> compare [10;30] [10;20];; 
val it : int = 1 
 
> compare [| 10;30 |] [| 10;20 |];; 
val it : int = 1 
 
> compare [| 10;20 |] [| 10;30 |];; 
val it : int = -1 

Generic Hashing 
Generic hashing is an important partner of generic comparison. The primary primitive function used to 
invoke generic hashing is hash, again located in the Microsoft.FSharp.Core.Operators module. The type 
signature is as follows: 

val hash : 'T -> int when 'T : equality 

Again, this is a constrained operation, requiring that the type support equality. Most types support 
some form of equality, even if it’s the default reference equality of .NET. 

When used with simple structural types, the function returns an integer that gives a stable hash of 
the input value: 

> hash 100;; 
val it : int = 100 
 
> hash "abc";; 
val it : int = 536991770 
 
> hash (100,"abc");; 
val it : int = 536990974 

Generic hashing is implemented similarly to generic comparison. Like generic comparison, generic 
hashing should generally be used only with base types such as integers and structural types built using 
records and discriminated unions.  
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For the most part, generic hashing and comparison are implemented efficiently—code is 
autogenerated for each type definition where possible fast-path comparison techniques are used. For 
example, the generated code uses primitive Common IL/native instructions for integer comparisons. 
This means that in practice, structural comparison is typically fast when used with appropriately sized 
keys. However, you should consider the following before using generic comparison over complex new 
data types: 

• When using .NET collections, consider passing the HashIdentity.Structural or 
ComparisonIdentity.Structural parameters to the object constructor of the 
collection. This helps the F# compiler optimize the performance of the hashing, 
equality and comparison functions for the collection instance.   

• Hashing, comparison and equality on tuples can be slower than expected in some 
circumstances where the F# compiler can’t optimize the hashing, equality and 
comparison functions for these types. Consider replacing uses of tuples as keys by 
the use of a new, named key type, often using a union type with a single case, e.g. 
type Key = Key of string * int. 

• Consider customizing the behavior of generic comparison and equality for new 
types you define, at least when those types will be used as keys in a data structure. 
You can do this by implementing the System.IComparable interface and overriding 
the System.Object.Equals method, covered in Chapter 8. You can customize 
generic hashing for new types by either overriding the GetHashCode method or 
implementing the Microsoft.FSharp.Core.IStructuralHash interface, again 
covered in Chapter 8. 

• Both ordered comparison and equality (in combination with hashing) can be used 
to build interesting indexed data structures. Collections built using these 
techniques are efficient over small keys. However, performance issues may arise if 
they’re used repeatedly over large structured keys. In this case, using custom 
comparison may be appropriate.  

Generic Pretty-Printing 
Some useful generic functions do generic formatting of values. The simplest ways to access this 
functionality is to use the %A specifiers in printf format strings. Here is an example: 

> sprintf "result = %A" ([1], [true]);; 
val it : string = "result = ([1], [true])" 

This code uses .NET and F# reflection to walk the structure of values to build a formatted representation 
of the value. You format structural types such as lists and tuples using the syntax of F# source code. 
Unrecognized values are formatted by calling the .NET ToString() method for these values. F# and .NET 
reflection are discussed in more depth toward the end of Chapter 9. 

Generic Boxing and Unboxing 
Two useful generic functions convert any F# data to and from the universal type System.Object (the F# 
type obj): 
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val box   : 'T -> obj 
val unbox : obj -> 'T 

Here are some simple examples of these functions in action: 

> box 1;; 
val it : obj = 1 
 
> box "abc";; 
val it : obj = "abc" 
 
> let stringObj = box "abc";; 
val stringObj: obj = "abc" 
 
> (unbox<string> stringObj);; 
val it : string = "abc" 
 
> (unbox stringObj : string);; 
val it : string = "abc" 

Note that using unbox generally requires you to specify the target type, given either as an explicit 
type parameter unbox<string> or as a type constraint (unbox stringObj: string)—these forms are 
equivalent. A runtime check is performed on unboxing to ensure that the object can be safely converted 
to the target type. Values of type obj carry dynamic type information, and attempting to unbox a value to 
an incompatible type raises an error: 

> (unbox stringObj: int);; 
System.InvalidCastException: Specified cast is not valid. 
   at <StartupCode>.FSI_0014._main() 
stopped due to error 

Boxing is important partly because many .NET libraries provide generic operations through 
functions that accept arguments of type obj. You see an example in the next section. Furthermore, some 
.NET APIs are dynamically typed, and almost all parameters are of type obj. 

Generic Binary Serialization via the .NET Libraries 
The .NET libraries provide an implementation of generic binary serialization that is useful as a quick and 
easy way of saving computed values to disk and sending values over the network. Let’s use this as an 
example to see how you can define building-block generic operations using functionality in the .NET 
libraries combined with box and unbox. You first define functions with the following signatures: 

val writeValue  : System.IO.Stream -> 'T -> unit 
val readValue   : System.IO.Stream -> 'T 
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The function writeValue takes an arbitrary value and writes a binary representation of its underlying 
object graph to the given I/O stream. The function readValue reverses this process, in much the same 
way that unbox reverses the process performed by box. Here are the implementations of the functions in 
terms of the .NET binary serializer located in the namespace 
System.Runtime.Serialization.Formatters.Binary: 
 
open System.IO 
open System.Runtime.Serialization.Formatters.Binary 
 
let writeValue outputStream (x: 'T) = 
    let formatter = new BinaryFormatter() 
    formatter.Serialize(outputStream, box x) 
 
let readValue inputStream = 
    let formatter = new BinaryFormatter() 
    let res = formatter.Deserialize(inputStream) 
    unbox res 
 

Note that box and unbox are used in the implementation, because the Serialize and Deserialize 
functions accept and return a value of type obj. Here is an example of how to use the functions to write a 
value of type Microsoft.FSharp.Collections.Map<string,string> to a FileStream and read it back in again: 
 
open System.IO 
let addresses = Map.ofList [ "Jeff", "123 Main Street, Redmond, WA 98052"; 
                             "Fred", "987 Pine Road, Phila., PA 19116"; 
                             "Mary", "PO Box 112233, Palo Alto, CA 94301" ] 
 
 
let fsOut = new FileStream("Data.dat", FileMode.Create) 
writeValue fsOut addresses 
fsOut.Close() 
let fsIn = new FileStream("Data.dat", FileMode.Open) 
let res : Map<string,string> = readValue fsIn 
fsIn.Close() 
 

The final result of this code when executed interactively is as follows: 

> res;; 
val it : Map<string,string> 
       = seq 
           [[Fred, 987 Pine Road, Phila., PA 19116] 
              {Key = "Fred"; 
               Value = "987 Pine Road, Phila., PA 19116";}; 
            [Jeff, 123 Main Street, Redmond, WA 98052] 
              {Key = "Jeff"; 
               Value = "123 Main Street, Redmond, WA 98052";}; 
            [Mary, PO Box 112233, Palo Alto, CA 94301] 
              {Key = "Mary"; 
               Value = "PO Box 112233, Palo Alto, CA 94301";}] 
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Note that values of type Map<string,string> are printed interactively as sequences of key/value 
pairs. Also, a type annotation is required when reading the data back in using readValue, and a runtime 
type error results if the types of the objects reconstructed from the binary data don’t match this type 
annotation. 

The .NET Framework provides several other generic serializers that differ in output format and 
operational characteristics. The most important of these are based around the notion of DataContract 
serialization: 

• System.Runtime.Serialization.Json.DataContractJsonSerializer: Used for 
serializing public data objects into the popular JavaScript Object Notation (JSON) 
format, using formats that aren’t specifically tied to particular .NET types but are 
rather compatible with a range of types 

• System.Runtime.Serialization.DataContractSerializer: Used for serializing 
public data objects into XML, using formats that aren’t specifically tied to 
particular .NET types but are rather compatible with a range of types 

• System.Runtime.Serialization.NetDataContractSerializer: Used for serializing 
arbitrary object graphs, including private data and closures, into XML using the 
same idioms as the other DataContract serializers 

 
In addition, you can use some older serializers with F#. For example, 

System.Runtime.Serialization.XmlSerializer is used for serializing public data into XML. However, this 
serializer is now used less frequently; you should generally use NetDataContractSerializer instead. You 
can also write your own generic serializer, using the techniques described in Chapter 9. 

 

Making Things Generic 
The following sections discuss how to make existing code more generic (that is, reusable) and how to 
systematically represent the abstract parameters of generic algorithms. 

Generic Algorithms through Explicit Arguments 
A common pattern in F# programming is to accept function parameters in order to make an algorithm 
abstract and reusable. A simple sample is the following generic implementation of Euclid’s algorithm for 
finding the highest common factor (HCF) of two numbers: 
 
let rec hcf a b = 
    if   a=0 then b 
    elif a<b then hcf a (b-a) 
    else hcf (a-b) b 
 

The type of this function is as follows: 

val hcf : int -> int -> int 
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For example: 

> hcf 18 12;; 
val it : int = 6 
 
> hcf 33 24;; 
val it : int = 3 

But this algorithm isn’t generic, because as written it works only over integers. In particular, although 
the operator (-) is by default overloaded in F#, each use of the operator must be associated with at most 
one type decided at compile time. This restriction is discussed in more detail in the section “Understanding 
Generic Overloaded Operators.” In addition, the constant 0 is an integer and isn’t overloaded. 

Despite this, this algorithm can be easily generalized to work over any type. To achieve this, you 
must provide an explicit zero, a subtraction function, and an ordering. Here’s one way: 
 
let hcfGeneric (zero,sub,lessThan) = 
    let rec hcf a b = 
        if   a=zero then b 
        elif lessThan a b then hcf a (sub b a) 
        else hcf (sub a b) b 
    hcf 
 

The inferred, generic type of this function is as follows: 

val hcfGeneric :  
     'a * ('a -> 'a -> 'a) * ('a -> 'a -> bool) -> ('a -> 'a -> 'a)  
         when 'a : equality 

The numeric type being manipulated has type 'a in the inferred type, and the result is a computed 
function. This approach uses techniques for computing functions similar to those discussed in Chapter 
3. Here are some examples of using this generic function: 
 
let hcfInt    = hcfGeneric (0, (-),(<)) 
let hcfInt64  = hcfGeneric (0L,(-),(<)) 
let hcfBigInt = hcfGeneric (0I,(-),(<)) 
 

Note that when you instantiate the generic function for these cases, you’re drawing on particular 
instances of the default overloaded operator (-). You can check that the code is executing correctly as 
follows: 

> hcfInt 18 12;; 
val it : int = 6 
 
> hcfBigInt 1810287116162232383039576I 1239028178293092830480239032I;; 
val it : bigint = 33224I 
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Generic Algorithms through Abstract Object Types 
The generic implementation from the previous section took three related parameters for zero, 
comparison, and subtraction. It’s common practice to package related operations together. One way to 
do this is to use a concrete record type containing function values: 
 
type Numeric<'T> = 
    { Zero: 'T; 
      Subtract: ('T -> 'T -> 'T); 
      LessThan: ('T -> 'T -> bool); } 
 
let intOps    = { Zero=0 ; Subtract=(-); LessThan=(<) } 
let bigintOps = { Zero=0I; Subtract=(-); LessThan=(<) } 
let int64Ops  = { Zero=0L; Subtract=(-); LessThan=(<) } 
 
let hcfGeneric (ops : Numeric<'T>) = 
    let rec hcf a b = 
        if a = ops.Zero then b 
        elif ops.LessThan a b then hcf a (ops.Subtract b a) 
        else hcf (ops.Subtract a b) b 
    hcf 
 
let hcfInt    = hcfGeneric intOps 
let hcfBigInt = hcfGeneric bigintOps 
 

The inferred types are as follows: 

val hcfGeneric : Numeric<'T> -> ('T -> 'T -> 'T) when 'T : equality 
val hcfInt : (int -> int -> int) 
val hcfBigInt : (bigint -> bigint -> bigint) 

Here are some examples of the functions in action: 

> hcfInt 18 12;; 
val it : int = 6 
 
> hcfBigInt 1810287116162232383039576I 1239028178293092830480239032I;; 
val it : bigint = 33224I 

Record types such as Numeric<'T> are often called dictionaries of operations and are similar to 
vtables from object-oriented programming and the compiled form of type classes from Haskell. As 
you’ve seen, dictionaries such as these can be represented in different ways according to your tastes, 
using tuples or records. For larger frameworks, a carefully constructed classification of object interface 
types is often used in place of records. Here is an interface type definition that plays the same role as the 
record in the previous example: 
 
type INumeric<'T> = 
    abstract Zero : 'T 
    abstract Subtract: 'T * 'T -> 'T 
    abstract LessThan: 'T * 'T -> bool 
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You can implement and use abstract object types similarly to record values: 

 
let intOps = 
    { new INumeric<int> with 
          member ops.Zero = 0 
          member ops.Subtract(x,y) = x - y 
          member ops.LessThan(x,y) = x < y } 

val intOps : INumeric<int> 

The code for Euclid’s algorithm using abstract object types is essentially the same as for the code 
based on record types: 
 
let hcfGeneric (ops : INumeric<'T>) = 
    let rec hcf a b = 
        if a= ops.Zero then b 
        elif ops.LessThan(a,b) then hcf a (ops.Subtract(b,a)) 
        else hcf (ops.Subtract(a,b)) b 
    hcf 

Generic Algorithms and Function Parameters 

One of the remarkable features of functional programming with F# is that generic programming is practical 
even when the types involved aren’t explicitly related. For example, the previous generic algorithm shows 
how you can write reusable code without resorting to relating the types involved through an inheritance 
hierarchy: the generic algorithm works over any type, if an appropriate set of operations is provided to 
manipulate values of that type. This is a form of explicit factoring by functions. Object-oriented 
programming typically uses implicit factoring by hierarchy, because the library designer decides the 
relationships that hold between various types, and these are fixed in stone. 

Type inference in F# makes explicit factoring by functions convenient. Given the simplicity and flexibility of 
this approach, it’s a useful way to write applications and to prototype frameworks. However, factoring by 
hierarchy still plays a role in F# programming. For example, all F# values can be implicitly converted to and 
from the type System.Object, something that is extremely useful when you’re interoperating with many 
libraries. It would obviously be inconvenient to have to pass around functions to marshal (box/unbox) types to 
System.Object and back. Similarly, many F# values can be implicitly converted to the IDisposable 
interface. Hierarchical factoring requires careful design choices; in general, we recommend that you use 
explicit factoring first, moving toward implicit factoring only when a design pattern is truly universal and 
repeats itself many times, as is the case with the IDisposable idiom. The .NET and F# libraries contain 
definitions of many of the implicit factors you should use in practice, such as IDisposable and IEnumerable. 

Some functional languages such as Haskell allow you to implicitly pass dictionaries of operations through 
an extension to type inference known as type classes. At the time of writing, this isn’t supported by F#. 
However, the designers of F# have stated that they expect a future version of the language to support this. 
Either way, explicitly passing dictionaries of operations is common in all functional programming and is an 
important technique to master. 
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Arithmetic Operators and Generic Algorithms through Inlining  
There is one additional way to make code generic: by marking a function as inline. You can use this 
technique for code that uses F# operators such as float, int, +, -, *, /, and other arithmetic operations. 
As discussed in the section “Understanding Generic Overloaded Operators,” each use of these operators 
is normally statically resolved. For example, consider the following code: 
 
let convertToFloat x = float x 
 

In the F# type system, the type of the float function is 'T -> float (requires member 
op_Explicit). This means the type 'T must support an explicit conversion from 'T to float. Thus you 
can use it with integers, singles, doubles, decimals, and so on, but you can’t use it with any old type. The 
'T is constrained.  

As mentioned earlier, F# operators like float are statically resolved. This means each use of float is 
associated with one statically inferred type. The same applies to other operators such as +, *, and so on. 
These operators also generally default to working over integers. For example, this shows float being 
used with three different statically resolved types: 
 
float 3.0 + float 1 + float 3L 
 

To make code like this generic, you can use inline. For example, consider this: 
 
let inline convertToFloatAndAdd x y = float x + float y 
 
convertToFloatAndAdd can be used with an integer and a float, or a decimal and an integer, or two 
decimals. You can use inline to write code and algorithms that are implicitly generic over arithmetic 
type while still maintaining type safety. This gives you generic, type-safe code while ensuring static 
resolution of basic numeric operations, making it easy to reason about the efficiency of your code.  

You can also apply this technique to the earlier HCF algorithm: 
 
let inline hcf a b = 
    let rec loop a b =  
        if   a=LanguagePrimitives.GenericZero<_> then b 
        elif a<b then loop a (b-a) 
        else loop (a-b) b 
    loop a b 
 

The type of this function is as follows: 

val inline hcf : 
   ^a ->  ^a ->  ^a 
    when ^a : (static member Zero : ^a)  
    and  ^a : (static member ( - ) :  ^a *  ^a ->  ^a) 
    and   ^a : comparison 
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For example: 

> hcf 18 12;; 
val it : int = 6 
 
> hcf 18I 12I;; 
val it : bigint = 6I 

The algorithm is now generic. You should use this technique sparingly, but it can be extremely 
powerful. Note the use of the F# library primitive GenericZero to get a zero value for an arbitrary type 
supporting a Zero static property. 

One variation on this technique provides a simple wrapper that delegates to a non-inlined generic 
routine. For example, the following code delegates to the non-inlined routine hcfGeneric, defined earlier 
in this section: 
 
let inline hcf a b = 
    hcfGeneric  
        { new INumeric<'T> with 
              member ops.Zero = LanguagePrimitives.GenericZero<'T> 
              member ops.Subtract(x,y) = x - y 
              member ops.LessThan(x,y) = x < y } 
        a b 
 

This gives you a generic routine hcfGeneric that can be used with any explicit set of arithmetic 
operations, and a generic routine hcf that can be used with any type that supports an implicit set of 
arithmetic operations.  

Understanding .NET Types 
For the most part, programming in F# involves using types in a simple way: each type has some values, 
and types are related by using explicit functions to map from one type to another. But in reality, types in 
F# are more sophisticated than this statement implies. First, F# types are really .NET types, and .NET 
makes some distinctions between different kinds of types that are occasionally important, such as 
between value types and reference types. Furthermore, .NET and F# support hierarchical relationships 
between types through subtyping. The following sections first cover .NET types from the F# perspective 
and then cover subtyping. 

Reference Types and Value Types 
The .NET documentation and other .NET languages often describe types as either reference types or 
value types. You can use System.String and System.DateTime as a typical example of each. First note that 
both of these types are immutable. That is, given a value of type System.String, you can’t modify the 
contents of the string; the same is true for System.DateTime. This is by far the most important fact you 
need to know about these types: for immutable types the reference/value type distinction is relatively 
unimportant. However, it’s still useful to know the following: 
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• Representation: Values of type System.String are single pointers into the garbage-
collected heap where the actual data for the string resides. Two System.String 
values may point to the same data. In contrast, values of type System.DateTime are 
somewhat larger blobs of integer data (64-bits of data, in this case), and no data lives 
on the garbage-collected heap. The full data for the value is copied as needed. 

• Boxing: All .NET types can be marshaled to and from the .NET type System.Object 
(the F# type obj) by using F# functions such as box and unbox. All reference types 
are trivially marshaled to this type without any change of representation or 
identity, so for reference types, box is a no-op. Boxing a value type involves a heap 
allocation, resulting in a new object. Often this object is immediately discarded 
after the operation on the obj type has been performed. 

If a value can be mutated, then the distinction between value types and reference types is more 
serious. Fortunately, essentially all mutable values in the .NET libraries are reference types, which means 
mutation actually mutates the heap-allocated data referred to by the reference. 

Other Flavors of .NET Types 
The .NET type system makes some additional distinctions between types that are occasionally 
significant for F# programming: 

• Delegate types: Delegate types such as System.Windows.Forms.MouseEventHandler 
are a form of named function type supported by all .NET languages. They tend not 
to be as convenient to use as F# function types, because they don’t support 
compositional operations such as pipelining and forward composition. However, 
.NET APIs use delegates extensively. To create a delegate value, you name the 
delegate type and pass it a function value that accepts the same arguments 
expected by the delegate type, such as MouseEventHandler(fun sender args -> 
printf "click!\n"). 

• Attribute types: Types derived from the System.Attribute class are used to add 
metadata to source-code declarations and typically end in the suffix Attribute. 
You can access these attributes via .NET and F# reflection. You can add attributes 
to F# declarations using the [<...>] syntax. For example, 
System.ObsoleteAttribute marks a function as obsolete, and the F# compiler 
produces a warning if the function is used. 

• Exception types: Types derived from the System.Exception class are used to 
represent raised exceptions. Chapter 4 discussed exceptions in detail. 

• Enum types: .NET enum types are simple integer-like value types associated with a 
particular name. They’re typically used for specifying flags to APIs; for example, 
FileMode in the System.IO namespace is an enum type with values such as 
FileMode.Open and FileMode.Create. .NET enum types are easy to use from F# and 
can be combined using bitwise AND, OR, and XOR operations using the &&&, |||, 
and ^^^ operators. Most commonly, the ||| operator is used to combine multiple 
flags. On occasion, you may have to mask an attribute value using &&& and 
compare the result to enum 0. You see how to define .NET-compatible enum types 
in F# at the end of Chapter 6. 
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Understanding Subtyping 
Simple types are related in simple ways; for example, values of the type int are distinct from values of 
the type float, and values of one record type are distinct from values of another. This approach to types 
is powerful and often sufficient, partly because type inference and function values make it easy to write 
generic code. However, .NET and F# also support hierarchical relationships between types through 
subtyping. Subtyping is a key concept of object-oriented programming and is discussed in more detail in 
Chapter 6. In addition, you can use subtyping in conjunction with pure functional programming, 
because it offers one technique to make algorithms generic over a restricted family of types. 

The following sections explain how these constructs appear to the F# programmer and the role they 
play in F# programming. Subtyping in F# is the same as that used by the .NET Framework, so if you’re 
familiar with another .NET language, you already know how things work. 

Casting Up Statically 
You can explore how subtyping works by using F# Interactive. First, let’s look at how some of the F# 
types you’ve already seen relate to the type obj: 

> let xobj = (1 :> obj);; 
val xobj : obj = 1 
 
> let sobj = ("abc" :> obj);; 
val sobj : obj = "abc" 

This example shows the subtyping relationship through the use of the built-in coercion (or upcast) 
operator, which is :>. This operator converts a value to any of its supertypes in precisely the same way as 
the box function. 

The previous code indicates the subtyping between ordinary types and the type obj. Subtyping 
occurs between other kinds of types as well (Chapters 3 and 6 discuss the various kinds of type 
definitions, such as records, discriminated unions, classes, and interfaces): 

• All types are subtypes of System.Object (called obj in F#). 

• Record and discriminated union types are subtypes of the interface types they 
implement. 

• Interfaces types are subtypes of the other interfaces they extend. 

• Class types are subtypes of both the interfaces they implement and the classes 
they extend. 

• Array types are subtypes of the .NET type System.Array. 

• Value types (types such as int32 that are abbreviations of .NET value types) are 
subtypes of the .NET type System.ValueType. Likewise, .NET enumeration types 
are subtypes of System.Enum. 

Casting Down Dynamically 
Values that may have subtypes carry a runtime type, and you can use runtime-type tests to query the 
type of an object and convert it to one of the subtypes. You can do this in three main ways: the unbox 
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operation, downcasts, and pattern type tests. We’ve already explained the unbox function. As with most 
object-oriented languages, the upcasts performed through subtyping are reversible through the use of 
downcasts—in other words, by using the:?> operator. You can see this in the following examples: 

> let boxedObject = box "abc";; 
val boxedObject : obj 
 
> let downcastString = (boxedObject :?> string);; 
val downcastString  : string = "abc" 

Downcasts are checked at runtime and are safe because all values of the obj type are implicitly 
annotated with the runtime type of the value. The operator :?> raises an exception if the object isn’t of a 
suitable type: 

> let xobj = box 1;; 
val xobj : obj = 1 
 
> let x = (xobj :?> string);; 
error: InvalidCastException raised at or near stdin:(2,0) 

Performing Type Tests via Pattern Matching 
A more convenient way of performing dynamic type tests uses type-test patterns—in particular the :? 
pattern construct, which you encountered in Chapter 4 in the context of catching various .NET 
exception types. This example uses a pattern-type test to query the dynamic type of a value of type obj: 
 
let checkObject (x: obj) = 
    match x with 
    | :? string -> printfn "The object is a string" 
    | :? int    -> printfn "The object is an integer" 
    | _         -> printfn "The input is something else" 

> checkObject (box "abc");; 
The object is a string 
val it : unit = () 

Such a pattern may also bind the matched value at its more specific type: 
 
let reportObject (x: obj) = 
    match x with 
    | :? string as s -> printfn "The input is the string '%s'" s 
    | :? int as d    -> printfn "The input is the integer '%d'" d 
    | _              -> printfn "the input is something else" 
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>  reportObject (box 17);; 
The input is the integer '17' 
val it : unit = () 

Knowing When Upcasts Are Applied Automatically 
Like most object-oriented languages, F# automatically applies upcasts whenever a function or method is 
called or wherever a value is used. If a parameter to an F# function has a named type, then the function 
implicitly accepts parameters that are any subtype, assuming that type supports subtyping. This is 
particularly common when working with .NET libraries that use subtyping heavily. For example: 

> open System.Windows.Forms;; 
 
> let setTextOfControl (c: Control) (s:string) = c.Text <- s;; 
val setTextOfControl: Control -> string -> unit 
 
> let form = new Form();; 
val form: Form 
 
> let textBox = new TextBox();; 
val textBox : TextBox 
 
> setTextOfControl form "Form Text";; 
val it : unit = () 
 
> setTextOfControl textBox "Text Box Text";; 
val it : unit = () 

Here, the function setTextOfControl is used on two different subtypes of Control. When functions have 
parameters that accept named types such as Control, you don’t need to supply an upcast explicitly. 

However, F# doesn’t apply upcasts in all the situations where other object-oriented languages do. In 
practice, this means you sometimes have to add explicit upcasts to your code to throw away 
information. For example, if each branch of an if ... then ... else ... construct returns different 
types, then you need to upcast the results of one or both of the branches. This is shown by the type error 
given for the following code, which returns Console.In (a TextReader) from one branch and the results of 
File.OpenText (a StreamReader) from the other branch: 
 
open System 
open System.IO 
let textReader  = 
    if DateTime.Today.DayOfWeek = DayOfWeek.Monday 
    then Console.In 
    else File.OpenText("input.txt") 
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The error reported is as follows: 

      else File.OpenText("input.txt") 
           ^^^^^^^^^^^^^^^^^^^^^^^^^^ 
 error: FS0001: This expression has type 
        StreamReader 
but is here used with type 
        TextReader 
stopped due to error 

StreamReader is a subtype of TextReader, so the code can be corrected by throwing away the 
information that the returned type is a StreamReader: 
 
open System 
open System.IO 
 
let textReader  = 
    if DateTime.Today.DayOfWeek = DayOfWeek.Monday 
    then Console.In 
    else (File.OpenText("input.txt") :> TextReader) 
 

Upcasts are applied automatically in the following situations: 

• When passing arguments to functions and all members associated with .NET and 
F# objects and types. This applies when parameters have named types such as 
TextReader, rather than variable types. 

• When calling functions with flexible parameter types, such as #TextReader. 

• When assigning into fields and properties. 

• When accessing members using dot notation. For example, given a value of type 
StreamReader, all the members associated with TextReader can also be accessed 
without needing to apply an upcast. 

Note particularly that upcasts aren’t applied automatically for the result of a function. For example, 
an upcast is needed here, to coerce a StreamReader to a TextReader, despite the presence of an explicit 
type annotation for the return type: 
 
let getTextReader () : TextReader = (File.OpenText("input.txt") :> TextReader) 

Flexible Types 
F# also has the notion of a flexible type constraint, which is shorthand for a generic function and a 
constraint on the type variable. You could equally write this: 

> open System.Windows.Forms;; 
 
> let setTextOfControl (c : 'T when 'T :> Control) (s:string) = c.Text <- s;; 
val setTextOfControl: #Control -> string -> unit 
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Automatic generalization lifts the constraints implicit in types of the form #type to the nearest 
enclosing function or member definition. Flexible type constraints sometimes occur when you’re 
working with sequence values. For example, consider the following two functions from the F# library: 

module Seq = 
    ... 
    val concat : seq<#seq<'T>> -> seq<'T> 
    ... 

When implicit flexibility or arguments is taken into account, the signature of concat means that 
Seq.concat accepts a list of lists, or a list of arrays, or an array of lists, and so forth. For example: 
 
Seq.concat [ [1;2;3]; [4;5;6] ] 
Seq.concat [ [| 1;2;3 |]; [| 4;5;6 |] ] 

Units of Measure 
F# includes a beautiful feature in its type system called units of measure. It lets you annotate numeric 
types with annotations such as kg, m, and sec that indicate the kind of number the quantity represents—
that is, its unit of measure. You can also use the feature to annotate other, user-defined types that are 
ultimately based on numeric quantities. This feature is simplest explained using code for physical 
simulations and is rooted in scalable quantities. However, it also has a wide range of surprising 
applications outside physical simulation, including annotating code with units for integer quantities 
such as pixels, currencies, or click-counts. 

To define a new kind of measure annotation, you use a type definition with a Measure attribute: 
 
[<Measure>]  
type m 
 
[<Measure>]  
type s 
 
[<Measure>]  
type kg 
 

The F# version 2.0 core library doesn’t come with predefined units, although a set of definitions 
matching the Système International (SI) standard is included in the F# Power Pack (an open source 
project available at www.codeplex.com). 

Once a set of measures are defined, the basic numeric types and literals can include these 
qualifications. For example: 
 
let gravityOnEarth = 9.81<m/s^2> 
let heightOfMyOfficeWindow = 3.5<m> 
 

A calculation involving these quantities is shown here: 
 
let speedOfImpact = sqrt (2.0 * gravityOnEarth * heightOfMyOfficeWindow) 
 
The inferred type of speedOfImpact is float<m/s> (a speed). If a mismatched unit type is used in such a 
calculation, then a type error is normally reported. 
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When you define a new type, you may include measure parameters as part of the definition of the 
type. These parameters must be marked with the Measure attribute. For example: 
 
type Vector2D<[<Measure>] 'u> = 
    { DX: float<'u>; DY: float<'u> } 

 
You can use units of measure in conjunction with object-oriented programming, discussed in 

Chapter 6. For example, here is a vector type generic over units of measure: 
 
/// Two-dimensional vectors 
type Vector2D<[<Measure>] 'u>(dx: float<'u>, dy: float<'u>) = 
 
    /// Get the X component of the vector 
    member v.DX = dx     
     
    /// Get the Y component of the vector 
    member v.DY = dy     
     
    /// Get the length of the vector 
    member v.Length = sqrt(dx * dx + dy * dy) 
     
    /// Get a vector scaled by the given factor 
    member v.Scale k = Vector2D(k*dx, k*dy) 
     
    /// Return a vector shifted by the given delta in the X coordinate 
    member v.ShiftX x = Vector2D(dx+x, dy) 
 
    /// Return a vector shifted by the given delta in the Y coordinate 
    member v.ShiftY y = Vector2D(dx, dy+y) 
 
    /// Get the zero vector 
    static member Zero = Vector2D<'u>(0.0<_>, 0.0<_>) 
 
    /// Return a constant vector along the X axis 
    static member ConstX dx = Vector2D<'u>(dx, 0.0<_>) 
 
    /// Return a constant vector along the Y axis 
    static member ConstY dy = Vector2D<'u>(0.0<_>, dy) 
 
    /// Return the sum of two vectors 
    static member (+) (v1: Vector2D<'u>, v2: Vector2D<'u>) =  
        Vector2D(v1.DX + v2.DX, v1.DY + v2.DY) 
 
    /// Return the difference of two vectors 
    static member (-) (v1: Vector2D<'u>, v2: Vector2D<'u>) =  
        Vector2D(v1.DX - v2.DX, v1.DY - v2.DY) 
 
    /// Return the pointwise-product of two vectors 
    static member (.*) (v1: Vector2D<'u>, v2: Vector2D<'u>) =  
        Vector2D(v1.DX * v2.DX, v1.DY * v2.DY) 
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Note that some measure annotations are needed on zero values in this sample. In addition, a vector 
type like this should normally implement the IComparable interface, and the Equals and GetHashCode 
methods, as described in Chapter 8. 

■ Note F# units of measure are covered only briefly in this book. For more information, see the MSDN 
documentation, or Andrew Kennedy’s four-part introduction to the topic: search for “Andrew Kennedy Units of 

Measure Part One,” or visit http://blogs.msdn.com/andrewkennedy. 

Troubleshooting Type-Inference Problems 
The following sections cover some of the techniques you can use to understand the type-inference 
process and to debug problems when inferred types aren’t as expected. 

Using a Visual Editing Environment 
The best and most important technique to debug and understand type inference is to use a visual 
editing environment for F#. For example, Visual Studio performs interactive type-checking as you’re 
writing code. Such tools display errors interactively and show inferred types as you move the mouse 
pointer over identifiers. 

Using Type Annotations 
Type inference in F# works through a process of type-constraint propagation. As a programmer, you can 
add further type constraints to your code in several ways. For example, you can do the following: 

• Add a rigid type constraint using the : notation, such as let t : float = 5.0. 

• Add a type constraint to an argument, such as let setTextOfControl (c : 
Control) (s:string) = c.Text <- s. 

• Apply a function that accepts only a particular type of argument, such as let f x 
= String.length x. Here, the use of String.length generates a constraint on the 
type of x. 

Adding type annotations to and removing them from your code is the standard technique to 
troubleshoot type-inference problems. For example, the following code doesn’t type-check: 

> let transformData inp = 
    inp |> Seq.map (fun (x,y) -> (x,y.Length)) ;; 
 
inp |> Seq.map (fun (x,y) -> (x,y.Length)) 
--------------------------------^^^^^^^^ 
 
stdin(11,36): error: Lookup on object of indeterminate type. A type annotation 
may be needed prior to this program point to constrain the type of the object. 
This may allow the lookup to be resolved. 

You can easily solve this problem by adding a type annotation, such as to y: 
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let transformData inp = 
    inp |> Seq.map (fun (x,y:string) -> (x,y.Length)) 
 

You can also use type annotations to discover why code isn’t as generic as you think it should be. 
For example, the following code has a mistake, and the F# type checker says the code is less generic than 
expected: 
 
let printSecondElements (inp : seq<'T * int>) = 
    inp 
    |> Seq.iter (fun (x,y) -> printfn "y = %d" x) 

> ... enter the code above ... 
 
      |> Seq.iter (fun (x,y) -> printfn "y = %d" x) 
  --------------------------------------^^^^^^^^^ 
 
stdin(21,38): warning: FS0064: This construct causes code to be less generic than 
indicated by the type annotations. The type variable 'T has been constrained to 
the type 'int'. 

The mistake here is that you’re printing the variable x instead of y, but it’s not always so easy to spot 
what has caused this kind of problem. One way to track down this problem is to temporarily change the 
generic type parameter to some arbitrary, unrelated type. After all, if code is generic, then you should be 
able to use any type; and by changing the type variable to an unrelated type, you can track down where 
the inconsistency first arises. For example, let’s change 'T to the type PingPong: 
 
type PingPong = Ping | Pong 
 
let printSecondElements (inp : seq<PingPong * int>) = 
    inp 
    |> Seq.iter (fun (x,y) -> printfn "y = %d" x) 
 

You now get a different and in many ways more informative error message, localized to the first 
place that the value x marked with type PingPong is used in an unexpected way: 

> ... enter the code above ... 
 
      |> Seq.iter (fun (x,y) -> printfn "y = %d" x) 
 ------------------------------------------------^ 
 
stdin(27,47): error: FS0001: The type 'PingPong' is not compatible with any of 
the types byte,int16,int32,int64,sbyte,uint16,uint32,uint64,nativeint,unativeint, 
arising from the use of a printf-style format string 

Understanding the Value Restriction 
F# sometimes requires a little help before a definition is automatically generalized. In particular, only 
function definitions and simple immutable data expressions are automatically generalized; this is 
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called the value restriction. For example, the following definition doesn’t result in a generic type and 
gives an error: 

> let empties = Array.create 100 [];; 
------^^^^^^ 
error: FS0030: Value restriction. The value 'empties' has been inferred to  
have generic type 
        val empties : '_a list [] 
Either define 'empties' as a simple data term, make it a function  
with explicit arguments or, if you do not intend for it to be generic,  
add a type annotation. 

The code attempts to create an array of empty lists. The error message indicates that type inference has 
given empties the type '_a list []. The underscore (_) indicates that the type variable 'a is 
ungeneralized, meaning this code isn’t fully generic. It would make no sense to give empties the truly 
generic type 'a list [], because this would imply that you’ve created an array of lists somehow suitable 
for use with any type 'a. In reality, any particular array should have one specific type, such as int list 
[] or string list [], but not both. (If it were usable with both types, then you could store an integer list 
in the array and fetch it out as a string list!)  

The value restriction ensures that declarations don’t result in this kind of confusion; automatic 
generalization isn’t applied to declarations unless they’re functions or simple, immutable data 
constructs. One way to think of this is that you can create concrete objects only after the type-inference 
problem is sufficiently constrained so that every concrete object created at the top level of your program 
has a ground type—a type that doesn’t contain any ungeneralized type variables. 

The value restriction doesn’t apply to simple immutable data constants or function definitions. For 
example, the following declarations are all automatically generalized, giving the generic types shown: 
 
let emptyList = [] 
let initialLists = ([],[2]) 
let listOfEmptyLists = [[];[]] 
let makeArray ()  = Array.create 100 [] 

val emptyList : 'a list 
val initialLists : ('a list * int list) 
val listOfEmptyLists : 'a list list 
val makeArray : unit -> 'a list [] 

Working Around the Value Restriction 
The value restriction crops up with mild regularity in F# coding—particularly when you’re using F# 
Interactive, where the scope of type inference is at the granularity of each entry sent to the tool rather 
than an entire file and hence fewer constraints are placed on these code fragments. You can work 
around the value restriction in several ways, depending on what you’re trying to do. 
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Technique 1: Constrain Values to Be Nongeneric 
The first technique applies when you make a definition such as empties, shown earlier, but you meant to 
create one value. Recall that this definition was problematic because it’s not clear what type of array is 
being created: 
 
let empties = Array.create 100 [] 
 

If you meant to create one value with a specific type, then use an explicit type annotation: 
 
let empties : int list [] = Array.create 100 [] 
 

The value is then not generic, and the value restriction doesn’t apply. 

Technique 2: Ensure Generic Functions Have Explicit Arguments 
The next technique applies when you’re defining generic functions. In this case, make sure you define 
them with explicit arguments. For example, look at the following definition of a function value: 
 
let mapFirst = List.map fst 
 
You may expect this to be a generic function with type ('a * 'b) list -> 'a list. However, this isn’t 
what happens. Type variables are automatically generalized at true syntactic function definitions—that 
is, function definitions with explicit arguments. The function mapFirst has implicit arguments. 
Fortunately, it’s easy to work around this by making the arguments explicit: 
 
let mapFirst inp = List.map fst inp 
 

This function now has the following type: 

val mapFirst : ('a * 'b) list -> 'a list 

When there is only one argument, our favorite way of writing the extra arguments is as follows: 
 
let mapFirst inp = inp |> List.map (fun (x,y) -> x) 
 

The same problem arises when you try to define functions by composition. For example: 
 
let printFstElements = List.map fst >> List.iter (printf "res = %d") 
 
The arguments here are implicit, which causes problems. This definition isn’t automatically generalized 
because this isn’t a syntactic function. Again, make the arguments explicit: 
 
let printFstElements inp = inp |> List.map fst |> List.iter (printf "res = %d") 

Technique 3: Add Dummy Arguments to Generic Functions When Necessary 
Look at this definition again: 
 
let empties = Array.create 100 [] 
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It’s possible that you really did intend to define a function that generates arrays of different types on 

demand. In this case, add a dummy argument: 
 
let empties () = Array.create 100 [] 
let intEmpties : int list [] = empties() 
let stringEmpties : string list [] = empties() 
 
The dummy argument ensures that empties is a function with generic arguments and can be 
automatically generalized. 

Technique 4: Add Explicit Type Arguments When Necessary 
You can use one final technique to make a value generic. This one is rarely used but is very handy when 
it’s required. It’s normally used when you’re defining values that are generic but that are neither 
functions nor simple data expressions. For example, let’s define a sequence of 100 empty lists: 
 
let emptyLists = Seq.init 100 (fun _ -> []) 
 
The expression on the right isn’t a function or simple data expression (it’s a function application), so the 
value restriction applies. One solution is to add an extra dummy argument, as in the previous section. 
However, if you’re designing a library, this can seem very artificial. Instead, you can use the following 
declaration form to make emptyLists generic: 
 
let emptyLists<'T> : seq<'T list> = Seq.init 100 (fun _ -> []) 
 

You can now use emptyLists as a type function to generate values of different types. For example: 

> Seq.length emptyLists;; 
val it : int = 100 
 
> emptyLists<int>;; 
val it : seq<int list> = seq [[]; []; []; []; ...] 
 
> emptyLists<string>;; 
val it : seq<string list> = seq [[]; []; []; []; ...] 

Some values and functions in the F# library are defined in this way, including typeof<_>, Seq.empty, 
and Set.empty. Chapter 9 covers typeof. 

Understanding Generic Overloaded Operators 
There is one further important way in which code doesn’t automatically become generic in F#: when you 
use overloaded operators such as +, -, *, and /, or overloaded conversion functions such as float and 
int64. For example, the following is not a generic function: 
 
let twice x = (x + x) 
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In the absence of further information, the type of this function is as follows: 

val twice : int -> int 

This is because the overloaded operator + defaults to operating on integers. If you add type 
annotations or further type constraints, you can force the function to operate on any type supporting the 
overloaded + operator: 
 
let twiceFloat (x:float) = x + x 

val twiceFloat : float -> float 

The information that resolves a use of an overloaded operator can come after the use of the 
operator: 
 
let threeTimes x = (x + x + x) 
let sixTimesInt64 (x:int64) = threeTimes x + threeTimes x 

val threeTimes : int64 -> int64 
val sixTimesInt64 : int64 -> int64 

Note how the constraint in the definition of sixTimesInt64 is the only mention of int64 and affects the 
type of threeTimes. The technical explanation is that overloaded operators such as + give rise to floating 
constraints, which can be resolved later in the type-inference scope. 

Summary 
F# is a typed language, and F# programmers often use types in sophisticated ways. In this chapter, you 
learned about the foundations of types, focusing on how types are used in functional programming and 
on generics and subtyping in particular. The next chapter covers the related topics of object-oriented 
and modular programming in F#. 
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Working with Objects and Modules 

Chapters 2 through 5 dealt with the basic constructs of F# functional and imperative programming, and 
by now we trust you’re familiar with the foundational concepts and techniques of practical, small-scale 
F# programming. This chapter covers language constructs related to object-oriented (OO) programming. 
We assume some familiarity with the basic concepts of OO programming, although you may notice that 
our discussion of objects deliberately deemphasizes techniques such as implementation inheritance. 

The first part of this chapter focuses on OO programming with concrete types. You’re then 
introduced to the notion of object interface types and some simple techniques to implement them. The 
chapter covers more advanced techniques to implement objects using function parameters, delegation, 
and implementation inheritance. Finally, it covers the related topics of modules (which are simple 
containers of functions and values) and extensions (in other words, how to add ad hoc dot-notation to 
existing modules and types). Chapter 7 covers the topic of encapsulation. 

Getting Started with Objects and Members 
One of  the most important activities of OO programming is defining concrete types equipped with dot-
notation. A concrete type has fixed behavior: that is, it uses the same member implementations for each 
concrete value of the type. 

You’ve already met many important concrete types, such as integers, lists, strings, and records 
(introduced in Chapter 3). It’s easy to add OO members to concrete types. Listing 6-1 shows an example. 

Listing 6-1. A Vector2D Type with Object-Oriented Members 

/// Two-dimensional vectors 
type Vector2D = 
    { DX: float; DY: float } 
     
    /// Get the length of the vector 
    member v.Length = sqrt(v.DX * v.DX + v.DY * v.DY) 
     
    /// Get a vector scaled by the given factor 
    member v.Scale(k) = { DX=k*v.DX; DY=k*v.DY } 
     
    /// Return a vector shifted by the given delta in the X coordinate 
    member v.ShiftX(x) = { v with DX=v.DX+x } 
 
    /// Return a vector shifted by the given delta in the Y coordinate 
    member v.ShiftY(y) = { v with DY=v.DY+y } 
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    /// Return a vector shifted by the given distance in both coordinates 
    member v.ShiftXY(x,y) = { DX=v.DX+x; DY=v.DY+y } 
 
    /// Get the zero vector 
    static member Zero = { DX=0.0; DY=0.0 } 
 
    /// Return a constant vector along the X axis 
    static member ConstX(dx) = { DX=dx; DY=0.0 } 
 
    /// Return a constant vector along the Y axis 
    static member ConstY(dy) = { DX=0.0; DY=dy } 
 

You can use the properties and methods of this type as follows: 

> let v = {DX = 3.0; DY=4.0 };; 
val v : Vector2D 
 
> v.Length;; 
val it : float = 5.0 
 
> v.Scale(2.0).Length;; 
val it : float = 10.0 
 
> Vector2D.ConstX(3.0);; 
val it : Vector2D = {DX = 3.0; DY = 0.0} 

As usual, it’s useful to look at inferred types to understand a type definition. Here are the inferred 
types for the Vector2D type definition of Listing 6-1. 

type Vector2D = 
     { DX: float; DY: float } 
     member Length : float 
     member Scale : k:float -> Vector2D 
     member ShiftX : x:float -> Vector2D 
     member ShiftY : y:float -> Vector2D 
     member ShiftXY : x:float * y:float -> Vector2D 
     static member Zero : Vector2D 
     static member ConstX : dx:float -> Vector2D 
     static member ConstY : dy:float -> Vector2D 

You can see that the Vector2D type contains the following: 

• A collection of record fields 

• One instance property (Length) 

• Four instance methods (Scale, ShiftX, ShiftY, ShiftXY) 

• One static property (Zero) 

• Two static methods (ConstX, ConstY) 
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Let’s look at the implementation of the Length property: 
 
    member v.Length = sqrt(v.DX * v.DX + v.DY * v.DY) 
 
Here, the identifier v stands for the Vector2D value on which the property is being defined. In many other 
languages, this is called this or self, but in F# you can name this parameter as you see fit. The 
implementation of a property such as Length is executed each time the property is invoked; in other 
words, properties are syntactic sugar for method calls. For example, let’s repeat the earlier type 
definition with an additional property that adds a side effect: 
 
    member v.LengthWithSideEffect = 
        printfn "Computing!" 
        sqrt(v.DX * v.DX + v.DY * v.DY) 
 

Each time you use this property, you see the side effect: 

> let x = {DX = 3.0; DY=4.0 };; 
val x : Vector2D 
 
> x.LengthWithSideEffect;; 
Computing! 
val it : float = 5.0 
 
> x.LengthWithSideEffect;; 
Computing! 
val it : float = 5.0 

The method members for a type look similar to the properties but also take arguments. For example, 
let’s look at the implementation of the ShiftX method member: 
 
    member v.ShiftX(x) = { v with DX=v.DX+x } 
 
Here the object is v, and the argument is dx. The return result clones the input record value and adjusts 
the DX field to be v.DX+dx. Cloning records is described in Chapter 3. The ShiftXY method member takes 
two arguments: 
 
    member v.ShiftXY(x,y) = { DX=v.DX+x; DY=v.DY+y } 
 

Like functions, method members can take arguments in either tupled or iterated form. For example, 
you could define ShiftXY as follows: 
 
    member v.ShiftXY x y = { DX=v.DX+x; DY=v.DY+y } 
 

However, it’s conventional for methods to take their arguments in tupled form. This is partly 
because OO programming is strongly associated with the design patterns and guidelines of the .NET 
Framework, and arguments always appear as tupled when using .NET methods from F#. 

Discriminated unions are also a form of concrete type. In this case, the shape of the data associated 
with a value is drawn from a finite, fixed set of choices. Discriminated unions can also be given 
members. For example: 
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/// A type of binary trees, generic in the type of values carried at nodes and tips 
type Tree<'T> = 
    | Node of 'T * Tree<'T> * Tree<'T> 
    | Tip  
 
    /// Compute the number of values in the tree 
    member t.Size = 
        match t with 
        | Node(_,l,r) -> 1 + l.Size + r.Size 
        | Tip -> 0 

Should You Use Members or Functions? 

F# lets you define both members associated with types and objects via the dot-notation and static 
functions that can perform essentially the same operations. For example, the length of a string s can be 
computed by both the s.Length property and the String.length function. Given the choice, which should 
you use in your code? Although there is no fixed answer to this, here are some general rules: 

• Use members (methods and properties) where they already exist, unless you have 
other good reasons not to do so. It’s better to use s.Length than String.length, 
simply because it’s shorter, even if it occasionally requires using an additional 
type annotation. That is, embrace dot-notation, but use it tastefully. 

• When designing a framework or library, define members for the intrinsic, essential 
properties and operations associated with a type. 

• When designing a framework or library, define additional functionality in new 
modules or by using extension members. The section “Extending Existing Types 
and Modules” later in this chapter covers extension members. 

• Sometimes there is duplication in functionality between dot-notation members and 
values in associated modules. This is intended and should be accepted as part of 
the mixed OO/functional nature of F#. 

 

Using Classes 
Record and union types are symmetric: the values used to construct an object are the same as those 
stored in the object, which are a subset of those published by the object. This symmetry makes record 
and union types succinct and clear, and it helps give them other properties; for example, the F# compiler 
automatically derives generic equality, comparison, and hashing routines for these types. 

However, more advanced OO programming often needs to break these symmetries. For example, 
let’s say you want to precompute and store the length of a vector in each vector value. It’s clear you don’t 
want everyone who creates a vector to have to perform this computation for you. Instead, you 
precompute the length as part of the construction sequence for the type. You can’t do this using a 
record, except by using a helper function, so it’s convenient to switch to a more general notation for class 
types. Listing 6-2 shows the Vector2D example using a class type. 
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Listing 6-2. A Vector2D Type with Length Precomputation via a Class Type 

type Vector2D(dx: float, dy: float) = 
     
    let len = sqrt(dx * dx + dy * dy) 
 
    /// Get the X component of the vector 
    member v.DX = dx 
 
    /// Get the Y component of the vector 
    member v.DY = dy 
 
    /// Get the length of the vector 
    member v.Length = len 
 
    /// Return a vector scaled by the given factor 
    member v.Scale(k)  = Vector2D(k*dx,   k*dy) 
 
    /// Return a vector shifted by the given delta in the Y coordinate 
    member v.ShiftX(x) = Vector2D(dx=dx+x, dy=dy) 
 
    /// Return a vector shifted by the given delta in the Y coordinate 
    member v.ShiftY(y) = Vector2D(dx=dx, dy=dy+y) 
 
    /// Return a vector that is shifted by the given deltas in each coordinate 
    member v.ShiftXY(x,y) = Vector2D(dx=dx+x, dy=dy+y) 
 
    /// Get the zero vector 
    static member Zero = Vector2D(dx=0.0, dy=0.0) 
 
    /// Get a constant vector along the X axis of length one 
    static member OneX = Vector2D(dx=1.0, dy=0.0) 
 
    /// Get a constant vector along the Y axis of length one 
    static member OneY = Vector2D(dx=0.0, dy=1.0) 
 

You can now use this type as follows: 

> let v = Vector2D(3.0, 4.0);; 
val v : Vector2D 
 
> v.Length;; 
val it : float = 5.0 
 
> v.Scale(2.0).Length;; 
val it : float = 10.0 

Once again, it’s helpful to look at the inferred type signature for the Vector2D type definition of 
Listing 6-2: 
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type Vector2D = 
     new : dx:float * dy:float -> Vector2D 
     member DX : float 
     member DY : float 
     member Length : float 
     member Scale : k:float -> Vector2D 
     member ShiftX : x:float -> Vector2D 
     member ShiftY : y:float -> Vector2D 
     member ShiftXY : x:float * y:float -> Vector2D 
     static member Zero : Vector2D 
     static member ConstX : dx:float -> Vector2D 
     static member ConstY : dy:float -> Vector2D 

The signature of the type is almost the same as that for Listing 6-1. The primary difference is in the 
construction syntax. Let’s look at what’s going on here. The first line says you’re defining a type Vector2D 
with a primary constructor. This is sometimes called an implicit constructor. The constructor takes two 
arguments, dx and dy. The variables dx and dy are in scope throughout the (nonstatic) members of the 
type definition.  

The second line is part of the computation performed each time an object of this type is 
constructed: 
     
let len = sqrt(dx * dx + dy * dy) 
 

Like the input values, the len value is in scope throughout the rest of the (nonstatic) members of the 
type. The next three lines publish both the input values and the computed length as properties: 
 
    member v.DX = dx 
    member v.DY = dy 
    member v.Length = len 
 

The remaining lines implement the same methods and static properties as the original record type. 
The Scale method creates its result by calling the constructor for the type using the expression 
Vector2D(k*dx, k*dy). In this expression, arguments are specified by position. 

Class types with primary constructors always have the following form, where elements in brackets 
are optional and * indicates that the element may appear zero or more times: 
 
type TypeName <type-arguments>optional arguments [ as ident ] optional = 
   [ inherit type  [ as base ] optional ] optional 
   [ let-binding | let-rec bindings ] zero-or-more  
   [ do-statement ] zero-or-more  
   [ abstract-binding | member-binding | interface-implementation ] zero-or-more 
 

Later sections cover inheritance, abstract bindings, and interface implementations. 
The Vector2D in Listing 6-2 uses a construction sequence. Construction sequences can enforce 

object invariants. For example, the following defines a vector type that checks that its length is close to 
1.0 and refuses to construct an instance of the value if not: 
 
/// Vectors whose length is checked to be close to length one. 
type UnitVector2D(dx,dy) = 
    let tolerance = 0.000001 
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    let length = sqrt (dx * dx + dy * dy) 
 
    do if abs (length - 1.0) >= tolerance then failwith "not a unit vector"; 
 
    member v.DX = dx 
 
    member v.DY = dy 
 
    new() = UnitVector2D (1.0,0.0) 
 
This example shows something else: sometimes it’s convenient for a class to have multiple constructors. 
You do this by adding extra explicit constructors using a member named new. These must ultimately 
construct an instance of the object via the primary constructor. The inferred signature for this type 
contains two constructors: 

type UnitVector2D = 
    new : unit -> UnitVector2D 
    new : dx:float * dy:float -> UnitVector2D 
    member DX : float 
    member DY : float 

This represents a form of method overloading, covered in more detail in the “Adding Method 
Overloading” section later in this chapter. 

Class types can also include static bindings. For example, this can be used to ensure only one vector 
object is allocated for the Zero and One properties of the vector type: 
 
/// A class including some static bindings 
type Vector2D(dx: float, dy: float) = 
     
    static let zero = Vector2D(0.0, 0.0) 
    static let onex = Vector2D(1.0, 0.0) 
    static let oney = Vector2D(0.0, 1.0) 
 
    /// Get the zero vector 
    static member Zero = zero 
 
    /// Get a constant vector along the X axis of length one 
    static member OneX = onex 
 
    /// Get a constant vector along the Y axis of length one 
    static member OneY = oney 
 

Static bindings in classes are initialized once, along with other module and static bindings in the 
file. If the class type is generic, it’s initialized once per concrete type generic instantiation. 
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Adding Further Object Notation to Your Types 
As we mentioned, one of the most useful aspects of OO programming is the notational convenience of 
dot-notation. This extends to other kinds of notation, in particular expr.[expr] indexer notation, named 
arguments, optional arguments, operator overloading, and method overloading. The following sections 
cover how to define and use these notational conveniences. 

Working with Indexer Properties 
Like methods, properties can take arguments; these are called indexer properties. The most commonly 
defined indexer property is called Item, and the Item property on a value v is accessed via the special 
notation v.[i]. As the notation suggests, these properties are normally used to implement the lookup 
operation on collection types. The following example implements a sparse vector in terms of an 
underlying sorted dictionary: 
 
open System.Collections.Generic 
type SparseVector(items: seq<int * float>)= 
    let elems = new SortedDictionary<_,_>() 
    do items |> Seq.iter (fun (k,v) -> elems.Add(k,v)) 
 
    /// This defines an indexer property 
    member t.Item 
        with get(idx) = 
            if elems.ContainsKey(idx) then elems.[idx] 
            else 0.0 
 

You can define and use the indexer property as follows: 

> let v = SparseVector [(3,547.0)];; 
val v : SparseVector 
 
> v.[4];; 
val it : float = 0.0 
 
> v.[3];; 
val it : float = 547.0 

You can also use indexer properties as mutable setter properties with the syntax expr.[expr] <- 
expr. This is covered in the section “Defining Object Types with Mutable State.” Indexer properties can 
also take multiple arguments; for example, the indexer property for the F# Power Pack type 
Microsoft.FSharp.Math.Matrix<'T> takes two arguments. Chapter 10 describes this type. 

Adding Overloaded Operators 
Types can also include the definition of overloaded operators. Typically, you do this by defining static 
members with the same names as the relevant operators. Here is an example: 
 
type Vector2DWithOperators(dx:float,dy:float) = 
    member x.DX = dx 
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    member x.DY = dy 
 
    static member (+) (v1: Vector2DWithOperators ,v2: Vector2DWithOperators) = 
        Vector2DWithOperators(v1.DX + v2.DX, v1.DY + v2.DY) 
 
    static member (-) (v1: Vector2DWithOperators ,v2: Vector2DWithOperators) = 
        Vector2DWithOperators (v1.DX - v2.DX, v1.DY - v2.DY) 

> let v1 = new Vector2DWithOperators (3.0,4.0);; 
val v1 : Vector2DWithOperators 
 
> v1 + v1;; 
val it : Vector2DWithOperators = { DX=6.0; DY=8.0 } 
 
> v1 - v1;; 
val it : Vector2DWithOperators = { DX=0.0; DY=0.0 } 

If you add overloaded operators to your type, you may also have to customize how generic equality, 
hashing, and comparison are performed. In particular, the behavior of generic operators such as hash, <, 
>, <=, >=, compare, min, and max isn’t specified by defining new static members with these names, but 
rather by the techniques described in Chapter 8. 

How Does Operator Overloading Work? 

Operator overloading in F# works by having fixed functions that map uses of operators through to 
particular static members on the static types involved in the operation. These functions are usually defined 
in the F# library. For example, the F# library includes the following definition for the (+) operator: 

let inline (+) x y = ((^a or ^b): (static member (+) : ^a * ^b -> ^c) (x,y)) 

This defines the infix function (+) and is implemented using a special expression that says “implement x 
+ y by calling a static member (+) on the type of the left or right operand.” The function is marked inline 
to ensure that F# can always check for the existence of this member and call it efficiently. When you name 
a static member (+), then that is really shorthand for the name op_Addition, which is the .NET standard 
encoded name for addition operators. 

You can define your own operators if you want, but they aren’t automatically overloaded in the same way 
as F# library definitions like the one shown previously. For example, the following defines a new infix 
operator that appends a single element to the end of a list: 

let (++) x y = List.append x [y] 

This operator isn’t overloaded; it’s a single fixed function. Defining non-overloaded operators can help 
make some implementation code more succinct, and you use this technique in the symbolic programming 
examples in Chapter 12. 

In principle, you can define new operators that are truly overloaded in the same way as the definition of (+) 
in the F# library, mapping the operator across to particular static members. However, code is generally 
much clearer if you stick to the standard overloaded operators. 
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Using Named and Optional Arguments 
The F# OO constructs are designed largely for use in APIs for software components. Two useful 
mechanisms in APIs permit callers to name arguments and let API designers make certain arguments 
optional. 

Named arguments are simple. For example, in Listing 6-2, the implementations of some methods 
specify arguments by name, as in the expression Vector2D(dx=dx+x, dy=dy). You can use named 
arguments with all dot-notation method calls. Code written using named arguments is often much more 
readable and maintainable than code relying on argument position. The rest of this book frequently uses 
named arguments. 

You declare a member argument optional by prefixing the argument name with ?. Within a function 
implementation, an optional argument always has an option<_> type; for example, an optional argument 
of type int appears as a value of type option<int> within the function body. The value is None if no 
argument is supplied by the caller and Some(arg) if the argument arg is given by the caller. For example: 
 
open System.Drawing 
 
type LabelInfo(?text:string, ?font:Font) = 
    let text = defaultArg text "" 
    let font = match font with 
               | None -> new Font(FontFamily.GenericSansSerif,12.0f) 
               | Some v -> v 
    member x.Text = text 
    member x.Font = font 
 

The inferred signature for this type shows how the optional arguments have become named 
arguments accepting option values: 

type LabelInfo = 
    new : text:string option * font:System.Drawing.Font option -> LabelInfo 
    member Font : System.Drawing.Font 
    member Text : string 

You can now create LabelInfo values using several different techniques: 

> LabelInfo (text="Hello World");; 
val it : LabelInfo = 
    {Font = [Font: Name=Microsoft Sans Serif, Size=12]; Text = "Hello World"} 
 
> LabelInfo("Goodbye Lenin");; 
val it : LabelInfo = 
    {Font = [Font: Name=Microsoft Sans Serif, Size=12];  Text = "Goodbye Lenin"} 
 
> LabelInfo(font=new Font(FontFamily.GenericMonospace,36.0f), 
            text="Imagine");; 
val it : LabelInfo = 
    {Font = [Font: Name=Courier New, Size=36]; Text = "Imagine"} 
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Optional arguments must always appear last in the set of arguments accepted by a method. They’re 
usually used as named arguments by callers. 

The implementation of LabelInfo uses the F# library function defaultArg, which is a useful way to 
specify simple default values for optional arguments. Its type is as follows: 

val defaultArg : 'T option -> 'T-> 'T 

■ Note The second argument given to the defaultArg function is evaluated before the function is called. This 
means you should take care that this argument isn’t expensive to compute and doesn’t need to be disposed. The 

previous example uses a match expression to specify the default for the font argument for this reason. 

Using Optional Property Settings 
Throughout this book, you’ve used a second technique to specify configuration parameters when creating 
objects: initial property settings for objects. For example, in Chapter 2, you used the following code: 
 
open System.Windows.Forms 
let form = new Form(Visible=true,TopMost=true,Text="Welcome to F#") 
 
The constructor for the System.Windows.Forms.Form class takes no arguments, so in this case the named 
arguments indicate post-hoc set operations for the given properties. The code is shorthand for this: 
 
open System.Windows.Forms 
 
let form = 
    let tmp = new Form() 
    tmp.Visible <- true 
    tmp.TopMost <- true 
    tmp.Text <- "Welcome to F#" 
    tmp 
 

The F# compiler interprets unused named arguments as calls that set properties of the returned 
object. This technique is widely used for mutable objects that evolve over time, such as graphical 
components, because it greatly reduces the number of optional arguments that need to be plumbed 
around. Here’s how to define a version of the LabelInfo type used earlier that is configurable by optional 
property settings: 
 
open System.Drawing 
 
type LabelInfoWithPropertySetting() = 
    let mutable text = "" // the default 
    let mutable font = new Font(FontFamily.GenericSansSerif,12.0f) 
    member x.Text with get() = text and set v = text <- v 
    member x.Font with get() = font and set v = font <- v 
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> LabelInfoWithPropertySetting(Text="Hello World");; 
val it : LabelInfo = 
    {Font = [Font: Name=Microsoft Sans Serif, Size=12]; Text = "Hello World"} 

You use this technique in Chapter 11 when you learn how to define a Windows Forms control with 
configurable properties. The “Defining Object Types with Mutable State” section later in this chapter 
covers mutable objects in more detail. 

Adding Method Overloading 
.NET APIs and other OO design frameworks frequently use a notational device called method 
overloading. This means a type can support multiple methods with the same name, and uses of methods 
are distinguished by name, number of arguments, and argument types. For example, the 
System.Console.WriteLine method of .NET has 19 overloads! 

Method overloading is used relatively rarely in F#-authored classes, partly because optional 
arguments and mutable property setters tend to make it less necessary. However, method overloading is 
permitted in F#. First, methods can easily be overloaded by the number of arguments. For example, 
Listing 6-3 shows a concrete type representing an interval of numbers on the number line. It includes 
two methods called Span, one taking a pair of intervals and the other taking an arbitrary collection of 
intervals. The overloading is resolved according to argument count. 

Listing 6-3. An Interval Type with Overloaded Methods 

/// Interval(lo,hi) represents the range of numbers from lo to hi, 
/// but not including either lo or hi. 
type Interval(lo,hi) = 
    member r.Lo = lo 
    member r.Hi = hi 
    member r.IsEmpty = hi <= lo 
    member r.Contains v = lo < v && v < hi 
 
    static member Empty = Interval(0.0,0.0) 
 
    /// Return the smallest interval that covers both the intervals 
    /// This method is overloaded. 
    static member Span (r1:Interval, r2:Interval) = 
        if r1.IsEmpty then r2 else 
        if r2.IsEmpty then r1 else 
        Interval(min r1.Lo r2.Lo, max r1.Hi r2.Hi) 
 
    /// Return the smallest interval that covers all the intervals 
    /// This method is overloaded. 
    static member Span(ranges: seq<Interval>) = 
        Seq.fold (fun r1 r2 -> Interval.Span(r1,r2)) Interval.Empty ranges 
 

Second, multiple methods can also have the same number of arguments and be overloaded by type. 
One of the most common examples is providing multiple implementations of overloaded operators on the 
same type. The following example shows a Point type that supports two subtraction operations, one 
subtracting a Point from a Point to give a Vector and one subtracting a Vector from a Point to give a Point: 
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type Vector = 
    { DX:float; DY:float } 
    member v.Length = sqrt(v.DX*v.DX+v.DY*v.DY) 
 
type Point = 
    { X:float; Y:float } 
 
    static member (-) (p1:Point,p2:Point) = { DX=p1.X-p2.X; DY=p1.Y-p2.Y } 
 
    static member (-) (p:Point,v:Vector) = { X=p.X-v.DX; Y=p.Y-v.DY } 
 

Overloads must be unique by signature, and you should take care to make sure your overload set 
isn’t too ambiguous—the more overloads you use, the more type annotations users of your types will 
need to add. 

Defining Object Types with Mutable State 
All the types you’ve seen so far in this chapter have been immutable. For example, the values of the 
Vector2D types shown in Listing 6-1 and Listing 6-2 can’t be modified after they’re created. Frequently, 
you want to define mutable objects, particularly because OO programming is a generally useful 
technique for encapsulating mutable and evolving state. Listing 6-4 shows the definition of a mutable 
representation of a 2D vector. 

Listing 6-4. A Concrete Object Type with State 

type MutableVector2D(dx:float,dy:float) = 
    let mutable currDX = dx 
    let mutable currDY = dy 
 
    member vec.DX with get() = currDX and set v = currDX <- v 
    member vec.DY with get() = currDY and set v = currDY <- v 
 
    member vec.Length 
         with get () = sqrt (currDX * currDX + currDY * currDY) 
         and  set len = 
             let theta = vec.Angle 
             currDX <- cos theta * len 
             currDY <- sin theta * len 
 
    member vec.Angle 
         with get () = atan2 currDY currDX 
         and  set theta = 
             let len = vec.Length 
             currDX <- cos theta * len 
             currDY <- sin theta * len 
 

The mutable state is held in two mutable local let bindings for currDX and currDY. It also exposes 
additional settable properties, Length and Angle, that interpret and adjust the underlying currDX/currDY 
values. Here is the inferred signature for the type: 
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type MutableVector2D = 
    new : float * float -> MutableVector2D 
    member DX : float with get,set 
    member DY : float with get,set 
    member Angle : float with get,set 
    member Length : float with get,set 

You can use this type as follows: 

> let v = MutableVector2D(3.0,4.0);; 
val v : MutableVector2D 
 
> (v.DX, v.DY);; 
val it : float * float = (3.0, 4.0) 
 
> (v.Length, v.Angle);; 
val it : float * float = (5.0, 0.927295218) 
 
> v.Angle <- System.Math.PI / 6.0;;      // "30 degrees" 
val it : unit = () 
 
> (v.DX, v.DY);; 
val it : float * float = (4.330127019, 2.5) 
 
> (v.Length, v.Angle);; 
val it : float * float = (5.0, 0.523598775) 

Adjusting the Angle property rotates the vector while maintaining its overall length. This example uses 
the long syntax for properties, where you specify both set and get operations for the property. 

If the type has an indexer (Item) property, then you write an indexed setter as follows: 
 
open System.Collections.Generic 
type IntegerMatrix(rows:int, cols:int)= 
    let elems = Array2D.zeroCreate<int> rows cols  
 
    /// This defines an indexer property with getter and setter 
    member t.Item 
        with get (idx1,idx2) = elems.[idx1, idx2] 
        and set (idx1,idx2) v = elems.[idx1, idx2] <- v 

■ Note Class types with a primary constructor are useful partly because they implicitly encapsulate internal 
functions and mutable state. This is because all the construction arguments and let bindings are private to the 
object instance being constructed. This is just one of the ways of encapsulating information in F# programming. 

Chapter 7 covers encapsulation more closely. 
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Objects and Mutation 

OO programming is often presented primarily as a technique for controlling the complexity of mutable 
state. However, many of the concerns of OO programming are orthogonal to this. For example, 
programming constructs such as object interface types, inheritance, and higher-level design patterns such 
as publish/subscribe stem from the OO tradition, whereas techniques such as functions, type abstraction, 
and aggregate operations such as map and fold stem from the functional programming tradition. Many OO 
techniques have no fundamental relationship to object mutation and identity; for example, interfaces and 
inheritance can be used very effectively with immutable objects. Much of the expressivity of F# lies in the 
way it brings the techniques of OO programming and functional programming comfortably together. 

Getting Started with Object Interface Types 
So far in this chapter, you’ve seen only how to define concrete object types. One of the key advances in 
both functional and OO programming has been the move toward using abstract types for large portions 
of modern software. These values are typically accessed via interfaces, and you now look at defining new 
object interface types. Many .NET object interface types begin with the letter I, as in System.IDisposable. 

The notion of an object interface type can sound a little daunting at first, but the concept is actually 
simple; object interface types are ones whose member implementations can vary from value to value. As 
it happens, you’ve already met one important family of types whose implementations also vary from 
value to value: F# function types! 

• In Chapter 3, you saw how functions can be used to model a range of concepts 
such as comparison functions, aggregation functions, and transformation 
functions. 

• In Chapter 5, you saw how records of function values can be used for the 
parameters needed to make an algorithm generic. 

You’ve also already met some other important object interface types such as 
System.Collections.Generic.IEnumerable<'T> and System.IDisposable. 

Object interface types are always implemented, and the type definition itself doesn’t specify how 
this is done. Listing 6-5 shows an object interface type IShape and a number of implementations of it. 
This section walks through the definitions in this code piece by piece, because they illustrate the key 
concepts behind object interface types and how they can be implemented. 

Listing 6-5. An Object Interface Type IShape and Some Implementations 

open System.Drawing 
type IShape = 
    abstract Contains : Point -> bool 
    abstract BoundingBox : Rectangle 
 
let circle (center:Point, radius:int) = 
    { new IShape with 
 
          member x.Contains(p:Point) = 
              let dx = float32 (p.X - center.X) 
              let dy = float32 (p.Y - center.Y) 
              sqrt(dx*dx+dy*dy) <= float32 radius 
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          member x.BoundingBox = 
              Rectangle(center.X-radius,center.Y-radius,2*radius+1,2*radius+1) } 
 
let square (center:Point, side:int) = 
    { new IShape with 
 
          member x.Contains(p:Point) = 
              let dx = p.X - center.X 
              let dy = p.Y - center.Y 
              abs(dx) < side/2 && abs(dy) < side/2 
 
          member x.BoundingBox = 
              Rectangle(center.X-side,center.Y-side,side*2,side*2) } 
 
type MutableCircle() = 
 
    let mutable center = Point(x=0,y=0) 
    let mutable radius = 10 
 
    member sq.Center with get() = center and set v = center <- v 
 
    member sq.Radius with get() = radius and set v = radius <- v 
 
    member c.Perimeter = 2.0 * System.Math.PI * float radius 
 
    interface IShape with 
 
        member x.Contains(p:Point) = 
            let dx = float32 (p.X - center.X) 
            let dy = float32 (p.Y - center.Y) 
            sqrt(dx*dx+dy*dy) <= float32 radius 
 
        member x.BoundingBox = 
            Rectangle(center.X-radius,center.Y-radius,2*radius+1,2*radius+1) 

Defining New Object Interface Types 
The key definition in Listing 6-5 is the following (it also uses Rectangle and Point, two types from the 
System.Drawing namespace): 
 
open System.Drawing 
type IShape = 
    abstract Contains : Point -> bool 
    abstract BoundingBox : Rectangle 
 
Here you use the keyword abstract to define the member signatures for this type, indicating that the 
implementation of the member may vary from value to value. Also note that IShape isn’t concrete; it’s 
neither a record nor a discriminated union or class type. It doesn’t have any constructors and doesn’t 
accept any arguments. This is how F# infers that it’s an object interface type. 
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Implementing Object Interface Types Using Object Expressions 
The following code from Listing 6-5 implements the object interface type IShape using an object 
expression: 
  
let circle(center:Point,radius:int) = 
    { new IShape with 
          member x.Contains(p:Point) = 
              let dx = float32 (p.X - center.X) 
              let dy = float32 (p.Y - center.Y) 
              sqrt(dx*dx+dy*dy) <= float32 radius 
          member x.BoundingBox = 
              Rectangle(center.X-radius,center.Y-radius,2*radius+1,2*radius+1) } 
 

The type of the function circle is as follows: 

val circle : Point * int -> IShape 

The construct in the braces, { new IShape with ... }, is the object expression. This is a new 
expression form that you haven’t encountered previously in this book, because it’s generally used only 
when implementing object interface types. An object expression must give implementations for all the 
members of an object interface type. The general form of this kind of expression is simple: 
 
{ new Type optional-arguments with 
       member-definitions 
  optional-extra-interface-definitions } 
 

The member definitions take the same form as members for type definitions described earlier in this 
chapter. The optional arguments are given only when object expressions inherit from a class type, and 
the optional interface definitions are used when implementing additional interfaces that are part of a 
hierarchy of object interface types. 

You can use the function circle as follows: 

> let bigCircle = circle(Point(0,0), 100);; 
val bigCircle : IShape 
 
> bigCircle.BoundingBox;; 
val it : Rectangle = {X=-100,Y=-100,Width=201,Height=201} 
 
> bigCircle.Contains(Point(70,70));; 
val it : bool = true 
 
> bigCircle.Contains(Point(71,71));; 
val it : bool = false 

Listing 6-5 also contains another function square that gives a different implementation for IShape, 
also using an object expression: 
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> let smallSquare = square(Point(1,1), 1);; 
val smallSquare : IShape 
 
> smallSquare.BoundingBox;; 
val it : Rectangle = {X=0,Y=0,Width=2,Height=2} 
 
> smallSquare.Contains(Point(0,0));; 
val it : bool = false 

■ Note In OO languages, implementing types in multiple ways is commonly called polymorphism, which you may 
call polymorphism of implementation. Polymorphism of this kind is present throughout F#, and not just with 
respect to the OO constructs. In functional programming, the word polymorphism is used to mean generic type 

parameters. These are an orthogonal concept discussed in Chapters 2 and 5. 

Implementing Object Interface Types Using Concrete Types 
It’s common to have concrete types that both implement one or more object interface types and provide 
additional services of their own. Collections are a primary example, because they always implement 
IEnumerable<'T>. To give another example, in Listing 6-5 the type MutableCircle is defined as follows: 
 
type MutableCircle() = 
    let mutable center = Point(x=0,y=0) 
    let mutable radius = 10 
    member c.Center with get() = center and set v = center <- v 
    member c.Radius with get() = radius and set v = radius <- v 
    member c.Perimeter = 2.0 * System.Math.PI * float radius 
    interface IShape with 
        member c.Contains(p:Point) = 
            let dx = float32 (p.X - center.X) 
            let dy = float32 (p.Y - center.Y) 
            sqrt(dx*dx+dy*dy) <= float32 radius 
        member c.BoundingBox = 
            Rectangle(center.X-radius,center.Y-radius,2*radius+1,2*radius+1) 
 

This type implements the IShape interface, which means MutableCircle is a subtype of IShape, but it 
also provides three properties—Center, Radius, and Perimeter—that are specific to the MutableCircle 
type, two of which are settable. The type has the following signature: 

type MutableCircle = 
    interface IShape 
    new : unit -> MutableCircle 
    member Perimeter : float 
    member Center : Point with get,set 
    member Radius : int with get,set 
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You can now reveal the interface (through a type cast) and use its members. For example: 

> let circle2 = MutableCircle();; 
val circle2 : MutableCircle 
 
> circle2.Radius;; 
val it : int = 10 
 
> (circle2 :> IShape).BoundingBox;; 
val it : Rectangle = {X=-10,Y=-10,Width=21,Height=21} 

Using Common Object Interface Types from the .NET Libraries 
Like other constructs discussed in this chapter, object interface types are often encountered when using 
.NET libraries. Some object interface types such as IEnumerable<'T> (called seq<'T> in F# coding) are 
also used throughout F# programming. It’s a .NET convention to prefix the name of all object interface 
types with I. However, using object interface types is very common in F# OO programming, so this 
convention isn’t always followed. 

Here’s the essence of the definition of the System.Collections.Generic.IEnumerable<'T> type and 
the related type IEnumerator using F# notation: 
 
type IEnumerator<'T> = 
    abstract Current : 'T 
    abstract MoveNext : unit -> bool 
 
type IEnumerable<'T> = 
    abstract GetEnumerator : unit -> IEnumerator<'T> 
 

The IEnumerable<'T> type is implemented by most concrete collection types. It can also be 
implemented by a sequence expression or by calling a library function such as Seq.unfold, which in turn 
uses an object expression as part of its implementation. 

■ Note The IEnumerator<'T> and IEnumerable<'T> interfaces are defined in a library component that is 
implemented using another .NET language. This section uses the corresponding F# syntax. In reality, 
IEnumerator<'T> also inherits from the nongeneric interface System.Collections.IEnumerator and the type 

System.IDisposable, and IEnumerable<'T> also inherits from the nongeneric interface 
System.Collections.IEnumerable. For clarity, we’ve ignored this. See the F# library documentation for full 

example implementations of these types. 

Some other useful predefined F# and .NET object interface types are as follows: 

• System.IDisposable: Represents values that may own explicitly reclaimable 
resources. 
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• System.IComparable and System.IComparable<'T>: Represent values that can be 
compared to other values. F# generic comparison is implemented via these types, 
as you see in Chapter 8. 

• Microsoft.FSharp.Control.IEvent: Represents mutable ports into which you can 
plug event listeners, or callbacks. This technique is described in Chapter 8. Some 
other entity is typically responsible for raising the event and thus calling all the 
listener callbacks. In F#, .NET events become values of this type or the related type 
Microsoft.FSharp.Control.IDelegateEvent, and the module 
Microsoft.FSharp.Control.Event contains many useful combinators for 
manipulating these values. You can open this module by using open Event. 

Understanding Hierarchies of Object Interface Types 
Object interface types can be arranged in hierarchies using interface inheritance. This provides a way to 
classify types. To create a hierarchy, you use the inherit keyword in an object interface type definition 
along with each parent object interface type. For example, the .NET Framework includes a hierarchical 
classification of collection types: ICollection<'T> extends IEnumerable<'T>. Here are the essential 
definitions of these types in F# syntax, with some minor details omitted: 
 
type IEnumerable<'T> = 
    abstract GetEnumerator : unit -> IEnumerator<'T> 
 
type ICollection<'T> = 
    inherit IEnumerable<'T> 
    abstract Count : int 
    abstract IsReadOnly : bool 
    abstract Add : 'T -> unit 
    abstract Clear : unit -> unit 
    abstract Contains  : 'T -> bool 
    abstract CopyTo  : 'T[] * int -> unit 
    abstract Remove  : 'T -> unit 
 

When you implement an interface that inherits from another interface, you must effectively 
implement both interfaces. 

■ Caution Although hierarchical modeling is useful, you must use it with care: poorly designed hierarchies often 

have to be abandoned late in the software development life cycle, leading to major disruptions. For many 
applications, it’s adequate to use existing classification hierarchies in conjunction with some new nonhierarchical 

interface types. 
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More Techniques to Implement Objects 
Objects can be difficult to implement from scratch; for example, a graphical user interface (GUI) 
component must respond to many different events, often in regular and predictable ways, and it 
would be tedious to have to recode all this behavior for each component. This makes it essential to 
support the process of creating partial implementations of objects, where the partial implementations 
can then be completed or customized. The following sections cover techniques to build partial 
implementations of objects. 

Combining Object Expressions and Function Parameters 
One of the easiest ways to build a partial implementation of an object is to qualify the implementation of 
the object by a number of function parameters that complete the implementation. For example, the 
following code defines an object interface type called ITextOutputSink, a partial implementation of that 
type called simpleOutputSink, and a function called simpleOutputSink that acts as a partial 
implementation of that type. The remainder of the implementation is provided by a function parameter 
called writeCharFunction: 
 
/// An object interface type that consumes characters and strings 
type ITextOutputSink = 
 
    /// When implemented, writes one Unicode character to the sink 
    abstract WriteChar : char -> unit 
 
    /// When implemented, writes one Unicode string to the sink 
    abstract WriteString : string -> unit 
 
/// Returns an object that implements ITextOutputSink by using writeCharFunction 
let simpleOutputSink writeCharFunction = 
    { new ITextOutputSink with 
          member x.WriteChar(c) = writeCharFunction c 
          member x.WriteString(s) = s |> String.iter x.WriteChar } 
 

This construction function uses function values to build an object of a given shape. Here the 
inferred type is as follows: 

val simpleOutputSink: (char -> unit) -> ITextOutputSink 

The following code instantiates the function parameter to output the characters to a particular 
System.Text.StringBuilder object, an imperative type for accumulating characters in a buffer before 
converting these to an immutable System.String value: 
 
let stringBuilderOuputSink (buf : System.Text.StringBuilder ) = 
    simpleOutputSink (fun c -> buf.Append(c) |> ignore) 
 

Here is an example that uses this function interactively: 
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> let buf = new System.Text.StringBuilder();; 
val buf : StringBuilder 
 
> let c = stringBuilderOuputSink(buf);; 
val c : ITextOutputSink 
 
> ["Incy"; " "; "Wincy"; " "; "Spider"] |> List.iter c.WriteString;; 
val it : unit = () 
 
> buf.ToString();; 
val it : string = "Incy Wincy Spider" 

Object expressions must give definitions for all unimplemented abstract members and can’t add 
other members.  

One powerful technique implements some or all abstract members in terms of function parameters. 
As you saw in Chapter 3, function parameters can represent a wide range of concepts. For example, here 
is a type CountingOutputSink that performs the same role as the earlier function simpleOutputSink, 
except that the number of characters written to the sink is recorded and published as a property: 
 
/// A type which fully implements the ITextOutputSink object interface 
type CountingOutputSink(writeCharFunction: char -> unit) = 
 
    let mutable count = 0 
 
    interface ITextOutputSink with 
        member x.WriteChar(c) = count <- count + 1; writeCharFunction(c) 
        member x.WriteString(s) = s |> String.iter (x :> ITextOutputSink).WriteChar 
 
    member x.Count = count 

■ Note Qualifying object implementations by function parameters can be seen as a simple form of the OO design 
pattern known as delegation, because parts of the implementation are delegated to the function values. Delegation 
is a powerful and compositional technique for reusing fragments of implementations and is commonly used in F# 

as a replacement for OO implementation inheritance. 

Defining Partially Implemented Class Types 
In this chapter, you’ve seen how to define concrete types, such as Vector2D in Listings 6-2 and 6-3, and 
you’ve seen how to define object interface types, such as IShape in Listing 6-5. Sometimes it’s useful to 
define types that are halfway between these types: partially concrete types. Partially implemented types 
are class types that also have abstract members, some of which may be unimplemented and some of 
which may have default implementations. For example, consider the following class: 
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/// A type whose members are partially implemented 
[<AbstractClass>] 
type TextOutputSink() = 
    abstract WriteChar : char -> unit 
    abstract WriteString : string -> unit 
    default x.WriteString s = s |> String.iter x.WriteChar 
 
This class defines two abstract members, WriteChar and WriteString, but gives a default implementation 
for WriteString in terms of WriteChar. Because WriteChar isn’t yet implemented, you can’t create an 
instance of this type directly; unlike other concrete types, partially implemented types still need to be 
implemented. One way to do this is to complete the implementation via an object expression. For 
example: 
 
{ new TextOutputSink() with 
      member x.WriteChar c = System.Console.Write(c) } 

Using Partially Implemented Types via Delegation 
This section covers how you can use partially implemented types to build complete objects. One 
approach is to instantiate one or more partially implemented types to put together a complete concrete 
type. This is often done via delegation to an instantiation of the partially concrete type; for example, the 
following example creates a private, internal TextOutputSink object whose implementation of WriteChar 
counts the number of characters written through that object. You use this object to build the HtmlWriter 
object that publishes three methods specific to the process of writing a particular format: 
 
/// A type which uses a TextOutputSink internally 
type HtmlWriter() = 
    let mutable count = 0 
    let sink = 
        { new TextOutputSink() with 
              member x.WriteChar c = 
                  count <- count + 1; 
                  System.Console.Write c } 
 
    member x.CharCount = count 
    member x.WriteHeader() = sink.WriteString("<html>") 
    member x.WriteFooter() = sink.WriteString("</html>") 
    member x.WriteString(s) = sink.WriteString(s) 

Using Partially Implemented Types via Implementation 
Inheritance 
Another technique to use partially implemented types is called implementation inheritance, which is 
widely used in OO languages despite being a somewhat awkward technique. Implementation 
inheritance tends to be much less significant in F# because it comes with major drawbacks: 

• Implementation inheritance takes base objects and makes them more complex. 
This is against the spirit of functional programming, where the aim is to build 
simple, composable abstractions. Functional programming, object expressions, 
and delegation tend to provide good alternative techniques for defining, sharing, 
and combining implementation fragments. 
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• Implementation hierarchies tend to leak across API boundaries, revealing how 
objects are implemented rather than how they can be used and composed. 

• Implementation hierarchies are often fragile in response to minor changes in 
program specification. 

If implementation inheritance is used, you should in many cases consider making all implementing 
classes private or hiding all implementing classes behind a signature. For example, the 
Microsoft.FSharp.Collections.Seq module provides many implementations of the seq<'T> interface 
but exposes no implementation inheritance.  

Nevertheless, hierarchies of classes are important in domains such as GUI programming, and the 
technique is used heavily by .NET libraries written in other .NET languages. For example, 
System.Windows.Forms.Control, System.Windows.Forms.UserControl, and 
System.Windows.Forms.RichTextBox are part of a hierarchy of visual GUI elements. Should you want to 
write new controls, then you must understand this implementation hierarchy and how to extend it. 
Chapter 11 shows a complete example of extending UserControl. However, even in this domain, 
implementation inheritance is often less important than you may think, because these controls can 
often be configured in powerful and interesting ways by adding function callbacks to events associated 
with the controls. 

Here is a simple example of applying the technique to instantiate and extend the partially 
implemented type TextOutputSink: 
 
/// An implementation of TextOutputSink, counting the number of bytes written 
type CountingOutputSinkByInheritance() = 
    inherit TextOutputSink() 
 
    let mutable count = 0 
 
    member sink.Count = count 
 
    default sink.WriteChar c =  
        count <- count + 1;  
        System.Console.Write c 
 

The keywords override and default can be used interchangeably; both indicate that an 
implementation is being given for an abstract member. By convention, override is used when giving 
implementations for abstract members in inherited types that already have implementations, and 
default is used for implementations of abstract members that didn’t previously have implementations. 

Implementations are also free to override and modify default implementations such as the 
implementation of WriteString provided by TextOutputSink. Here is an example: 
 
{ new TextOutputSink() with 
      member sink.WriteChar c = System.Console.Write c 
      member sink.WriteString s = System.Console.Write s } 
 

You can also build new partially implemented types by extending existing partially implemented 
types. The following example takes the TextOutputSink type from the previous section and adds two 
abstract members called WriteByte and WriteBytes, adds a default implementation for WriteBytes, adds 
an initial implementation for WriteChar, and overrides the implementation of WriteString to use 
WriteBytes. The implementations of WriteChar and WriteString use the .NET functionality to convert 
the Unicode characters and strings to bytes under System.Text.UTF8Encoding, documented in the .NET 
Framework class libraries: 
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open System.Text 
 
/// A component to write bytes to an output sink 
[<AbstractClass>] 
type ByteOutputSink() = 
    inherit TextOutputSink() 
 
    /// When implemented, writes one byte to the sink 
    abstract WriteByte : byte -> unit 
 
    /// When implemented, writes multiple bytes to the sink 
    abstract WriteBytes : byte[] -> unit 
 
    default sink.WriteChar c = sink.WriteBytes(Encoding.UTF8.GetBytes [|c|]) 
 
    override sink.WriteString s = sink.WriteBytes(Encoding.UTF8.GetBytes s)  
 
    default sink.WriteBytes b = b |> Array.iter sink.WriteByte  

Using Modules and Static Members 
A common OO design technique is to use a class that contains only static items as a way of organizing 
values, global state, and type definitions. In F#, this is called a module. A module is a simple container 
for values, type definitions, and submodules. For example, here is the Vector2D example rewritten to use 
a module to hold the operations associated with the type: 
 
type Vector2D = 
    { DX: float; DY: float } 
 
module Vector2DOps = 
    let length v = sqrt (v.DX * v.DX + v.DY * v.DY) 
    let scale k v = { DX=k*v.DX; DY=k*v.DY } 
    let shiftX x v = { v with DX=v.DX+x } 
    let shiftY y v = { v with DY=v.DY+y } 
    let shiftXY (x,y) v = { DX=v.DX+x; DY=v.DY+y } 
    let zero = { DX=0.0; DY=0.0 } 
    let constX dx = { DX=dx; DY=0.0 } 
    let constY dy = { DX=0.0; DY=dy } 
 

A module is compiled as a class that contains only static values, types, and additional submodules. 
Some people prefer to use classes with static members for this purpose, although in practice there is 
little difference between the two techniques. Modules may also contain type and submodule definitions. 
Sometimes you want to have a module with the same name as one of your types. You can do this by 
adding an attribute to your code: 
 
type Vector2D = 
    { DX: float; DY: float } 
 
[<CompilationRepresentation(CompilationRepresentationFlags.ModuleSuffix)>] 
module Vector2D = 
     let length v = sqrt(v.DX * v.DX + v.DY * v.DY) 
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Values in a module can be used via a long path, such as Vector2D.length. Alternatively, you can 
open the module, which makes all the contents accessible without qualification. For example, open 
Vector2D makes the identifier length available without qualification. 

Using Modules and Types to Organize Code 

You often have to choose whether to use modules or OO dot-notation to organize your code. Here are some 
of the rules for using these to organize your code effectively and to lay the groundwork for applying good 
.NET library and framework design principles to your code: 

• Use modules when prototyping and to organize scripts, ad hoc algorithms, 
initialization code, and active patterns. 

• Use concrete types (records, discriminated unions, and class types) to implement 
concrete data structures. In the long term, plan on completely hiding the 
implementation of these types. You see how to do this in Chapter 7. You can 
provide dot-notation operations to help users access parts of the data structure. 
Avoid revealing other representation details. 

• Use object interface types for types that have several possible implementations. 

• Implement object interface types by private concrete types or by object 
expressions. 

• In polished libraries, most concrete types exposed in an implementation should 
also implement one or more object interface types. For example, collections 
should implement IEnumerable<'T>, and many types should implement 
IDisposable (see Chapter 8 for more details on IDisposable). 

• Avoid relying on or revealing complex type hierarchies. In particular, avoid relying 
on implementation inheritance, except as an internal implementation technique or 
when doing GUI programming or authoring very large objects. 

• Avoid nesting modules or types inside other modules or types. Nested modules 
and types are useful implementation details, but they’re rarely made public in 
APIs. Deep hierarchical organization can be confusing; when you’re designing a 
library, you should place nearly all public modules and types immediately inside a 
well-named namespace. 

 

Extending Existing Types and Modules 
The final topic covered in this chapter is how you can define ad hoc dot-notation extensions to existing 
library types and modules. This technique is used rarely but can be invaluable in certain circumstances. 
For example, the following definition adds the member IsPrime. You see uses of this technique in 
Chapter 13: 
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module NumberTheoryExtensions = 
    let isPrime i = 
        let lim = int (sqrt (float i)) 
        let rec check j = 
           j > lim || (i % j <> 0 && check (j+1)) 
        check 2 
 
    type System.Int32 with 
        member i.IsPrime = isPrime i 
 
The IsPrime property is then available for use in conjunction with int32 values whenever the 
NumberTheoryExtensions module has been opened. For example: 

> open NumberTheoryExtensions;; 
 
> (3).IsPrime;; 
val it : bool = true 
 
> (6093711).IsPrime;; 
val it : bool = false 

Type extensions can be given in any assembly, but priority is always given to the intrinsic members 
of a type when resolving dot-notation. 

■ Note Type extensions are a good technique for equipping simple type definitions with OO functionality. However, 
don’t fall into the trap of adding too much functionality to an existing type via this route. Instead, it’s often simpler to 
use additional modules and types. For example, the module Microsoft.FSharp.Collections.List contains extra 

functionality associated with the F# list type. 

Modules can also be extended in a fashion. For example, say you think the List module is missing 
an obvious function such as List.pairwise to return a new list of adjacent pairs. You can extend the set 
of values accessed by the path List by defining a new module List: 
 
module List = 
    let rec pairwise l = 
        match l with 
        | [] | [_] -> [] 
        | h1::(h2::_ as t) -> (h1,h2) :: pairwise t 

> List.pairwise [1;2;3;4];; 
val it : (int * int) list = [ (1,2); (2,3); (3,4) ] 
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Modules can also be labeled AutoOpen, meaning they’re treated as opened whenever the enclosing 
namespace or module is opened. This can be useful when you’re defining ad hoc top-level operators 
and functions: 
 
[<AutoOpen>] 
module Utilities = 
    let swap (x,y) = (y,x) 
 
swap (3,4) 
 

You can also attach an AutoOpen attribute to an assembly, with a string path. This means the path is 
opened as soon as the assembly is referenced, in the order in which the assemblies are given to the F# 
command- line compiler: 
 
[<assembly: AutoOpen("Acme.Utilities")>] 

Working with F# Objects and .NET Types 
This chapter has deemphasized the use of .NET terminology for object types, such as class and interface. 
However, all F# types are ultimately compiled as .NET types. Here is how they relate: 

• Concrete types such as record types, discriminated unions, and class types are 
compiled as .NET classes. 

• Object interface types are by default compiled as .NET interface types. 

If you want, you can delimit class types using class/end: 
 
type Vector2D(dx: float, dy: float) = 
    class 
        let len = sqrt(dx * dx + dy * dy) 
        member v.DX = dx 
        member v.DY = dy 
        member v.Length = len 
    end 
 

You see this in F# code samples on the Web and in other books. However, we have found that this 
tends to make types harder to understand, so we’ve omitted class/end throughout this book. You can 
also delimit object interface types by interface/end: 
 
open System.Drawing 
 
type IShape = 
    interface 
        abstract Contains : Point -> bool 
        abstract BoundingBox : Rectangle 
    end 
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Structs 
It’s occasionally useful to direct the F# compiler to use a .NET struct (value type) representation for 
small, generally immutable objects. You can do this by adding a Struct attribute to a class type and 
adding type annotations to all arguments of the primary constructor: 
 
[<Struct>] 
type Vector2DStruct(dx : float, dy: float) = 
    member v.DX = dx 
    member v.DY = dy 
    member v.Length = sqrt (dx * dx + dy * dy) 
 

Finally, you can also use a form that makes the values held in a struct explicit: 
 
[<Struct>] 
type Vector2DStructUsingExplicitVals =  
    val dx : float 
    val dy: float 
    member v.DX = v.dx 
    member v.DY = v.dy 
    member v.Length = sqrt (v.dx * v.dx + v.dy * v.dy) 
 

Structs are often more efficient, but you should use them with care because the full contents of 
struct values are frequently copied. The performance characteristics of structs can also change 
depending on whether you’re running on a 32-bit or 64-bit machine. 

Delegates 
Occasionally, you need to define a new .NET delegate type in F#: 
 
type ControlEventHandler = delegate of int -> bool 
 

This is usually required only when using C code from F#, because some magic performed by the 
.NET Common Language Runtime lets you marshal a delegate value as a C function pointer. Chapter 17 
looks at interoperating with C and COM. For example, here’s how you add a new handler to the Win32 
Ctrl+C–handling API: 
 
open System.Runtime.InteropServices 
let ctrlSignal = ref false 
[<DllImport("kernel32.dll")>] 
extern void SetConsoleCtrlHandler(ControlEventHandler callback,bool add) 
 
let ctrlEventHandler = new ControlEventHandler(fun i ->  ctrlSignal := true; true) 
 
SetConsoleCtrlHandler(ctrlEventHandler,true) 

Enums 
Occasionally, you need to define a new .NET enum type in F#. You do this using a notation similar to 
discriminated unions: 
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type Vowels = 
    | A = 1 
    | E = 5 
    | I = 9 
    | O = 15 
    | U = 21 
 
This type is compiled as a .NET enum whose underlying bit representation is a simple integer. 

Summary 
This chapter looked at the basic constructs of object-oriented programming in F#, including concrete 
object types, OO notation, and object interface types and their implementations, as well as more advanced 
techniques to implement object interface types. You also saw how implementation inheritance is less 
important as an object implementation technique in F# than in other OO languages and then learned how 
the F# object model relates to the .NET object model. The next chapter covers language constructs and 
practical techniques related to encapsulating, packaging, and deploying your code. 
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Encapsulating and Packaging 
Your Code 

Packaging code and making it available for people and programs to use is a key part of making the best 
use of F#. In this book, you’ve already seen many of the constructs to help do this: functions, objects, 
type definitions, modules, namespaces, and assemblies. However, in some cases you’ve encountered 
these only peripherally when using the .NET Base Class Library (BCL). This chapter covers these 
constructs from the perspective of code organization and packaging. 

Packaging code has four distinct but related meanings: 

• Organizing code into sensible entities using namespaces, types, and modules. 

• Encapsulating internal data structures and implementation details by making 
them private. 

• Assembling code and data as a component, which on .NET is called an assembly. 
An assembly is one or more DLL or EXE packaged together with supporting data 
as a single logical unit. 

• Deploying one or more assemblies, such as a web application or framework, often 
with an installer, for use on client machines, on web servers, or for download over 
the Web. 

The first two of these topics are associated with the F# language, and the last is more associated with 
the pragmatics of deploying, installing, configuring, and maintaining software. The third lies in between, 
because a .NET assembly can act as both a unit of encapsulation and a unit of deployment. 

Knowing these techniques isn’t the same as knowing how to use them effectively, or indeed when to 
use them. At the end of this chapter, we cover some of the different kinds of .NET software you may write 
with F# and how you can organize and package your code for these different cases. 

Hiding Things Away 
In all kinds of software, it’s common to hide implementation details of data structures and algorithms 
behind encapsulation boundaries. Encapsulation is a fundamental technique when writing software and 
is possibly the most important idea associated with object-oriented (OO) programming. 

For this book’s purposes, encapsulation means hiding implementation details behind well-defined 
boundaries. This lets you enforce consistency properties and makes the structure of a program easier to 
manage. It also lets an implementation evolve over time. A good rule of thumb is that anything you don’t 
want used directly by client code should be hidden. 
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Later, this chapter explains how encapsulation applies when you’re building assemblies, 
frameworks, and applications. In the extreme, you may even be ensuring that your code is secure when 
used in partial trust mode—in other words, that it can’t be inadvertently or deliberately used to achieve 
malicious results when used as a library by code that doesn’t have full permissions. However, the most 
important kind of encapsulation is the day-to-day business of hiding the internal implementation 
details of functions, objects, types, and modules. The primary techniques used to do this are as follows: 

• Local definitions 

• Accessibility annotations 

• Explicit signatures 

We cover the first two of these techniques next, and we cover explicit signatures in the “Using 
Signature Types and Files” section later in this chapter. 

Hiding Things with Local Definitions 
The easiest way to hide definitions is to make them local to expressions or constructed class definitions 
using inner let bindings. These aren’t directly accessible from outside their scope. This technique is 
frequently used to hide state and other computed values inside the implementations of functions and 
objects. Let’s begin with a simple example. Here is the definition of a function that incorporates a single 
item of encapsulated state: 
 
let generateTicket = 
    let count = ref 0 
    (fun () -> incr count; !count) 
 
If you examine this definition, you see that the generateTicket function isn’t defined immediately as a 
function but instead first declares a local element of state called count and then returns a function value 
that refers to this state. Each time the function value is called, count is incremented and dereferenced, 
but the reference cell is never published outside the function implementation and is thus encapsulated. 

Encapsulation through local definitions is a particularly powerful technique in F# when used in 
conjunction with object expressions. For example, Listing 7-1 shows the definition of an object interface 
type called IPeekPoke and a function that implements objects of this type using an object expression. 

Listing 7-1. Implementing Objects with Encapsulated State 

type IPeekPoke = 
    abstract member Peek: unit -> int 
    abstract member Poke: int -> unit 
 
let makeCounter initialState = 
    let state = ref initialState 
    { new IPeekPoke with 
        member x.Poke(n) = state := !state + n 
        member x.Peek() = !state  } 
 

The type of the function Counter is as follows: 

val makeCounter : int -> IPeekPoke 
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As with the earlier generateTicket function, the internal state for each object generated by the 
makeCounter function is hidden and accessible only via the published Peek and Poke methods. 

The previous examples show how to combine let bindings with anonymous functions and object 
expressions. You saw in Chapter 6 how let bindings can also be used in constructed class types. For 
example, Listing 7-2 shows a constructed class type with private mutable state count and that publishes 
two methods: Next and Reset. 

Listing 7-2. A Type for Objects with Encapsulated State 

type TicketGenerator() = 
    // Note: let bindings in a type definition are implicitly private to the object 
    // being constructed. Members are implicitly public. 
    let mutable count = 0 
 
    member x.Next() = 
        count <- count + 1; 
        count 
 
    member x.Reset () = 
        count <- 0 
 

The variable count is implicitly private to the object being constructed and is hence hidden from 
outside consumers. By default, other F# definitions are public, which means they’re accessible 
throughout their scope. 

Frequently, more than one item of state is hidden behind an encapsulation boundary. For example, 
the following code shows a function makeAverager that uses an object expression and two local elements 
of state, count and total, to implement an instance of the object interface type IStatistic: 
 
type IStatistic<'T,'U> = 
    abstract Record : 'T -> unit 
    abstract Value : 'U 
 
let makeAverager(toFloat: 'T -> float) = 
    let count = ref 0 
    let total = ref 0.0 
    { new IStatistic<'a,float> with 
          member stat.Record(x) = incr count; total := !total + toFloat x 
          member stat.Value = (!total / float !count) } 
 

The inferred types here are as follows: 

type IStatistic<'T,'U> = 
    abstract Record : 'T -> unit 
    abstract Value: 'U 
val makeAverager : ('T -> float) -> IStatistic<'T,float> 

The internal state is held in values count and total and is, once again, encapsulated. 
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■ Note Most of the examples of encapsulation in this chapter show ways to hide mutable state behind encapsulation 
boundaries. However, encapsulation can be just as important for immutable constructs, especially in larger software 
components. For example, the implementation of the immutable System.DateTime type in the .NET BCL hides the 

way the date and time are stored internally but reveals the information via properties. This allows the .NET designers 

to adjust the implementation of this type between releases of the .NET Framework if necessary. 

Hiding Things with Accessibility Annotations 
Local definitions are good for hiding most implementation details. However, sometimes you may need 
definitions that are local to a module, an assembly, or a group of assemblies. You can change the default 
accessibility of an item by using an accessibility annotation to restrict the code locations that can use a 
construct. These indicate what is private or partially private to a module, file, or assembly. The primary 
accessibility annotations are private, internal, and public: 

• private makes a construct private to the enclosing type definition/module. 

• internal makes a construct private to the enclosing assembly (DLL or EXE). 

• public makes a construct available globally, which is the default for most 
constructs. 

Accessibility annotations are placed immediately prior to the name of the construct. Listing 7-3 
shows how to protect an internal table of data in a module using accessibility annotations. 

Listing 7-3. Protecting a Table Using Accessibility Annotations 

open System 
 
module public VisitorCredentials = 
 
   /// The internal table of permitted visitors and the 
   /// days they are allowed to visit. 
   let private  visitorTable = 
       dict [ ("Anna",    set [DayOfWeek.Tuesday; DayOfWeek.Wednesday]); 
              ("Carolyn", set [DayOfWeek.Friday]) ] 
 
   /// This is the function to check if a person is a permitted visitor. 
   /// Note: this is public and can be used by external code 
   let public checkVisitor(person) = 
       visitorTable.ContainsKey(person) && 
       visitorTable.[person].Contains(DateTime.Today.DayOfWeek) 
 
   /// This is the function to return all known permitted visitors. 
   /// Note: this is internal and can only be used by code in this assembly. 
   let internal allKnownVisitors() = 
       visitorTable.Keys 
 

The private table is visitorTable. Attempting to access this value from another module gives a type-
checking error. The function checkVisitor is marked public and is thus available globally. The function 
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allKnownVisitors is available only within the same assembly (or the same F# Interactive session) as the 
definition of the VisitorCredentials module. Note that you could drop the public annotations from 
checkVisitor and VisitorCredentials because these declarations are public by default. 

Accessibility annotations are often used to hide state or handles to resources such as files. In Listing 
7-4, you protect a single reference cell containing a value that alternates between Tick and Tock. This 
example uses an internal event, a technique covered in more detail in Chapter 8. 

Listing 7-4. Protecting Internal State Using Accessibility Annotations 

module public GlobalClock = 
 
    type TickTock = Tick | Tock 
 
    let private clock = ref Tick 
 
    let private tick = new Event<TickTock>() 
 
    let internal oneTick() = 
        (clock := match !clock with Tick -> Tock | Tock -> Tick); 
        tick.Trigger (!clock) 
 
    let tickEvent = tick.Publish 
 
module internal TickTockDriver = 
    open System.Threading 
    let timer = new Timer(callback=(fun _ -> GlobalClock.oneTick()), 
                          state=null,dueTime=0,period=100) 
 

In Listing 7-4, the private state is clock. The assembly-internal module TickTockDriver uses the 
System.Threading.Timer class to drive the alternation of the state via the internal function oneTick. The 
GlobalClock module publishes one IEvent value, tickEvent, which any client can use to add handlers to 
listen for the event. Note that you can give different accessibility annotations for different identifiers 
bound in the same pattern. The sample uses the Event type, covered in more detail in Chapter 8. 

Another assembly can now contain the following code that adds a handler to TickEvent: 
 
module TickTockListener = 
   do GlobalClock.tickEvent.Add(function 
       | GlobalClock.Tick -> printf "tick!" 
       | GlobalClock.Tock -> System.Windows.Forms.MessageBox.Show "tock!" |> ignore) 
 

You can add accessibility annotations quite a number of places in F# code: 

• On let, and extern definitions in modules, and in individual identifiers in patterns 

• On new(...) object constructor definitions 

• On member definitions associated with types 

• On module definitions  

• On type definitions associated with types 

• On primary constructors, such as type C private (...) = ...  
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■ Note You can add accessibility annotations to type abbreviations. However, the abbreviation is still just an 
abbreviation—only the name is hidden, not the actual equivalence. That is, if you define a type abbreviation such 
as type private label = int, then all users of the type label know that it’s really just an abbreviation for int 

and not a distinct type definition of its own. This is because .NET provides no way to hide type abbreviations; the 

F# compiler expands type abbreviations in the underlying generated .NET IL code. 

Listing 7-5 shows a type where some methods and properties are labeled public but the methods 
that mutate the underlying collection (Add and the set method associated with the Item property) are 
labeled internal. 

Listing 7-5. Making Property Setters Internal to a Type Definition 

open System.Collections.Generic 
 
type public SparseVector () = 
 
    let elems = new SortedDictionary<int,float>() 
 
    member internal vec.Add (k,v) = elems.Add(k,v) 
 
    member public vec.Count = elems.Keys.Count 
    member vec.Item 
        with public get i = 
            if elems.ContainsKey(i) then elems.[i] 
            else 0.0 
        and internal set i v = 
            elems.[i] <- v 

■ Note In class types, let bindings in types are private to the object being constructed, and all member bindings 

are public—they have the same accessibility as the type definition. This is a useful default because it corresponds 
to the common situation where internal implementation details are fully private and published constructs are 
available widely, and because omitting accessibility annotations makes code more readable in the common case. 

When you start to add more specific accessibility annotations, such as by making individual members internal or 
private, then it’s useful to explicitly mark all members with accessibility annotations. Doing so makes your code 
more readable because readers don’t have to remember that unmarked members are public. You can leave the 

remaining let bindings unmarked and implicitly private. In short, we recommend that if you mark any members of 

a type with accessibility annotations, you should mark them all. 
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Using Namespaces and Modules 
An important organizational technique is to give sensible qualified names to your types and values. A 
qualified name is, for example, Microsoft.FSharp.Collections.List (for the F# list type) or 
System.IO.StreamReader (for one of the types in the .NET Framework BCL). Qualified names are 
particularly important when you’re writing frameworks to be used by other people and are also a useful 
way of organizing your own code. 

You give types and functions qualified names by placing them in namespaces, modules, and type 
definitions. Table 7-1 shows these three kinds of containers and what they can contain. For 
completeness, the table includes type abbreviations, which are slightly different because you can’t use 
them as a container for other constructs. 

Table 7-1. Namespaces, Modules, Types, and What They Can Contain 

Entity Description Examples 

Namespace A namespace can contain further 
namespaces, modules, and types. 
Multiple DLLs can contribute to the 
same namespace. 

System, Microsoft.FSharp 

Module A module can contain nested modules, 
types, and values. 

Microsoft.FSharp.Collections.Map, 
Microsoft.FSharp.Collections.List 

Concrete type 
definition 

A type definition can contain members 
and nested type definitions. 

System.String, System.Int32 

Type abbreviation A type abbreviation such as string, for 
System.String, can’t act as containers 
for additional members, values, or 
types. 

int, string 

Putting Your Code in a Namespace 
You saw in Chapter 6 how to define type definitions with members and modules with values. Now, you 
look at how to place these in namespaces. Listing 7-6 shows a file that contains two type definitions, 
both located in the namespace Acme.Widgets. 

Listing 7-6. A File Containing Two Type Definitions in a Namespace 

namespace Acme.Widgets 
 
    type Wheel     = Square | Round | Triangle 
 
    type Widget    = { id: int; wheels: Wheel list; size: string } 
 

Namespaces are open, which means multiple source files and assemblies can contribute to the same 
namespace. For example, another implementation file or assembly can contain the definitions shown in 
Listing 7-7. 
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Listing 7-7. A File Containing Two Type Definitions in Two Namespaces 

namespace Acme.Widgets 
 
    type Lever    = PlasticLever | WoodenLever 
 
namespace Acme.Suppliers 
 
    type LeverSupplier    = { name: string; leverKind: Acme.Widgets.Lever } 
 

The file in Listing 7-7 contributes to two namespaces: Acme.Widgets and Acme.Suppliers. The two 
files can occur in the same DLL or different DLLs. Either way, when you reference the DLL(s), the 
namespace Acme.Widgets appears to have at least three type definitions (perhaps more, if other DLLs 
contribute further type definitions), and the namespace Acme.Suppliers has at least one. 

Using Files as Modules 
Chapter 6 introduced the notion of a module. In F#, a module is a simple container for values and 
type definitions. Modules are also often used to provide outer structure for fragments of F# code; 
many of the simple F# programs you’ve seen so far in this book have been in modules without your 
knowing. In particular: 

• Code fragments typed into F# Interactive and delimited by ;; are each implicitly 
placed in a module of their own. 

• Files compiled with the command-line compiler using Visual Studio or loaded 
into F# Interactive with #load have their values and types placed in a namespace 
or module according to the leading module or namespace declaration in the file. 
Declarations in files without a leading module or namespace declaration are placed 
in a module whose name is derived from the name of the implementation file. 

Let’s look at the second case in more detail. You can explicitly declare the name of the 
namespace/module for a file by using a leading module declaration. For example, Listing 7-8 defines the 
module Acme.Widgets.WidgetWheels, regardless of the name of the file containing the constructs. 

Listing 7-8. An Implementation Module with an Explicit Initial module Declaration 

module Acme.Widgets.WidgetWheels 
 
    let wheelCornerCount = Map.of_list [(Wheel.Square,   4); 
                                        (Wheel.Triangle, 3); 
                                        (Wheel.Round,    0);  ] 
 

Here the first line gives the name for the module defined by the file. The namespace is Acme.Widgets, 
the module name is WidgetWheels, and the full path to the value is 
Acme.Widgets.WidgetWheels.wheelCornerCount. 
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Creating Assemblies, DLLs, and EXEs 
This book has used F# Interactive for most of the samples. F# Interactive is excellent when you’re exploring 
a set of libraries and writing scripts or small applications that use them. But to understand how to write 
libraries and organize other kinds of applications, you need to learn how to use the F# command-line 
compiler,  fsc.exe, to compile your code into DLLs and EXEs. A Dynamic Link Library (DLL) is the 
Windows name for library components, and .exe is the extension used for executable programs. 

As you saw at the start of this chapter, all .NET code exists in an assembly, which is, roughly 
speaking, either a DLL or an EXE. Assemblies can also contain supporting code and data files. Every time 
you compile a set of files using fsc.exe, you create one assembly: either a DLL or an EXE. Even when you 
use F# Interactive (fsi.exe), you’re dynamically adding code to a dynamically generated DLL. You now 
learn how to use the command-line compiler to create DLLs and EXEs. 

Compiling EXEs 
To compile code to an EXE, you call fsc.exe with the names of your source code files in dependency 
order. For example, if the file dolphin.fs contains the code in Listing 7-9, then you can compile the code 
using fsc dolphin.fs. You can also use the -o flag to name the generated EXE. 

Listing 7-9. File dolphins.fs 

let longBeaked = "Delphinus capensis" 
let shortBeaked = "Delphinus delphis" 
let dolphins = [ longBeaked; shortBeaked ] 
printfn "Known Dolphins:  %A" dolphins 
 

You can now compile this code to an EXE as shown here: 

C:\fsharp> fsc dolphins.fs 
C:\fsharp> dir dolphins.exe 
... 
05/04/2010  19:21             3,124 dolphins.exe 
 
C:\fsharp>dolphins.exe 
Known Dolphins: ["Delphinus capensis"; "Delphinus delphis"] 

Compiling DLLs 
A DLL is a library containing compiled .NET or F# code (it can also contain native code with instructions 
and data dependent on particular machine architectures, such as Intel x86 and AMD x64). To compile F# 
code into a DLL, you take one or more source files and invoke fsc.exe with the -a option. For example, 
let’s assume the file whales.fs contains the code shown in Listing 7-10. (This sample also includes some 
documentation comments, referred to in the “Generating Documentation” section later in this chapter.) 
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Listing 7-10. File whales.fs 

module Whales.Fictional 
 
/// The three kinds of whales we cover in this release 
type WhaleKind = 
    | Blue 
    | Killer 
    | GreatWhale 
 
/// The main whale 
let moby = "Moby Dick, Pacific", GreatWhale 
 
/// The backup whale 
let bluey = "Blue, Southern Ocean", Blue 
 
/// This whale is for experimental use only 
let orca = "Orca, Pacific", Killer 
 
/// The collected whales 
let whales = [| moby; bluey; orca |] 
 

You can now compile the code as follows: 

C:\test> fsc -g -a whales.fs 
C:\test> dir whales.dll 
... 
05/04/2010  19:18             6,656 whales.dll 

Here you’ve added one command-line flag: -g to generate debug output. When compiling other 
assemblies, you need to reference your DLLs. For example, consider the code in Listing 7-11, which 
needs to reference whales.dll. 

Listing 7-11. File whalewatcher.fs 

open Whales 
open System 
 
let idx = Int32.Parse(Environment.GetCommandLineArgs().[1]) 
let spotted = Fictional.whales.[idx] 
 
printfn "You spotted %A!" spotted 
 

You can compile this file by adding an -r flag to reference the DLLs on which the code depends. You 
can also use the -o flag to name the generated EXE or DLL and the -I flag to list search paths: 
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C:\fsharp> fsc -g -r whales.dll -o watcher.exe whaleWatcher.fs 
C:\fsharp> dir watcher.exe 
... 
05/04/2010  19:25             3,584 watcher.exe 
 
C:\fsharp> watcher.exe 1 
You spotted ("Blue, Southern Ocean", Blue)! 

■ Note .NET assemblies often contain a large amount of code. For example, a single assembly may contain as 
many as 50 or 100 F# source code files. Having many small assemblies may seem tempting, such as to improve 
compilation times during development, but can lead to difficulties when you’re managing updates and can be 
confusing to end users. Large assemblies are easier to version: you have to update only one component, and you 

can package multiple updates into a single new version of the DLL. 

Mixing Scripting and Compiled Code 
Small programs are often used as both interactive scripts and as small compiled applications. Here are 
some useful facts to know about scripting with F# and F# Interactive: 

• Small F# scripts use the extension .fsx. 

• You can use the scripting directive #load from F# Interactive to load and compile 
one or more source code files as if they had been compiled using the command-
line compiler. 

• You can load one script from another script by the F# Interactive directive #use. 
This is very much like #load except that the file being loaded may contain further 
scripting directives. 

• You can reference DLLs from within scripts by using the #r and #I directives, 
which act like the -r and -I directives of the F# command-line compiler. 

• You can access command-line arguments from within scripts by using the 
expression fsi.CommandLineArgs. Within compiled code, you should use 
System.Environment.GetCommandLineArgs. Within code used in both modes, you 
should use conditional compilation to switch between these, as shown in the next 
coding example. 

• You can run a script on startup by using the --exec command-line option for 
fsi.exe or by giving a single file name on the command line. You can find other 
command-line options by using fsi.exe --help. 

Conditional compilation is a particularly useful feature for scripts—especially the predefined 
conditional compilation symbols COMPILED and INTERACTIVE. The former is set whenever you compile 
code using the command-line compiler, fsc.exe, and the latter is set whenever you load code 
interactively using F# Interactive. A common use for these flags is to start the GUI event loop for a 
Windows Forms or other graphical application, such as using System.Windows.Forms.Application.Run. 
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F# Interactive starts an event loop automatically, so you require a call to this function in the compiled 
code only: 
 
open System.Windows.Forms 
 
let form = new Form(Width=400, Height=300, 
                    Visible=true, Text="F# Forms Sample") 
#if COMPILED 
// Run the main code 
System.Windows.Forms.Application.Run(form) 
#endif 

■ Note You can specify additional conditional compilation directives by using the --define command-line 

compiler option. 

Choosing Optimization Settings 
The F# compiler comes with a simple choice of optimization levels. You nearly always want to compile 
your final code using --optimize, which applies maximum optimizations to your code. This is also the 
default optimization setting for fsc.exe. 

The F# compiler is a cross-module, cross-assembly optimizing compiler, and it attaches 
optimization information to each assembly you create when using optimization. This information may 
contain some code fragments of your assembly, which may be inlined into later assemblies by the 
optimizing compiler. In some situations, you may not want this information included in your assembly. 
For example, you may expect to independently version assemblies, and in this case you may want to 
ensure that code is never duplicated from one assembly to another during compilation. In this case, you 
can use the --nooptimizationdata switch to prevent optimization data being recorded with the 
assemblies  you create.  

Generating Documentation 
In Chapter 2, you saw that comments beginning with /// are XML documentation comments, which are 
used by interactive tools such as Visual Studio. They can also be collected to generate either HTML or 
XML documentation. You generate HTML documentation using an auxiliary tool such as FsHtmlDoc, 
available in the F# Power Pack. 

You can also generate a simple XML documentation file using the --doc command-line option. You 
must name the output file. For example, using fsc -a --doc:whales.xml whales.fs for the code in 
Listing 7-10 generates the file whales.xml containing the following: 
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<?xml version="1.0" encoding="utf-8"?> 
<doc> 
    <assembly><name>whales</name></assembly> 
    <members> 
      <member name="T:Whales.Fictional.WhaleKind"> 
        <summary> The three kinds of whales we cover in this release</summary> 
      </member> 
      <member name="P:Whales.Fictional.bluey"> 
      <summary> The backup whale</summary> 
      </member> 
      <member name="P:Whales.Fictional.moby"> 
       <summary>The main whale</summary> 
      </member> 
 
      <member name="P:Whales.Fictional.orca"> 
       <summary> This whale is for experimental use only</summary> 
      </member> 
      <member name="P:Whales.Fictional.whales"> 
       <summary> The collected whales</summary> 
      </member> 
      <member name="T:Whales.Fictional"> 
      </member> 
    </members> 
</doc> 

Building Shared Libraries and Using the Global Assembly Cache 
You commonly need to share libraries among multiple applications. You can do this by using any of the 
following techniques: 

• Including the same library source file in multiple projects and/or compilations 

• Duplicating the DLL for the library into each application directory 

• Creating a strong name-shared library 

This section covers the last option in more detail. A strong name-shared library has the following 
characteristics: 

• It’s a DLL. 

• You install it in the .NET global assembly cache (GAC) on the target machine. 

• You give it a strong name by using --keyfile. 

• You package all of its supporting data files using --linkresource. 

• You (optionally) give it a version number using an AssemblyVersion attribute in 
your code. 

• You ensure that all of its dependencies are shared libraries. 

The usual place to install shared libraries is the .NET GAC. The GAC is a collection of assemblies 
installed on the machine and available for use by any application that has sufficient privileges. Most 
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libraries used in this book such as System.Windows.Forms.dll are installed in the GAC when you install 
the .NET Framework on a machine. 

The remaining requirements are easy to satisfy and are conditions that must hold before you install 
something in the GAC. For example, assemblies must have strong names. All assemblies have names; for 
example, the assembly whales.dll (which you compiled in the earlier “Compiling DLLs” section using 
fsc -a whales.fs) has the name whales. An assembly with a strong name includes a hash using a 
cryptographic public/private key pair. This means only people who have access to the private key can 
create a strong-named assembly that matches the public key. Users of the DLL can verify that the 
contents of the DLL were generated by someone holding the private key. A strong name looks something 
like this: 

mscorlib, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089 

It’s easy to create a strong-named assembly: generate a public/private key pair using the sn.exe tool 
that comes with the .NET Framework SDK, and give that as your keyfile argument. You can install 
libraries into the GAC using the .NET Framework SDK utility gacutil.exe. The following command-line 
session shows how to do this for the code shown in Listing 7-10: 

C:\Users\dsyme\Desktop> sn.exe -k whales.snk 
Microsoft (R) .NET Framework Strong Name Utility  Version 2.0.50727.42 
Copyright (c) Microsoft Corporation. All rights reserved. 
 
Key pair written to whales.snk 
 
C:\Users\dsyme\Desktop> fsc -a --keyfile:whales.snk whales.fs 
 
C:\Users\dsyme\Desktop> gacutil /i whales.dll 
Microsoft (R) .NET Global Assembly Cache Utility. Version 2.0.50727.42 
Copyright (c) Microsoft Corporation. All rights reserved. 
 
Assembly successfully added to the cache 

Installer generators such as WiX also include directives to install libraries into the GAC. Installer 
generators are discussed later in this chapter. 

■ Note If you’re planning to write libraries for use by the rest of the world, we recommend that you take the time 
to read the .NET library design guidelines, document them using XML and HTML docs, and learn how to version 

your libraries. Chapter 19 takes a deeper look at guidelines for library design. 

Using Static Linking 
Sometimes applications use a DLL as a library; but when it comes to deploying the application on a 
website or as installed software, it may be easier to bundle that DLL as part of the application. You can 
do this in two ways: by placing the DLL alongside the EXE for the application or by statically linking the 
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DLL when you create the EXE. You select the DLL by using the --staticlink compiler option with the 
assembly name of the DLL. 

You can also bundle the F# libraries into your application to give a zero-dependency application. 
You statically link all DLLs that depend on the F# libraries by using the --standalone compiler option. 

Static linking can cause problems in some situations and should only be used for a final EXE or a 
DLL used as an application plug-in. 

 

Using Signature Types and Files 
Every piece of F# code you write has a signature type. The inferred signature type for a piece of code is 
shown for every code fragment you enter into F# Interactive and can also be reported by using the F# 
command-line compiler, fsc.exe, with the -i option. For example, consider the following code, placed 
in an implementation file ticktock.fs: 
 
module Acme.TickTock 
 
    type TickTock = Tick | Tock 
 
    let ticker x = 
        match x with 
        | Tick -> Tock 
        | Tock -> Tick 
 

You can now invoke the command-line compiler from a command prompt: 

C:\Users\dsyme\Desktop> fsc -i -a ticktock.fs 
 
namespace Acme 
 
module TickTock = 
    type TickTock = Tick | Tock 
    val ticker : TickTock -> TickTock 

The inferred signature shows the results of type inference and takes into account other information such 
as accessibility annotations. 

Using Explicit Signature Types and Signature Files 
If you want, you can make the inferred types explicit by using an explicit signature type for each 
implementation file. The syntax used for explicit signature types is identical to the inferred types 
reported by F# Interactive or fsc.exe, like those shown previously. If you use explicit signatures, they’re 
placed in a signature file, and they list the names and types of all values and members that are accessible 
in some way to the outside world. Signature files should use the same root name as the matching 
implementation file with the extension .fsi. For example, Listing 7-12 shows the implementation file 
vector.fs and the explicit signature file vector.fsi. 
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Listing 7-12. A Signature File vector.fsi with Implementation File vector.fs 

namespace Acme.Collections 
    type SparseVector = 
        new: unit -> SparseVector 
        member Add: int * float -> unit 
        member Item : int -> float with get 
 
namespace Acme.Collections 
    open System.Collections.Generic 
    type SparseVector() = 
        let elems = new SortedDictionary<int,float>() 
        member vec.Add(k,v) = elems.Add(k,v) 
        member vec.Item 
            with get i = 
                if elems.ContainsKey(i) then elems.[i] 
                else 0.0 
            and  set i v = 
                elems.[i] <- v 
 

You can now invoke the command-line compiler from a command-line shell: 

C:\Users\dsyme\Desktop> fsc vector.fsi vector.fs 

Although signature files are optional, many programmers like using them, especially when writing a 
library framework, because the signature file gives a place to document and maintain a component’s 
public interface. But there is a cost to this technique: signatures duplicate names and some other 
information found in the implementation. 

■ Note You can use signature types to hide constructs, which can be used as an alternative to giving accessibility 
annotations on types, values, and members. Neither accessibility annotations nor signatures can hide type 
abbreviations, for the reasons discussed in the earlier “Hiding Things with Accessibility Annotations” section. 
Some additional restrictions apply to both hiding techniques. For example, if a type is revealed to be a constructed 
class type or interface type, then all its abstract members must be included in the signature. Similarly, a record 
type must reveal all its fields, and a discriminated union type must reveal all its cases. Also, in some languages 
such as OCaml, a signature may restrict the type of an implementation construct. For example, if a function is 
inferred to have a generic type 'a -> 'a, then in OCaml the signature may specify a more restricted type such as 
int -> int. This isn’t permitted in F#. 

When Are Signature Types Checked? 
Signature types are checked after an implementation has been fully processed. This is unlike type 
annotations that occur directly in an implementation file, which are applied before an implementation 
fragment is processed. This means the type information in a signature file isn’t used as part of the type-
inference process when processing the implementation. 
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■ Note Each signature file must appear before its corresponding implementation file in the compilation order for 
an F# project. In Visual Studio, this means the signature file must come before the implementation file in the 
project listing. This is because the signature is required in order to check the contents of the implementation file 

after the implementation file is fully processed. 

Packaging Applications 
This section covers some of the more pragmatic issues involved in in designing applications and 
choosing how to package both your code and data. First, however, let’s talk about the sorts of things you 
may be building with F#. 

Packaging Different Kinds of Code 
Table 7-2 lists some of the kinds of software implemented with F#. These tend to be organized in slightly 
different ways and tend to use encapsulation to varying degrees. For example, encapsulation is used 
heavily in frameworks but not when you’re writing 100-line scripts. 

Table 7-2. Some Kinds of Software Built Using F# 

Software Entity Description 

Script A program or set of program fragments, usually in a single file and less than 1,000 
lines, usually with an .fsx extension, run through F# Interactive. Sometimes also 
compiled. Organized using functions and occasional type definitions. Freely uses 
static global state. Usually has no signature file or accessibility annotations. 

Application An EXE or a web application DLL, perhaps with some supporting DLLs. 
Organized using namespaces, modules, functions, and some abstract types. 
Often uses some static global state. Some internal files and data structures may 
have signatures, but often these aren’t needed. 

Application 
extension  
(plug-in or add-on) 

A component that extends an application, often compiled as a DLL containing 
types along with an accompanying XML file that describes the plug-in to the 
application. The host application loads the DLLs using .NET reflection. Generally 
has no static state because this lets the application instantiate multiple instances 
of the plug-in. Example: the DLL plug-ins for Paint.NET, a popular .NET image-
manipulation program. 

Framework A collection of related type definitions, functions, and algorithms organized 
according to established .NET and F# library-design guidelines. Usually compiled 
as a DLL, strong-name signed, installed into the GAC on the target machine, and 
versioned as an independent entity. Generally has no static state except where it 
mediates essential state on the host computer or operating system. 
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Software Entity Description 

Framework 
extension 

A component that extends a framework, usually by defining types that implement 
particular interfaces. Organized in an appropriate namespace as a simple set of 
classes and functions that generate objects that implement the interfaces defined 
in a framework. Generally has no static state. Example: the Firebird.NET API, 
which provides implementations of the ADO.NET Data Access framework 
interfaces to enable access to Firebird databases. 

Using Data and Configuration Settings 
So far, this book has focused on code. In reality, almost every program comes with additional data 
resources that form an intrinsic part of the application. Common examples of the latter include the 
resource strings, sounds, fonts, and images for GUI applications. Applications typically select between 
different data resources based on language or culture settings. Often, programs also access additional 
parameters, such as environment variables derived from the execution context or registry settings 
recording user-configuration options. It can be useful to understand the idioms used by .NET to make 
managing data and configuration settings more uniform. Table 7-3 shows some of the terminology used 
for data resources. 

Table 7-3. Application Data: Terminology 

Terminology Meaning Example 

Static application 
data 

A data resource whose name/location is 
always known, whose value doesn’t 
change during execution, and that your 
application can generally assume always 
exists. 

The PATH environment variable or a 
data file distributed with your 
application. 

Strongly typed 
data 

Data accessed as a named, typed .NET 
value through code written by you or 
generated by a tool you’re using. The 
code hides the complexity of locating and 
decoding the resource. 

An icon data resource decoded to a 
System.Drawing.Icon value. The 
ResGen.exe tool can generate strongly 
typed APIs for common Windows 
resources such as bitmaps and icons. 

GUI resource A string, a font, an icon, a bitmap, an 
image, a sound, or another binary 
resource that is attached to a Windows 
application or DLL using the Win32 .res 
format or .NET managed .resx format. 
Often dependent on language/culture 
settings. 

A bitmap added as a resource to a 
Windows Forms application or an 
error message from a compiler. 

You may need to access many different kinds of data resources and application settings. Table 7-4 
summarizes the most common ones. 
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Table 7-4. Commonly Used Data and Configuration Settings 

Data Resource Notes 

Source directory The source directory containing the source file(s) at time of compilation. 
Often used to access further resources in F# Interactive scripts or for error 
reporting in compiled applications. Accessed using the __SOURCE_DIRECTORY__ 
predefined identifier. 

Command arguments Arguments passed to the invocation of the program. Accessed using 
System.Environment.GetCommandLineArgs and fsi.CommandLineArgs when 
running in F# Interactive. 

Installation location Where a program EXE or DLL is installed. Accessed by using System.Windows. 
Forms.Application.StartupPath or by reading the Assembly.Location of any 
of the types defined in your assembly. For F# Interactive scripts, the 
installation location is usually the same as the source directory. 

User directories Paths to common logical directories such as Program Files, My Documents, 
and Application Data. Accessed using System.Environment.GetFolderPath. 

Environment variables User- or machine-wide settings such as PATH and COMPUTERNAME. Accessed 
using System.Environment.GetEnvironmentVariable. 

Registry settings User- or machine-wide settings used to hold the vast majority of settings on a 
Windows machine. Accessed using Microsoft.Win32.Registry.GetValue and 
related types and methods. 

Configuration settings Database connection strings and other configuration settings, often used for 
web applications. If an application is called MyApp.exe, then this is usually 
stored in a file such as MyApp.exe.config alongside the executable; web 
applications use a Web.Config file. Accessed using 
System.Configuration.ConfigurationManager. 

Isolated storage A special storage area accessible only to an installed application and that 
looks just like disk storage. 

Fonts, colors, icons, 
and so on 

Specifications of Windows-related resources. Often taken from predefined 
system fonts and colors using the functions in System.Drawing: for example, 
Color.MidnightBlue or new Font(FontFamily.GenericMonospace, 8.0f). Can 
be added as a binary resource to an assembly and accessed using 
System.Resources.ResourceManager. 

You can author GUI data resources such as fonts, images, strings, and colors by creating a .resx file 
using a tool like Visual Studio. You then compile them to binary resources by using the resgen.exe tool 
that is part of the .NET Framework SDK. Most development environments have tools for designing and 
creating these resources. Often, the .NET Framework contains a canonical type such as 
System.Drawing.Color for any particular kind of resource; you should avoid writing needless duplicate 
types to represent them. 
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Sometimes it’s a good idea to make sure a data resource is officially part of an assembly. For 
example, this is required if the assembly will be installed into the GAC. You can embed resources in 
applications (or associate them with a DLL) by using the --resource compiler option.  

For example, a set of samples called F# Samples101 on the Microsoft Code Gallery contains the 
following: 

• The source files samples.fs, sampleform.fs, and program.fs. 

• The .NET resource file SampleForm.resx, created and edited using the Visual 
Studio tools for designing icons. This file contains 57KB of XML data specifying, 
among other things, a default icon for the upper-left corner image on the 
Windows operating system and six images used by the application. These are held 
in an image stream under the XML key imageList.ImageStream. 

The application is compiled using the following command line: 
 
resgen SampleForm.resx 
fsc.exe --resource:SampleForm.resource sample.fs sampleform.fs program.fs 
 

In the application, the resources are accessed from the type SampleForm contained in the file 
sampleform.fs. The following code fragments occur in that file. The first creates a 
ComponentResourceManager that is ready to read resources from an assembly. The argument 
typeof<SampleForm> ensures that the resource manager reads resources from the assembly that contains 
the type SampleForm (that is, the type being defined). Chapter 9 discusses the typeof function in more detail: 
 
open System.ComponentModel 
let resources = new ComponentResourceManager(typeof<SampleForm>) 
 

The following lines retrieve images from the resource stream: 
 
open System.Windows.Forms 
let imageList = new System.Windows.Forms.ImageList() 
imageList.ImageStream <- (resources.GetObject("imageList.ImageStream") 
                            :?> System.Windows.Forms.ImageListStreamer) 
imageList.Images.SetKeyName(0, "Help") 
imageList.Images.SetKeyName(1, "BookStack") 
imageList.Images.SetKeyName(2, "BookClosed") 
imageList.Images.SetKeyName(3, "BookOpen") 
imageList.Images.SetKeyName(4, "Item") 
imageList.Images.SetKeyName(5, "Run") 
 

The images from the resource file are associated with graphical components using the ImageKey 
property of various Windows Forms controls. For example, the application’s Run button is associated 
with the Run image stored in the resource file using the following lines: 
 
let runButton = new Button(ImageAlign = ContentAlignment.MiddleRight, 
                            ImageKey = "Run", 
                            ImageList = imageList) 
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■ Note .NET uses application configuration files (for static application settings) and isolated storage for settings 
private to an installed application for a particular user, including for applications downloaded from the Web. You 
can access isolated storage using the System.IO.IsolatedStorage namespace and access the Windows registry 

using the Microsoft.Win32.Registry namespace. 

Summary 
In this chapter, you learned about a number of issues related to encapsulating, organizing, and 
packaging code, from the raw language devices used for accessibility and encapsulation within code to 
building assemblies and the related topics of packaging applications, building DLLs, and including data 
resources as part of your libraries and applications.  

The next chapter looks at some of the foundational techniques you need to master as you progress 
with learning to program in F#.
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Mastering F#: Common Techniques 

F# is a powerful language with relatively simple constructs. Learning the constructs of the language is 
easy, but learning how to use the constructs well takes a little more time. This chapter presents some of 
the common F# coding techniques you need as you work across multiple programming domains. These 
techniques are either applications of the constructs you’ve encountered so far or relate to the 
foundational libraries that ship with F# and .NET. 

Equality, Hashing, and Comparison 
In Chapter 5, you saw a number of predefined generic operations, including generic comparison, 
equality, and hashing, accessed via functions such as those shown here: 

val compare : 'T -> 'T -> int when 'T : comparison 
val (=)   : 'T -> 'T -> bool when 'T : equality 
val (<)   : 'T -> 'T -> bool when 'T : comparison 
val (<=)  : 'T -> 'T -> bool when 'T : comparison 
val (>)   : 'T -> 'T -> bool when 'T : comparison 
val (>=)  : 'T -> 'T -> bool when 'T : comparison 
val min : 'T -> 'T -> 'T when 'T : comparison 
val max : 'T -> 'T -> 'T when 'T : comparison 
val hash  : 'T -> int when 'T : equality 

First, note that these are generic operations—they can be used on objects of many different types. This 
can be seen by the use of 'T in the signatures of these operations. The operations take one or two 
parameters of the same type. For example, you can apply the = operator to two Form objects, or two 
System.DateTime objects, or two System.Type objects, and something reasonable happens. Some other 
important derived generic types such as the immutable (persistent) Set<_> and Map<_,_> types in the F# 
library also use generic comparison on their key type: 
 
type Set<'T when 'T : comparison> = ... 
type Map<'Key, 'Value when 'Key : comparison> = ... 

 
These operations and types are all constrained, in this case by the equality and/or comparison 
constraints. The purpose of constraints on type parameters is to make sure the operations are only 
used on a particular set of types. For example, consider equality and ordered comparison on a 
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System.Windows.Forms.Form object. Equality is permitted, because the default for nearly all .NET object 
types is reference equality: 
 
let form1 = new System.Windows.Forms.Form() 
let form2 = new System.Windows.Forms.Form() 
form1 = form1    // true 
form1 = form2    // false 
 

However, ordered comparison isn’t permitted:  
 
let form1 = new System.Windows.Forms.Form() 
let form2 = new System.Windows.Forms.Form() 
form1 <= form2 
    // Error: The type 'Form' does not support the 'comparison' constraint.  
    // For example, it does not support the 'System.IComparable' interface  
 

That’s good! There is no natural ordering for form objects, or at least no ordering is provided by 
the .NET libraries.  

Equality and comparison can work over the structure of types. For example, you can use the 
equality operators on a tuple only if the constituent parts of the tuple also support equality. This means 
using equality on a tuple of forms is permitted: 
 
let form1 = new System.Windows.Forms.Form() 
let form2 = new System.Windows.Forms.Form() 
(form1, form2) = (form1, form2) // true 
(form1, form2) = (form2, form1) // false 
 
But using ordered comparison of a tuple isn’t: 
 
(form1, "Data for Form1") <= (form2, " Data for Form2") 
    // Error: The type 'System.Windows.Forms.Form' does not  
    // support the 'comparison' constraint.  
 
Again, that’s good—this ordering would be a bug in your code. Now, let’s take a closer look at when 
equality and comparison constraints are satisfied in F#.   

• The equality constraint is satisfied if the type definition doesn’t have the 
NoEquality attribute, and any dependencies also satisfy the equality constraint. 

• The comparison constraint is satisfied if the type definition doesn’t have the 
NoComparison attribute, and the type definition implements System.IComparable, 
and any dependencies also satisfy the comparison constraint.  

An equality constraint is relatively weak, because nearly all CLI types satisfy it. A comparison 
constraint is a stronger constraint, because it usually implies that a type must implement 
System.IComparable. 

Asserting Equality, Hashing, and Comparison Using Attributes 
The following attributes control the comparison and equality semantics of type definitions: 

•  StructuralEquality and StructuralComparison: Indicate that a structural type 
must support equality and comparison 
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• NoComparison and NoEquality: Indicate that a type doesn’t support equality or 
comparison 

• CustomEquality and CustomComparison: Indicate that a structural type supports 
custom equality and comparison 

Let’s look at examples of these. Sometimes you may want to assert that a structural type must 
support structural equality, and you want an error at the definition of the type if it doesn’t. You do this 
by adding the StructuralEquality or StructuralComparison attribute to the type: 
 
[<StructuralEquality;StructuralComparison>]  
type MiniIntegerContainer = MiniIntegerContainer of int 
 
This adds extra checking. In the following example, the code gives an error at compile time—the type 
can’t logically support automatic structural comparison because one of the element types doesn’t 
support ordered comparison: 
 
[<StructuralEquality;StructuralComparison>]  
type MyData = MyData of int * string * string * System.Windows.Forms.Form 
 
 
   error FS1177: The struct, record or union type 'MyData' has the  
   'StructuralComparison' attribute but the component type 
   'System.Windows.Forms.Form' does not satisfy the 'comparison' constraint 

Fully Customizing Equality, Hashing, and Comparison on a Type 
Many types in the .NET libraries come with custom equality, hashing and comparison 
implementations. For example, System.DateTime has custom implementations of these.  

F# also allows you to define custom equality, hashing, and comparison for new type definitions. 
For example, values of a type may carry a unique integer tag that can be used for this purpose. In such 
cases, we recommend that you take full control of your destiny and define custom comparison and 
equality operations on your type. For example, Listing 8-1 shows how to customize equality, hashing 
and comparison based on a unique stamp integer value. The type definition includes an 
implementation of System.IComparable and overrides of Object.Equals and Object.GetHashCode. 

Listing 8-1. Customizing Equality, Hashing, and Comparison for a Record Type Definition 

/// A type abbreviation indicating we're using integers for unique stamps  
/// on objects  
type stamp = int 
 
/// A structural type containing a function that can't be compared for equality    
[<CustomEquality; CustomComparison>] 
type MyThing =  
    { Stamp: stamp; 
      Behaviour: (int -> int) }   
 
    override x.Equals(yobj) =  
        match yobj with 
        | :? MyThing as y -> (x.Stamp = y.Stamp) 
        | _ -> false 
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    override x.GetHashCode() = hash x.Stamp 
    interface System.IComparable with 
      member x.CompareTo yobj =  
          match yobj with 
          | :? MyThing as y -> compare x.Stamp y.Stamp 
          | _ -> invalidArg "yobj" "cannot compare values of different types" 
 

The System.IComparable interface is defined in the .NET libraries: 
 
namespace System 
 
    type IComparable = 
          abstract CompareTo : obj -> int 
 

Recursive calls to compare subexpressions are processed using the following functions: 

val hash : 'T -> int when 'T : equality 
val (=) : 'T -> 'T -> bool when 'T : equality 
val compare : 'T -> 'T -> int when 'T : comparison 

Listing 8-2 shows the same for a union type, this time using some helper functions. 

Listing 8-2. Customizing Generic Hashing and Comparison on a Union Type 

let inline equalsOn f x (yobj:obj) =  
    match yobj with 
    | :? 'T as y -> (f x = f y) 
    | _ -> false 
 
let inline hashOn f x =  hash (f x) 
 
let inline compareOn f x (yobj: obj) =  
    match yobj with 
    | :? 'T as y -> compare (f x) (f y) 
    | _ -> invalidArg "yobj" "cannot compare values of different types" 
 
type stamp = int 
 
[<CustomEquality; CustomComparison>] 
type MyUnionType =  
    | MyUnionType of stamp * (int -> int)   
 
    static member Stamp (MyUnionType (s,_)) = s 
 
    override x.Equals y = equalsOn MyUnionType.Stamp x y 
    override x.GetHashCode() = hashOn MyUnionType.Stamp x 
    interface System.IComparable with 
      member x.CompareTo y = compareOn MyUnionType.Stamp x y 
 

Listing 8-2 also shows how to implement the System.Object method GetHashCode. This follows the 
same pattern as generic equality.  
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Finally, you can declare that a structural type should use reference equality: 
 
[<ReferenceEquality>]  
type MyFormWrapper = MyFormWrapper of System.Windows.Forms.Form * (int -> int) 
 

There is no such thing as reference comparison (the object pointers used by .NET move around, so 
the ordering would change). You can implement that by using a unique tag and custom comparison.  

Suppressing Equality, Hashing, and Comparison on a Type  
You can suppress equality on an F# defined type by using the NoEquality attribute on the definition of the 
type. This means the type isn’t considered to satisfy the equality constraint. Likewise, you can suppress 
comparison on an F# defined type by using the NoComparison attribute on the definition of the type:  
 
[<NoEquality; NoComparison>] 
type MyProjections =  
    | MyProjections of (int * string) * (string -> int)   
 

Adding these attributes to your library types makes client code safer, because it’s less likely to 
inadvertently rely on equality and comparison over types where these operations make no sense. 

Customizing Generic Collection Types 
Programmers love defining new generic collection types. This is done less often in .NET and F# 
programming than in other languages, because the F# and .NET built-in collections are so good, but 
it's still important. 

Equality and comparison play a role here. For example, it’s common to have collections where some 
of the values can be indexed using hashing, compared for equality when searching, or compared using an 
ordering. For example, seeing a constraint on this signature on a library type would come as no surprise: 
 
type Graph<'Node when 'Node : equality>() = ... 
 
The presence of the constraint is somewhat reassuring, because the requirement on node types is 
made clearer. Sometimes it’s also desirable to be able to compare entire containers: for example, to 
compare one set with another, one map with another, or one graph with another. Consider the simplest 
generic collection type of all, which holds only one element. You can define it easily in F#: 
 
type MiniContainer<'T> = MiniContainer of 'T 
 
In this case, this is a structural type definition, and F# infers that there is an equality and comparison 
dependency on 'T. All done! You can use MiniContainer<_> with values of any type, and you can only do 
equality and comparison on MiniContainer values if the element type also supports equality and 
comparison. Perfect.  

However, if MiniContainer is a class type or has customized comparison and equality logic, then 
you need to be more explicit about dependencies. You can declare dependencies by using the 
EqualityConditionalOn and ComparisonConditionalOn attributes on the type parameter. You should also 
use the operators Unchecked.equals, Unchecked.hash, and Unchecked.compare to process elements 
recursively. With these attributes, MiniContainer<A> satisfies the equality and comparison constraints if 
A satisfies these constraints. Here’s a full example: 
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type MiniContainer<[<EqualityConditionalOn; ComparisonConditionalOn >]'T>(x : 'T) = 
    member x.Value = x 
    override x.Equals(yobj) =  
        match yobj with 
        | :? MiniContainer<'T> as y -> Unchecked.equals x.Value y.Value 
        | _ -> false 
 
    override x.GetHashCode() = Unchecked.hash x.Value 
 
    interface System.IComparable with 
      member x.CompareTo yobj =  
          match yobj with 
          | :? MiniContainer<'T> as y -> Unchecked.compare x.Value y.Value 
          | _ -> invalidArg "yobj" "cannot compare values of different types" 

■ Note Be careful about using generic equality, hashing, and comparison on mutable data. Changing the value of 
a field may change the value of the hash or the results of the operation. It’s normally better to use the operations 

on immutable data or data with custom implementations. 

Efficient Precomputation and Caching 
All experienced programmers are familiar with the concept of precomputation, where computations are 
performed as soon as some of the inputs to a function are known. The following sections cover a number 
of manifestations of precomputation in F# programming and the related topics of memoization and 
caching. 

Precomputation and Partial Application 
Let’s say you’re given a large input list of words and you want to compute a function that checks 
whether a word is in this list. You can do this as follows: 
 
let isWord (words: string list) = 
    let wordTable = Set.ofList words 
    fun w -> wordTable.Contains(w) 
 
Here, isWord has the following type: 

val isWord : string list -> (string -> bool)  

The efficient use of this function depends crucially on the fact that useful intermediary results are 
computed after only one argument is applied. For example: 
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> let isCapital = isWord ["London";"Paris";"Warsaw";"Tokyo"];; 
val isCapital : (string -> bool) 
 
> isCapital "Paris";; 
val it : bool = true 
 
> isCapital "Manchester";; 
val it : bool = false 

Here, the internal table wordTable is computed as soon as isCapital is applied to one argument. It 
would be a mistake to write isCapital as follows: 
 
let isCapitalSlow inp = isWord ["London";"Paris";"Warsaw";"Tokyo"] inp 
 
This function computes the same results as isCapital. However, it does so inefficiently, because isWord 
is applied to both its first argument and its second argument every time you use the function 
isCapitalSlow. This means the internal table is rebuilt every time the function isCapitalSlow is 
applied, somewhat defeating the point of having an internal table in the first place. In a similar vein, 
the definition of isCapital shown previously is more efficient than either isCapitalSlow2 or 
isCapitalSlow3 in the following: 
 
let isWordSlow2 (words: string list) (word:string) = 
    List.exists (fun word2 -> word = word2) words 
 
let isCapitalSlow2 inp = isWordSlow2 ["London";"Paris";"Warsaw";"Tokyo"] inp 
 
let isWordSlow3 (words: string list) (w:string) = 
    let wordTable = Set.Create(words) 
    wordTable.Contains(w) 
 
let isCapitalSlow3 inp = isWordSlow3 ["London";"Paris";"Warsaw";"Tokyo"] inp 
 
The first uses an inappropriate data structure for the lookup (an F# list, which has O(n) lookup time), 
and the second attempts to build a better intermediate data structure (an F# set, which has O(log n) 
lookup time) but does so on every invocation. 

There are often trade-offs between different intermediate data structures or whether to use 
intermediate data structures at all. For example, in the previous example, you could just as well use a 
HashSet as the internal data structure. This approach in general gives better lookup times (constant 
time), but it requires slightly more care to use because a HashSet is a mutable data structure. In this 
case, you don’t mutate the data structure after you create it, and you don’t reveal it to the outside world, 
so it’s entirely safe: 
 
#r "System.Core.dll" 
let isWord (words: string list) = 
    let wordTable = System.Collections.Generic.HashSet<_>(words) 
    fun word -> wordTable.Contains(word) 
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Precomputation and Objects 
The examples of precomputation given previously are variations on the theme of computing functions, 
introduced in Chapter 3. The functions computed capture the precomputed intermediate data 
structures. However, it’s clear that precomputing via partial applications and functions can be subtle, 
because it matters when you apply the first argument of a function (triggering the construction of 
intermediate data structures) and when you apply the subsequent arguments (triggering the real 
computation that uses the intermediate data structures). 

Luckily, functions don’t just have to compute functions; they can also return more sophisticated 
values such as objects. This can help make it clear when precomputation is being performed. It also 
allows you to build richer services based on precomputed results. For example, Listing 8-3 shows how 
to use precomputation as part of building a name-lookup service. The returned object includes both a 
Contains method and a ClosestPrefixMatch method. 

Listing 8-3. Precomputing a Word Table Before Creating an Object 

open System 
 
type NameLookupService = 
    abstract Contains : string -> bool 
 
let buildSimpleNameLookup (words: string list) = 
    let wordTable = Set.ofList words 
    let score (w1:string) (w2:string) = 
        let lim = min w1.Length w2.Length 
        let rec loop i acc = 
            if i >= lim then acc 
            else loop (i+1) (int w1.[i] - int w2.[i] + acc) 
        loop 0 0 
 
    { new NameLookupService with 
        member t.Contains(w) = wordTable.Contains(w) } 
 

The internal data structure used in Listing 8-3 is the same as before: an F# set of type 
Microsoft.FSharp.Collections.Set<string>. The service can now be instantiated and used as follows: 

> let capitalLookup = buildSimpleNameLookup ["London";"Paris";"Warsaw";"Tokyo"];; 
val capitalLookup : NameLookupService 
 
> capitalLookup.Contains "Paris";; 
val it : bool = true 

In passing, note the following about this implementation: 

• The table is built based on the F# default ordinal comparison for strings. This 
isn’t always an appropriate choice when you’re using natural-language text. You 
can specify the exact comparison function to use when building sets based on 
string values by creating a custom key type with a custom comparison function. 

• You can extend the returned service to support a richer set of queries of the 
underlying information by adding further methods to the object returned. 
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Precomputation of the kind used previously is an essential technique for implementing many 
services and abstractions, from simple functions to sophisticated computation engines. You see further 
examples of these techniques in Chapter 9. 

Memoizing Computations 
Precomputation is one important way to amortize the costs of computation in F#. Another is called 
memoization. A memoizing function is one that avoids recomputing its results by keeping an internal 
table, often called a lookaside table. For example, consider the well-known Fibonacci function, whose 
naive, unmemoized version is as follows: 
 
let rec fib n = if n <= 2 then 1 else fib (n-1) + fib (n-2) 
 

Not surprisingly, a version keeping a lookaside table is much faster: 
 
#nowarn "40" // do not warn on recursive computed objects and functions 
let fibFast = 
    let t = new System.Collections.Generic.Dictionary<int,int>() 
    let rec fibCached n = 
        if t.ContainsKey(n) then t.[n] 
        else if n <= 2 then 1 
        else let res = fibCached(n-1) + fibCached(n-2) 
             t.Add(n,res) 
             res 
    fun n -> fibCached n 
 
On one of our laptops, with n = 30, the first runs in 3.65 seconds, and the second runs in 0.015 seconds. 

Listing 8-4 shows how to write a generic function that encapsulates the memoization technique. 

Listing 8-4. A Generic Memoization Function 

open System.Collections.Generic  
let memoize (f: 'T -> 'U) = 
    let t = new Dictionary<'T,'U>(HashIdentity.Structural) 
    fun n -> 
        if t.ContainsKey(n) then t.[n] 
        else let res = f n 
             t.Add(n,res) 
             res 
 
let rec fibFast = 
    memoize (fun n -> if n <= 2 then 1 else fibFast (n-1) + fibFast (n-2)) 
 
Here, the functions have the following types: 

val memoize : ('T -> 'U) -> ('T -> 'U) when 'T : equality 
val fibFast : (int -> int) 

In the definition of fibFast, you use let rec because fibFast is self-referential—that is, used as part of 
its own definition. You can think of fibFast as a computed, recursive function. Such a function 
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generates an informational warning when used in F# code, because it’s important to understand 
when this feature of F# is being used; you then suppress the warning with #nowarn "40". As with the 
examples of computed functions from the previous section, it’s important not to include the extra 
argument in the application of memoize, because it would lead to a fresh memoization table being 
allocated each time the function fibNotFast was called: 
 
let rec fibNotFast n = 
    memoize (fun n -> if n <= 2 then 1 else fibNotFast (n-1) + fibNotFast (n-2)) n 
 

Due to this subtlety, it’s often a good idea to define your memoization strategies to generate 
objects other than functions (note that you can think of functions as very simple kinds of objects). For 
example, Listing 8-5 shows how to define a new variation on memoize that returns a Table object that 
supports both a lookup and a Discard method. 

Listing 8-5. A Generic Memoization Service 

open System.Collections.Generic  
type Table<'T,'U> = 
    abstract Item : 'T -> 'U with get 
    abstract Discard : unit -> unit 
 
let memoizeAndPermitDiscard f = 
    let lookasideTable = new Dictionary<_,_>(HashIdentity.Structural) 
    { new Table<'T,'U> with 
          member t.Item 
             with get(n) = 
                 if lookasideTable.ContainsKey(n) 
                 then lookasideTable.[n] 
                 else let res = f n 
                      lookasideTable.Add(n,res) 
                      res 
          member t.Discard() = 
              lookasideTable.Clear() } 
 
 
#nowarn "40" // do not warn on recursive computed objects and functions 
 
let rec fibFast = 
    memoizeAndPermitDiscard 
        (fun n -> 
            printfn "computing fibFast %d" n 
            if n <= 2 then 1 else fibFast.[n-1] + fibFast.[n-2]) 
 

In Listing 8-5, lookup uses the a.[b] associative Item lookup property syntax, and the Discard 
method discards any internal partial results. The functions have the following types: 

val memoizeAndPermitDiscard : ('T -> 'U) -> Table<'T, 'U> when 'T : equality 
val fibFast : Table<int,int> 

Here’s an example showing how fibFast caches results but recomputes them after a Discard: 
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> fibFast.[3];; 
computing fibFast 3 
computing fibFast 2 
computing fibFast 1 
val it : int = 2 
 
> fibFast.[5];; 
computing fibFast 5 
computing fibFast 4 
val it : int = 5 
 
> fibFast.Discard();; 
val it : unit = () 
 
> fibFast.[5];; 
computing fibFast 5 
computing fibFast 4 
computing fibFast 3 
computing fibFast 2 
computing fibFast 1 
val it : int = 5 

■ Note Memoization relies on the memoized function being stable and idempotent. In other words, it always 
returns the same results, and no additional interesting side effects are caused by further invocations of the 
function. In addition, memoization strategies rely on mutable internal tables. The implementation of memoize 

shown in this chapter isn’t thread safe, because it doesn’t lock this table during reading or writing. This is fine if 
the computed function is used only from at most one thread at a time; but in a multithreaded application, you 
should use memoization strategies that use internal tables protected by locks such as a .NET ReaderWriterLock. 

Chapter 13 discusses thread synchronization and mutable state further. 

Lazy Values 
Memoization is a form of caching. Another important variation on caching is a simple lazy value. A lazy 
value is a delayed computation of type Microsoft.FSharp.Control.Lazy<'T> for some type 'T. Lazy 
values are usually formed by using the special keyword lazy (you can also make them explicitly using 
the functions in the Microsoft.FSharp.Core.Lazy module). For example: 

> let sixty = lazy (30+30);; 
val sixty : Lazy<int> 
 
> sixty.Force();; 
val it : int = 60  
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Lazy values of this kind are implemented as thunks holding either a function value that computes 
the result or the actual computed result. The lazy value is computed only once, and thus its effects are 
executed only once. For example, in the following code fragment, “Hello world” is printed only once: 

> let sixtyWithSideEffect = lazy (printfn "Hello world"; 30+30);; 
val sixtyWithSideEffect: Lazy<int> 
 
> sixtyWithSideEffect.Force();; 
Hello world 
val it : int = 60 
 
> sixtyWithSideEffect.Force();; 
val it : int = 60 

Lazy values are implemented by a simple data structure containing a mutable reference cell. You 
can find the definition of this data structure in the F# library source code. 

Other Variations on Caching and Memoization 
You can apply many different caching and memoization techniques in advanced programming, and 
this chapter can’t cover them all. Here are some common variations: 

• Using an internal data structure that records only the last invocation of a 
function and basing the lookup on a very cheap test on the input. 

• Using an internal data structure that contains both a fixed-size queue of input keys 
and a dictionary of results. Entries are added to both the table and the queue as 
they’re computed. When the queue is full, the input keys for the oldest computed 
results are dequeued, and the computed results are discarded from the dictionary. 

Cleaning Up Resources 
All programming involves the use of real resources on the host machine(s) and operating system. For 
example: 

• Stack: Implicitly allocated and deallocated as functions are called 

• Heap allocated memory: Used by all reference-typed objects 

• File handles: Such as operating system file handles represented by 
System.IO.FileStream objects and its subtypes 

• Network connections: Such as operating system I/O completion ports represented 
by System.Net.WebResponse and its subtypes 

• Threads: Such as operating system threads represented by 
System.Threading.Thread objects and also worker threads in the .NET thread pool 

• Graphics objects: Such as drawing objects represented by various constructs 
under the System.Drawing namespace 



CHAPTER 8 ■  MASTERING F#: COMMON TECHNIQUES 

 

187 

 

• Concurrency objects: Such as operating system synchronization objects 
represented by System.Threading.WaitHandle objects and its subtypes 

All resources are necessarily finite. In .NET programming, some resources such as memory are 
fully managed, in the sense that you almost never need to consider when to clean up memory. This is 
done automatically through a process called garbage collection. Chapter 17 looks at garbage collection 
in a little more detail. Other resources must be reclaimed and/or recycled. 

When prototyping, you can generally assume that resources are unbounded, although it’s good 
practice when you’re using a resource to be aware of how much of the resource you’re using and 
roughly what your budget for the resource is. For example: 

• On a modern 32-bit desktop machine, 10,000 tuple values occupy only a small 
fragment of a machine’s memory, roughly 160KB. However, 10,000 open file 
handles is an extreme number and will stress the operating system. 10,000 
simultaneous web requests may stress your network administrator! 

• In some cases, even memory should be explicitly and carefully reclaimed. For 
example, on a modern 64-bit machine, the largest single array you can allocate 
in a .NET 2.0 program is 2GB. If your machine has, say, 4GB of real memory, you 
may be able to have only a handful of these objects and should strongly consider 
moving to a regime where you explicitly recycle these objects and think carefully 
before allocating them. 

Cleaning Up with use 
With the exception of stack and memory, all objects that own resources should be subtypes of the 
.NET type System.IDisposable. This is the primary way you can recognize primitive resources and 
objects that wrap resources. The System.IDisposable interface has a single method; in F# syntax, it 
can be defined as follows: 
 
namespace System 
    type IDisposable = 
        abstract Dispose: unit -> unit 
 

One of the simplest approaches to managing IDisposable objects is to give each resource a lifetime: 
that is, some well-defined portion of the program execution for which the object is active. This is even 
easier when the lifetime of a resource is lexically scoped, such as when a resource is allocated on entry 
to a function and deallocated on exit. In this case, the resource can be tied to the scope of a particular 
variable, and you can protect and dispose of a value that implements IDisposable by using a use 
binding instead of a let binding. For example, in the following code, three values implement 
IDisposable, all of which are bound using use: 
 
/// Fetch a web page 
let http (url: string) = 
    let req = System.Net.WebRequest.Create url 
    use resp = req.GetResponse() 
    use stream = resp.GetResponseStream() 
    use reader = new System.IO.StreamReader(stream) 
    let html = reader.ReadToEnd() 
    html 
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In all three cases, the objects (a WebResponse, a Stream, and a StreamReader) are automatically closed and 
disposed at the end of an execution of the function. To see what’s going on, notice that a use binding is 
syntactic sugar. For example, the following 
 
    use var = expr in body 
 
is shorthand for this: 
 
    let var = expr 
    try body 
    finally 
        match var with 
        | null -> () 
        |  _ -> var.Dispose() 
 

A number of important types implement IDisposable; Table 8-1 shows some of them. You can use 
tables such as this to chart the portions of the .NET Framework that reveal operating system 
functionality to .NET applications. 

Table 8-1. A Selection of the Types That Implement IDisposable 

Namespace Some Types Implementing IDisposable 

System.IO BinaryReader, BinaryWriter, FileSystemWatcher, IsolatedFileStorage, 
Stream, TextReader, TextWriter, … 

System.Drawing Brush, BufferedGraphics, Font, FontFamily, Graphics, Icon, Image, Pen, 
Region, TextureBrush, … 

System.Drawing.Text FontCollection, … 

System.Drawing.Drawing2D CustomLineCap, GraphicsPath, GraphicsPathIterator, Matrix, … 

System.Drawing.Imaging EncoderParameter, ImageAttributes, … 

System.Net WebResponse, … 

System.Net.Sockets Socket, TcpClient, … 

System.Data.SqlClient SqlBulkCopy, SqlCommand, SqlConnection, SqlTransaction, … 

System.Threading Timer, WaitHandle, AutoResetEvent, ManualResetEvent, Mutex, 
Semaphore, … 

System.Web.UI Control, HttpApplication, … 

System.Web.UI.WebControls Button, CheckBox, DataGrid, … 

System.Windows.Forms Button, CheckBox, Cursor, Control, DataGrid, Form, … 

Microsoft.Win32 RegistryKey, … 
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■ Tip A tool such as Visual Studio can help you determine when a type has implemented IDisposable. When you 

rest your mouse pointer over a value, you normally see this noted on the information displayed for a value. 

When Will the Runtime Clean Up for You? 

People often ask if the .NET Common Language Runtime automatically cleans up resources such as file 
handles the same way it cleans up memory. It’s true that when an object gets garbage collected, it may be 
finalized; if the object is well-implemented, this results in it deallocating any unmanaged resources, 
closing any outstanding file connections, and releasing any operating system resources. However, 
although it’s appropriate to rely on finalization when prototyping, you should never rely on finalization in 
code where you’re hitting resource limits. 

For example, let’s say you have a loop where you open files using System.IO.File.OpenRead. If you 
forget to close the file handles, you may quickly allocate thousands of file handles. If you’re lucky, the 
garbage collector may finalize these before you run out of OS resources; but if not, one of your 
File.OpenRead calls will fail with an exception, even if the file exists on disk. 

You should also be aware of the potential for memory stickiness. Memory stickiness occurs when the .NET 
Common Language Runtime is unable to garbage-collect memory even though objects have become 
unreachable. This happens especially when long-running computations and inactive callbacks hold on to 
object handles related to the earlier phases of execution of a program. Memory stickiness can also lead to 
objects never being finalized, reinforcing that you shouldn’t rely on finalization to release nonmemory 
resources. Memory profiling tools such as CLRProfiler are indispensable when you’re tracking down 
memory leaks in production code or long-running applications. 

Managing Resources with More Complex Lifetimes 
Sometimes, the lifetime of a resource isn’t simple in the sense that it doesn’t follow a stack discipline. 
In these cases, you should almost always adopt one of two techniques: 

• Design objects that can own one or more resources and that are responsible for 
cleaning them up. Make sure these objects implement System.IDisposable. 

• Use control constructs that help you capture the kind of computation you’re 
performing. For example, when generating sequences of data (such as from a 
database connection), you should strongly consider using sequence expressions, 
discussed in Chapter 3. These may have internal use bindings, and the resources 
are disposed when each sequence iteration finishes. Likewise, when using 
asynchronous I/O, it may be helpful to write your computation as an asynchronous 
workflow. Chapter 13 and the following sections provide examples. 

You should consider implementing the IDisposable interface on objects and types in the following 
situations: 

• When you build an object that uses one or more IDisposable objects internally. 

• When you’re writing a wrapper for an operating system resource or some 
resource allocated and managed in a native (C or C++) DLL. In this case, you 
should also implement a finalizer by overriding the Object.Finalize method. 
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• When you implement the System.Collections.Generic.IEnumerable<'T> (that is, 
sequence) interface on a collection. The IEnumerable interface isn’t IDisposable, 
but it must generate System.Collection.Generic.IEnumerator<'T> values, and 
this interface inherits from IDisposable. For nearly all collection types, the 
disposal action returns without doing anything. 

The following sections give some examples of these. 

Cleaning Up Internal Objects 
Listing 8-6 shows an example that implements an object that reads lines from a pair of text files, 
choosing the file at random. You must implement the type IDisposable because the object owns two 
internal System.IO.StreamReader objects, which are IDisposable. Note that you explicitly check to see 
whether the object has already been disposed. 

Listing 8-6. Implementing IDisposable to Clean Up Internal Objects 

open System 
open System.IO 
 
type LineChooser(fileName1, fileName2) = 
    let file1 = File.OpenText(fileName1) 
    let file2 = File.OpenText(fileName2) 
    let rnd = new System.Random() 
 
    let mutable disposed = false 
 
    let cleanup() = 
        if not disposed then 
            disposed <- true; 
            file1.Dispose(); 
            file2.Dispose(); 
 
    interface System.IDisposable with 
        member x.Dispose() = cleanup() 
 
    member obj.CloseAll() = cleanup() 
 
    member obj.GetLine() = 
        if not file1.EndOfStream && 
           (file2.EndOfStream  || rnd.Next() % 2 = 0) then file1.ReadLine() 
        elif not file2.EndOfStream then file2.ReadLine() 
        else raise (new EndOfStreamException()) 
 

You can now instantiate, use, and dispose of this object as follows: 
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> open System.IO;; 
 
> File.WriteAllLines("test1.txt", [| "Daisy, Daisy"; "Give me your hand oh do" |]);; 
val it : unit = () 
 
> File.WriteAllLines("test2.txt", [| "I'm a little teapot"; "Short and stout" |]);; 
val it : unit = () 
 
> let chooser = new LineChooser ("test1.txt", "test2.txt");; 
val chooser : LineChooser 
 
> chooser.GetLine();; 
val it : string = "Daisy, Daisy" 
 
> chooser.GetLine();; 
val it : string = "I'm a little teapot" 
 
> (chooser :> IDisposable).Dispose();; 
val it : unit = () 
 
> chooser.GetLine();; 
System.ObjectDisposedException: Cannot read from a closed TextReader. 

Disposal should leave an object in an unusable state, as shown in the last line of the previous 
example. It’s also common for objects to implement a member with a more intuitive name that does 
precisely the same thing as its implementation of IDisposable.Dispose, which is CloseAll in Listing 8-6. 

Cleaning Up Unmanaged Objects 
If you’re writing a component that explicitly wraps some kind of unmanaged resource, then 
implementing IDisposable is a little trickier. Listing 8-7 shows the pattern that is used for this cleanup. 
Here, you mimic an external resource via a data structure that generates fresh, reclaimable integer 
tickets. The idea is that customers are each given an integer ticket, but this is kept internal to the 
customer, and customers return their ticket to the pool when they leave (that is, are disposed). 

Listing 8-7. Reclaiming Unmanaged Tickets with IDisposable 

open System 
 
type TicketGenerator() = 
    let mutable free = [] 
    let mutable max = 0 
    member h.Alloc() = 
        match free with 
        | [] -> max <- max + 1; max 
        | h::t -> free <- t; h 
    member h.Dealloc(n:int) = 
        printfn "returning ticket %d" n 
        free <- n :: free 
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let ticketGenerator = new TicketGenerator() 
 
type Customer() = 
    let myTicket = ticketGenerator.Alloc() 
    let mutable disposed = false 
    let cleanup() = 
         if not disposed then 
             disposed <- true 
             ticketGenerator.Dealloc(myTicket) 
    member x.Ticket = myTicket 
    interface IDisposable with 
         member x.Dispose() = cleanup(); GC.SuppressFinalize(x) 
    override x.Finalize() = cleanup() 
 

Note that you override the Object.Finalize method. This makes sure cleanup occurs if the object 
isn’t disposed but is still garbage-collected. If the object is explicitly disposed, you call 
GC.SuppressFinalize() to ensure that the object isn’t later finalized. The finalizer shouldn’t call the 
Dispose() of other managed objects, because they have their own finalizers if needed. The following 
example session generates some customers, and tickets used by some of the customers are 
automatically reclaimed as they exit their scopes: 

> let bill = new Customer();; 
val bill : Customer 
 
> bill.Ticket;; 
val it : int = 1 
 
> begin 
      use joe = new Customer() 
      printfn "joe.Ticket = %d" joe.Ticket 
  end;; 
joe.Ticket = 2 
returning ticket 2 
 
> begin 
      use jane = new Customer() 
      printfn "jane.Ticket = %d" jane.Ticket 
  end;; 
jane.Ticket = 2 
returning ticket 2 
val it : unit = () 

In the example, Joe and Jane get the same ticket. Joe’s ticket is returned at the end of the scope where 
the joe variable is declared because of the IDisposable cleanup implicit in the use binding. 

Cleaning Up in Sequence Expressions 
It’s common to implement computations that access external resources such as databases but that 
return their results on demand. But this raises a difficulty: how do you manage the lifetime of the 
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resources for the underlying operating system connections? One solution to this is captured by use 
bindings in sequence expressions: 

• When a use binding occurs in a sequence expression, the resource is initialized 
each time a client enumerates the sequence. 

• The connection is closed when the client disposes of the enumerator. 

For example, consider the following function that creates a sequence expression that reads the 
first two lines of a file on demand: 
 
open System.IO 
 
let firstTwoLines(file) = 
    seq { use s = File.OpenText(file) 
          yield s.ReadLine() 
          yield s.ReadLine() } 
 

Let’s now create a file and a sequence that reads the first two lines of the file on demand: 

> File.WriteAllLines("test1.txt", [| "Es kommt ein Schiff"; 
                                     "A ship is coming" |]);; 
val it : unit = () 
 
> let seq = firstTwoLines("test1.txt");; 
val seq : seq<string> 

At this point, the file hasn’t yet been opened, and no lines have been read from the file. If you now 
iterate the sequence expression, the file is opened, the first two lines are read, and the results are 
consumed from the sequence and printed. Most important, the file has now also been closed, because 
the Seq.iter aggregate operator is careful to dispose of the underlying enumerator it uses for the 
sequence, which in turn disposes of the file handle generated by File.OpenText: 

> seq |> Seq.iter (printfn "line = '%s'");; 
line = 'Es kommt ein Schiff' 
line = A ship is coming' 

Chapter 9 covers sequence expressions and the more general mechanism of workflows in more 
detail. 
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Using using 
In some older F# code, you may see the function using. For example: 
 
using (new Customer()) (fun jane -> 
    printfn "jane.Ticket = %d" jane.Ticket 
) 
 

The definition of using is as follows: 
 

let using (ie : #System.IDisposable) f = 
    try f(ie) 
    finally ie.Dispose() 
 

This is more explicit than writing use bindings but can be useful if you like to know what’s going 
on under the hood. 

Stack as a Resource: Tail Calls and Recursion 
In the previous section, you saw a range of resources that are best managed explicitly, preferably by 
automatically cleaning up the construct at the end of its lifetime using constructs such as use x = expr 
and idioms such as System.IDisposable. You also saw that two resources are managed automatically, 
stack and heap-allocated memory, with the latter allocated on the garbage-collected heap. 

Stack space is needed every time you call an F# function and is reclaimed when the function 
returns or when it performs a tail call, which is discussed in a moment. It’s perhaps surprising that 
stack space is more limited than space in the garbage-collected heap. For example, on a 32-bit 
Windows machine, the default settings are such that each thread of a program can use up to 1MB of 
stack space. Because stack is allocated every time a function call is made, a very deep series of nested 
function calls causes a StackOverflowException to be raised. For example, on a 32-bit Windows 
machine, the following program causes a stack overflow when n reaches about 79000: 
 
let rec deepRecursion n = 
    if n = 1000000 then () else 
    if n % 100 = 0 then 
        printfn "--> deepRecursion, n = %d" n 
    deepRecursion (n+1) 
    printfn "<-- deepRecursion, n = %d" n 
 

You can see this in F# Interactive: 

> deepRecursion 0;; 
--> deepRecursion, n = 0 
... 
--> deepRecursion, n = 79100 
--> deepRecursion, n = 79200 
--> deepRecursion, n = 79300 
Process is terminated due to StackOverflowException 
Session termination detected. Press Enter to restart. 
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Stack overflows are extreme exceptions, because it’s often difficult to recover correctly from them. 
For this reason, it’s important to ensure that the amount of stack used by your program doesn’t grow in 
an unbounded fashion as your program proceeds, especially as you process large inputs. Furthermore, 
deep stacks can hurt in other ways; for example, the .NET garbage collector traverses the entire stack 
on every garbage collection. This can be expensive if your stacks are very deep. 

Because recursive functions are common in F# functional programming, this may seem to be a 
major problem. However, there is one important case in which a function call recycles stack space 
eagerly: a tail call. A tail call is any call that is the last piece of work done by a function. For example, 
Listing 8-8 shows the same program with the last line deleted. 

Listing 8-8. A Simple Tail-Recursive Function 

let rec tailCallRecursion n : unit = 
    if n = 1000000 then () else 
    if n % 100 = 0 then 
        printfn "--> tailCallRecursion, n = %d" n 
    tailCallRecursion (n+1) 
 

The code now runs to completion without a problem: 

> tailCallRecursion 0;; 
... 
--> tailCallRecursion, n = 999600 
--> tailCallRecursion, n = 999700 
--> tailCallRecursion, n = 999800 
--> tailCallRecursion, n = 999900 
val it : unit = () 

When a tail call is made, the .NET Common Language Runtime can drop the current stack frame 
before executing the target function, rather than waiting for the call to complete. Sometimes this 
optimization is performed by the F# compiler. If the n = 1000000 check were removed in the previous 
program, then the program would run indefinitely. (Note that n would cycle around to the negative 
numbers, because arithmetic is unchecked for overflow unless you open the module 
Microsoft.FSharp.Core.Operators.Checked.) 

Functions such as tailCallRecursion are known as tail-recursive functions. When you write 
recursive functions, you should check either that they’re tail recursive or that they won’t be used with 
inputs that cause them to recurse to an excessive depth. The following sections, give some examples of 
techniques you can use to make your functions tail recursive. 

Tail Recursion and List Processing 
Tail recursion is particularly important when you’re processing F# lists, because lists can be long and 
recursion is the natural way to implement many list-processing functions. For example, here is a 
function to find the last element of a list (this must traverse the entire list, because F# lists are pointers 
to the head of the list): 
 
let rec last l = 
    match l with 
    | [] -> invalidArg "l" "the input list should not be empty" 
    | [h] -> h 
    | h::t -> last t 
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This function is tail recursive because no work happens after the recursive call last t. However, many 
list functions are written most naturally in non-tail-recursive ways. Although it can be a little 
annoying to write these functions using tail recursion, it’s often better to use tail recursion than to 
leave the potential for stack overflow lying around your code. For example, the following function 
creates a list of length n where every entry in the list is the value x: 
 
let rec replicateNotTailRecursiveA n x = 
    if n <= 0 then [] 
    else x :: replicateNotTailRecursiveA (n-1) x 
 
The problem with this function is that work is done after the recursive call. This becomes obvious when 
you write the function in the following fashion: 
 
let rec replicateNotTailRecursiveB n x = 
    if n <= 0 then [] 
    else 
        let recursiveResult = replicateNotTailRecursiveB (n-1) x 
        x :: recursiveResult 
 
Clearly, a value is being constructed by the expression x :: recursiveResult after the recursive call 
replicateNotTailRecursiveB (n-1) x. This means the function isn’t tail recursive. The solution is to 
write the function using an accumulating parameter. This is often done by using an auxiliary function 
that accepts the accumulating parameter: 
 
let rec replicateAux n x acc = 
    if n <= 0 then acc 
    else replicateAux (n-1) x (x::acc) 
 
let replicate n x = replicateAux n x [] 
 
Here, the recursive call to replicateAux is tail recursive. Sometimes the auxiliary functions are written 
as inner recursive functions: 
 
let replicate n x = 
    let rec loop i acc = 
        if i >= n then acc 
        else loop (i+1) (x::acc) 
    loop 0 [] 
 

The F# compiler optimizes inner recursive functions such as these to produce an efficient pair of 
functions that pass extra arguments as necessary. 

When you’re processing lists, accumulating parameters often accumulate a list in reverse order. 
This means a call to List.rev may be required at the end of the recursion. For example, consider the 
following implementation of List.map, which isn’t tail recursive: 
 
let rec mapNotTailRecursive f inputList = 
    match inputList with 
    | [] -> [] 
    | h::t -> (f h) :: mapNotTailRecursive f t 
 

Here is an implementation that neglects to reverse the accumulating parameter: 
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let rec mapIncorrectAcc f inputList acc = 
    match inputList with 
    | [] -> acc            // whoops! Forgot to reverse the accumulator here! 
    | h::t -> mapIncorrectAcc f t (f h :: acc) 
 
let mapIncorrect f inputList = mapIncorrectAcc f inputList [] 

> mapIncorrect (fun x -> x * x) [1;2;3;4];; 
val it : int list = [ 16; 9; 4; 1] 

Here is a correct implementation: 
 
let rec mapAcc f inputList acc = 
    match inputList with 
    | [] -> List.rev acc 
    | h::t -> mapAcc f t (f h :: acc) 
 
let map f inputList = mapAcc f inputList [] 

> map (fun x -> x * x) [1;2;3;4];; 
val it : int list = [ 1; 4; 9; 16] 

Tail Recursion and Object-Oriented Programming 
You often need to implement object members with a tail-recursive implementation. For example, 
consider the following list-like data structure: 
 
type Chain = 
    | ChainNode of int * string * Chain 
    | ChainEnd of string 
 
    member chain.LengthNotTailRecursive = 
        match chain with 
        | ChainNode(_,_,subChain) -> 1 + subChain.LengthNotTailRecursive 
        | ChainEnd _ -> 0 
 
The implementation of LengthNotTailRecursive is not tail recursive, because the addition 1 + applies 
to the result of the recursive property invocation. One obvious tail-recursive implementation uses a 
local recursive function with an accumulating parameter, as shown in Listing 8-9. 

Listing 8-9. Making an Object Member Tail Recursive 

type Chain = 
    | ChainNode of int * string * Chain 
    | ChainEnd of string 
 
    // The implementation of this property is tail recursive. 
    member chain.Length = 
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        let rec loop c acc = 
            match c with 
            | ChainNode(_,_,subChain) -> loop subChain (acc+1) 
            | ChainEnd _ -> acc 
        loop chain 0 

■ Note The list-processing functions in the F# library module Microsoft.FSharp.Collections.List are tail 
recursive, except where noted in the documentation. Some of them have implementations that are specially 

optimized to take advantage of the implementation of the list data structure. 

Tail Recursion and Processing Unbalanced Trees 
This section considers tail-recursion problems that are much less common in practice but for which it’s 
important to know the techniques to apply if required. The techniques also illustrate some important 
aspects of functional programming, in particular an advanced technique called continuation passing. 

Tree-structured data is generally more difficult to process in a tail-recursive way than list-
structured data. For example, consider the following tree structure: 
 
type Tree = 
    | Node of string * Tree * Tree 
    | Tip of string 
 
let rec sizeNotTailRecursive tree = 
    match tree with 
    | Tip _ -> 1 
    | Node(_,treeLeft,treeRight) -> 
        sizeNotTailRecursive treeLeft + sizeNotTailRecursive treeRight 
 
The implementation of this function isn’t tail recursive. Luckily, this is rarely a problem, especially if 
you can assume that the trees are balanced. A tree is balanced when the depth of each subtree is 
roughly the same. In that case, a tree of depth 1,000 will have about 21000 entries. Even for a balanced 
tree of this size, the recursive calls to compute the overall size of the tree won’t recurse to a depth 
greater than 1,000—not deep enough to cause stack overflow except when the routine is being called 
by some other function already consuming inordinate amounts of stack. Many data structures based 
on trees are balanced by design; for example, the Set and Map data structures implemented in the F# 
library are based on balanced binary trees. 

However, some trees can be unbalanced; for example, you can explicitly make a highly 
unbalanced tree: 
 
let rec mkBigUnbalancedTree n tree = 
    if n = 0 then tree 
    else Node("node",Tip("tip"),mkBigUnbalancedTree (n-1) tree) 
 
let tree1 = Tip("tip") 
let tree2 = mkBigUnbalancedTree 10000 tree1 
let tree3 = mkBigUnbalancedTree 10000 tree2 
let tree4 = mkBigUnbalancedTree 10000 tree3 
let tree5 = mkBigUnbalancedTree 10000 tree4 
let tree6 = mkBigUnbalancedTree 10000 tree5 
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Calling tree6.Size now risks a stack overflow. You can solve this in part by trying to predict 

whether the tree will be unbalanced to the left or right and by using an accumulating parameter: 
 
let rec sizeAcc acc tree = 
    match tree with 
    | Tip _ -> 1+acc 
    | Node(_,treeLeft,treeRight) -> 
        let acc = sizeAcc acc treeLeft 
        sizeAcc acc treeRight 
 
let size tree = sizeAcc 0 tree 
 
This algorithm works for tree6, because it’s biased toward accepting trees that are skewed to the right. 
The recursive call that processes the right branch is a tail call, which the call that processes the left 
branch isn’t. This may be OK if you have prior knowledge of the shape of your trees. However, this 
algorithm still risks a stack overflow, and if necessary, you may have to change techniques. One way to 
do this is to use a much more general and important technique known as continuation passing. 

Using Continuations to Avoid Stack Overflows 
A continuation is a function that receives the result of an expression after it’s been computed. Listing 
8-10 shows an example implementation of the previous algorithm that handles trees of arbitrary size. 

Listing 8-10. Making a Function Tail Recursive via an Explicit Continuation 

let rec sizeCont tree cont = 
    match tree with 
    | Tip _ -> cont 1 
    | Node(_,treeLeft,treeRight) -> 
        sizeCont treeLeft (fun leftSize -> 
          sizeCont treeRight (fun rightSize -> 
            cont (leftSize + rightSize))) 
 
let size tree = sizeCont tree (fun x -> x) 
 

What’s going on here? Let’s look at the type of sizeCont and size: 

val sizeCont : Tree -> (int -> 'a) -> 'a 
val size : Tree -> int 

The type of sizeCont tree cont can be read as “compute the size of the tree and call cont with that 
size.” If you look at the type of sizeCont, you can see that it will call the second parameter of type int -> 
'T at some point—how else could the function produce the final result of type 'T? And when you look at 
the implementation of sizeCont, you can see that it does call cont on both branches of the match. 

Now, if you look at recursive calls in sizeCont, you can see that they’re both tail calls: 
 
sizeCont treeLeft (fun leftSize -> 
  sizeCont treeRight (fun rightSize -> 
    cont (leftSize + rightSize))) 
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That is, the first call to sizeCont is a tail call with a new continuation, as is the second. The first 
continuation is called with the size of the left tree, and the second is called with the size of the right 
tree. Finally, you add the results and call the original continuation cont. Calling size on an 
unbalanced tree such as tree6 now succeeds: 

> size tree6;; 
val it : int = 50001 

How did you turn a tree walk into a tail-recursive algorithm? The answer lies in the fact that 
continuations are function objects, which are allocated on the garbage-collected heap. Effectively, 
you’ve generated a work list represented by objects, rather than keeping a work list via a stack of 
function invocations. 

As it happens, using a continuation for both the right and left trees is overkill, and you can use an 
accumulating parameter for one side. This leads to a more efficient implementation because each 
continuation function object is likely to involve one allocation (short-lived allocations such as 
continuation objects are very cheap but not as cheap as not allocating at all!). For example, Listing 8-11 
shows a more efficient implementation. 

Listing 8-11. Combining an Accumulator with an Explicit Continuation 

let rec sizeContAcc acc tree cont = 
    match tree with 
    | Tip _ -> cont (1+acc) 
    | Node (_, treeLeft, treeRight) -> 
        sizeContAcc acc treeLeft (fun accLeftSize -> 
        sizeContAcc accLeftSize treeRight cont) 
 
let size tree = sizeContAcc 0 tree (fun x -> x) 
 

The behavior of this version of the algorithm is as follows: 

1. You start with an accumulator acc of 0. 

2. You traverse the left spine of the tree until a Tip is found, building up a 
continuation for each Node along the way. 

3. When a Tip is encountered, the continuation from the previous Node is called 
with accLeftSize increased by 1. The continuation makes a recursive call to 
sizeContAcc for its right tree, passing the continuation for the second-to-last 
node along the way. 

4. When all is done, all the left and right trees have been explored, and the final 
result is delivered to the (fun x -> x) continuation. 

As you can see from this example, continuation passing is a powerful control construct, although 
it’s used only occasionally in F# programming. 
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Another Example: Processing Syntax Trees 
One real-world example where trees may become unbalanced is syntax trees for parsed languages when 
the inputs are very large and machine generated. In this case, some language constructs may be repeated 
very large numbers of times in an unbalanced way. For example, consider the following data structure: 
 
type Expr = 
    | Add  of Expr * Expr 
    | Bind of string * Expr * Expr 
    | Var  of string 
    | Num  of int 
 
This data structure would be suitable for representing arithmetic expressions of the forms var, expr + 
expr, and bind var = expr in expr. Chapters 9 and 11 are dedicated to techniques for representing and 
processing languages of this kind. As with all tree structures, most traversal algorithms over this type 
of abstract syntax trees aren’t naturally tail recursive. For example, here is a simple evaluator: 
 
type env = Map<string,int> 
 
let rec eval (env: env) expr = 
    match expr with 
    | Add (e1,e2)         -> eval env e1 + eval env e2 
    | Bind (var,rhs,body) -> eval (env.Add(var, eval env rhs)) body 
    | Var var             -> env.[var] 
    | Num n               -> n 
 
The recursive call eval env rhs isn’t tail recursive. For the vast majority of applications, you never need 
to worry about making this algorithm tail recursive. However, stack overflow may be a problem if 
bindings are nested to great depth, such as in bind v1 = (bind v2 = . . . (bind v1000000 = 1. . .)) in v1+v1. If 
the syntax trees come from human-written programs, you can safely assume this won’t be the case. But if 
you need to make the implementation tail recursive, you can use continuations, as shown in Listing 8-12. 

Listing 8-12. A Tail-Recursive Expression Evaluator Using Continuations 

let rec evalCont (env: env) expr cont = 
    match expr with 
    | Add (e1,e2)         -> 
        evalCont env e1 (fun v1 -> 
        evalCont env e2 (fun v2 -> 
        cont (v1+v2))) 
    | Bind (var,rhs,body) -> 
        evalCont env rhs (fun v1 -> 
        evalCont (env.Add(var,v1)) body cont) 
    | Num n             -> 
        cont n 
    | Var var           -> 
        cont (env.[var]) 
 
let eval env expr = evalCont env expr (fun x -> x) 
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■ Note Programming with continuations can be tricky, and you should use them only when necessary, or use the 
F# async type as a way of managing continuation-based code. Where possible, abstract the kind of transformation 
you’re doing on your tree structure (for example, a map, fold, or bottom-up reduction) so you can concentrate on 

getting the traversal right. In the previous examples, the continuations all effectively play the role of a work list. 
You can also reprogram your algorithms to use work lists explicitly and to use accumulating parameters for special 
cases. Sometimes this is necessary to gain maximum efficiency, because an array or a queue can be an optimal 

representation of a work list. When you make a work list explicit, then the implementation of an algorithm 

becomes more verbose; but in some cases, debugging can become simpler. 

Events 
One recurring idiom in .NET programming (and, for example, JavaScript) is that of events. An event is 
something you can listen to by registering a callback with the event. For example, here’s how you can 
create a WinForms form and listen to mouse clicks on the form: 

> open System.Windows.Forms;; 
> let form = new Form(Text="Click Form",Visible=true,TopMost=true);; 
val form : Form 
 
> form.Click.Add(fun evArgs -> printfn "Clicked!");; 
val it : unit = () 

When you run this code in F# Interactive, a window appears; and each time you click the window with 
the mouse, you see “Clicked!” printed to the console. In .NET terminology, form.Click is an event, and 
form.Click.Add registers a callback with the event. You can register multiple callbacks with the same 
event, and many objects publish many events. For example, when you add the following, you see a 
stream of output when you move the mouse over the form: 

> form.MouseMove.Add(fun args -> printfn "Mouse, (X,Y) = (%A,%A)" args.X args.Y);; 
val it : unit = () 

If necessary, you can also remove event handlers by first adding them using the AddHandler 
method and removing them by using RemoveHandler. 

The process of clicking the form triggers (or fires) the event, which means the callbacks are called 
in the order they were registered. Events can’t be triggered from the outside. In other words, you can’t 
trigger the Click event on a form; you can only handle it. Events also have event arguments. In the first 
example shown previously, the event arguments are called evArgs and are ignored. .NET events 
usually pass arguments of type System.EventArgs or some related type such as 
System.Windows.Forms.MouseEventArgs or System.Windows.Forms.PaintEventArgs. These arguments 
generally carry pieces of information; for example, a value of type MouseEventArgs has the properties 
Button, Clicks, Delta, Location, X, and Y. 
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Events occur throughout the design of the .NET class libraries. Table 8-2 shows some of the more 
important events. 

Table 8-2. A Selection of Events from the .NET Libraries 

Type Some Sample Events 

System.AppDomain AssemblyLoad, AssemblyResolve, DomainUnload, ProcessExit, 
UnhandledException (and others) 

System.Diagnostics.Process ErrorDataReceived, Exited, OutputDataReceived (and others) 

System.IO.FileSystemWatcher Changed, Created, Deleted, Error, Renamed (and others) 

System.Windows.Forms.Control BackgroundImageChanged, Click, Disposed, DragDrop, KeyPress, KeyUp, 
KeyDown, Layout, LostFocus, MouseClick, MouseDown, MouseEnter, 
MouseHover, MouseLeave, MouseUp, Paint, Resize, TextChanged, 
Validated, Validating (and others) 

System.Windows.Forms.Timer Tick 

System.Timers.Timer Elapsed 

Events as First-Class Values 
In F#, an event such as form.Click is a first-class value, which means you can pass it around like any 
other value. The main advantage this brings is that you can use the combinators in the F# library 
module Microsoft.FSharp.Control.Event to map, filter, and otherwise transform the event stream in 
compositional ways. For example, the following code filters the event stream from form.MouseMove so 
that only events with X > 100 result in output to the console: 
 
form.MouseMove 
    |> Event.filter (fun args -> args.X > 100) 
    |> Event.listen (fun args -> printfn "Mouse, (X,Y) = (%A,%A)" args.X args.Y) 
 

If you work with events a lot, you find yourself factoring out useful portions of code into functions 
that preprocess event streams. Table 8-3 shows some of the functions from the F# Event module. One 
interesting combinator is Event.partition, which splits an event into two events based on a predicate. 
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Table 8-3. Some Functions from the Event Module 

Function Type 

Event.choose : ('T -> 'U option) -> IEvent<'T> -> IEvent<'U> 

Event.create : unit -> ('T -> unit) * IEvent<'T> 

Event.filter : ('T -> bool) -> IEvent<'T> -> IEvent<'T> 

Event.scan : ('U -> 'T -> 'U) -> 'U -> IEvent<'T> -> IEvent<'U> 

Event.listen : ('T -> unit) -> IEvent<'T> -> unit 

Event.map : ('T -> 'U) -> IEvent<'T> -> IEvent<'U> 

Event.partition : ('T -> bool) -> IEvent<'T> -> IEvent<'T> * IEvent<'T> 

Creating and Publishing Events 
As you write code in F#, particularly object-oriented code, you need to implement, publish, and trigger 
events. The normal idiom for doing this is to call new Event<_>(). Listing 8-13 shows how to define an 
event object that is triggered at random intervals. 

Listing 8-13. Creating a RandomTicker That Defines, Publishes, and Triggers an Event 

open System 
open System.Windows.Forms 
 
type RandomTicker(approxInterval) = 
    let timer = new Timer() 
    let rnd = new System.Random(99) 
    let tickEvent = new Event<int> () 
 
    let chooseInterval() :int = 
        approxInterval + approxInterval/4 - rnd.Next(approxInterval/2) 
 
    do timer.Interval <- chooseInterval() 
 
    do timer.Tick.Add(fun args -> 
        let interval = chooseInterval() 
        tickEvent.Trigger interval; 
        timer.Interval <- interval) 
 
    member x.RandomTick = tickEvent.Publish 
    member x.Start() = timer.Start() 
    member x.Stop() = timer.Stop() 
    interface IDisposable with 
        member x.Dispose() = timer.Dispose() 
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Here’s how you can instantiate and use this type: 

> let rt = new RandomTicker(1000);; 
val rt : RandomTicker 
 
> rt.RandomTick.Add(fun nextInterval -> printfn "Tick, next = %A" nextInterval);; 
val it : unit = () 
 
> rt.Start();; 
Tick, next = 1072 
Tick, next = 927 
Tick, next = 765 
... 
val it : unit = () 
 
> rt.Stop();; 
val it : unit = () 

Events are an idiom understood by all .NET languages. F# event values are immediately compiled 
in the idiomatic .NET form. This is because F# allows you to go one step further and use events as first-
class values. If you need to ensure that your events can be used by other .NET languages, then you 
should do both of the following: 

• Create the events using new Event<DelegateType, Args> instead of new 
Event<Args>. 

• Publish the event as a property of a type with the [<CLIEvent>] attribute. 

Events are used in most of the later chapters of this book, and you can find many examples there. 

■ Note Because events allow you to register callbacks, it’s sometimes important to be careful about the thread 
on which an event is being raised. This is particularly true when you’re programming with multiple threads or the 
.NET thread pool. Events are usually fired on the GUI thread of an application. See Chapter 13 for more details 

about concurrent and multithreaded programming. 

Summary 
This chapter covered some of the techniques you’re likely to use in your day-to-day F# programming, 
including an in-depth look at hashing, equality, comparison, resource management, tail calls, caching, 
memoization, and the basics of how F# reveals the wiring for first-class events. The next chapter 
introduces a final set of language constructs and techniques related to language-oriented programming 
tasks. 
 



C H A P T E R  9 
 

■ ■ ■ 

 

207 

 

Introducing Language-Oriented 
Programming 

Chapters 3, 4, and 6 covered three well-known programming paradigms in F#: functional, imperative, 
and object-oriented programming. This chapter covers techniques and constructs related to what is 
essentially a fourth programming paradigm: language-oriented programming. The word language can 
have a number of meanings in this context. For example, take the simple language of arithmetic 
expressions and algebra that you learned in high-school mathematics, made up of named variables 
such as x and y and composite expressions such as x+y, xy, –x, and x2. For the purposes of this chapter, 
this language can have a number of manifestations: 

• One or more concrete representations: for example, using an ASCII text format or 
an XML representation of arithmetic expressions. 

• One or more abstract representations: for example, as F# values representing the 
normalized form of an arithmetic expression tree. 

• One or more computational representations, either by functions that compute 
the values of arithmetic expressions or via other engines that perform 
analysis, interpretation, compilation, execution, or transformation on 
language fragments. These can be implemented in F#, in another .NET 
language, or in external engines. 

This and later chapters cover many of the tasks associated with language-oriented programming. 
The techniques covered in this book are as follows: 

• Manipulating formats such as XML, which are often used for concrete 
representations of languages (Chapters 9 and 11) 

• Writing parsers and lexers for other text formats, also often used as concrete 
representations of languages (Chapter 16) 

• Using F# types for abstract representations of languages (Chapters 9 and 11) 

• Using three techniques related to computational representations of languages: 
active patterns, quotations, and workflows (Chapters 9 and 13) 

• Interfacing with existing language execution components  (SQL via LINQ in 
Chapter 15) 

Language-oriented programming isn’t a single technique; sometimes you work with fully 
concrete representations (for example, reading bits on a magnetic disk) and sometimes with fully 
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computational representations (for example, defining and using functions that compute the value of 
arithmetic expressions). Most often, you work somewhere in between (for example, manipulating 
abstract syntax trees). These tasks require different techniques, and there are trade-offs between 
choosing to work with different kinds of representations. For example, if you’re generating human-
readable formulae, then you may need to store more concrete information; but if you’re interested just 
in evaluating arithmetic expressions, then a purely computational encoding may be more effective. 
You see some of those trade-offs in this chapter. 

■ Note The term language-oriented programming was originally applied to F# by Robert Pickering in the Apress 

book Beginning F#, and it really captures a key facet of F# programming. Thanks, Robert! 

Using XML as a Concrete Language Format 
To get started with language-oriented programming, it’s helpful to begin with the standard structured 
data format Extensible Markup Language (XML). .NET comes with well-engineered libraries for 
reading and generating XML, so you can initially skirt many of the issues associated with concrete 
language formats. Chapter 15 also covers XML as a data format, and Chapter 16 discusses techniques to 
tokenize and parse other textual formats. Chapter 16 also briefly covers binary formats. 

Using the System.Xml Namespace 
XML is a general-purpose markup language and is extensible because it allows its users to define their 
own tags. Its primary purpose is to facilitate the sharing of data across different information systems, 
particularly via the Internet. Here is a sample fragment of XML, defined as a string directly in F#: 
 
let inp = "<?xml version=\"1.0\" encoding=\"utf-8\" ?> 
           <Scene> 
              <Composite> 
                <Circle radius='2' x='1' y='0'/> 
                <Composite> 
                  <Circle radius='2' x='4' y='0'/> 
                  <Square side='2' left='-3' top='0'/> 
                </Composite> 
                <Ellipse top='2' left='-2' width='3' height='4'/> 
              </Composite> 
           </Scene>" 
 

The backbone of an XML document is a hierarchical structure, and each node is decorated with 
attributes keyed by name. You can parse XML using the types and methods in the System.Xml 
namespace provided by the .NET libraries and then examine the structure of the XML interactively: 
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> open System.Xml;; 
> let doc = new XmlDocument();; 
val doc : XmlDocument 
 
> doc.LoadXml(inp);; 
val it : unit = () 
 
> doc.ChildNodes;; 
val it : XmlNodeList 
    = seq [seq []; seq [seq [seq []; seq [seq []; seq []]; seq []]]] 

The default F# Interactive display for the XmlNode type isn’t particularly useful. Luckily, you can 
add an interactive printer to the fsi.exe session using the AddPrinter method on the fsi object: 

> fsi.AddPrinter(fun (x:XmlNode) -> x.OuterXml);; 
 
> doc.ChildNodes;; 
val it : XmlNodeList 
seq 
    [<?xml version="1.0" encoding="utf-8"?>; 
     <Scene><Composite><Circle radius="2" x="1" y="0" /><Composite>...</Scene>] 
 
> doc.ChildNodes.Item(1);; 
val it : XmlNode 
  = <Scene><Composite><Circle radius="2" x="1" y="0" /><Composite>...</Scene> 
 
> doc.ChildNodes.Item(1).ChildNodes.Item(0);; 
val it : XmlNode 
  = <Composite><Circle radius="2" x="1" y="0" /><Composite>...</Composite> 
 
> doc.ChildNodes.Item(1).ChildNodes.Item(0).ChildNodes.Item(0);; 
val it : XmlNode = <Circle radius="2" x="1" y="0" /> 
 
> doc.ChildNodes.Item(1).ChildNodes.Item(0).ChildNodes.Item(0).Attributes;; 
val it : val it : XmlAttributeCollection = seq [radius="2"; x="1"; y="0"] 

Table 9-1 shows the most commonly used types and members from the System.Xml namespace. 

Table 9-1. Commonly Used Types and Members from the System.Xml Namespace 

Type/Member Description 

type XmlNode Represents a single node in an XML document 
  member ChildNodes Gets all the child nodes of an XmlNode 
  member Attributes Gets all the attributes of an XmlNode 
  member OuterXml Gets the XML text representing the node and all its children 
  member InnerText Gets the concatenated values of the node and all its children 
  member SelectNodes Selects child nodes using an XPath query 
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Type/Member Description 

type XmlAttribute Represents one attribute for an XmlNode; also an XmlNode 
  member Value Gets the string value for the attribute 

type XmlDocument Represents an entire XML document; also an XmlNode 
  member Load Populates the document from the given XmlReader, stream, or file name 
  member LoadXml Populates the document object from the given XML string 

type XmlReader Represents a reader for an XML document or source 

type XmlWriter Represents a writer for an XML document 

■ Note .NET provides tools to generate a typed .NET object model view of an XML schema, in particular xsd.exe 
from the .NET Framework SDK. This tool has some limitations, and sometimes it’s worth exploring your own 
techniques for interoperating with external data schemas, whether they’re in XML or otherwise, as discussed later 

in this chapter. Tools like xsd.exe can be configured to generate F# code through the use of the F# CodeDOM 
implementation that comes with the F# distribution. However, this chapter doesn’t show how to use these tools. 
An alternative technique for querying XML is the XLinq API that is part of the LINQ framework, covered briefly in 

Chapter 15. You can also use F# active patterns to define decomposition and query techniques for XML (we cover 

F# active patterns later in this chapter).  

From Concrete XML to Abstract Syntax 
Often, your first task in processing a concrete language is to bring the language fragments under the 
type discipline of F#. This section shows how to transform the data contained in the XML from the 
previous section into an instance of the recursive type shown here. This kind of type is usually called 
an abstract syntax tree (AST): 
 
open System.Drawing 
type Scene = 
    | Ellipse   of RectangleF 
    | Rect      of RectangleF 
    | Composite of Scene list 
 
This example uses the types PointF and RectangleF from the System.Drawing namespace, although you 
can equally define your own types to capture the information carried by the leaves of the tree. Listing 
9-1 shows a recursive transformation to convert XML documents like the one used in the previous 
section into the type Scene. 
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Listing 9-1. Converting XML into a Typed Format Using the System.Xml Namespace 

open System.Xml 
open System.Drawing 
type Scene = 
    | Ellipse of RectangleF 
    | Rect    of RectangleF 
    | Composite   of Scene list 
 
    /// A derived constructor 
    static member Circle(center:PointF,radius) = 
        Ellipse(RectangleF(center.X-radius,center.Y-radius, 
                           radius*2.0f,radius*2.0f)) 
 
    /// A derived constructor 
    static member Square(left,top,side) = 
        Rect(RectangleF(left,top,side,side)) 
 
let extractFloat32 attrName (attribs: XmlAttributeCollection) = 
    float32 (attribs.GetNamedItem(attrName).Value) 
 
let extractPointF (attribs: XmlAttributeCollection) = 
    PointF(extractFloat32 "x" attribs,extractFloat32 "y" attribs) 
 
let extractRectangleF (attribs: XmlAttributeCollection) = 
    RectangleF(extractFloat32 "left" attribs,extractFloat32 "top" attribs, 
               extractFloat32 "width" attribs,extractFloat32 "height" attribs) 
 
let rec extractScene (node: XmlNode) = 
    let attribs = node.Attributes 
    let childNodes = node.ChildNodes 
    match node.Name with 
    | "Circle"  -> 
        Scene.Circle(extractPointF(attribs), extractFloat32 "radius" attribs) 
    | "Ellipse"  -> 
        Scene.Ellipse(extractRectangleF(attribs)) 
    | "Rectangle"  -> 
        Scene.Rect(extractRectangleF(attribs)) 
    | "Square"  -> 
        Scene.Square(extractFloat32 "left" attribs,extractFloat32 "top" attribs, 
                     extractFloat32 "side" attribs) 
 
    | "Composite"   -> 
        Scene.Composite [ for child in childNodes -> extractScene(child) ] 
    | _ -> failwithf "unable to convert XML '%s'" node.OuterXml 
 
let extractScenes (doc: XmlDocument) = 
   [ for node in doc.ChildNodes do 
       if node.Name = "Scene" then 
          yield (Composite 
                     [ for child in node.ChildNodes -> extractScene(child) ]) ] 
 

 



CHAPTER 9 ■ INTRODUCING LANGUAGE-ORIENTED PROGRAMMING 

 

212 

 

The inferred types of these functions are as follows: 

type Scene = 
    | Ellipse of RectangleF 
    | Rect of RectangleF 
    | Composite of Scene list 
    static member Circle : PointF * float32 -> Scene 
    static member Square : float32 * float32 * float32 -> Scene 
 
val extractFloat32 : string -> XmlAttributeCollection -> float32 
val extractPointF : XmlAttributeCollection -> PointF 
val extractRectangleF :  XmlAttributeCollection -> RectangleF 
val extractScene : XmlNode -> Scene 
val extractScenes : XmlDocument -> Scene list 

The definition of extractScenes in Listing 9-1 generates lists using sequence expressions, covered 
in Chapter 3. You can now apply the extractScenes function to the original XML. (You first add a pretty-
printer to the F# Interactive session for the RectangleF type using the AddPrinter function on the fsi 
object, described in Chapter 10.) 

> fsi.AddPrinter(fun (r:RectangleF) -> 
      sprintf "[%A,%A,%A,%A]" r.Left r.Top r.Width r.Height);; 
val it : unit = () 
 
> extractScenes doc;; 
val it : Scene list 
= [Composite 
    [Composite 
      [Ellipse [-1.0f,-2.0f,4.0f,4.0f]; 
       Composite [Ellipse [2.0f,-2.0f,4.0f,4.0f]; Rect [-3.0f,0.0f,2.0f,2.0f]]; 
       Ellipse [-2.0f,2.0f,3.0f,4.0f]]]] 

The following sections more closely explain some of the choices we’ve made in the abstract syntax 
design for the type Scene. 

■ Tip Translating to a typed representation isn’t always necessary: some manipulations and analyses are better 
performed directly on heterogeneous, general-purpose formats such as XML or even on strings. For example, XML 

libraries support XPath, accessed via the SelectNodes method on the XmlNode type. If you need to query a large 
semistructured document whose schema is frequently changing in minor ways, then XPath is the right way to do 
it. Likewise, if you need to write significant amounts of code that interprets or analyzes a tree structure, then 

converting to a typed abstract syntax tree is usually better. 
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Working with Abstract Syntax Representations 
In the previous section, you saw how to move from one particular concrete language format to an 
abstract syntax format. You now learn about some important recurring techniques in designing and 
working with abstract syntax representations. 

Abstract Syntax Representations: Less Is More 
Let’s look at the design of the abstract syntax type Scene from Listing 9-1. The type Scene uses fewer 
kinds of nodes than the concrete XML representation: the concrete XML has node kinds Circle, Square, 
Composite, and Ellipse, whereas Scene has just three (Rect, Ellipse, and Composite), with two derived 
constructors Circle and Square, defined as static members of the Scene: 
 
    static member Circle(center:PointF,radius) = 
        Ellipse(RectangleF(center.X-radius,center.Y-radius, 
                           radius*2.0f,radius*2.0f)) 
 
    /// A derived constructor 
    static member Square(left,top,side) = 
        Rect(RectangleF(left,top,side,side)) 
 

This is a common step when abstracting from a concrete syntax; details are dropped and unified to 
make the abstract representation simpler and more general. Extra functions are then added that 
compute specific instances of the abstract representation. This approach has pros and cons: 

• Transformational and analytical manipulations are almost always easier to 
program if you have fewer constructs in your abstract syntax representation. 

• You must be careful not to eliminate truly valuable information from an abstract 
representation. For some applications, it may really matter if the user specified a 
Square or a Rectangle in the original input; for example, an editor for this data 
may provide different options for editing these objects. 

The AST uses the types PointF and RectangleF from the System.Drawing namespace. This 
simplification is also a design decision that should be assessed: PointF and RectangleF use 32-bit low-
precision floating-point numbers, which may not be appropriate if you’re eventually rendering on 
high-precision display devices. You should be wary of deciding on abstract representations on the 
basis of convenience alone, although of course this is useful during prototyping. 

The lesson here is that you should look carefully at your abstract syntax representations, trimming 
out unnecessary nodes and unifying nodes where possible, but only as long as doing so helps you 
achieve your ultimate goals. 

Processing Abstract Syntax Representations 
Common operations on abstract syntax trees include traversals that collect information and 
transformations that generate new trees from old. For example, the abstract representation from 
Listing 9-1 has the property that for nearly all purposes, the Composite nodes are irrelevant (this 
wouldn’t be the case if you added an extra construct such as an Intersect node). This means you can 
flatten to a sequence of Ellipse and Rectangle nodes as follows: 
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let rec flatten scene = 
    seq { match scene with 
          | Composite scenes -> for x in scenes do yield! flatten x  
          | Ellipse _ | Rect _ -> yield scene } 
 
Here, flatten is defined using sequence expressions, introduced in Chapter 3. Its type is as follows: 

val flatten : Scene -> seq<Scene> 

Let’s look at this more closely. Recall from Chapter 3 that sequences are on-demand (lazy) 
computations. Using functions that recursively generate seq<'T> objects can lead to inefficiencies in 
your code if your abstract syntax trees are deep. It’s often better to traverse the entire tree in an eager 
way (eager traversals run to completion immediately). For example, it’s typically faster to use an 
accumulating parameter to collect a list of results. Here’s an example: 
 
let rec flattenAux scene acc = 
    match scene with 
    | Composite(scenes) -> List.foldBack flattenAux scenes acc 
    | Ellipse _ 
    | Rect _ -> scene :: acc 
 
let flatten2 scene = flattenAux scene [] |> Seq.ofList 
 

The following does an eager traversal using a local mutable instance of a ResizeArray as the 
accumulator and then returns the result as a sequence. This example uses a local function and ensures 
that the mutable state is locally encapsulated: 
 
let flatten3 scene = 
    let acc = new ResizeArray<_>() 
    let rec flattenAux s = 
        match s with 
        | Composite(scenes) -> scenes |> List.iter�flattenAux 
        | Ellipse _ | Rect _ -> acc.Add s 
    flattenAux scene; 
    Seq.readonly acc 
 

The types of these are as follows: 

val flatten2 : Scene -> seq<Scene> 
val flatten3 : Scene -> seq<Scene> 

There is no hard and fast rule about which of these is best. For prototyping, the second option—
doing an efficient, eager traversal with an accumulating parameter—is often the most effective. 
However, even if you implement an accumulation using an eager traversal, returning the result as an 
on-demand sequence can still give you added flexibility later in the design process. 
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Transformational Traversals of Abstract Syntax Representations 
In the previous section, you saw examples of accumulating traversals of a syntax representation. It’s 
common to traverse abstract syntax in other ways: 

Leaf rewriting (mapping): Translating some leaf nodes of the representation but leaving the overall 
shape of the tree unchanged 

Bottom-up rewriting: Traversing a tree but making local transformations on the way up 

Top-down rewriting: Traversing a tree but before traversing each subtree, attempting to locally 
rewrite the tree according to some particular set of rules 

Accumulating and rewriting transformations: For example, transforming the tree left to right but 
accumulating a parameter along the way 

For example, the following mapping transformation rewrites all leaf ellipses to rectangles: 
 
let rec rectanglesOnly scene = 
    match scene with 
    | Composite scenes -> Composite (scenes |> List.map rectanglesOnly) 
    | Ellipse rect | Rect rect -> Rect rect 
 

Often, whole classes of transformations are abstracted into aggregate transformation operations, 
taking functions as parameters. For example, here is a function that applies one function to each leaf 
rectangle: 
 
let rec mapRects f scene = 
    match scene with 
    | Composite scenes -> Composite (scenes |> List.map (mapRects f)) 
    | Ellipse rect -> Ellipse (f rect) 
    | Rect rect -> Rect (f rect) 
 

The types of these functions are as follows: 

val rectanglesOnly : Scene -> Scene 
val mapRects: (RectangleF -> RectangleF) -> Scene -> Scene 

Here is a use of the mapRects function to adjust the aspect ratio of all the RectangleF values in the 
scene (RectangleF values support an Inflate method): 
 
let adjustAspectRatio scene = 
    scene |> mapRects (fun r -> RectangleF.Inflate(r, 1.1f, 1.0f/1.1f))  

Using On-Demand Computation with Abstract Syntax Trees 
Sometimes it’s feasible to delay the loading or processing of some portions of an abstract syntax tree. For 
example, imagine if the XML for the small geometric language from the previous section included a 
construct such as the following, where the File nodes represent entire subtrees defined in external files: 
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<Composite> 
     <File file='spots.xml'/> 
     <File file='dots.xml'/> 
</Composite> 
 

It may be useful to delay the loading of these files. One general way to do this is to add a Delay 
node to the Scene type: 
 
type Scene = 
    | Ellipse   of RectangleF 
    | Rect      of RectangleF 
    | Composite of Scene list 
    | Delay     of Lazy<Scene> 
 

You can then extend the extractScene function of Listing 9-1 with the following case to handle 
this node: 
 
let rec extractScene (node: XmlNode) = 
    let attribs = node.Attributes 
    let childNodes = node.ChildNodes 
    match node.Name with 
    | "Circle"  -> 
        ... 
    | "File"   -> 
        let file = attribs.GetNamedItem("file").Value 
        let scene = lazy (let d = XmlDocument() 
                          d.Load(file) 
                          extractScene(d :> XmlNode)) 
        Scene.Delay scene 
 

Code that analyzes trees (for example, via pattern matching) must typically be adjusted to force the 
computation of delayed values. One way to handle this is to first call a function to eliminate 
immediately delayed values: 
 
let rec getScene scene = 
    match scene with 
    | Delay d -> getScene (d.Force()) 
    | _ -> scene 
 

Here is the function flatten2 from the “Processing Abstract Syntax Representations” section, but 
redefined to first eliminate delayed nodes: 
 
let rec flattenAux scene acc = 
    match getScene(scene) with 
    | Composite   scenes -> List.foldBack flattenAux scenes acc 
    | Ellipse _ | Rect _ -> scene :: acc 
    | Delay _ -> failwith "this lazy value should have been eliminated by getScene" 
 
let flatten2 scene = flattenAux scene [] 
 

It’s generally advisable to have a single representation of laziness within a single syntax tree 
design. For example, the following abstract syntax design uses laziness in too many ways: 
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type SceneVeryLazy = 
    | Ellipse   of Lazy<RectangleF> 
    | Rect      of Lazy<RectangleF> 
    | Composite of seq<SceneVeryLazy> 
    | LoadFile  of string 
 
The shapes of ellipses and rectangles are lazy computations; each Composite node carries a 
seq<SceneVeryLazy> value to compute subnodes on demand, and a LoadFile node is used for delayed 
file loading. This is a bit of a mess, because a single Delay node would in practice cover all these cases. 

■ Note The Lazy<'T> type is defined in System and represents delayed computations. You access a lazy value 
via the Value property. F# includes the special keyword lazy for constructing values of this type. Chapter 8 also 

covered lazy computations. 

Caching Properties in Abstract Syntax Trees 
For high-performance applications of abstract syntax trees, it can occasionally be useful to cache 
computations of some derived attributes within the syntax tree itself. For example, let’s say you want to 
compute bounding boxes for the geometric language described in Listing 9-1. It’s potentially valuable 
to cache this computation at Composite nodes. You can use a type such as the following to hold a cache: 
 
type SceneWithCachedBoundingBox = 
    | Ellipse of RectangleF 
    | Rect    of RectangleF 
    | CompositeRepr  of SceneWithCachedBoundingBox list * RectangleF option ref 
 

This is useful for prototyping, although you should be careful to encapsulate the code that is 
responsible for maintaining this information. Listing 9-2 shows the full code for doing this. 

Listing 9-2. Adding the Cached Computation of a Local Attribute to an Abstract Syntax Tree 

type SceneWithCachedBoundingBox = 
    | Ellipse of RectangleF 
    | Rect    of RectangleF 
    | CompositeRepr   of SceneWithCachedBoundingBox list * RectangleF option ref 
 
    member x.BoundingBox = 
        match x with 
        | Ellipse rect | Rect rect -> rect 
        | CompositeRepr (scenes,cache) -> 
            match !cache with 
            | Some v -> v 
            | None -> 
                let bbox = 
                    scenes 
                    |> List.map (fun s -> s.BoundingBox) 
                    |> List.reduce (fun r1 r2 -> RectangleF.Union(r1,r2)) 
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                cache := Some bbox 
                bbox 
 
    /// Create a Composite node with an initially empty cache 
    static member Composite(scenes)  = CompositeRepr(scenes,ref None) 
 

Other attributes that are sometimes cached include the hash values of tree-structured terms and the 
computation of all the identifiers in a subexpression. The use of caches makes it more awkward to pattern-
match on terms. This issue can be largely solved by using active patterns, covered later in this chapter. 

Memoizing Construction of Syntax Tree Nodes 
In some cases, abstract syntax tree nodes can end up consuming significant portions of the 
application’s memory budget. In this situation, it can be worth memoizing some or all of the nodes 
constructed in the tree. You can even go as far as memoizing all equivalent nodes, ensuring that 
equivalence between nodes can be implemented by pointer equality, a technique often called hash-
consing. Listing 9-3 shows an abstract representation of propositional logic terms that ensures that any 
two nodes that are syntactically identical are shared via a memoizing table. Propositional logic terms 
are terms constructed using P AND Q, P OR Q, NOT P, and variables a, b, and so on. A non-cached 
version of the expressions is as follows: 
 
type Prop = 
    | And of Prop * Prop 
    | Or  of Prop * Prop 
    | Not of Prop 
    | Var of string 
    | True 

Listing 9-3. Memoizing the Construction of Abstract Syntax Tree Nodes 

type Prop = 
    | Prop of int 
 
and internal PropRepr = 
    | AndRepr of Prop * Prop 
    | OrRepr  of Prop * Prop 
    | NotRepr of Prop 
    | VarRepr of string 
    | TrueRepr 
 
open System.Collections.Generic 
 
module PropOps = 
 
    let internal uniqStamp = ref 0 
    type internal PropTable() = 
        let fwdTable = new Dictionary<PropRepr,Prop>(HashIdentity.Structural) 
        let bwdTable = new Dictionary<int,PropRepr>(HashIdentity.Structural) 
        member t.ToUnique repr = 
            if fwdTable.ContainsKey repr then fwdTable.[repr] 
            else let stamp = incr uniqStamp; !uniqStamp 
                 let prop = Prop stamp 
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                 fwdTable.Add (repr, prop) 
                 bwdTable.Add (stamp, repr) 
                 prop 
        member t.FromUnique (Prop stamp) = 
            bwdTable.[stamp] 
 
    let internal table = PropTable () 
 
    // Public construction functions 
    let And (p1,p2) = table.ToUnique (AndRepr (p1, p2)) 
    let Not p       = table.ToUnique (NotRepr p) 
    let Or (p1,p2)  = table.ToUnique (OrRepr (p1, p2)) 
    let Var p       = table.ToUnique (VarRepr p) 
    let True        = table.ToUnique TrueRepr 
    let False       = Not True 
 
    // Deconstruction function 
    let internal getRepr p = table.FromUnique p 
 

You can construct terms using the operations in PropOps much as you would construct terms using 
the nonmemoized representation: 

> open PropOps;; 
> True;; 
val it : Prop = Prop 1 
 
> And (Var "x",Var "y");; 
val it : Prop = Prop 5 
 
> getRepr it;; 
val it : PropRepr = AndRepr(Prop 3, Prop 4) 
 
> And(Var "x",Var "y");; 
val it : Prop = Prop 5 

In this example, when you create two syntax trees using the same specification, And (Var "x",Var 
"y"), you get back the same Prop object with the same stamp 5. You can also use memoization 
techniques to implement interesting algorithms; in Chapter 12, you see an important representation 
of propositional logic called a binary decision diagram (BDD) based on a memoization table similar to 
the previous example. 

The use of unique integer stamps and a lookaside table in the previous representation also has 
some drawbacks; it’s harder to pattern-match on abstract syntax representations, and you may need to 
reclaim and recycle stamps and remove entries from the lookaside table if a large number of terms is 
created or if the overall set of stamps must remain compact. You can solve the first problem by using 
active patterns, covered next in this chapter. If necessary, you can solve the second problem by scoping 
stamps in an object that encloses the uniqStamp state, the lookaside table, and the construction 
functions. Alternatively, you can explicitly reclaim the stamps by using the IDisposable idiom 
described in Chapter 8, although this approach can be intrusive to your application. 
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Introducing Active Patterns 
Pattern matching is one of the key techniques provided in F# for decomposing abstract syntax trees 
and other abstract representations of languages. So far in this book, all the examples of pattern 
matching have been directly over the core representations of data structures: for example, directly 
matching on the structure of lists, options, records, and discriminated unions. But pattern matching in 
F# is also extensible—that is, you can define new ways of matching over existing types. You do this 
through a mechanism called active patterns. 

This book covers only the basics of active patterns. However, they can be indispensable, because 
they can let you continue to use pattern matching with your types even after you hide their 
representations. Active patterns also let you use pattern matching with .NET object types. The 
following section covers active patterns and how they work. 

Converting the Same Data to Many Views 
In high-school math courses, you were probably taught that you can view complex numbers in two 
ways: as rectangular coordinates x + yi or as polar coordinates of a phase r and magnitude �. In most 
computer systems, complex numbers are stored in the first format, although often the second format is 
more useful. 

Wouldn’t it be nice if you could look at complex numbers through either lens? You could do this by 
explicitly converting from one form to another when needed, but it would be better to have your 
programming language look after the transformations needed to do this for you. Active patterns let 
you do exactly that. First, here is a standard definition of complex numbers: 
 
[<Struct>] 
type Complex(r: float, i: float) = 
    static member Polar(mag,phase) = Complex(mag * cos phase, mag * sin phase) 
    member x.Magnitude = sqrt(r*r + i*i) 
    member x.Phase = atan2 i r 
    member x.RealPart = r 
    member x.ImaginaryPart = i 
 
Here is a pattern that lets you view complex numbers as rectangular coordinates: 
 
let (|Rect|) (x:Complex) = (x.RealPart, x.ImaginaryPart) 
 
And here is an active pattern to help you view complex numbers in polar coordinates: 
 
let (|Polar|) (x:Complex) = (x.Magnitude, x.Phase) 
 

The key thing to note is that these definitions let you use Rect and Polar as tags in pattern 
matching. For example, you can now write the following to define addition and multiplication over 
complex numbers: 
 
let addViaRect a b = 
    match a, b with 
    | Rect (ar, ai), Rect (br, bi) -> Complex (ar+br, ai+bi) 
 
let mulViaRect a b = 
    match a, b with 
    | Rect (ar, ai), Rect (br, bi) -> Complex (ar*br - ai*bi, ai*br + bi*ar) 
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As it happens, multiplication on complex numbers is easier to express using polar coordinates, 
implemented as follows: 
 
let mulViaPolar a b = 
    match a, b with 
    | Polar (m, p), Polar (n, q) -> Complex.Polar (m*n, p+q) 
 

Here is an example of using the (|Rect|) and (|Polar|) active patterns directly on some complex 
numbers via the pattern tags Rect and Polar. You first make the complex number 3+4i: 

> let c = Complex (3.0, 4.0);; 
val c : complex 
 
> c;; 
val it : complex = 3.0r+4.0i 
 
>  match c with 
   | Rect (x, y) -> printfn "x = %g, y = %g" x y;; 
x = 3, y = 4 
val it : unit = () 
 
>  match c with 
   | Polar (x, y) -> printfn "x = %g, y = %g" x y;; 
x = 5.0, y = 0.927295 
val it : unit = () 
 
> addViaRect c c;; 
val it : complex = 6.0r+8.0i 
 
> mulViaRect c c;; 
val it : complex = -7.0r+24.0i 
 
> mulViaPolar c c;; 
val it : complex = -7.0r+24.0i 

As you may expect, you get the same results if you multiply via rectangular or polar coordinates. 
However, the execution paths are quite different. Let’s look closely at the definition of mulViaRect. The 
important lines are in bold here: 
 
let mulViaRect a b = 
    match a, b with 
    | Rect (ar, ai), Rect (br, bi) -> 
        Complex (ar*br - ai*bi, ai*br + bi*ar) 
 

When F# needs to match the values a and b against the patterns Rect (ar, ai) and Rect (br, bi), it 
doesn’t look at the contents of a and b directly. Instead, it runs a function as part of pattern matching 
(which is why they’re called active patterns). In this case, the function executed is (|Rect|), which produces 
a pair as its result. The elements of the pair are then bound to the variables ar and ai. Likewise, in the 
definition of mulViaPolar, the matching is performed partly by running the function (|Polar|). 

The functions (|Rect|) and (|Polar|) are allowed to do anything, as long as each ultimately 
produces a pair of results. Here are the types of (|Rect|) and (|Polar|): 
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val (|Rect|) : complex -> float * float 
val (|Polar|) : complex -> float * float 

These types are identical, but they implement completely different views of the same data. 
The definitions of addViaRect and mulViaPolar can also be written using pattern matching in 

argument position: 
 
let add2 (Rect (ar, ai)) (Rect (br, bi))   = Complex (ar+br, ai+bi) 
let mul2 (Polar (r1, th1)) (Polar (r2, th2)) = Complex (r1*r2, th1+th2) 

Matching on .NET Object Types 
One of the useful things about active patterns is that they let you use pattern matching with 
existing.NET object types. For example, the .NET object type System.Type is a runtime representation of 
types in .NET and F#. Here are the members found on this type: 

type System.Type with 
    member IsGenericType : bool 
    member GetGenericTypeDefinition : unit -> Type 
    member GetGenericArguments : unit -> Type[] 
    member HasElementType : bool 
    member GetElementType : unit -> Type 
    member IsByRef : bool 
    member IsPointer : bool 
    member IsGenericParameter : bool 
    member GenericParameterPosition : int 

This type looks very much like one you’d like to pattern-match against. There are clearly three or 
four distinct cases here, and pattern matching helps you isolate them. You can define an active pattern 
to achieve this, as shown in Listing 9-4. 

Listing 9-4. Defining an Active Pattern for Matching on System.Type Values 

let (|Named|Array|Ptr|Param|) (typ : System.Type) = 
    if typ.IsGenericType 
    then Named(typ.GetGenericTypeDefinition(),typ.GetGenericArguments()) 
    elif typ.IsGenericParameter then Param(typ.GenericParameterPosition) 
    elif not typ.HasElementType then Named(typ, [| |]) 
    elif typ.IsArray then Array(typ.GetElementType(),typ.GetArrayRank()) 
    elif typ.IsByRef then Ptr(true,typ.GetElementType()) 
    elif typ.IsPointer then Ptr(false,typ.GetElementType()) 
    else failwith "MSDN says this can't happen" 
 

This then lets you use pattern matching against a value of this type: 
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open System 
 
let rec formatType typ = 
    match typ with 
    | Named (con, [| |]) -> sprintf "%s" con.Name 
    | Named (con, args) -> sprintf "%s<%s>" con.Name (formatTypes args) 
    | Array (arg, rank) -> sprintf "Array(%d,%s)" rank (formatType arg) 
    | Ptr(true,arg) -> sprintf "%s&" (formatType arg) 
    | Ptr(false,arg) -> sprintf "%s*" (formatType arg) 
    | Param(pos) -> sprintf "!%d" pos 
 
and formatTypes typs = 
    String.Join(",", Array.map formatType typs) 
 
or collect the free generic type variables: 
 
let rec freeVarsAcc typ acc = 
    match typ with 
    | Array (arg, rank) -> freeVarsAcc arg acc 
    | Ptr (_,arg) -> freeVarsAcc arg acc 
    | Param _ -> (typ :: acc) 
    | Named (con, args) -> Array.foldBack freeVarsAcc args acc 
let freeVars typ = freeVarsAcc typ [] 

Defining Partial and Parameterized Active Patterns 
Active patterns can also be partial. You can recognize a partial pattern by a name such as 
(|MulThree|_|) and by the fact that it returns a value of type 'T option for some 'T. For example: 
 
let (|MulThree|_|) inp = if inp % 3 = 0 then Some(inp/3) else None 
let (|MulSeven|_|) inp = if inp % 7 = 0 then Some(inp/7) else None 
 

Finally, active patterns can also be parameterized. You can recognize a parameterized active 
pattern by the fact that it takes several arguments. For example: 
 
let (|MulN|_|) n inp = if inp % n = 0 then Some(inp/n) else None 
 

The F# quotation API Microsoft.FSharp.Quotations uses both parameterized and partial patterns 
extensively. 

Hiding Abstract Syntax Implementations with Active Patterns 
Earlier in this chapter, you saw the following type that defines an optimized representation of 
propositional logic terms using a unique stamp for each syntactically unique term: 
 
type Prop = Prop of int 
and internal PropRepr = 
    | AndRepr of Prop * Prop 
    | OrRepr  of Prop * Prop 
    | NotRepr of Prop 
    | VarRepr of string 
    | TrueRepr 
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However, what happens if you want to pattern-match against values of type Prop? Even if you 

exposed the representation, all you would get is an integer, which you would have to look up in an 
internal table. You can define an active pattern for restoring matching on that data structure, as shown 
in Listing 9-5. 

Listing 9-5. Extending Listing 9-3 with an Active Pattern for the Optimized Representation 

module PropOps = 
    ... 
    let (|And|Or|Not|Var|True|) prop = 
        match table.FromUnique prop with 
        | AndRepr (x, y) -> And (x, y) 
        | OrRepr (x, y) -> Or (x, y) 
        | NotRepr x -> Not x 
        | VarRepr v -> Var v 
        | TrueRepr -> True 
 

This code defines an active pattern in the auxiliary module PropOps that lets you pattern-match 
against Prop values, despite the fact that they’re using optimized unique-integer references under the 
hood. For example, you can define a pretty-printer for Prop terms as follows, even though they’re using 
optimized representations: 
 
open PropOps 
 
let rec showProp prec prop = 
    let parenIfPrec lim s = if prec < lim then "(" + s + ")" else s 
    match prop with 
    | Or (p1, p2)  -> parenIfPrec 4 (showProp 4 p1 + " || " + showProp 4 p2) 
    | And (p1, p2) -> parenIfPrec 3 (showProp 3 p1 + " && " + showProp 3 p2) 
    | Not p        -> parenIfPrec 2 ("not " + showProp 1 p) 
    | Var v        -> v 
    | True         -> "T" 
 

Likewise, you can define functions to place the representation in various normal forms. For 
example, the following function computes negation normal form (NNF), where all instances of NOT 
nodes have been pushed to the leaves of the representation: 
 
let rec nnf sign prop = 
    match prop with 
    | And (p1, p2) -> if sign then And (nnf sign p1, nnf sign p2) 
                      else Or (nnf sign p1, nnf sign p2) 
    | Or (p1, p2)  -> if sign then Or (nnf sign p1, nnf sign p2) 
                      else And (nnf sign p1, nnf sign p2) 
    | Not p        -> nnf (not sign) p 
    | Var _ | True -> if sign then prop else Not prop 
 
let NNF prop = nnf true prop 
 

The following demonstrates that two terms have equivalent NNF normal forms: 
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> let t1 = Not(And(Not(Var("x")),Not(Var("y"))));; 
val t1 : Prop 
 
> fsi.AddPrinter(showProp);; 
> t1;; 
val it : Prop = not (not x && not y) 
 
> let t2 = Or(Not(Not(Var("x"))),Var("y"));; 
val t2 : Prop 
 
> t2;; 
val it : Prop = not (not x) || y 
 
> (t1 = t2);; 
val it : bool = false 
 
> NNF t1;; 
val it : Prop = x || y 
 
> NNF t2;; 
val it : Prop = x || y 
 
> NNF t1 = NNF t2;; 
val it : bool = true 

Embedded Computational Languages with Workflows 
Chapter 3 introduced a useful notation for generating sequences of data, called sequence expressions. 
For example: 

> seq { for i in 0 .. 3 -> (i,i*i) };; 
val it : seq<int * int> = seq [ (0,0); (1,1); (2,4); (3,9) ] 

Sequence expressions are used extensively throughout this book. For example, Chapter 15 uses 
sequence expressions for queries that are executed on a database. It turns out that sequence 
expressions are just one instance of a more general construct called computation expressions. These 
are also called workflows, although they bear only a passing similarity to the workflows used to model 
business processes. The general form of a computation expression is builder { comp-expr }. Table 9-2 
shows the primary constructs that can be used within the braces of a computation expression and how 
these constructs are de-sugared by the F# compiler given a computation expression builder builder. 

The three most important applications of computation expressions in F# programming are as 
follows: 

• General-purpose programming with sequences, lists, and arrays 

• Parallel, asynchronous, and concurrent programming using asynchronous 
workflows, discussed in detail in Chapter 13 

• Database queries, by quoting a workflow and translating it to SQL via the .NET 
LINQ libraries, a technique demonstrated in Chapter 15 
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This section covers briefly how computation expressions work through some simple examples. 

Table 9-2. Main Constructs in Computation Expressions and Their De-sugaring 

Construct De-sugared Form 

let! pat = expr in cexpr b.Bind (expr, (fun pat -> «cexpr»)) 

let pat = expr in cexpr b.Let (expr, (fun pat -> «cexpr»)) 

use pat = expr in cexpr b.Using (expr, (fun pat -> «cexpr»)) 

use! pat = expr in cexpr b.Bind (expr, (fun x -> b.Using (x, fun pat -> «cexpr»))) 

do! expr in cexpr b.Bind (expr, (fun () -> «cexpr»)) 

do expr in cexpr b.Let (expr, (fun () -> «cexpr»)) 

for pat in expr do cexpr b.For (expr, (fun pat -> «cexpr»)) 

while expr do cexpr b.While ((fun () -> expr), b.Delay (fun () -> «cexpr»)) 

if expr then cexpr1 else cexpr2 if expr then «cexpr1» else «cexpr2» 

if expr then cexpr if expr then «cexpr» else b.Zero() 

cexpr1cexpr2 v.Combine («cexpr1», b.Delay(fun () -> «cexpr2»)) 

yield expr b.Yield expr 

yield! expr b.YieldFrom expr 

return expr b.Return expr 

return! expr b.ReturnFrom expr 

■ Note If you’ve never seen F# workflows or Haskell monads before, then you may find that workflows take a bit 
of getting used to. They give you a way to write computations that may behave and execute quite differently than 

normal programs. 
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F# Workflows and Haskell Monads 

Computation expressions are the F# equivalent of monadic syntax in the programming language Haskell. 
Monads are a powerful and expressive design pattern and are characterized by a generic type M<'T> 
combined with at least two operations: 

bind : M<'T> -> ('T ->  M<'U>) -> M<'U> 
return : 'T -> M<'T> 

These correspond to the primitives let! and return in the F# computation expression syntax. Several 
other elements of the computation expression syntax can be implemented in terms of these primitives; but 
the F# de-sugaring process leaves this up to the implementer of the workflow, because sometimes derived 
operations can have more efficient implementations. Well-behaved monads should satisfy three important 
rules called the monad laws. 

F# uses the terms computation expression and workflow for four reasons: 

• When the designers of F# talked with the designers of Haskell about this, they agreed 
that the word monad is obscure and sounds a little daunting and that using other 
names might be wise.  

• There are some technical differences: for example, some F# workflows can be 
combined with imperative programming, utilizing the fact that workflows can have 
side effects that aren’t tracked by the F# type system. In Haskell, all side-effecting 
operations must be lifted into the corresponding monad. The Haskell approach has 
some important advantages: you can know for sure what side effects a function can 
have by looking at its type. However, it also makes it more difficult to use external 
libraries from within a computation expression.  

• F# workflows can be reified using F# quotations, providing a way to execute the 
workflow by alternative means—for example, by translation to SQL. This gives them a 
different role in practice, because they can be used to model both concrete languages 
and computational languages.  

• F# workflows can also be used to embed computations that generate multiple results 
(called monoids) such as sequence expressions (also known as comprehension 
syntax). These generally use yield and yield! instead of return and return! and 
often have no let!. 

 

An Example: Success/Failure Workflows 
Perhaps the simplest kind of workflow is one where failure of a computation is made explicit: for example, 
where each step of the workflow may either succeed, by returning a result Some(v), or fail, by returning the 
value None. You can model such a workflow using functions of type unit -> 'T option—that is, functions 
that may compute a result or may not. In this section, you can assume that these functions are pure and 
terminating: they have no side effects, raise no exceptions, and always terminate. 

Whenever you define a new kind of workflow, it’s useful to give a name to the type of 
values/objects generated by the workflow. In this case, let’s call them Attempt objects: 
 
type Attempt<'T> = (unit -> 'T option) 
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Of course, you can use regular functional programming to start to build Attempt<'T> objects: 
 
let succeed x = (fun () -> Some(x)) : Attempt<'T> 
let fail      = (fun () -> None) : Attempt<'T> 
let runAttempt (a:Attempt<'T>) = a() 
 

These conform to the following types: 

val succeed : 'T -> Attempt<'T> 
val fail : Attempt<'T> 
val runAttempt : Attempt<'T> -> 'T option 

However, using only normal F# expressions to build Attempt values can be a little tedious and lead 
to a proliferation of many different functions that stitch together Attempt values in straightforward 
ways. Luckily, as you’ve seen with sequence expressions, F# comes with predefined syntax for building 
objects such as Attempt values. You can use this syntax with a new type by defining a builder object that 
helps stitch together the fragments that make up the computation expression. Here’s an example of the 
signature of an object you have to define in order to use workflow syntax with a new type (note that 
this is a type signature for an object, not actual code—we show how to define the AttemptBuilder type 
and its members later in this section): 

type AttemptBuilder = 
    member Bind : Attempt<'T> * ('T -> Attempt<'U>) -> Attempt<'U> 
    member Delay : (unit -> Attempt<'T>) -> Attempt<'T> 
    member Let : 'T * ('T -> Attempt<'T>) -> Attempt<'T> 
    member Return : 'T -> Attempt<'T> 

Typically, there is one global instance of each such builder object. For example: 
 
let attempt = new AttemptBuilder() 

val attempt : AttemptBuilder 

First, let’s see how you can use the F# syntax for workflows to build Attempt objects. You can build 
Attempt values that always succeed: 

> let alwaysOne = attempt { return 1 };; 
val alwaysOne: Attempt<int> 
 
> let alwaysPair = attempt { return (1,"two") };; 
val alwaysPair: Attempt<int * string> 
 
> runAttempt alwaysOne;; 
val it : int option = Some 1 
 
> runAttempt alwaysPair;; 
val it : (int * string) option = Some(1,"two") 
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Note that Attempt values such as alwaysOne are just functions; to run an Attempt value, you just apply it. 
These correspond to uses of the succeed function, as you see shortly. 

You can also build more interesting Attempt values that check a condition and return different 
Attempt values on each branch, as shown in the next example: 

> let failIfBig n = attempt { if n > 1000 then return! fail else return n };; 
val failIfBig: int -> Attempt<int> 
 
> runAttempt (failIfBig 999);; 
val it : int option = Some 999 
 
> runAttempt (failIfBig 1001);; 
val it : int option = None 

Here, one branch uses return! to return the result of running another Attempt value, and the other 
uses return to give a single result. These correspond to yield! and yield in sequence expressions. 

Next, you can build Attempt values that sequence together two Attempt values by running one, 
getting its result, binding it to a variable, and running the second. You do this by using the syntax form 
let! pat = expr, which is unique to computation expressions: 

> let failIfEitherBig (inp1,inp2) = 
        attempt { let! n1 = failIfBig inp1 
                  let! n2 = failIfBig inp2 
                  return (n1,n2) };; 
val failIfEitherBig: int * int -> Attempt<int * int> 
 
> runAttempt (failIfEitherBig (999,998));; 
val it : (int * int) option = Some(999,998) 
 
> runAttempt (failIfEitherBig (1003,998));; 
val it : (int * int) option = None 
 
> runAttempt (failIfEitherBig (999,1001));; 
val it : (int * int) option = None 

Let’s look at this more closely. First, what does the first let! do? It runs the Attempt value failIfBig 
inp1; and if this returns None, the whole computation returns None. If the computation on the right 
delivers a value (that is, returns Some), then it binds the result to the variable n1 and continues. It’s 
important to note the following for the expression let! n1 = failIfBig inp1: 

• The expression on the right (failIfBig inp1) has type Attempt<int>. 

• The variable on the left (n1) is of type int. 

This is somewhat similar to a sequence of normal let binding. However, let! also controls 
whether the rest of the computation is executed; in the case of the Attempt type, it executes the rest of the 
computation only when it receives a Some value. Otherwise, it returns None, and the rest of the code is 
never executed. 

You can use normal let bindings in computation expressions. For example: 
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  let sumIfBothSmall (inp1,inp2) = 
        attempt { let! n1 = failIfBig inp1 
                  let! n2 = failIfBig inp2 
                  let sum = n1 + n2 
                  return sum } 
 

In this case, the let binding executes exactly as you would expect; it takes the expression n1+n2 and 
binds its result to the value sum. To summarize, you’ve seen that computation expressions let you do  
the following: 

• Use an expression-like syntax to build Attempt computations 

• Sequence these computations together using the let! construct 

• Return results from these computations using return and return! 

• Compute intermediate results using let 

Workflows let you do a good deal more than this, as you see in the sections that follow. 

Defining a Workflow Builder 
Listing 9-6 shows the implementation of the workflow builder for Attempt workflows; this is the 
simplest definition for AttemptBuilder. 

Listing 9-6. Defining a Workflow Builder 

let succeed x = (fun () -> Some(x)) 
let fail      = (fun () -> None) 
let runAttempt (a:Attempt<'T>) = a() 
let bind p rest = match runAttempt p with None -> fail | Some r -> (rest r) 
let delay f = (fun () -> runAttempt (f ())) 
 
type AttemptBuilder() = 
    /// Wraps an ordinary value into an Attempt value. 
    /// Used to de-sugar uses of 'return' inside computation expressions. 
    member b.Return(x) = succeed x 
 
    /// Composes two attempt values. If the first returns Some(x) then the result 
    /// is the result of running rest(x). 
    /// Used to de-sugar uses of 'let!' inside computation expressions. 
    member b.Bind(p,rest) = bind p rest 
 
 
    /// Delays the construction of an attempt until just before it is executed 
    member b.Delay(f) = delay f 
 
    /// Used to de-sugar uses of 'let' inside computation expressions. 
    member b.Let(p,rest) : Attempt<'T> = rest p 
 
let attempt = new AttemptBuilder() 
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The inferred types here are as follows: 

type AttemptBuilder = 
    new : unit -> AttemptBuilder 
    member Bind   : Attempt<'T> * ('T -> Attempt<'U>) -> Attempt<'U> 
    member Delay  : (unit -> Attempt<'T>) -> Attempt<'T> 
    member Let    : 'T * ('T -> Attempt<'U>) -> Attempt<'U> 
    member Return : 'T -> Attempt<'T> 
 
val attempt : AttemptBuilder 

F# implements workflows by de-sugaring computation expressions using a builder. For example, 
given the previous AttemptBuilder, the following workflow 
 
attempt { let! n1 = failIfBig inp1 
          let! n2 = failIfBig inp2 
          let sum = n1 + n2 
          return sum };; 
 
de-sugars to this: 
 
attempt.Bind( failIfBig inp1,(fun n1 -> 
   attempt.Bind(failIfBig inp2,(fun n2 -> 
      attempt.Return sum))))) 
 
One purpose of the F# workflow syntax is to make sure you don’t have to write this sort of thing by hand. 

The de-sugaring of the workflow syntax is implemented by the F# compiler. Table 9-3 shows some 
of the typical signatures that a workflow builder needs to implement. 

Table 9-3. Some Typical Workflow Builder Members as Required by the F# Compiler 

Member Description 

member Bind : M<'T> * ('T -> M<'U>) -> M<'U> Used to de-sugar let! and do! within 
computation expressions. 

member Return : 'T -> M<'T> Used to de-sugar return within computation 
expressions. 

member ReturnFrom : M<'T> -> M<'T> Used to de-sugar return! within computation 
expressions. 

member Delay : (unit -> M<'T>) -> M<'T> Used to ensure that side effects within a 
computation expression are performed when 
expected. 

member For : seq<'T> * ('T -> M<'U>) -> 
M<'U> 

Used to de-sugar for ... do ... within 
computation expressions. M<'U> can optionally 
be M<unit>. 
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Member Description 

member While : (unit -> bool) * M<'T> -> 
M<'T> 

Used to de-sugar while ... do ... within 
computation expressions. M<'T> may optionally 
be M<unit>. 

member Using : 'T * ('T -> M<'T>) -> M<'T> 
when 'T :> IDisposable 

Used to de-sugar use bindings within 
computation expressions. 

member Combine : M<'T> * M<'T> -> M<'T> Used to de-sugar sequencing within 
computation expressions. The first M<'T> may 
optionally be M<unit>. 

member Zero : unit -> M<'T> Used to de-sugar empty else branches of if/then 
constructs within computation expressions. 

Most of the elements of a workflow builder are usually implemented in terms of simpler 
primitives. For example, let’s assume you’re defining a workflow builder for some type M<'T> and you 
already have implementations of functions bindM and returnM with the following types: 

val bindM : M<'T> -> ('T -> M<'U>) -> M<'U> 
val returnM : 'T -> M<'T> 

Then you can implement Delay using the following functions: 
 
let delayM f = bindM (returnM ()) f 
 

You can now define an overall builder in terms of all four functions: 
 
type MBuilder() = 
    member b.Return(x)    = returnM x 
    member b.Bind(v,f)    = bindM v f 
    member b.Delay(f)     = delayM f 
 

However, Let and Delay may also have more efficient direct implementations, which is why F# 
doesn’t insert the previous implementations automatically. 

Workflows and Untamed Side Effects 
It’s possible, and in some cases even common, to define workflows that cause side effects. For example, 
you can use printfn in the middle of an Attempt workflow: 
 
let sumIfBothSmall (inp1,inp2) = 
    attempt { let! n1 = failIfBig inp1 
              printfn "Hey, n1 was small!" 
              let! n2 = failIfBig inp2 
              printfn "n2 was also small!" 
              let sum = n1 + n2 
              return sum } 
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Here’s what happens when you call this function: 

> runAttempt(sumIfBothSmall (999,999));; 
Hey, n1 was small! 
n2 was also small! 
val it : int option = Some 1998 
 
> runAttempt(sumIfBothSmall (999,1003));; 
Hey, n1 was small! 
val it : int option = None 

Side effects in workflows must be used with care, particularly because workflows are typically used 
to construct delayed or on-demand computations. In the previous example, printing is a fairly benign 
side effect. More significant side effects such as mutable state can also be sensibly combined with some 
kinds of workflows, but be sure you understand how the side effect will interact with the particular kind 
of workflow you’re using. For example, this example allocates a piece of mutable state that is local to 
the Attempt workflow, and this is used to accumulate the sum: 
 
let sumIfBothSmall (inp1,inp2) = 
    attempt { let sum = ref 0 
              let! n1 = failIfBig inp1 
              sum := sum.Value + n1 
              let! n2 = failIfBig inp2 
              sum := sum.Value + n2 
              return sum.Value } 
 
We leave it as an exercise for you to examine the de-sugaring of this workflow to see that the mutable 
reference is indeed local, in the sense that it doesn’t escape the overall computation, and that different 
executions of the same workflow use different reference cells. 

As mentioned, workflows are nearly always delayed computations. As you saw in Chapter 4, 
delayed computations and side effects can interact. For this reason, the de-sugaring of workflow 
syntax inserts a Delay operation around the entire workflow. The following 
 
let printThenSeven = 
        attempt { printf "starting..." 
                  return 3 + 4 } 
 
de-sugars to 
 
        attempt.Delay(fun () -> 
            printf "starting..." 
            attempt.Return(3+4)) 
 
This means that “starting . . .” is printed each time the printThenSeven attempt object is executed. 

Example: Probabilistic Workflows 
Workflows provide a fascinating way to embed a range of nontrivial, nonstandard computations into 
F#. To give you a feel for this, this section defines a probabilistic workflow. That is, instead of writing 
expressions to compute, say, integers, you instead write expressions that compute distributions of 
integers. This case study is based on a paper by Ramsey and Pfeffer from 2002. 
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For the purposes of this section, you’re interested in distributions over discrete domains 
characterized by three things: 

• You want to be able to sample from a distribution (for example, sample an 
integer or a coin flip). 

• You want to compute the support of a distribution: that is, a set of values where all 
elements outside the set have zero chance of being sampled. 

• You want to compute the expectation of a function over the distribution. For 
example, you can compute the probability of selecting element A by evaluating 
the expectation of the function (fun x -> if x = A then 1.0 else 0.0). 

You can model this notion of a distribution with abstract objects. Listing 9-7 shows the definition of 
a type of distribution values and an implementation of the basic primitives always and coinFlip, which 
help build distributions. 

Listing 9-7. Implementing Probabilistic Modeling Using Computation Expressions 

type Distribution<'T when 'T : comparison> = 
    abstract Sample : 'T 
    abstract Support : Set<'T> 
    abstract Expectation: ('T -> float) -> float 
 
let always x = 
    { new Distribution<'T> with 
         member d.Sample = x 
         member d.Support = Set.singleton x 
         member d.Expectation(H) = H(x) } 
 
let rnd = System.Random() 
 
let coinFlip (p:float) (d1:Distribution<'T>) (d2:Distribution<'T>) = 
    if p < 0.0 || p > 1.0 then failwith "invalid probability in coinFlip" 
    { new Distribution<'T> with 
         member d.Sample = 
             if rnd.NextDouble() < p then d1.Sample else d2.Sample 
         member d.Support = Set.union d1.Support d2.Support 
         member d.Expectation(H) = 
             p * d1.Expectation(H) + (1.0-p) * d2.Expectation(H) } 
 

The types of these primitives are as follows: 

type Distribution<'T> = 
    abstract Expectation: ('T -> float) -> float 
    abstract Sample : 'T 
    abstract Support : Set<'T> 
 
val always: 'T -> Distribution<'T> 
val coinFlip : float -> Distribution<'T> -> Distribution<'T> -> Distribution<'T> 
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The simplest distribution is always x; this is a distribution that always samples to the same value. 
Its expectation and support are easy to calculate. The expectation of a function H is just H applied to the 
value, and the support is a set containing the single value x. The next distribution defined is coinFlip, 
which is a distribution that models the ability to choose between two outcomes. 

Listing 9-8 shows how you can define a workflow builder for distribution objects. 

Listing 9-8. Defining a Builder for Probabilistic Modeling Using Computation Expressions 

let bind (dist:Distribution<'T>) (k: 'T -> Distribution<'U>) = 
    { new Distribution<'U> with 
         member d.Sample =  
             (k dist.Sample).Sample 
         member d.Support = 
             Set.unionMany (dist.Support |> Set.map (fun d -> (k d).Support)) 
         member d.Expectation H =  
             dist.Expectation(fun x -> (k x).Expectation H) } 
 
type DistributionBuilder() = 
    member x.Delay f = bind (always ()) f 
    member x.Bind (d, f) = bind d f 
    member x.Return v = always v 
    member x.ReturnFrom vs = vs 
 
let dist = new DistributionBuilder() 
 

The types of these primitives are as follows: 

val bind: Distribution<'T> -> ('T -> Distribution<'U>) -> Distribution<'U> 
val dist: DistributionBuilder 

Listing 9-8 shows the all-important bind primitive; it combines two distributions, using the sample 
from the first to guide the sample from the second. The support and expectation are calculated by 
taking the support from the first and splaying it over the support of the second. The expectation is 
computed by using the first distribution to compute the expectation of a function derived from the 
second. These are standard results in probability theory and are the basic machinery you need to get 
going with some interesting modeling. 

Before you begin using workflow syntax, you define two derived functions to compute 
distributions. Listing 9-9 shows the additional derived operations for distribution objects that you 
use later in this example. 

Listing 9-9. Defining the Derived Operations for Probabilistic Modeling Using Computation Expressions 

let weightedCases (inp: ('T * float) list) = 
    let rec coinFlips w l = 
        match l with 
        | []          -> failwith "no coinFlips" 
        | [(d,_)]     -> always d 
        | (d,p)::rest -> coinFlip (p/(1.0-w)) (always d) (coinFlips (w+p) rest) 
    coinFlips 0.0 inp 
 
let countedCases inp = 
    let total = Seq.sumBy (fun (_,v) -> v) inp 
    weightedCases (inp |> List.map (fun (x,v) -> (x, float v / float total))) 
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The two functions weightedCases and countedCases build distributions from the weighted selection 
of a finite number of cases. The types are as follows: 

val weightedCases : ('T * float) list -> Distribution<'T> 
val countedCases : ('T * int) list -> Distribution<'T> 

For example, here is the distribution of outcomes on a fair European roulette wheel: 
 
type Outcome = Even | Odd | Zero 
let roulette = countedCases [ Even,18; Odd,18; Zero,1] 
 

You can now use sampling to draw from this distribution: 

> roulette.Sample;; 
val it:  Outcome = Even 
 
> roulette.Sample;; 
val it:  Outcome = Odd 

And you can compute the expected payout of a $5 bet on Even, where you would get a $10 return: 

> roulette.Expectation (function Even -> 10.0 | Odd -> 0.0 | Zero -> 0.0);; 
val it:  float = 4.864864865 

Now, let’s model another scenario. Let’s say you have a traffic light with the following probability 
distribution for showing red/yellow/green: 
 
type Light = 
    | Red 
    | Green 
    | Yellow 
 
let trafficLightD = weightedCases [ Red,0.50; Yellow,0.10; Green, 0.40 ] 
 

Drivers are defined by their behavior with respect to a traffic light. For example, a cautious driver 
is highly likely to brake on a yellow light and always stops on a red: 
 
type Action = Stop | Drive 
 
let cautiousDriver light = 
    dist { match light with 
           | Red -> return Stop 
           | Yellow -> return! weightedCases [ Stop, 0.9; Drive, 0.1 ] 
           | Green -> return Drive } 
 

An aggressive driver is unlikely to brake on yellow and may even go through a red light: 
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let aggressiveDriver light = 
    dist { match light with 
           | Red    -> return! weightedCases [ Stop, 0.9; Drive, 0.1 ] 
           | Yellow -> return! weightedCases [ Stop, 0.1; Drive, 0.9 ] 
           | Green  -> return Drive } 
 

The following gives the value of the light showing in the other direction: 
 
let otherLight light = 
    match light with 
    | Red -> Green 
    | Yellow -> Red 
    | Green -> Red 
 

You can now model the probability of a crash between two drivers given a traffic light. Assume 
there is a 10 percent chance that two drivers going through the intersection will avoid a crash: 
 
type CrashResult = Crash | NoCrash 
 
let crash (driverOneD, driverTwoD, lightD) = 
    dist { // Sample from the traffic light 
           let! light = lightD 
 
           // Sample the first driver's behavior given the traffic light 
           let! driverOne = driverOneD light 
 
           // Sample the second driver's behavior given the traffic light 
           let! driverTwo = driverTwoD (otherLight light) 
 
           // Work out the probability of a crash 
           match driverOne, driverTwo with 
             | Drive,Drive -> return! weightedCases [ Crash, 0.9; NoCrash, 0.1 ] 
             | _ -> return NoCrash } 
 

You can now instantiate the model to a cautious/aggressive driver pair, sample the overall model, 
and compute the overall expectation of a crash as approximately 3.7 percent: 

> let model = crash (cautiousDriver, aggressiveDriver, trafficLightD);; 
val model : Distribution<CrashResult> 
 
> model.Sample;; 
val it : CrashResult = NoCrash 
... 
> model.Sample;; 
val it : CrashResult = Crash 
 
> model.Expectation (function Crash -> 1.0 | NoCrash -> 0.0);; 
val it : float = 0.0369 
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■ Note This section showed how to define a simplistic embedded computational probabilistic modeling language. 
There are many more efficient and sophisticated techniques to apply to the description, evaluation, and analysis of 
probabilistic models than those shown here, and you can make the implementation of the primitives shown here 

more efficient by being more careful about the underlying computational representations. 

Combining Workflows and Resources 
In some situations, workflows can sensibly make use of transient resources such as files. The tricky 
thing is that you still want to be careful about closing and disposing of resources when the workflow is 
complete or when it’s no longer being used. For this reason, the workflow type must be carefully 
designed to correctly dispose of resources halfway through a computation if necessary. Sequence 
expressions are a great example where this is useful. For example, the following sequence expression 
opens a file and reads lines on demand: 
 
let linesOfFile(fileName) = 
    seq { use textReader = System.IO.File.OpenText(fileName) 
          while not textReader.EndOfStream do 
              yield textReader.ReadLine() } 
 

Chapter 8 discussed the construct use pat = expr. As shown in Table 9-2, you can also use this 
construct within workflows. In this case, the use pat = expr construct de-sugars into a call to seq.Using. 
In the case of sequence expressions, this function is carefully implemented to ensure that textReader is 
kept open for the duration of the process of reading from the file. Furthermore, the Dispose function on 
each generated IEnumerator object for a sequence calls the textReader.Dispose() method. This ensures 
that the file is closed even if you enumerate only half of the lines in the file. Workflows thus allow you 
to scope the lifetime of a resource over a delayed computation. 

Recursive Workflow Expressions 
Like functions, workflow expressions can be defined recursively. Many of the best examples are 
generative sequences. For example: 
 
let rnd = System.Random() 
 
let rec randomWalk k = 
    seq { yield k 
          yield! randomWalk (k + rnd.NextDouble() - 0.5) } 

> randomWalk 10.0;; 
val it: seq<float> = seq [10.0; 10.23817784; 9.956430122; 10.18110362; ...] 
 
> randomWalk 10.0;; 
val it : seq<float> = seq [10.0; 10.19761089; 10.26774703; 9.888072922; ...] 
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Using F# Reflection 
The final topics in this chapter are F# quotations, which provide a way to get at a representation of F# 
expressions as abstract syntax trees, and reflection, which lets you get at representations of assemblies, 
type definitions, and member signatures. Let’s look at reflection first. 

Reflecting on Types 
One of the simplest uses of reflection is to access the representation of types and generic type 
variables using the typeof operator. For example, typeof<int> and typeof<'T> are both expressions that 
generate values of type System.Type. Given a System.Type value, you can use the .NET APIs to access the 
System.Reflection.Assembly value that represents the .NET assembly that contains the definition of 
the type (.NET assemblies are described in Chapter 7). You can also access other types in the 
System.Reflection namespace, such as MethodInfo, PropertyInfo, MemberInfo, and ConstructorInfo. The 
following example examines the names associated with some common types: 

> let intType = typeof<int>;; 
val intType : System.Type 
 
> intType.FullName;; 
val it : string = "System.Int32" 
 
> intType.AssemblyQualifiedName;; 
val it : string = "System.Int32, mscorlib, Version=2.0.0.0, Culture=neutral, 
PublicKeyToken=b77a5c561934e089" 
 
> let intListType = typeof<int list>;; 
val intListType : System.Type 
 
> intListType.FullName;; 
val it : string = "Microsoft.FSharp.Collections.List`1[[System.Int32, mscorlib, 
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089]]" 

Schema Compilation by Reflecting on Types 
The F# library includes the namespace Microsoft.FSharp.Reflection, which contains types and 
functions that extend the functionality of the System.Reflection namespace of .NET. Chapter 10 
describes these types and functions. 

You can use the combination of .NET and F# reflection to provide generic implementations of 
language-related transformations. This section gives one example of this powerful technique. Listing 
9-10 shows the definition of a generic schema reader compiler, where a data schema is described using 
F# types and the schema compiler helps convert untyped data from text files into this data schema. 
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Listing 9-10. Using Types and Attributes to Guide Dynamic Schema Compilation 

open System 
open System.IO 
open System.Globalization 
open Microsoft.FSharp.Reflection 
 
/// An attribute to be added to fields of a schema record type to indicate the 
/// column used in the data format for the schema. 
type ColumnAttribute(col:int) = 
    inherit Attribute() 
    member x.Column = col 
 
/// SchemaReader builds an object that automatically transforms lines of text 
/// files in comma-separated form into instances of the given type 'Schema. 
/// 'Schema must be an F# record type where each field is attributed with a 
/// ColumnAttribute attribute, indicating which column of the data the record 
/// field is drawn from. This simple version of the reader understands 
/// integer, string and DateTime values in the CSV format. 
type SchemaReader<'Schema>() = 
 
    // Grab the object for the type that describes the schema 
    let schemaType = typeof<'Schema> 
 
    // Grab the fields from that type 
    let fields = FSharpType.GetRecordFields(schemaType)  
 
    // For each field find the ColumnAttribute and compute a function 
    // to build a value for the field 
    let schema = 
        fields |> Array.mapi (fun fldIdx fld -> 
            let fieldInfo = schemaType.GetProperty(fld.Name) 
            let fieldConverter = 
                match fld.PropertyType with 
                |  ty when ty = typeof<string>   -> (fun (s:string) -> box s) 
                |  ty when ty = typeof<int>      -> (System.Int32.Parse >> box) 
                |  ty when ty = typeof<DateTime> ->  
                     (fun s -> box (DateTime.Parse(s,CultureInfo.InvariantCulture))) 
                |  ty -> failwithf "Unknown primitive type %A" ty 
 
            let attrib = 
                match fieldInfo.GetCustomAttributes(typeof<ColumnAttribute>, 
                                                    false) with 
                | [| (:? ColumnAttribute as attrib) |] ->   attrib 
                | _ -> failwithf "No column attribute found on field %s" fld.Name 
            (fldIdx, fld.Name, attrib.Column, fieldConverter)) 
 
    // Compute the permutation defined by the ColumnAttribute indexes 
    let columnToFldIdxPermutation c = 
      schema |> Array.pick (fun (fldIdx,_,colIdx,_) ->  
          if colIdx = c then Some fldIdx else None) 
 
    // Drop the parts of the schema we don't need 
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    let schema = 
      schema |> Array.map (fun (_,fldName,_,fldConv) -> (fldName,fldConv)) 
 
    // Compute a function to build instances of the schema type. This uses an 
    // F# library function. 
    let objectBuilder = FSharpValue.PreComputeRecordConstructor(schemaType) 
 
    // OK, now we're ready to implement a line reader 
    member reader.ReadLine(textReader: TextReader) = 
        let line = textReader.ReadLine() 
        let words = line.Split([|','|]) |> Array.map(fun s -> s.Trim()) 
        if words.Length <> schema.Length then 
            failwith "unexpected number of columns in line %s" line 
        let words = words |> Array.permute columnToFldIdxPermutation 
 
        let convertColumn colText (fieldName, fieldConverter) = 
           try fieldConverter colText 
           with e -> 
               failwithf "error converting '%s' to field '%s'" colText fieldName 
 
        let obj = objectBuilder (Array.map2 convertColumn words schema) 
 
        // OK, now we know we've dynamically built an object of the right type 
        unbox<'Schema>(obj) 
 
    /// This reads an entire file 
    member reader.ReadFile(file) = 
        seq { use textReader = File.OpenText(file) 
              while not textReader.EndOfStream do 
                  yield reader.ReadLine(textReader) } 
 

The type of the SchemaReader is simple: 

type SchemaReader<'Schema> = 
    new : unit -> SchemaReader<'Schema> 
    member ReadFile : string -> seq<'Schema> 
    member ReadLine : System.IO.TextReader -> 'Schema 

First you see how the SchemaReader is used in practice. Let’s say you have a text file containing 
lines such as this: 
 
Steve, 12 March 2010, Cheddar 
Sally, 18 Feb 2010, Brie 
... 
 
It’s reasonable to want to convert this data to a typed data representation. You can do this by defining 
an appropriate record type along with enough information to indicate how the data in the file maps 
into this type. This information is expressed using custom attributes, which are a way to add extra 
meta-information to assembly, type, member, property, and parameter definitions. Each custom 
attribute is specified as an instance of a typed object, here ColumnAttribute, defined in Listing 9-10. 
The suffix Attribute can be dropped when using the custom attribute: 
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type CheeseClub = 
    { [<Column(0)>] Name            : string 
      [<Column(2)>] FavouriteCheese : string 
      [<Column(1)>] LastAttendance  : System.DateTime } 
 

You can now instantiate the SchemaReader type and use it to read the data from the file into this 
typed format: 

> let reader = new SchemaReader<CheeseClub>();; 
val reader : SchemaReader<CheeseClub> 
 
> fsi.AddPrinter(fun (c:System.DateTime) -> c.ToString());; 
val it : unit = () 
 
> System.IO.File.WriteAllLines("data.txt", [| "Steve, 12 March 2010, Cheddar"; 
                                              "Sally, 18 Feb 2010, Brie"; |]);; 
val it : unit = () 
 
> reader.ReadFile("data.txt");; 
val it : seq<CheeseClub> 
 = seq 
    [{Name = "Steve"; 
      FavouriteCheese = "Cheddar"; 
      LastAttendance = 12/03/2010 00:00:00;}; 
     {Name = "Sally"; 
      FavouriteCheese = "Brie"; 
      LastAttendance = 18/02/2010 00:00:00;}] 

There is something somewhat magical about this; you’ve built a layer that automatically does the 
impedance matching between the untyped world of a text-file format into the typed world of F# 
programming. Amazingly, the SchemaReader type itself is only about 50 lines of code. The comments in 
Listing 9-10 show the basic steps being performed. The essential features of this technique are as follows: 

1. The schema information is passed to the SchemaReader as a type variable. The 
SchemaReader then uses the typeof operator to extract a System.Type 
representation of the schema type. 

2. The information needed to drive the transformation process comes from 
custom attributes. Extra information can also be supplied to the constructor of 
the SchemaReader type if necessary. 

3. The let bindings of the SchemaReader type are effectively a form of 
precomputation (they can also be seen as a form of compilation). They 
precompute as much information as possible given the schema. For example, 
the section analyzes the fields of the schema type and computes functions for 
creating objects of the field types. It also computes the permutation from the 
text file columns to the record fields. 

4. The data objects are ultimately constructed using reflection functions, in this 
case a function computed by Microsoft.FSharp.Reflection.Value. 
GetRecordConstructor or primitive values parsed using System.Int32.Parse and 
similar functions. This and other functions for creating F# objects dynamically 
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are in the Microsoft.FSharp.Reflection library. Other functions for creating 
other .NET objects dynamically are in the System.Reflection library. 

5. The member bindings of SchemaReader interpret the residue of the 
precomputation stage, in this case using the information and computed 
functions to process the results of splitting the text of a line. 

This technique has many potential applications and has been used for CSV file reading, building 
F#-centric serializers/deserializers, and building generic strongly typed database schema access. 

Using the F# Dynamic Reflection Operators 
F# lets you define two special operators, (?) and (?<-), to perform dynamic lookups of objects. These 
are conceptually very simple operators, but they add interesting new opportunities for 
interoperability between dynamic data and static data in F# programming. 

These operators implicitly translate their second argument to a string, if it’s a simple identifier. 
That is, a use of these operators is translated as follows: 
 
   expr ? nm            �   (?) expr "nm" 
   expr1 ? nm <- expr2  �   (?<-) expr1 "nm" expr2 
 
This means the operators can be used to simulate a dynamic lookup of a property or a method on an 
object. This dynamic lookup can use any dynamic/reflective technique available to you. One such 
technique is to use .NET reflection to look up and/or set the properties of an object: 
 
open System.Reflection 
 
let (?) (obj:obj) (nm:string) : 'T =  
    obj.GetType().InvokeMember(nm, BindingFlags.GetProperty, null, obj, [| |])  
    |> unbox<'T> 
 
let (?<-) (obj:obj) (nm:string) (v:obj) : unit =  
    obj.GetType().InvokeMember(nm, BindingFlags.SetProperty, null, obj, [| v |])  
    |> ignore 
 

Now, you can use the operators to dynamically query data as follows: 
 
type Record1 = { Length : int; mutable Values : int list } 
 
let obj1 = box [1;2;3] 
let obj2 = box { Length = 4; Values = [3;4;5;7] } 
 
let n1 : int = obj1?Length  
let n2 : int = obj2?Length 
let valuesOld : int list = obj2?Values 
 
Here, both obj1 and obj2 have type obj, but you can do dynamic lookups of the properties Length and 
Values using the ? operator. Of course, these uses aren’t strongly statically typed—this is why you need 
the type annotations : int and : int list to indicate the return type of the operation. Given the 
earlier definition of the (?<-) operator, you can also set a property dynamically as follows: 
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obj2?Values <- [7;8;9] 
 
let valuesNew : int list = obj2?Values 
 

Using the (?) and (?<-) operators obviously comes with strong drawbacks: you lose considerable 
type safety, and performance may be affected by the use of dynamic techniques. Their use is 
recommended only when you’re consistently interoperating with weakly typed objects, or when you 
continually find yourself doing string-based lookup of elements of an object.  

Using F# Quotations 
The other side to reflective meta-programming in F# is quotations. These allow you to reflect over 
expressions in much the same way you’ve reflected over types in the previous section. It’s simple to get 
going with F# quotations; you open the appropriate modules and surround an expression with <@ . . . @> 
symbols: 

> open Microsoft.FSharp.Quotations;; 
 
> let oneExpr = <@ 1 @>;; 
val oneExpr : Expr<int> 
 
> oneExpr;; 
val it : Expr<int> = <@ (Int32 1) @> 
 
> let plusExpr = <@ 1 + 1 @>;; 
val plusExpr : Expr<int> 
 
> plusExpr;; 
val it : Expr<int> 
  = <@ Microsoft.FSharp.Core.Operators.op_Addition (Int32 1) (Int32 1) @> 

You can see here that the act of quoting an expression gives you back the expression as data. Those 
familiar with Lisp or Scheme know a sophisticated version of this in the form of Lisp quotations; and 
those familiar with C# 3.0 will find it familiar because C# uses similar mechanisms for its lambda 
expressions. F# quotations are distinctive partly because they’re typed (like C# lambda expressions) 
and because the functional, expression-based nature of F# means that so much of the language can be 
quoted and manipulated relatively easily. 

This book uses quotations in only a few places. Chapter 15 uses an F# library that converts F# 
quotations to SQL via the .NET LINQ library. The essence of the way this converter works is 
summarized by the following type: 

val SQL : Expr<'T> -> 'T 

This function effectively acts as an evaluator for quotations. It successfully evaluates only a limited 
range of quotations (a runtime error may occur if the expression can’t be converted to SQL). 

Another application of quotations is to convert F# code to JavaScript to let you run it in web 
browsers. This technique is used by WebSharper, described in Chapter 14. This may be implemented by 
a function with a type such as the following: 
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val CompileToJavaScript : Expr<'T> -> string 

What Are F# Quotations For? 

The primary rationale for F# quotations is to allow fragments of F# syntax to be executed by alternative 
means: for example, as an SQL query via LINQ or by running on another device such as a GPU or as 
JavaScript in a client-side web browser. F# aims to leverage heavy-hitting external components that map 
subsets of functional programs to other execution machinery. Another example use involves executing a 
subset of F# array code by dynamic generation of Fortran code and invoking a high-performance 
vectorizing Fortran compiler. The generated DLL is loaded and invoked dynamically. 

This effectively means you can convert from a computational representation of a language (for example, 
regular F# functions and F# workflow expressions) to an abstract syntax representation of the same 
language. This is a powerful technique, because it lets you prototype using a computational model of the 
language (for example, sampling from a distribution or running queries against local data) and then switch 
to a more concrete abstract syntax representation of the same programs in order to analyze, execute, 
print, or compile those programs in other ways. 

Example: Using F# Quotations for Error Estimation 
Listing 9-11 shows a prototypical use of quotations, in this case to perform error estimation on F# 
arithmetic expressions. 

Listing 9-11. Error Analysis on F# Expressions Implemented with F# Quotations 

open Microsoft.FSharp.Quotations 
open Microsoft.FSharp.Quotations.Patterns 
open Microsoft.FSharp.Quotations.DerivedPatterns 
 
type Error = Err of float 
 
let rec errorEstimateAux (e:Expr) (env : Map<Var,_>) = 
    match e with 
    | SpecificCall <@@ (+) @@> (tyargs,_,[xt;yt]) -> 
        let x,Err(xerr) = errorEstimateAux xt env 
        let y,Err(yerr) = errorEstimateAux yt env 
        (x+y,Err(xerr+yerr)) 
 
    | SpecificCall <@@ (-) @@> (tyargs,_,[xt;yt]) -> 
        let x,Err(xerr) = errorEstimateAux xt env 
        let y,Err(yerr) = errorEstimateAux yt env 
        (x-y,Err(xerr+yerr)) 
 
    | SpecificCall <@@ ( * ) @@> (tyargs,_,[xt;yt]) -> 
        let x,Err(xerr) = errorEstimateAux xt env 
        let y,Err(yerr) = errorEstimateAux yt env 
        (x*y,Err(xerr*abs(y)+yerr*abs(x)+xerr*yerr)) 
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    | SpecificCall <@@ abs @@> (tyargs,_,[xt]) -> 
        let x,Err(xerr) = errorEstimateAux xt env 
        (abs(x),Err(xerr)) 
 
    | Let(var,vet, bodyt) -> 
        let varv,verr = errorEstimateAux vet env 
        errorEstimateAux bodyt (env.Add(var,(varv,verr))) 
 
    | Call(None,MethodWithReflectedDefinition(Lambda(v,body)),[arg]) -> 
        errorEstimateAux  (Expr.Let(v,arg,body)) env 
 
    | Var(x) -> env.[x] 
 
    | Double(n) -> (n,Err(0.0)) 
 
    | _ -> failwithf "unrecognized term: %A" e 
 
let rec errorEstimateRaw (t : Expr) = 
    match t with 
    | Lambda(x,t) -> 
        (fun xv -> errorEstimateAux t (Map.ofSeq [(x,xv)])) 
    | PropertyGet(None,PropertyGetterWithReflectedDefinition(body),[]) -> 
        errorEstimateRaw body 
    | _ -> failwithf "unrecognized term: %A - expected a lambda" t 
 
let errorEstimate (t : Expr<float -> float>) = errorEstimateRaw t 
 

The inferred types of the functions are as follows: 

val errorEstimateAux : Expr -> Map<ExprVarName,(float * Error)> -> float * Error 
val errorEstimateRaw : Expr -> (float * Error -> float * Error) 
val errorEstimate : Expr<(float -> float)> -> (float * Error -> float * Error) 

That is, errorEstimate is a function that takes an expression for a float -> float function and returns 
a function value of type float * Error -> float * Error.  

Let’s see it in action. First, you define the function err and a pretty-printer for float * Error 
pairs, here using the Unicode symbol for error bounds on a value: 

> let err x = Err x;; 
val err : float -> Error 
 
> fsi.AddPrinter (fun (x:float,Err v) -> sprintf "%g±%g" x v);; 
val it : unit = () 
 
> errorEstimate <@ fun x -> x+2.0*x+3.0*x*x @> (1.0,err 0.1);; 
val it : float * Error = 6±0.61 
 
> errorEstimate <@ fun x -> let y = x + x in y*y + 2.0 @> (1.0,err 0.1);; 
val it : float * Error = 6±0.84 
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The key aspects of the implementation of errorEstimate are as follows: 

• The errorEstimate function converts the input expression to a raw expression, 
which is an untyped abstract syntax representation of the expression designed 
for further processing. It then calls errorEstimateRaw. Traversals are generally 
much easier to perform using raw terms. 

• The errorEstimateRaw function then checks that the expression given is a lambda 
expression, using the active pattern Lambda provided by the 
Microsoft.FSharp.Quotations.Patterns module. 

• The errorEstimateRaw function then calls the auxiliary function 
errorEstimateAux. This function keeps track of a mapping from variables to 
value/error estimate pairs. It recursively analyzes the expression looking for +, -
, * and abs operations. These are all overloaded operators and hence are called 
generic functions in F# terminology, so the function uses the active pattern 
SpecificCall to detect applications of these operators. At each point, it performs 
the appropriate error estimation. 

• For variables, the environment map env is consulted. For constants, the error is 
zero. 

• Two additional cases are covered in errorEstimateAux and errorEstimateRaw. 
The Let pattern allows you to include expressions of the form let x = e1 in e2 
in the subset accepted by the quotation analyzer. The 
MethodWithReflectedDefinition case allows you to perform analyses on some 
function calls, as you see next. 

Resolving Top Definitions 
One of the problems with meta-programming with explicit <@ ... @> quotation marks alone is that you 
can’t analyze very large programs because the entire expression to be analyzed must be delimited by 
these markers. This is solved in F# by allowing you to tag top-level member and let bindings as reflected. 
This ensures that their definition is persisted to a table attached to their compiled DLL or EXE. These 
functions can also be executed as normal F# code. For example, here is a function whose definition is 
persisted: 
 
[<ReflectedDefinition>] 
let poly x = x+2.0*x+3.0/(x*x) 
 

You can retrieve definitions like this using the MethodWithReflectedDefinition and 
PropertyGetterWithReflectedDefinition active patterns, as shown in Listing 9-11. You can now use this 
function in a regular <@ ... @> quotation and thus analyze it for errors: 

> errorEstimate <@ poly @> (3.0, err 0.1);; 
val it : float * Error = 9.33333±0.582149 
 
> errorEstimate <@ poly @> (30271.3, err 0.0001);; 
val it : float * Error = 90813.9±3.02723 
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Summary 
This chapter covered key topics in a programming paradigm that is central to F#, called language-
oriented programming. We covered one particular concrete language format, XML, and then looked at 
abstracted representations of languages using abstract syntax trees. You also saw some techniques to 
traverse abstract syntax trees. These language representation techniques give you powerful ways to 
manipulate concrete and abstract syntax fragments, which form a key part of modern programming. 

You then saw two language representation techniques that are more tightly coupled to F#: the F# 
workflow syntax, which is useful for embedded computational languages involving sequencing, and 
quotations, which let you give an alternative meaning to existing F# program fragments. Along the 
way, the chapter touched on reflection and its use to mediate between typed and untyped 
representations. 

That completes your look at F# as a language and the major programming paradigms it covers. 
The following chapters look at the libraries that come with F# and the .NET Framework and then move 
on to more applied topics, beginning with GUI programming using the .NET Windows Forms library. 
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Using the F# and .NET Libraries 

F# and the .NET Framework offer a rich set of libraries for functional and imperative programming. This 
chapter steps back and gives you a broader overview of the.NET and F# libraries. 

Many of the types and namespaces described here are also covered elsewhere in this book. In these 
cases, we reference the relevant chapter. 

A High-Level Overview 
One way to get a quick overview of the .NET Framework and the F# library is to look at the primary DLLs 
and namespaces contained in them. Recall from Chapters 2 and 7 that DLLs correspond to the physical 
organization of libraries and that namespaces and types give the logical organization of a naming 
hierarchy. Let’s look at the physical organization first. The types and functions covered in this chapter 
are drawn from the DLLs in Table 10-1. 

Table 10-1. DLLs Containing the Library Constructs Referred to in This Chapter 

DLL Name Notes 

mscorlib.dll Minimal system constructs, including the types in the System 
namespace. 

System.dll Additional commonly used constructs in namespaces such as System 
and System.Text. 

System.Xml.dll See the corresponding namespace in Table 10-2. 

System.Data.dll See the corresponding namespace in Table 10-2. 

System.Drawing.dll See the corresponding namespace in Table 10-2. 

System.Web.dll See the corresponding namespace in Table 10-2. 

System.Windows.Forms.dll See the corresponding namespace in Table 10-2. 

System.Core.dll The foundation types for LINQ and some other useful types. From 
.NET 3.5 onward. 
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DLL Name Notes 

WindowsBase.dll Core functionality for Windows Presentation Foundation. 

PresentationCore.dll Core functionality for Windows Presentation Foundation. 

PresentationFramework.dll Core functionality for Windows Presentation Foundation. 

FSharp.Core.dll Minimal constructs for F# assemblies. 

To reference additional DLLs, you can embed a reference directly into your source code. For 
example: 
 
#I @"C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.5";; 
#r "System.Core.dll";; 
 
The first line specifies an include path, the equivalent of the -I command-line option for the F# 
compiler. The second line specifies a DLL reference, the equivalent of the -r command-line option. 
Chapter 7 described these. If you’re using Visual Studio, you can adjust the project property settings for 
your project. 

■ Note Hundreds of high-quality frameworks and libraries are available for .NET, and more are appearing all the 
time. For space reasons, this chapter covers only the .NET libraries and frameworks listed in Table 10-1. The 

“Some Other .NET Libraries” section of this chapter lists some libraries you may find interesting. 

Namespaces from the .NET Framework 
Table 10-2 shows the primary namespaces in .NET Framework DLLs from Table 10-1. In some cases, 
parts of these libraries are covered elsewhere in this book; the table notes these cases. For example, 
Chapter 4 introduced portions of the .NET I/O library from the System.IO namespace. 

Table 10-2. Namespaces in the DLLs from Table 10-1, with MSDN Descriptions 

Namespace Description 

System Types and methods that define commonly used value and reference 
data types, events and event handlers, interfaces, attributes, and 
processing exceptions, supporting data-type conversions, 
mathematics, application environment management, and runtime 
supervision of managed and unmanaged applications. See Chapter 
3 for many of the basic types in this namespace. 

System.CodeDom Types that can be used to represent the elements and structure of a 
source code document. Not covered in this book. 
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Namespace Description 

System.Collections Types that define various nongeneric collections of objects, such as 
lists, queues, and bit arrays. Partially covered in the section “Using 
Further F# and .NET Data Structures” later in this chapter. 

System.Collections.Generic Types that define generic collections. See Chapter 4 and the section 
“Using Further F# and .NET Data Structures” later in this chapter. 

System.ComponentModel Types that are used to implement the runtime and design-time 
behavior of components and controls. See Chapter 11. 

System.Configuration Types that provide the programming model for handling 
configuration data. See Chapter 15. 

System.Data Types that represent the ADO.NET database access architecture. See 
Chapter 15. 

System.Diagnostics Types that allow you to interact with system processes, event logs, 
and performance counters. See Chapter 18. 

System.Drawing Types that allow access to GDI+ basic graphics functionality. More 
advanced functionality is provided in the 
System.Drawing.Drawing2D, System.Drawing.Imaging, and 
System.Drawing.Text namespaces. See Chapter 11. 

System.Globalization Types that define culture-related information, including the 
language, the country/region, the calendars in use, the format 
patterns for dates, the currency, the numbers, and the sort order for 
strings. Not covered in this book. 

System.IO Types that allow reading and writing files and data streams, as well 
as types that provide basic file and directory support. See Chapter 4 
for a basic overview. 

System.Media Types for playing and accessing sounds and other media formats. 
Not covered in this book. .NET 3.0 and later. 

System.Net Types to programmatically access many of the protocols used on 
modern networks. See Chapters 2 and 14 for examples and a basic 
overview. 

System.Reflection Types that retrieve information about assemblies, modules, 
members, parameters, and other entities in managed code. See 
Chapter 9 for a brief overview. 

System.Reflection.Emit Types for generating .NET code dynamically at runtime. 

System.Resources Types that let you create, store, and manage various culture-specific 
resources used in an application. See Chapters 7 and 11 for a brief 
overview. 
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Namespace Description 

System.Security Types to interface with the underlying structure of the CLR security 
system, including base classes for permissions. Not covered in this 
book. 

System.Text Types representing ASCII, Unicode, UTF-8, and other character 
encodings. Also abstract types for converting blocks of characters to 
and from blocks of bytes. See Chapters 3 and the section “Using 
Regular Expressions and Formatting” later in this chapter. 

System.Threading Types for creating and synchronizing threads and, in .NET 4.0, tasks. 
Also parallel operations and some functionality related to 
cancellation. See Chapter 13. 

System.Web Types that enable web applications. See Chapter 14. 

System.Windows.Forms Types for creating windowed applications. See Chapter 11. 

System.Xml Types that implement standards-based support for processing XML. 
See Chapters 9 and 15. 

Microsoft.Win32 Types that wrap Win32 API common dialog boxes and components. 
Not covered in this book. 

Namespaces from the F# Libraries 
Table 10-3 shows the primary namespaces in F# library DLLs from Table 10-1. The following are opened 
by default in F# code: 
 
Microsoft.FSharp.Core 
Microsoft.FSharp.Collections 
Microsoft.FSharp.Control 
Microsoft.FSharp.Text 

Table 10-3. Namespaces in the DLLs from Table 10-1 

Namespace Description 

Microsoft.FSharp.Core Provides primitive constructs related to the F# language, such as 
tuples. See Chapter 3. 

Microsoft.FSharp.Collections Provides functional programming collections, such as sets and 
maps implemented using binary trees. See Chapter 3 and the 
section “Using Further F# and .NET Data Structures” later in this 
chapter. 
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Namespace Description 

Microsoft.FSharp.Control Provides functional programming control structures, including 
asynchronous and lazy programming. Chapter 8 covers 
programming with the IEvent<'T> type and the IEvent module, 
and Chapter 13 covers the Async<'T> type. 

Microsoft.FSharp.Text Provides types for structured and printf-style textual formatting of 
data. See Chapter 4 for an introduction to printf formatting. 

Microsoft.FSharp.Reflection Provides extensions to the System.Reflection functionality that 
deal particularly with F# record and discriminated union values. 
See Chapter 9 for a brief introduction, and see the section “Further 
Libraries for Reflective Techniques” section later in this chapter for 
more details. 

Microsoft.FSharp.Quotations Provides access to F# expressions as abstract syntax trees. See 
Chapter 9. 

Using the System Types 
Table 10-4 shows some of the most useful core types from the System namespace. These types are 
particularly useful because they take real care to define correctly. 

Table 10-4. Useful Core Types from the System Namespace 

Function Description 

System.DateTime A type representing a date and time 

System.DayOfWeek An enumeration type representing a day of the week 

System.Decimal A numeric type suitable for financial calculations requiring large numbers 
of significant integral and fractional digits and no round-off errors 

System.Guid A type representing a 128-bit globally unique ID 

System.Nullable<'T> A type with an underlying value type 'T but that can be assigned null like a 
reference type 

System.TimeSpan A type representing a time interval 

System.Uri A type  representing a uniform resource identifier (URI), such as an 
Internet URL 
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The following session shows some sample uses of the DateTime type: 

> open System;; 
> DateTime.Parse("13 July 1968");; 
val it : DateTime = 13/07/1968 00:00:00 {Day = 13; 
                                         DayOfWeek = Saturday; 
                                         DayOfYear = 195; 
                                         Hour = 0; 
                                         Millisecond = 0; 
                                         Minute = 0; 
                                         Month = 7; 
                                         Second = 0; 
                                         Ticks = 620892000000000000L; 
                                         TimeOfDay = 00:00:00; 
                                         Year = 1968;} 
 
> let date x = DateTime.Parse(x);; 
val date : string -> DateTime 
 
> printfn "date = %A" (date "13 July 1968");; 
date = 13/07/1968 00:00:00 
val it : unit = () 
 
> printfn "birth = %A" (date "18 March 2003, 6:21:01pm");; 
birth = 18/03/2003 18:21:01 
val it : unit = () 

Note that formatting dates depends on the user’s localization settings; you can achieve more explicit 
formatting by using the System.DateTime.ToString overload that accepts explicit format information. 

Here you use the System.Uri type to parse a URL: 

> open System;; 
> System.Uri.TryCreate("http://www.thebritishmuseum.ac.uk/", UriKind.Absolute);; 
 
val it : bool * System.Uri 
= (true, 
   http://www.thebritishmuseum.ac.uk/ 
       { AbsolutePath = "/"; ... 
         DnsSafeHost = "www.thebritishmuseum.ac.uk"; ... 
         Port = 80; ... 
         Scheme = "http"; }) 
 
> Uri.TryCreate("e3£%//ww.gibberish.com", UriKind.Absolute);; 
val it : bool * Uri = (false, null) 
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Many .NET types are used to hold static functions, such as those for converting data from one 
format to another. Types such as System.Random play a similar role via objects with a small amount of 
state. Table 10-5 shows some of the most useful of these types. 

Table 10-5. Useful Services from the System Namespace 

Function Description 

System.BitConverter Contains functions to convert numeric representations to and from bit 
representations 

System.Convert Contains functions to convert between various numeric representations 

System.Math Contains constants and static methods for trigonometric, logarithmic, 
and other common mathematical functions 

System.Random Provides objects to act as random-number generators 

System.StringComparer Provides objects implementing various types of comparisons on strings 
(case insensitive, and so on) 

Using Regular Expressions and Formatting 
In Chapter 3, you saw the different forms of string literals (strings with escape characters, verbatim 
strings, and byte arrays) and the most typical operations, such as concatenation using string builders. 
You may also remember that string values are immutable and that string operations that seem to change 
their input actually return a new string that represents the result. The following sections cover further 
ways to work with strings and text. 

Matching with System.Text.RegularExpressions 
One of the most popular ways of working with strings as data is through the use of regular expressions. 
You do this using the functionality from the .NET System.Text.RegularExpressions namespace. To get 
started, first note that the F# library includes the following definition: 
 
open System.Text.RegularExpressions 
let regex s = new Regex(s) 
 

To this, you can add the following Perl-like operators: 
 
let (=~) s (re:Regex) = re.IsMatch(s) 
let (<>~) s (re:Regex) = not (s =~ re) 
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Here, the inferred types are as follows: 

val regex : string -> Regex 
val ( =~ ) : string -> Regex -> bool 
val ( <>~ ) : string -> Regex -> bool 

The infix operators allow you to test for matches: 

> let samplestring = "This is a string";; 
val samplestring : string 
 
> if samplestring =~ regex "his" then 
       printfn "A Match! ";; 
A Match! 
val it : unit = () 

Regular expressions can include *, +, and ? symbols for zero or more occurrences, one or more 
occurrences, and zero or one occurrences of the immediately preceding regular expression, respectively, 
and can include parentheses to group regular expressions. For example: 

> "This is a string" =~ regex "(is )+";; 
val it : bool = true 

Regular expressions can also be used to split strings: 

> (regex " ").Split("This is a string");; 
val it : string [] = [|"This"; "is"; "a"; "string"|] 

Here, you use the regular expression " " for whitespace. In reality, you probably want to use the regular 
expression " +" to match multiple spaces. Better still, you can match any Unicode whitespace character 
using \s, including end-of-line markers; however, when using escape characters, you should use 
verbatim strings to specify the regular expression, such as @"\s+". Chapter 3 discussed verbatim strings. 
Let’s try this: 

> (regex @"\s+").Split("I'm a little      teapot");; 
val it : string [] = [|"I'm"; "a"; "little"; "teapot"|] 
 
> (regex @"\s+").Split("I'm a little  \t\t\n\t\n\t teapot");; 
val it : string [] = [|"I'm"; "a"; "little"; "teapot"|] 

Here’s how to match by using the method Match instead of using =~ and IsMatch. This lets you 
examine the positions of a match: 
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> let m = (regex @"joe").Match("maryjoewashere");; 
val m : Match 
 
> if m.Success then 
     printfn "Matched at position %d" m.Index;; 
 
Matched at position 4 
val it : unit = () 

Replacing text is also easy: 

> let text = "was a dark and stormy night";; 
val text: string 
 
> let t2 = (regex @"\w+").Replace(text, "WORD");; 
val t2: string  = "WORD WORD WORD WORD WORD WORD" 

Here, you use the regular expression "\w+" for a sequence of word characters. 
Table 10-6 shows the broad range of specifiers you can use with .NET regular expressions. 

Table 10-6. Regular Expression Escape Characters 

Characters Description 

Ordinary characters Characters other than . $ ^ { [ ( | ) * + ? \ match themselves. 

. Matches any character except \n. If RegexOptions.SingleLine is specified, 
then it matches every character. 

[aeiou0-9] Matches any of the given characters or character ranges. 

[^aeiou0-9] Matches any character other than the given characters or character 
ranges. 

\p{name} Matches any character in the named character class specified by {name}. 
See the .NET documentation for full details. 

\P{name} Matches text not included in groups and block ranges specified in {name}. 

\w Matches any word character. 

\W Matches any nonword character. 

\s Matches any whitespace character. 

\S Matches any nonwhitespace character. 
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Characters Description 

\d Matches any decimal digit. 

\D Matches any nondigit. 

\a Matches a bell (alarm) \u0007. 

\b Matches a backspace \u0008 if in a [] character class; otherwise, in a 
regular expression, \b denotes a word boundary (between \w and \W 
characters). In a replacement pattern, \b always denotes a backspace. 

\t Matches a tab \u0009. 

\r Matches a carriage return \u000D. 

\v Matches a vertical tab \u000B. 

\f Matches a form feed \u000C. 

\n Matches a new line \u000A. 

\e Matches an escape \u001B. 

\digit Matches a back reference. 

\040 Matches an ASCII character as octal. 

\x20 Matches an ASCII character using hexadecimal representation (exactly 
two digits). 

\cC Matches an ASCII control character; for example, \cC is Ctrl+C. 

\u0020 Matches a Unicode character using hexadecimal representation (exactly 
four digits). 

\ When followed by a character that isn’t recognized as an escaped 
character, matches that character. For example, \* is the same as \x2A. 

You can specify case-insensitive matches by using (?i) at the start of a regular expression: 

> samplestring =~ regex "(?i)HIS";; 
val it : bool = true 
 
> samplestring =~ regex "HIS";; 
val it : bool = false 
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Here is a final example, showing the use of named groups: 
 
let entry = @" 
Jolly Jethro 
13 Kings Parade 
Cambridge, Cambs CB2 1TJ 
" 
 
let re = 
 regex @"(?<=\n)\s*(?<city>[^\n]+)\s*,\s*(?<county>\w+)\s+(?<pcode>.{3}\s*.{3}).*$" 
 

You can now use this regular expression to match the text and examine the named elements of the 
match: 

> let r = re.Match(entry);; 
val r : Match 
 
> r.Groups.["city"].Value;; 
val it : string = "Cambridge" 
 
> r.Groups.["county"].Value;; 
val it : string = "Cambs" 
 
> r.Groups.["pcode"].Value;; 
val it : string = "CB2 1TJ" 

You can also combine regular expression matching with active patterns, described in Chapter 9. For 
example: 
 
let (|IsMatch|_|) (re: string) (inp:string) =  
    if Regex(re).IsMatch(inp)  then Some() else None 
     
let (|MatchGroups|_|) (re: string) (inp:string) =  
    let results = Regex(re).Match(inp)  
    if results.Success then Some results.Groups else None 
 

These active patterns can now be used as follows: 

> match "This is a string" with  
| IsMatch "(?i)HIS" -> "yes, it matched" 
| IsMatch "ABC" -> "this would not match" 
| _ -> "nothing matched" 
 
val it : string = "yes, it matched "  
 
> match "This is a super string" with  
  | MatchGroups "(?<word1>T\w+).*(?<word2>s\w+)" groups ->  
      (groups.["word1"].Value, groups.["word2"].Value) 
  | _ -> failwith "nothing matched" 
 
val it : string * string = ("This", "string") 



CHAPTER 10 ■ USING THE F# AND .NET LIBRARIES 

 

260 

 

Finally, you can use the dynamic operator, also defined in Chapter 9, to make the lookups slightly 
more natural: 

> match "This is a string is super" with  
  | MatchGroups "(?<word1>T\w+).*(?<word2>s\w+)" groups -> (groups?word1, groups?word2) 
  | _ -> failwith "nothing matched" 
 
val it : string * string = ("This", "super") 

■ Note .NET regular expressions have many more features than those described here. For example, you can 

compile regular expressions to make them match very efficiently. You can also use regular expressions to define 

sophisticated text substitutions.  

Formatting Strings Using .NET Formatting 
Throughout this book, you’ve used F# printf format strings to format text and output; Chapter 4 
introduced the basic format specifiers for this kind of text formatting. Functions such as printf and 
printfn are located in the Microsoft.FSharp.Text.Printf module. 

Another way to format strings is to use the System.String.Format static method or the other .NET 
composite formatting functions such as System.Console.WriteLine and TextWriter.WriteLine. This is a 
distinct set of formatting functions and directives redesigned and implemented from the ground up for 
the .NET platform. Like printf, these methods take a format specifier and the objects to be formatted. 
The format specifier is a string with any number of format items acting as placeholders and designating 
which object is to be formatted and how. Consider the following simple example: 

> System.String.Format("{0} {1} {2}", 12, "a", 1.23);; 
val it : string = "12 a 1.23" 

Each format item is enclosed in braces giving the index of the object to be formatted, and each can 
include an optional alignment specification (always preceded by a comma after the index, giving the 
width of the region in which the object is to be inserted, as in {0, 10}) and a format type that guides how 
the given object is formatted (as in {0:C}, where C formats as a system currency). The general syntax of 
the format item is as follows: 
 
{index[,alignment][:formatType]} 
 

You can use the alignment value to pad the formatted object with spaces; text alignment is left if its 
value is negative and right if positive. Table 10-7 summarizes the most often used format types. 
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Table 10-7. The .NET Format Specifiers 

Specifier Type 
C Currency 

D Decimal/long date 

E Scientific 

F Fixed-point 

G General 

N Number 

P Percent 

X Hexadecimal 

d/D Short/long date 

t/T Short/long time 

M Month 

Y Year 

You can find more information about .NET composite formatting at www.expert-fsharp.com/Topics/ 
TextFormatting. 

Encoding and Decoding Unicode Strings 
It’s often necessary to convert string data between different formats. For example, files read using the 
ReadLine method on the System.IO.StreamReader type are read with respect to a Unicode encoding. You 
can specify this when creating the StreamReader; if left unspecified, the .NET libraries attempt to 
determine the encoding for you. 

One common requirement is to convert strings to and from ASCII representations, assuming that all 
the characters in the strings are in the ASCII range 0 to 127. You can do this using 
System.Text.Encoding.ASCII.GetString and System.Text.Encoding.ASCII.GetBytes. Table 10-8 shows 
the predefined encodings and commonly used members in the System.Text.Encoding type. 

Table 10-8. Types and Members Related to Unicode Encodings 

Type/Member Description 

System.Text.Encoding Represents a character encoding 
  UTF8 : Encoding The encoding for the UTF-8 Unicode format 
  ASCII : Encoding The encoding for the ASCII 7-bit character set 
  Unicode : Encoding The encoding for the UTF-16 Unicode format 
  UTF32 : Encoding The encoding for the UTF-32 Unicode format 
  GetEncoding : string -> Encoding Fetches an encoding by name 
  member GetBytes : string -> byte[] Encodes a string to bytes 
  member GetChars: byte[] -> char[] Decodes a sequence of bytes 
  member GetString : byte[] -> string Decodes a sequence of bytes 
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Encoding and Decoding Binary Data 
Another common requirement is to convert binary data to and from the standard 64-character string-
encoded representation of binary data used in XML, e-mail, and other formats. You can do this using 
System.Convert.FromBase64String and System.Convert.ToBase64String. 

Using Further F# and .NET Data Structures 
As you saw in Chapter 2, F# comes with a useful implementation of some functional programming data 
structures. Recall that functional data structures are persistent: you can’t mutate them, and if you add an 
element or otherwise modify the collection, you generate a new collection value, perhaps sharing some 
internal nodes but from the outside appearing to be a new value. 

Table 10-9 summarizes the most important persistent functional data structures that are included in 
FSharp.Core.dll. It’s likely that additional functional data structures will be added in future F# releases. 

Table 10-9. The F# Functional Data Structures from Microsoft.FSharp.Collections 

Type Description 

List<'T> Immutable lists implemented using linked lists 

Set<'T> Immutable sets implemented using trees 

Map<'Key,'Value> Immutable maps (dictionaries) implemented using trees 

LazyList<'T> Lists generated on demand, with each element computed only once 

System.Collections.Generic and Other .NET Collections 
Table 10-10 summarizes the imperative collections available in the System.Collections.Generic 
namespace. 

Table 10-10. The .NET and F# Imperative Data Structures from System.Collections.Generic 

Type  Description 

List<'T> Mutable, resizable integer-indexed arrays, usually called 
ResizeArray<'T> in F#. 

SortedList<'T> Mutable, resizable lists implemented using sorted arrays. 

Dictionary<'Key,'Value> Mutable, resizable dictionaries implemented using hash tables. 

SortedDictionary<'Key,'Value> Mutable, resizable dictionaries implemented using sorted arrays. 

Queue<'T> Mutable, first-in, first-out queues of unbounded size. 
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Type  Description 

Stack<'T> Mutable, first-in, last-out stacks of unbounded size. 

HashSet<'T> Mutable, resizable sets implemented using hash tables. New in 
.NET 3.5. The F# library also defines a 
Microsoft.FSharp.Collections.HashSet type usable in conjunction 
with earlier versions of .NET. 

Some Other Collection Libraries 

Two additional libraries of .NET collections deserve particular attention. The first is PowerCollections, 
currently provided by Wintellect. It provides additional generic types such as Bag<'T>, 
MultiDictionary<'Key,'Value>, OrderedDictionary<'Key,'Value>, OrderedMultiDictionary<'T>, 
and OrderedSet<'T>. The second is the C5 collection library, provided by ITU in Denmark. It includes 
implementations of some persistent/functional data structures such as persistent trees and thus may be of 
particular interest for use from F#.  

Introducing Microsoft.FSharp.Math 
The F# Power Pack is an open source library found on www.codeplex.com. It includes a namespace 
Microsoft.FSharp.Math that defines a number of mathematical-related constructs, including matrix and 
vector types, double-precision complex numbers (type Complex, abbreviated complex), and arbitrary-
precision rationals (type BigNum, abbreviated bignum).  

Using Matrices and Vectors 
The F# Power Pack includes matrix and column vector types, which are generic and called Matrix<'T> 
and Vector<'T>, respectively. For symmetry, a type of row vectors, RowVector<'T>, is also included. Most 
commonly, the element types are instantiated to be double (that is, float), so the following 
abbreviations are used: 
 
type vector = Vector<float> 
type matrix = Matrix<float> 
type rowvec = RowVector<float> 
 

The modules Matrix, Vector, and RowVector in the Microsoft.FSharp.Math namespace have many 
additional functions for creating and working with these types. The functions are specialized for use with 
floating-point matrices, but versions to work with generic types are available at 
Microsoft.FSharp.Math.Matrix.Generic and Microsoft.FSharp.Math.Vector.Generic. The functions 
vector and matrix are also available for creating literal values. Here are some examples that use these 
types and functions: 
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> #r "FSharp.PowerPack.dll";; 
 
> open Microsoft.FSharp.Math;; 
 
> vector [ 1.0; 2.0 ; 3.0 ] + vector [ 1.0; 2.0 ; 3.0 ];; 
val it : Vector<float> = vector [2.0; 4.0; 6.0] 
 
> matrix [ [ 1.0; 2.0 ]; 
           [ 1.0; 3.0 ] ] 
  * 
  matrix [ [ 1.0; -2.0 ]; 
           [ 0.5; 3.0 ] ];; 
val it : Math.matrix = matrix [[2.0; 4.0]; 
                               [2.5; 7.0];] 

Table 10-11 summarizes the primary properties of these types. 

Table 10-11. The Microsoft.FSharp.Math Matrix and Vector Types 

Type/Member Member Type Description 
type Matrix<'T>   

  .[] : int * int -> 'T with set, get Gets or sets the item at the given 
position in the matrix. 

  Dimensions : int * int Gets the number of (rows, columns) in 
the matrix. 

  NumCols : int Gets the number of columns in the 
matrix. 

  NumRows : int Gets the number of rows in the matrix. 

  GetSlice2D : ?int * ?int * ?int * ?int -> 
Matrix<'T> 

Gets a submatrix. See the slice syntax for 
arrays, also usable for matrices, in 
Chapter 4. 

  Transpose : Matrix<'T> Gets the transpose of the matrix. 

type Vector<'T>   

  .[] : int -> 'T with set, get Gets or sets the item at the given 
position in the vector. 

  NumRows : int Gets the number of rows in the vector. 

  GetSlice : ?int * ?int -> Vector<'T> Gets a subvector. 

  Transpose : RowVector<'T> Gets the transpose of the vector. 
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Using Operator Overloads on Matrices and Vectors 
The F# matrix, vector, and row vector types support the use of operators such as +, -, and *. Table 10-12 
shows some of the overloads supported. 

Table 10-12. Primary Operator Overloads Supported by the F# Matrix and Vector Types 

Operator Overload Description 

( * ) : Matrix<'T> * 'T -> Matrix<'T> Scalar-matrix multiplication, and so on 

( * ) : 'T * Matrix<'T> -> Matrix<'T> Scalar-matrix multiplication, and so on 

( * ) : RowVector<'T> * Matrix<'T> -> RowVector<'T> Vector-matrix multiplication 

( * ) : Matrix<'T> * Vector<'T> -> Vector<'T> Matrix-vector multiplication 

( * ) : Matrix<'T> * Matrix<'T> -> Matrix<'T> Matrix multiplication 

( .* ) : Vector<'T> * Vector<'T> -> Vector<'T> Pointwise multiplication 

( .* ) : Matrix<'T> * Matrix<'T> -> Matrix<'T> Pointwise multiplication 

( + ) : Vector<'T> * Vector<'T> -> Vector<'T> Pointwise addition 

( + ) : Matrix<'T> * Matrix<'T> -> Matrix<'T> Pointwise addition 

Supervising and Isolating Execution 
The .NET System namespace includes a number of useful types that provide functionality related to the 
execution of running programs in the .NET Common Language Runtime. Table 10-13 summarizes them. 

Table 10-13. Types Related to Runtime Supervision of Applications 

Function Description 

System.Runtime Contains advanced types that support compilation and native 
interoperability. 

System.Environment Provides information about, and the means to manipulate, the current 
environment and platform. 

System.GC Controls the system garbage collector. Chapter 17 discusses garbage 
collection in more detail. 
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Function Description 

System.WeakReference Represents a weak reference, which references an object while still allowing 
that object to be reclaimed by garbage collection. 

System.AppDomain Represents an application domain, which is a software-isolated 
environment where applications execute. Application domains can hold 
code generated at runtime and can be unloaded. 

Further Libraries for Reflective Techniques 
As discussed in Chapter 9, .NET and F# programming frequently uses reflective techniques to analyze 
the types of objects, create objects at runtime, and use type information to drive generic functions in 
general ways. For example, in Chapter 9, you saw an example of a technique called schema compilation, 
which was based on .NET attributes, F# data types, and a compiler to take these and use reflective 
techniques to generate an efficient text file reader and translator. The combination of reflective 
techniques and .NET generics allows programs to operate at the boundary between statically typed code 
and dynamically typed data. 

Using General Types 
There are a number of facets to reflective programming with .NET. In one simple kind of reflective 
programming, a range of data structures are accessed in a general way. For example, .NET includes a 
type System.Array that is a parent type of all array types. The existence of this type allows you to write 
code that is generic over all array types, even one-dimensional and multidimensional arrays. This is 
occasionally useful, such as when you’re writing a generic array printer. 

Table 10-14 summarizes the primary general types defined in the .NET Framework. 

Table 10-14. General Types in the .NET Framework 

Function Description 

System.Array General type of all array values. 

System.Delegate General type of all delegates. 

System.Enum General type of all enum values. 

System.Exception General type of all exception values. 

System.Collections.IEnumerable General type of all sequence values. This is the nongeneric 
version of the F# type seq<'T>, and all sequence and collection 
values are compatible with this type. 

System.IComparable General type of all comparable types. 
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Function Description 

System.IDisposable General type of all explicitly reclaimable resources. 

System.IFormattable General type of all types supporting .NET formatting. 

System.Object General type of all values. 

System.Type Runtime representation of .NET types. 

System.ValueType General type of all value types. 

Using Microsoft.FSharp.Reflection 
In Chapter 9, the schema compiler used functions from the Microsoft.FSharp.Reflection namespace. 
This namespace is a relatively thin extension of the System.Reflection namespace. It offers an 
interesting set of techniques to create and analyze F# values and types in ways that are somewhat 
simpler than those offered by the System.Reflection namespace. These operations are also designed to 
be used in precompilation phases to amortize costs associated with reflective programming. 

Table 10-15 summarizes the two types in this namespace 

Table 10-15. Some Operations in the Microsoft.FSharp.Reflection Namespace 

Class and Static Members Description 

Microsoft.FSharp.Reflection.FSharpType Operations to analyze F# types 

Microsoft.FSharp.Reflection.FSharpValue Operations to analyze F# values 

Some Other .NET Types You May Encounter 
When .NET was first designed, the .NET type system didn’t include generics or a general notion of a 
function type as used by F#. Instead of functions, .NET uses delegates, which you can think of as named 
function types (that is, each kind of function type is given a different name). 

This means you often encounter delegate types when using .NET libraries from F#. Since .NET 2.0, 
some of these are even generic, giving an approximation to the simple and unified view of function types 
used by F#. Every .NET delegate type has a corresponding F# function type. For example, the F# function 
type for the .NET delegate type System.Windows.Forms.PaintEventHandler is obj -> 
System.Windows.Forms.PaintEventArgs -> unit. You can figure out this type by looking at the signature 
for the Invoke method of the given delegate type. 

.NET also comes with definitions for some generic delegate types. F# tends to use function types 
instead of these, so you don’t see them often in your coding. However, Table 10-16 shows these delegate 
types just in case you meet them. 
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Table 10-16. Delegate Types Encountered Occasionally in F# Coding 

Function F# Function Type Description 

System.Action<'T> 'T -> unit Used for imperative actions. 

System.AsyncCallback System.IAsyncResult -> unit Used for callbacks when 
asynchronous actions complete. 

System.Converter<'T,'U> 'T -> 'U Used to convert between values. 

System.Comparison<'T> 'T -> 'T -> int Used to compare values. 

System.EventHandler<'T> obj -> 'T -> unit Used as a generic event-handler type. 

System.Func<'T,'U> 'T -> 'U A .NET 3.5 LINQ function delegate. 
Further arity-overloaded types exist 
accepting additional arguments: for 
example, System.Func<'T,'U,'V>, 
System.Func<'T,'U,'V,'W>. 

System.Predicate<'T> 'T -> bool Used to test a condition. 

Some Other .NET Libraries 
Any review of the libraries that are usable with F# and .NET is necessarily incomplete; too many high-
quality .NET libraries are available, and more are appearing all the time. However, people often ask us 
which libraries we recommend. Table 10-17 shows some of the frameworks and libraries available at the 
time of writing that we think may be of interest to you. 

Table 10-17. Some Frameworks and Libraries Not Covered in This Chapter 

Framework/Library Name Description 

CSLA A .NET-based framework for defining business objects 

Extreme Optimization A commercial math, vector, statistics, and matrix library for .NET. 

GTK# A set of .NET bindings for the GTK+ GUI toolkit, primarily used on 
Mono to enable windowed applications on Linux and other platforms. 

Irrlicht An open-source, high-performance, real-time 3D engine. 

LINQ Language Integrated Queries, contained in .NET 3.5. See Chapter 15. 

Microsoft Robotics Studio A .NET environment for creating robotics applications that run across 
a variety of hardware. 
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Framework/Library Name Description 

Microsoft XNA A .NET environment for games for Microsoft gaming platforms such 
as Xbox 360 and Microsoft Windows. 

Windows Presentation 
Foundation (WPF) 

The graphical subsystem of .NET 3.0. See Chapter 11. 

Windows Communication 
Foundation (WCF) 

A unified framework for building connected systems. Not covered in 
this book. 

Summary 
This chapter gave an overview of the primary libraries available for use with a vanilla installation of F# 
and .NET. Many, many other libraries are available for .NET, and we couldn’t possibly cover them in a 
single book. Many of the design patterns you've seen here recur in those libraries; after you get to know 
the libraries discussed here, you’ll find that other libraries are easy to use. 

The chapters that follow dig into applications of F# and the .NET Framework more deeply, looking 
at some of the libraries discussed in this chapter in more detail. 
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Building Graphical User Interfaces 

GUI applications revolve around events, and F# provides a natural way to process events with 
functions. Graphical interfaces are often developed using visual editors, in particular to build GUIs by 
assembling controls. Applications, however, often need drawing capabilities for displaying and 
manipulating data, which requires custom programming to augment available controls. This chapter 
discusses how to develop graphical applications with F# and why the functional traits of the language 
suit the event-driven programming paradigm typical of GUIs. 

In this chapter, you use the Windows Forms library, the graphic toolkit designed by Microsoft on 
top of GDI+ and Win32 that is the former Windows presentation system. The Windows Presentation 
Foundation (WPF) is the new presentation framework for the Windows platform; it’s discussed later in 
this chapter.  

You may wonder why it’s useful to know about the old-fashioned Windows Forms toolkit. The 
answer is twofold: on one hand, the framework structure is shaped after a consolidated model that 
dominated graphical programming for decades and is still used in many other frameworks for 
programming GUIs such as GTK#, a .NET managed library for writing applications based on the GTK 
toolkit; on the other hand, Windows Forms is still the GUI toolkit for programming managed 
applications for mobile devices based on Windows Mobile. 

Writing “Hello, World!” in a Click 
It’s traditional to start with a “Hello, World!” application, so let’s honor that and begin with a simple 
program that provides a button to display the magic phrase when clicked: 
 
open System.Windows.Forms 
 
let form = new Form(Text="Hello World WinForms") 
let button = new Button(Text="Click Me!", Dock=DockStyle.Fill) 
 
button.Click.Add(fun _ -> MessageBox.Show("Hello, World!", "Hey!") |> ignore) 
form.Controls.Add(button) 
form.Show() 
 

Even in its simplicity, the application captures many traits typical of GUI applications. After 
opening the namespace associated with Windows Forms, you create the form form that contains the 
button button, set the form and button captions by assigning their Text properties, and tell the button 
that it should fill the entire form. 
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Most of GUI programming is devoted to handling events through callbacks from the graphical 
interface. Events are described in Chapter 8. To display a message box containing the "Hello, 
World!" string, you have to configure the button so that when its Click event is fired, a function is 
called. In the example, you pass a function to the Add method for the button’s Click event, which adds 
an event handler to an event source. You then add the button to the form and call the form’s Show 
method to display it. 

Note that this code should be executed using fsi.exe. It won’t run as a stand-alone application 
unless you add the following line at the end: 
 
Application.Run(form) 
 

This line relates to the event loop of a GUI application, and it’s required to handle events such as 
button clicks. Moreover, if you execute the compiled program, notice that the window uses the classic 
Windows look and feel rather than the more fashionable look and feels featured by recent versions of 
Windows. This can be easily addressed by adding the following call to the EnableVisualStyles static 
method, right after the open statement: 
 
Application.EnableVisualStyles() 
 

If you use fsi.exe, both visual styles and the event loop are handled by F# Interactive. 

Understanding the Anatomy of a Graphical Application 
Graphical applications are built on the abstractions provided by the graphical environment hosting 
them. The application must interact with its environment and process input in an unstructured way. 
User input isn’t the only kind of input received from a windowing system. Window management often 
involves requests to or from the application itself, such as painting or erasing a form. 

Windowing systems provide a common and abstract way to interact with a graphical application: 
the notion of an event. When an event occurs, the application receives a message in the message queue 
with information about the event. 

The graphical application is responsible for delivering messages from the message queue to the 
control for which they’re meant. A set of functions provided by the API of the windowing system 
supports this. This activity of reading messages from the message queue and dispatching them is 
known as the event loop of the application. If the loop fails for any reason, the GUI components cease 
to work, the application hangs, and Windows may eventually inform you that the application isn’t 
responding. 

It’s rare for an application to program the event loop explicitly. Programming toolkits encapsulate 
this functionality because it’s basically always the same. The Run method of the Application class is 
responsible for handling the event loop, and it ensures that messages related to events are delivered 
to targets within the application. 

GUI programs often involve multiple threads of execution. Chapter 13 discusses threading and 
concurrency in more detail; for this chapter, it’s important to remember that event dispatching is a 
single-threaded activity, even if it may seem the opposite. The thread executing the event loop calls 
the functions and methods registered for handling the various events. In the “Hello, World!” example, 
for instance, you told the button to call back the function to show the message box when clicked. 
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An Explicit Event Loop 

A Windows Forms event loop can also be explicitly defined by the application using the 
Application.DoEvents method; in this case, each invocation performs a step in event handling and 
returns the control to the caller. Some programs can benefit from this control because they can interleave 
event processing and computation using a single thread. Computer games, for instance, tend to use this 
approach because event-based timers provided by the framework aren’t reliable for producing the frames 
of the game at the required pace. The following is a typical explicit event loop: 

let form = new Form(Text="Explicit Event Loop") 
form.Show() 
while form.Created do 
    // Perform some task 
    Application.DoEvents() 

When events are handled explicitly, a program must call the DoEvents method frequently: if events 
aren’t processed, the graphical interface may become unresponsive, which provides the wrong 
feedback to the user. 

Software reuse has always been a priority in the world of graphical applications, because of the 
many details involved in realizing even simple behaviors. It’s not surprising that programming 
techniques favoring software reuse have always flourished in this context. You can develop a GUI 
application without writing a single line of code by combining existing controls into a new interface. 

Articulated frameworks, such as Windows Forms, provide a significant number of reusable 
controls so that you can develop entire applications without needing to use drawing facilities provided 
by the interface. For this reason, frameworks have started to support two kinds of customers: those 
composing interfaces with controls and those who need to develop new controls or explicitly use 
drawing primitives. The rest of this chapter explores the Windows Forms framework from both 
perspectives: the functional nature of F# is very effective for using controls, and the ability to define 
objects helps you develop new ones. 

Composing User Interfaces 
A control is represented by an object inheriting, either directly or indirectly, from the Control class in 
the System.Windows.Forms namespace. Building interfaces using controls involves two tasks: placing 
controls into containers (that are themselves a particular type of control) such as panels or forms, and 
registering controls with event handlers to be notified of relevant events. 

As an example, let’s develop a simple web browser based on the Internet Explorer control, which is 
a control that allows wrapping the HTML renderer (the interior of an Internet Explorer window) into 
an application. This example shows how to develop the application interactively using fsi.exe. Start 
by opening the libraries required for using Windows Forms: 
 

open System 
open System.Drawing 
open System.Windows.Forms 
 

Then, enable the Windows XP/Vista visual styles, declaring through the custom attribute 
STAThread that the application adopts the single thread apartment model, which is a COM legacy often 
required for Windows Forms applications to interact with COM components: 
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[<STAThread>] 
do Application.EnableVisualStyles() 
 

You need this in the example because Internet Explorer is a COM component accessible through a 
.NET wrapped type named WebBrowser in the System.Windows.Forms namespace, as are all the base 
controls offered by Windows Forms (assume that types are from this namespace unless otherwise 
specified). 

Now you have to decide what the browser application should look like (see Figure 11-1). The bare 
minimum is a toolbar featuring the address bar and the classic Go button, a status bar with a progress 
bar shown during page loading, and the browser control in the middle of the form. 

 

Figure 11-1. A simple web browser application 

You next configure the elements, starting from the status bar, as shown in the following code. You 
add the progress bar to the status bar and configure both. The Dock property of the status bar is set to 
Bottom, meaning that the status bar should fill the bottom part of the form. The progress bar is resized, 
and then its Style property is set to Marquee, meaning that you don’t want to show any specific 
progress but just something moving during download: 
 
let statusProgress = 
  new ToolStripProgressBar(Size=new Size(200, 16), 
                           Style= ProgressBarStyle.Marquee, 
                           Visible=false) 
let status = new StatusStrip(Dock=DockStyle.Bottom) 
status.Items.Add(statusProgress) |> ignore 
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You can now set up the browser’s toolbar, as shown in the following code. The toolbar should be in 
the top area of the form, so set its Dock property to Top. First add a label, the text box for typing the URL, 
and the button. Then, stretch the address text box and associate an event handler with its KeyPress 
event. This way, you can catch the Enter key and start browsing the typed URL without having to wait 
for the Go button. Finally, configure the Go button by setting its label and associating an event 
handler with the Click event: 
 
let toolbar = new ToolStrip(Dock=DockStyle.Top) 
let address = new ToolStripTextBox(Size=new Size(400, 25)) 
let browser = new WebBrowser(Dock=DockStyle.Fill) 
let go = new ToolStripButton(DisplayStyle=ToolStripItemDisplayStyle.Text, 
                             Text="Go") 
address.KeyPress.Add(fun arg -> 
    if (arg.KeyChar = '\r') then browser.Url <- new Uri(address.Text)) 
go.Click.Add(fun arg -> browser.Url <- new Uri(address.Text)) 
toolbar.Items.Add(new ToolStripLabel("Address:")) |> ignore 
toolbar.Items.Add(address) |> ignore 
toolbar.Items.Add(go) |>ignore 
 

Both event handlers set the Url property of the browser object, causing the WebBrowser control to 
load the given Uri. Notice how nicely and compactly F# lets you specify event handlers. This is 
possible because F# lets you use functions directly as arguments to Add. 

You can now take care of the browser control and set its properties. Here, you tell the browser to 
occupy all of the area in the form left by the toolbar and the status bar, by setting the Dock property to 
Fill. You then subscribe to two events, Navigating and DocumentCompleted, in order to be notified by 
the browser when document loading starts and completes. When the browser begins fetching a URL, 
you show the progress bar in the status bar, setting its Visible property to true. After the document is 
loaded, you hide the progress bar, and you update the address bar so that if the user followed a link, the 
address shown remains consistent with the current document: 
 
browser.Navigating.Add(fun args -> 
    statusProgress.Visible <- true) 
browser.DocumentCompleted.Add(fun args -> 
    statusProgress.Visible <- false; 
    address.Text <- browser.Url.AbsoluteUri) 
 

You’re almost finished with the interface. You have to tell Windows Forms that the controls are 
contained in the form form. Then, configure the form by setting its caption with the Text property and 
its size with the Size property. You call PerformLayout to update the current layout of the form, and 
then you can call Show to display the browser: 
 

let form = new Form(Text="Web Browser", Size=new Size(800, 600)) 
form.Controls.Add(browser) 
form.Controls.Add(toolbar) 
form.Controls.Add(status) 
form.PerformLayout() 
form.Show() 
 

To compile the application rather than execute it interactively, add the following at the end, as 
mentioned previously: 
 

Application.Run(form) 
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Watch the Application Grow 

You can see the form growing interactively using fsi.exe. Usually, applications first configure forms and 
controls and then call Show to present the user with a form that’s ready to use. It’s also useful to set the 
properties TopMost=true and Visible=true. The properties of a form can also be set after the form is 
visible, allowing you to see the effects of each operation on it. F# Interactive offers the unique opportunity 
to watch the form growing interactively; you can, for instance, build the interface of the simple web 
browser by showing the form immediately and then proceed to add controls and set their properties. Thus, 
you can experiment with the various properties of controls and see how they affect the interface. 

What have you learned by developing this application? It’s clear that building interfaces based on 
controls requires a significant amount of code to configure controls by setting their properties. The 
form’s layout is also set by defining properties of controls, as you did in the browser. Moreover, an ever-
increasing list of controls is available, and each provides a large number of properties. F# syntax 
supports this process by letting you set initial values for control properties within the call to the control 
constructor, and adding functions as event handlers, leading to very compact programs that are easier to 
understand. 

Control Layout 

The layout of controls, done either by hand or through a visual editor, defines how a form looks when 
opened. Users expect that the layout will adapt gracefully to form resizing. One simple approach to the 
problem is to forbid the operation, as is done in many dialog boxes; a better solution is to define how 
controls must adapt their positions and sizes as the form changes size. 

Windows Forms has two ways to indicate how a control should adapt when the size of its container 
changes. You can use the property Dock to dock the control to one of the four edges or to the center of the 
container (as shown in Figure 11-2). Docking to the edges constrains the control to be always attached to 
one of them, and either its width or its height should change in order to ensure that the whole edge is filled 
with it (as shown in Figure 11-2, horizontal edges have precedence over vertical ones). When docked to 
the middle, a control is resized to fill the area of the container left by the control docked to the edges. 
Docking is a flexible way to define layouts that adapt to size changes of the interface. If the five areas 
defined by this strategy aren’t enough, you can rely on logical containers such as panels: a panel 
represents a group of controls with a given layout. Using panels, you can nest layouts and use docking on 
a panel docked in the surrounding container. 

An alternative to docking is anchoring. Through the property Anchor, you can dictate that the distance 
between an edge of the control and the corresponding edge of the container should be constant. This 
gives you finer control over how the component should be resized or moved. When a control is anchored 
only to a horizontal and vertical edge (for instance Top and Left), its size doesn’t change: only the 
position is preserved. 

Although docking and anchoring are useful for controlling how the control must be adapted to the 
interface, sometimes these strategies aren’t enough to address the needs of a complex layout. The WPF 
adopts a more articulated notion of extensible layout management based on the notion of a layout manager 
(a similar notion has always been present in the Java AWT and in HTML). 
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Visual designers are graphical applications that allow you to design interfaces using a visual 
metaphor. Controls are dragged and dropped onto forms and then configured through a property 
window. Visual Studio provides a visual designer, although it isn’t available for all programming 
languages. The F# project system doesn’t feature visual design of GUIs within Visual Studio for 
Windows Forms or for WPF frameworks. However, using the Visual Studio designer is still a useful way 
to explore controls and to play with their properties, and the generated C# fragments can be examined 
and used in F# code. To understand how the Visual Studio designer works, let’s design the same 
browser application in C#, as shown in Figure 11-2. The Visual Studio designer generates, for the form 
Browser, a C# file named Browser.Designer.cs containing all the C# code required to set up the 
interface. If you look at that file, you can see that it contains mainly the assignments of control 
properties similar to those you manually used to prepare the browser form. 

 

Figure 11-2. The Visual Studio form designer  

Until the Windows Forms designer or another visual designer is available for F#, you have 
essentially four options for building graphical interfaces in the language: 

• Write the interface code by hand, as you did for the browser sample. 

• Develop a visual designer that outputs F# code (although it’s a hard job), and use it. 

• Use the C# visual designer, and then convert the assignments in 
file.Designer.cs into F#. 
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• Exploit the interoperability of the .NET platform by designing the interface with 
the designer, generating C# or another supported language and using the F# 
code as a library. 

You can easily define simple interfaces with F# code, and the rest of this chapter shows you how. 
You now focus on the more important part of designing graphical applications: drawing and control 
development. 

Drawing Applications 
So far, you’ve developed graphical applications based on the composition of predeveloped graphical 
controls; but what do you do if no graphical control suits your needs? You need to learn how to draw 
using the drawing primitives provided by the graphical system. 

To understand how drawing works, you need to review the model behind the rendering process of 
a graphical application. This model really distinguishes Windows Forms from WPF; later, this chapter 
reviews the traditional paint-based model that still dominates the presentation systems panorama. 
You know already that the event-driven programming paradigm best suits graphical applications; so 
far, you’ve associated event handlers with user actions, but events are used by the graphical system as 
a general mechanism to communicate with the graphical application. 

An application uses resources provided by the graphical system, and these resources are mostly 
windows. A window is a rectangular area on the screen, not necessarily a top-level window with 
buttons, a title bar, and all the amenities you usually associate with it. Windows can be nested and are 
the unit of traditional windowing systems. Windows can contain other windows, and the windowing 
system is responsible for ensuring that events are routed to the callbacks registered for handling the 
events for each window. 

Windows are allowed to draw in their own client area, and the drawing is performed through the 
device context, an object provided by the graphical system and used to perform the graphic primitives to 
draw the content. The graphic primitives issued to the graphics system aren’t retained by it; therefore, 
when the window is covered for some reason, the portion that becomes hidden must be repainted 
when it’s uncovered. Because the information required to redraw the hidden portion is held by the 
application owning the window, the graphical system sends a paint message to the window. 

To better understand the drawing model, consider a simple graphical application that shows how 
to draw a curved line using the Bézier curve and canonical splines, given four control points. Start by 
opening your namespaces and telling Windows Forms that your form can use the XP/Vista look rather 
than the classic Windows 95 style; also set a global flag to tell standard controls to use the new GDI+ 
text-rendering primitives rather than those of the traditional GDI (this code is omitted from now on, 
but remember to use it later; also remember that this must be done before windows are created—
otherwise, an exception is thrown): 
 

open System 
open System.Drawing 
open System.Windows.Forms 
 
Application.EnableVisualStyles() 
Application.SetCompatibleTextRenderingDefault(false) 
 

You next create the form and define the initial values of the control points. The movingPoint 
variable keeps track of the point the user is dragging, to adjust the curve: 
 

let form = new Form(Text="Curves") 
let cpt = [| Point(20, 60); Point(40, 50); Point(130, 60); Point(200, 200) |] 
let mutable movingPoint = -1 
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Let’s introduce three menus to configure the application. They’re used to check features to be 
drawn: 
 
let newMenu (s:string) = new ToolStripMenuItem(s,Checked=true,CheckOnClick=true) 
let menuBezier = newMenu "Show &Bézier" 
let menuCanonical = newMenu "Show &Canonical spline" 
let menuControlPoints = newMenu "Show control &points" 
 

You use a scrollbar to define different values for the tension parameter of the canonical spline curve: 
 
let scrollbar = new VScrollBar(Dock=DockStyle.Right, LargeChange=2, Maximum=10) 
 

Control points are drawn if required, and an ellipse is used to mark them. The function receives 
the device context in the form of a Graphics object; you draw the ellipse by invoking the DrawEllipse 
primitive on it. You use a Pen to draw the ellipse—in this case, a red pen: 
 
let drawPoint (g:Graphics) (p:Point) = 
    g.DrawEllipse(Pens.Red, p.X - 2, p.Y - 2, 4, 4) 

Brushes and Pens 

Windows Forms uses two kinds of objects to define colored primitives: brushes and pens. A brush is used 
to fill an area with a given pattern. A number of different patterns are available; solid colors are provided by 
the SolidBrush class, hatched patterns are provided by HatchBrush, gradients are provided by 
LinearGradientBrush and PathGradientBrush, and textured gradients are provided by 
TextureBrush. The Brushes class provides a number of static brush objects describing solid colors. 

Pens are brushes with a contour. The line drawn by a pen has a filling (the brush part) but also a width and 
different styles (dashed or not, with different caps at the beginning and at the end). The Pens class 
provides a number of static pen objects with the basic solid colors. 

Both pen and brush objects contain resources of the graphical system; it’s important to dispose of them as 
soon as they aren’t required anymore. A use binding or the using function discussed in Chapters 4 and 8 
helps ensure that you don’t forget to call the Dispose method that all these objects provide from the 
IDisposable interface that otherwise should be called explicitly. 

You’re now ready to define the function responsible for drawing in your window. You can’t 
assume anything about the current state of the window; thus, the paint function always draws the 
visible primitives1 depending on the state of menu entries: 
 

let paint (g:Graphics) = 
    if (menuBezier.Checked) then 
        g.DrawLine(Pens.Red, cpt.[0], cpt.[1]) 
        g.DrawLine(Pens.Red, cpt.[2], cpt.[3]) 
        g.DrawBeziers(Pens.Black, cpt) 
    if (menuCanonical.Checked) then 

                                                   
1 If primitives fall out of the area allowed for drawing, they’re clipped in part or entirely. 
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        g.DrawCurve(Pens.Blue, cpt, float32 scrollbar.Value) 
    if (menuControlPoints.Checked) then 
        for i = 0 to cpt.Length - 1 do 
            drawPoint g cpt.[i] 
 

Figure 11-3 shows the result of the drawing all the elements. The Bézier curve, widely used in 
image-processing and vector applications, uses the four control points to define the start and end 
points of the curve and the two segments tangent to the curve at its ends. The cubic parametric curve is 
calculated from these points and produces the lines shown in Figure 11-3. The canonical spline, on the 
other hand, is a curve that traverses all the control points; the tension parameter controls how curvy 
the curve is. 

 

Figure 11-3. Output of the Curves application 

You now want to allow users to move control points by dragging and dropping. You’re interested 
in mouse events, in particular when the mouse button is pressed, when it moves, and when the button 
is released. Thanks to the well-defined model for rendering the application, you can update the state 
of your variables and ask the graphical system to issue a paint message that causes the window to 
receive a paint message and update the current frame. 
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Background Painting 

In the Curves application, you draw assuming that the window is clean—but who is responsible for 
clearing the previous drawing in the window? Windows Forms calls the OnPaintBackground method 
before calling the paint handler, and this method by default clears the area with the color returned by the 
BackColor property. When the function responsible for painting draws the area entirely, painting the 
background could be useless and even problematic: the quick repaint may flicker because the eye can 
perceive the background clear and then the drawing of the current frame. You can use the SetStyle 
method of the Form class to configure the application to do all the paint operations in the handler of the 
paint event, and you can override OnPaintBackground to an empty method to avoid this effect. 

You define a helper function to define a circular area around a point that is sensible to your 
interaction. This is required in order to not require the user to pick the exact pixel corresponding to the 
control point: 
 
let isClose (p:Point) (l:Point) = 
    let dx = p.X - l.X 
    let dy = p.Y - l.Y 
    (dx * dx + dy * dy) < 6 
 

When the mouse button is pressed, you check whether the click is over any control point. In this 
case, you store its index in the movingPoint variable; otherwise, the event is ignored: 

 
let mouseDown (p:Point) = 
    try 
      let idx = cpt |> Array.findIndex (isClose p) 
      movingPoint <- idx 
    with _ -> () 
 

When the mouse moves over the client area of the window, the mouse move event is generated. If 
the movingPoint member has a value other than –1, you have to update the corresponding control 
point with the current position of the mouse defined by the variable p: 
 
let mouseMove (p:Point) = 
    if (movingPoint <> -1) then 
        cpt.[movingPoint] <- p 
        form.Invalidate() 
 

You next define for the window a File menu and a Settings submenu. The first features the classic 
Exit option, and the second shows the three checked menu items that control what the paint method 
should draw. You define menus by composing objects that correspond to the various menu entries. You 
also define the event handlers associated with each menu item. When Exit is clicked, the form is 
disposed. In all the other cases, you rely on the menu item’s ability to change its checked state, and you 
invalidate the form content to force the redraw of the window: 
 
let setupMenu () = 
    let menu = new MenuStrip() 
    let fileMenuItem = new ToolStripMenuItem("&File") 
    let settMenuItem = new ToolStripMenuItem("&Settings") 
    let exitMenuItem = new ToolStripMenuItem("&Exit") 
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    menu.Items.Add(fileMenuItem) |> ignore 
    menu.Items.Add(settMenuItem) |> ignore 
    fileMenuItem.DropDownItems.Add(exitMenuItem) |> ignore 
    settMenuItem.DropDownItems.Add(menuBezier) |> ignore 
    settMenuItem.DropDownItems.Add(menuCanonical) |> ignore 
    settMenuItem.DropDownItems.Add(menuControlPoints) |> ignore 
    exitMenuItem.Click.Add(fun _ -> form.Close ()) 
    menuBezier.Click.Add(fun _ -> form.Invalidate()) 
    menuCanonical.Click.Add(fun _ -> form.Invalidate()) 
    menuControlPoints.Click.Add(fun _ -> form.Invalidate()) 
    menu 
 

You’re now ready to use the functions you defined to configure the controls. You set up the 
scrollbar and register the controls in the form and the event handlers for the various events. Finally, 
you start the application’s event loop and play with it: 
 
scrollbar.ValueChanged.Add(fun _ -> form.Invalidate()) 
form.Controls.Add(scrollbar) 
form.MainMenuStrip <- setupMenu() 
form.Controls.Add(form.MainMenuStrip) 
form.Paint.Add(fun e -> paint(e.Graphics)) 
form.MouseDown.Add(fun e -> mouseDown(e.Location)) 
form.MouseMove.Add(fun e -> mouseMove(e.Location)) 
form.MouseUp.Add(fun e -> movingPoint <- -1) 
form.Show() 
 

If you’re not using F# Interactive, don’t forget to add the following: 
 
[<STAThread>] 
do Application.Run(form) 

Writing Your Own Controls 
The Curves example from the previous section draws inside a form by handling events. This is a rare 
way to draw things in graphical applications, because the resulting code is scarcely reusable, and 
drawing on the surface of a form raises issues when additional controls have to be placed in its client 
area. 

User controls are the abstraction provided by the Windows Forms framework to program custom 
controls. If delegation is used to handle events generated from controls, inheritance and method 
overriding are the tools used to handle them in controls. 

Developing a Custom Control 
To make this discussion concrete, consider a control that implements a simple button. You can use the 
control from C# inside the Visual Studio designer like the native button, as shown in Figure 11-4. 
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Figure 11-4. The F# button control used in a C# application and the Visual Studio designer 

You start your control by inheriting from the UserControl class:2 
 
open System 
open System.Drawing 
open System.Windows.Forms 
open System.ComponentModel 
 
type OwnerDrawButton() = 
        inherit UserControl() 
 

You then define the state of the control in terms of the class’s fields: 
 
        let mutable text = "" 
        let mutable pressed = false 

                                                   
2 Note that this example hasn’t been designed to be entered using F# Interactive. 
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The text field contains the button’s label. As you did for the movingPoint variable in the Curves 
example, the pressed field is responsible for remembering whether the button is currently pressed, 
allowing the paint handler to behave appropriately. You override the OnPaint method to handle the 
paint event. You allocate the pens and the brush required to draw and invert the role of the border 
colors in order to achieve the raised effect when the button isn’t pressed and the depressed look 
otherwise. You also measure the size of the label string, because you’re interested in drawing the 
string in the center of the button. You can then draw the lines on the borders, playing with colors to 
obtain a 3D effect. The pens and brushes are disposed at the end of the function: 
 
        override x.OnPaint (e:PaintEventArgs) = 
            let g = e.Graphics 
            use pll = new Pen(SystemColors.ControlLightLight) 
            use pl = new Pen(SystemColors.ControlLight) 
            use pd = new Pen(SystemColors.ControlDark) 
            use pdd = new Pen(SystemColors.ControlDarkDark) 
            use bfg = new SolidBrush(x.ForeColor) 
            let szf = g.MeasureString(text, x.Font) 
            let spt = PointF((float32(x.Width) - szf.Width) / 2.0f, 
                             (float32(x.Height) - szf.Height) / 2.0f) 
            let ptt = if pressed then pdd else pll 
            let pt = if pressed then pd else pl 
            let pb = if pressed then pl else pd 
            let pbb = if pressed then pll else pdd 
 
            g.Clear(SystemColors.Control) 
            g.DrawLine(ptt, 0, 0, x.Width - 1, 0) 
            g.DrawLine(ptt, 0, 0, 0, x.Height - 1) 
            g.DrawLine(pt, 1, 1, x.Width - 2, 1) 
            g.DrawLine(pt, 1, 1, 1, x.Height - 2) 
            g.DrawLine(pbb, 0, x.Height - 1, x.Width - 1, x.Height - 1) 
            g.DrawLine(pbb, x.Width - 1, 0, x.Width - 1, x.Height - 1) 
            g.DrawLine(pb, 1, x.Height - 2, x.Width - 2, x.Height - 2) 
            g.DrawLine(pb, x.Width - 2, 1, x.Width - 2, x.Height - 2) 
            g.DrawString(text, x.Font, bfg, spt) 
 

It’s important to note the use of the colors defined in the SystemColors class: you use the system 
definition of colors so that the button uses the colors set by the user as display settings. Configuration 
is an important aspect of a user control, because it’s normally performed through a visual editor such 
as Visual Studio. Well-defined controls are those that can be highly customized without having to 
extend the control programmatically or, even worse, to change its source code. 

Now that you’ve defined the drawing procedure, you can define the behavior of the control by 
handling mouse events. You restrict the implementation to mouse events, although a key event 
handler should be provided in order to react to a press of the Enter key: 
 
        override x.OnMouseUp (e:MouseEventArgs) = 
            pressed <- false 
            x.Invalidate() 
            fireClick() 
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        override x.OnMouseDown (e:MouseEventArgs) = 
            pressed <- true 
            x.Invalidate() 
 

The OnMouseDown event sets the pressed member and asks the control to repaint by invalidating 
its content. When the mouse is released, the OnMouseUp is called, and you reset the flag and ask for 
repaint. 

Controls are usually configured through the assignment of properties. If you annotate a property 
with an attribute of type Category and one of type Browsable, the property is displayed by Visual 
Studio in the control property box. To show this, you define the Text property, which exposes the 
button’s label to users of the control: 
 
        [<Category("Behavior")>] 
        [<Browsable(true)>] 
        override x.Text 
            with get() = text 
            and  set(t:string) = text <- t; x.Invalidate() 
 

You’re now ready to test your new control by writing a few lines of F# code as follows: 
 
let form = new Form(Visible=true) 
let c = new OwnerDrawButton(Text="Hello button") 
 
c.Click.Add(fun _ -> MessageBox.Show("Clicked!") |> ignore) 
form.Controls.Add(c) 
 

To see your control at work in the Visual Studio designer, you must create a Windows Forms 
application C# project. With the default form created by the application wizard opened, right-click the 
Toolbox window and select the Choose Items option; then, browse for the OwnerDrawButton.dll file 
obtained by compiling the F# control. Now you can visually drag your F# control into the form and 
configure its properties using the Properties window. 

Custom controls are seen as black-box objects by applications hosting them. Several hacks are 
possible to handle the behavior of controls from outside (subclassing is often used on Windows), but 
none of them are really satisfactory. Later, this chapter discusses how this constraint is overcome by 
the retention-based rendering process featured by the WPF. 

Anatomy of a Control 
As illustrated by the OwnerDrawButton control example, the structure of a graphic control tends to 
assume the form of a finite state automaton. Events received by the control make the automaton 
change its internal state, usually causing an update of its actual display. 

A well-known model that describes this structure is the Model-View-Controller design pattern. As 
shown in Figure 11-5, the model organizes a graphical element (either an application or a single 
control) into three parts: the model, the view, and the controller. 
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Figure 11-5. The structure of the Model-View-Controller design pattern 

The model constitutes the internal representation of the information displayed by the control. A 
word processor, for instance, stores a document in memory as part of the model, even though the 
entire text doesn’t fit the current visible area. In your simple button, the model is defined by the 
pressed and text values. 

When the model changes, the view must be updated, and a rendering of the information kept in 
memory should be performed. Usually, the paint method corresponds to the view portion of the control. 
Event handlers triggered by the user form the controller of the control. The controller defines how 
these elements affect the model. 

The Model-View-Controller pattern isn’t the only model developed to describe graphical 
interfaces. However, it captures the intrinsic nature of the problem, providing a good framework for 
classifying the elements of an interface or a control. The rest of this chapter refers to this pattern to 
indicate the various elements of the applications you learn how to develop. 

Displaying Samples from Sensors 
Now that you have reviewed the essential concepts behind programming graphical interfaces, you’re 
ready to work on some applications. They’re full of details typical of real graphical applications. This 
section presents a graphic control whose purpose is to plot samples acquired over time—for instance, 
from a sensor. The control has been designed to be reusable and highly configurable, providing a rich 
set of properties that can be set even at runtime by the application hosting it, as shown in Figure 11-6. 
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Figure 11-6. The GraphControl used in a test application that lets the user to change its appearance at 

runtime 

The basic function of the control is to receive and store samples labeled with time. If c is the 
variable that refers to an instance of the control, the application feeds data through an AddSample 
method that adds a new sample to the data set, causing the control to update the displayed chart: 
 
c.AddSample(t, v) 
 

The next section shows how to define the control and the AddSample method. 
Despite the simple interface provided by GraphControl to update the data set, the control isn’t 

easy to implement, because it must hold a large number of samples and provide a means to navigate 
through a view that doesn’t fit all the samples. Another area important to controls is configuration: 
users of the control want to customize its appearance to fit the needs of their application. To support 
these needs, you must adopt the coding conventions required to integrate the control in the Windows 
Forms framework so that it integrates with all the tools used to design applications. 
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Building the GraphControl: The Model 
According to the Model-View-Controller paradigm, you first define the control’s model, which should 
contain all the information needed to draw the control when required. You first define the type of a 
sample: 
 
type Sample = { Time : int64; Value : float32 } 
 

Samples are pairs (t, v), with t being the time at which the sample v has been read. Samples are 
collected in a data structure named DataSamples, whose purpose is to provide a uniform view of data; 
the class definition is reported in Listing 11-1. You assume that the data set is always small enough to 
stay in memory; this limitation can be overcome in the future by changing this class. Samples are 
collected into a ResizeArray and kept in the field named data. You also use a form of run-length-
encoding (RLE) compression to optimize memory usage, and you use linear interpolation to make data 
appear continuous in order to simplify the implementation of the zoom feature. Because not all the 
samples are recorded, the count field is used to keep track of the number of added samples. 

The AddSample method is used to add a new sample to the data set. It assumes that data comes 
sorted with respect to time; if a sample preceding the last added is detected, it’s discarded. The Last 
property returns the last-added sample; you may have discarded it because it’s equal to the previous, so 
you rebuild the sample using the lastTime field that records the time value of the last sample added. 

Interpolation is done by the GetValue method, which given a time value calculates the 
corresponding value. The list of samples is searched using a binary search. If a sample matches the 
given time, it’s returned; otherwise, the interpolation is performed. 

The last operation implemented by DataSamples is FindMinMax, which is a method that computes 
the minimum and maximum values of the data in a given interval. You can initialize the values for 
minimum and maximum, as well as a stride to use to do the search. The stride is useful in conjunction 
with zoom, because the number of samples that can be displayed is finite and the rendering procedure 
must subsample when zooming out. 

Listing 11-1. The DataSamples Class Definition 

open System 
 
type Sample = { Time : int64; Value : float32 } 
 
type DataSamples() = 
    let data = new ResizeArray<Sample>() 
    let mutable count = 0 
    let mutable lastTime = 0L 
 
    member x.Last = { Time=lastTime; Value=data.[data.Count - 1].Value } 
 
    member x.AddSample(t,v) = 
        let s = { Time=t; Value=v } 
        let last = if (data.Count = 0) then s else x.Last 
 
        count <- count + 1 
        lastTime <- max last.Time s.Time 
        if data.Count = 0 then data.Add(s) 
 
        elif last.Time < s.Time && last.Value <> s.Value then 
            if data.[data.Count-1].Time <> last.Time then data.Add(last) 
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            data.Add(s) 
 
    member x.Count = count 
 
    // The model is continuous: missing samples are obtained by interpolation 
    member x.GetValue(time:int64) = 
 
        // Find the relevant point via a binary search 
        let rec search (lo, hi) = 
            let mid = (lo + hi) / 2 
            if hi - lo <= 1 then (lo, hi) 
            elif data.[mid].Time = time then (mid, mid) 
            elif data.[mid].Time < time then search (mid, hi) 
            else search (lo, mid) 
 
        if (data.Count = 0) then failwith "No data samples" 
 
        if (lastTime < time) then failwith "Wrong time!" 
 
        let lo,hi = search (0, data.Count - 1) 
 
        if (data.[lo].Time = time || hi = lo) then data.[lo].Value 
        elif (data.[hi].Time = time) then data.[hi].Value 
        else 
            // interpolate 
            let p = if data.[hi].Time < time then hi else lo 
            let next = data.[min (p+1) (data.Count-1)] 
            let curr = data.[p] 
            let spant = next.Time - curr.Time 
            let spanv = next.Value - curr.Value 
            curr.Value + float32(time-curr.Time) *(spanv/float32 spant) 
 
    // This method finds the minimum and the maximum values given 
    // a sampling frequency and an interval of time 
    member x.FindMinMax(sampleFreq:int64, start:int64, finish:int64, 
                        minval:float32, maxval:float32) = 
 
 
        if (data.Count = 0) then (minval, maxval) else 
        let start = max start 0L 
        let finish = min finish lastTime 
 
        let minv,maxv = 
            seq { start .. sampleFreq .. finish } 
            |> Seq.map x.GetValue 
            |> Seq.fold (fun (minv,maxv) v -> (min v minv,max v maxv)) 
                        (minval,maxval) 
 
        if (minv = maxv) then 
            let delta = if (minv = 0.0f) then 0.01f else 0.01f * abs minv 
            (minv - delta, maxv + delta) 
        else (minv, maxv) 
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Building the GraphControl: Style Properties and Controller 
Listing 11-2 shows the code for the GraphControl class except the OnPaint drawing method, shown in the 
next section. This control exhibits the typical structure of a graphic control; it features a large number of 
constants and fields that serve configuration purposes. The class inherits from UserControl, which is the 
base class of Windows Forms controls, and it contains a field named data of type DataSamples that 
represents the data shown by the control. The appearance is controlled through properties, fields, and 
constant values; for instance, the axis color is controlled by the following pattern: 
 
let mutable axisColor:Color = Color.White 
[<Category("Graph Style"); Browsable(true)>] 
member x.AxisColor 
    with get() = x.axisColor 
    and set(v:Color) = x.axisColor <- v; x.Invalidate() 
 

The AxisColor property lets the control’s host change the color of the axis color displayed by the 
control, because properties are part of the controller of the control; thus, when the setter is invoked, you 
call the Invalidate method to ensure that a paint message is sent to the control so the view is updated. 
Note that a fully fledged control might read defaults from a store of user-specific configuration properties. 

Listing 11-2. The GraphControl Class 

open System 
open System.Drawing 
open System.Drawing.Drawing2D 
open System.Windows.Forms 
open System.ComponentModel 
 
type GraphControl() as x  = 
    inherit UserControl() 
 
    let data = new DataSamples() 
    let mutable minVisibleValue = Single.MaxValue 
    let mutable maxVisibleValue = Single.MinValue 
    let mutable absMax          = Single.MinValue 
    let mutable absMin          = Single.MaxValue 
    let mutable lastMin         = minVisibleValue 
    let mutable lastMax         = maxVisibleValue 
    let mutable axisColor       = Color.White 
    let mutable beginColor      = Color.Red 
    let mutable verticalLabelFormat = "{0:F2}" 
    let mutable startTime       = 0L 
    let mutable visibleSamples  = 10 
    let mutable initView = startTime - int64(visibleSamples) 
    let mutable verticalLines     = 0 
    let mutable timeScale = 10000000 // In 100-nanoseconds 
    let mutable timeFormat = "{0:T}" 
 
    let rightBottomMargin = Size(10, 10) 
    let leftTopMargin     = Size(10, 10) 
 
    do 
        x.SetStyle(ControlStyles.AllPaintingInWmPaint, true) 
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        x.SetStyle(ControlStyles.OptimizedDoubleBuffer, true) 
        base.BackColor <- Color.DarkBlue 
 
    [<Category("Graph Style"); Browsable(true)>] 
    member x.AxisColor 
        with get() = axisColor 
        and set(v:Color) = axisColor <- v; x.Invalidate() 
 
    [<Category("Graph Style"); Browsable(true)>] 
    member x.BeginColor 
        with get() = beginColor 
        and set(v:Color) = beginColor <- v; x.Invalidate() 
 
    [<Category("Graph Style"); Browsable(true)>] 
    member x.MinVisibleValue 
        with get() = minVisibleValue 
        and set(v:float32) = minVisibleValue <- v; lastMin <- v; x.Invalidate() 
 
    [<Category("Graph Style"); Browsable(true)>] 
    member x.MaxVisibleValue 
        with get() = maxVisibleValue 
        and set(v:float32) = maxVisibleValue <- v; lastMax <- v; x.Invalidate() 
 
    [<Category("Graph Style"); Browsable(true)>] 
    member x.VerticalLines 
        with get() = verticalLines 
        and set(v:int) = verticalLines <- v; x.Invalidate() 
 
    [<Category("Graph Style"); Browsable(true)>] 
    member x.GraphBackColor 
        with get() = x.BackColor 
        and set(v:Color) = x.BackColor <- v 
 
    [<Category("Graph Style"); Browsable(true)>] 
    member x.LineColor 
        with get() = x.ForeColor 
        and set(v:Color) = x.ForeColor <- v 
 
    [<Category("Graph Style"); Browsable(true)>] 
    member x.VerticalLabelFormat 
        with get() = verticalLabelFormat 
        and set(v:string) = verticalLabelFormat <- v; x.Invalidate() 
 
    [<Category("Graph Style"); Browsable(true)>] 
    member x.StartTime 
        with get() = startTime 
        and set(v:int64) = startTime <- v; x.Invalidate() 
 
    [<Category("Graph Style"); Browsable(true)>] 
    member x.Title 
        with get() = x.Text 
        and set(v:string) = x.Text <- v; x.Invalidate() 
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    [<Category("Graph Style"); Browsable(true)>] 
    member x.VisibleSamples 
        with get() = visibleSamples 
        and set(v:int) = 
            visibleSamples <- v; 
            initView <- startTime - int64(visibleSamples); 
            x.Invalidate() 
 
    [<Category("Graph Style"); Browsable(true)>] 
    member x.TimeScale 
        with get() = timeScale 
        and set(v:int) = timeScale <- v; x.Invalidate() 
 
    [<Category("Graph Style"); Browsable(true)>] 
    member x.TimeFormat 
        with get() = timeFormat 
        and set(v:string) = timeFormat <- v; x.Invalidate() 
 
   // ... Further portions of this class shown further below 
 

Listing 11-3 includes the remaining portions of the GraphControl class corresponding to the 
controller part of the Model-View-Controller paradigm. Samples are added through the AddSample 
method (AddSampleData generates random samples to display inside the control). This method adds 
the sample to the inner DataSamples object and updates the values of two fields meant to store the 
minimum and maximum values recorded for samples; both of these values are used in the display 
process. Because the model of the control changes, you need to update the view, and you invalidate the 
control as you did for properties. 

Overriding vs. Delegation 

Event handling can be performed by both subscribing delegates and overriding methods. The former 
approach is more typical of applications; the latter is more common in control development. Method 
overriding guarantees more control over event handling because it allows a complete redefinition of the 
inherited behavior, whereas with delegation you can only add behavior. 

When an overridden method starts with a call to the method to be overridden in the base class, it’s 
functionally equivalent to using delegation rather than method overriding. It’s traditional, however, to use 
method overriding in the case of control development, to have a uniform notation for event handling. 

Be careful during method overriding, because if the call to the overridden method is omitted, the 
corresponding delegate event isn’t fired: delegate events are invoked by the event handlers of the base 
classes. 

Let’s look at how you handle the mouse-move events and the use of the mouse wheel. When the 
wheel of the mouse is scrolled, the control adjusts the scale factor to zoom in or out of the current view. 
To understand how this method works, you need to know how to decide which portion of the data is 
made available through the view of the control. You use two fields called initView and 
visibleSamples. Because you can’t assume that all the samples fit in the control’s display, the former 
indicates the time (in the time scale of the samples) corresponding to the leftmost visible value, and 
the latter indicates the number of time units in the unit scale of samples that should be visible. 
Zooming is performed by changing the density of time units to be displayed inside the viewport. 
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The last method of Listing 11-3 is GetTime: it converts the time unit of samples in microseconds 
using a scale factor that is one of the configuration properties made available by the control. 

Listing 11-3. Extract of the Controller of the GraphControl Class 

    override x.OnMouseWheel (e:MouseEventArgs) = 
        base.OnMouseWheel(e) 
        x.Zoom(e.Delta) 
 
    override x.OnSizeChanged (e:EventArgs) = 
        base.OnSizeChanged(e) 
        x.Invalidate() 
 
    member x.Zoom (amount:int) = 
        let newVisibleSamples = max 5 (visibleSamples + amount) 
        if (initView - startTime < 0L) then 
            let e = initView + int64(visibleSamples) 
            initView <- startTime - int64(newVisibleSamples) + e 
            visibleSamples <- newVisibleSamples 
            x.Invalidate() 
 
    member x.AddSample (time:int64, value:float32) = 
        if (value < absMin) then absMin <- value 
        if (value > absMax) then absMax <- value 
        if (data.Count > 0) then 
            initView <- initView + time - data.Last.Time 
        data.AddSample(time, value) 
        x.Invalidate() 
 
    member x.GetTime (time:int64) = 
        DateTime(max 0L time * int64(timeScale)) 

Building the GraphControl: The View 
The view of the GraphControl is entirely contained within the OnPaint method, which is invoked 
when the GUI needs to repaint the content of the control or when an invocation of the Invalidate 
method occurs. Listing 11-4 shows the full code for this method. Programming graphical controls can 
get complicated, and often the code is factorized further using functions. 

The OnPaint method begins computing some information such as the rectangles containing the 
string with the values to be displayed. The dimension of a string depends on the font used for display and 
the particular device context used to render it. You rely on the MeasureString method of the Graphics 
object you received from the GUI. You compute the plotBox rectangle, which represents the area where 
you draw the data; it’s obtained by removing from the dimension of the control the margins specified in 
the configuration and the space required by the labels if visible. You later set an appropriate coordinate 
system on the device context so that the drawing primitives render in this new system: 
 
g.TranslateTransform(float32(plotBox.Left), float32(x.Height - plotBox.Top)) 
g.ScaleTransform(1.0f, -1.0f) 
 

You translate the origin of the coordinate system in the lower-left vertex of the margins rectangle. 
You also flip the y axis by setting a scale transform that inverts the direction, multiplying y coordinates by 
–1.0f; in this way, you obtain a coordinate system oriented as in mathematics. Coordinate transformation 
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is supported by Windows Forms on the Graphics object: all the coordinates specified in the drawing 
primitives are affected by a transformation matrix stored in the device context. Once set, a 
transformation of the library takes care of the calculations necessary to rotate, translate, and scale all the 
objects. 

After clearing the background using the Background color property, you draw the various lines 
such as the axes and the labels depending on the configuration settings specified by setting the 
control’s properties. This is the typical structure of a paint method, where the model is tested to decide 
what should be drawn and the style to be used. 

The drawing of the data samples is controlled by the timePerUnit and pixelsPerUnit variables, 
and then the inner recursive function drawSamples selects the visible samples and uses the 
DataSamples object to compute results. You rely on the ability of the DataSamples class to interpolate 
data and not have to deal with discrete samples. 

The core business of the paint method is often simple (having paid attention when you defined the 
model and the controller of the control); it quickly becomes entangled in testing all the configuration 
properties to determine how the control should be rendered. 

Listing 11-4. Drawing the Control 

    override x.OnPaint (e:PaintEventArgs) = 
        let g = e.Graphics 
 
        // A helper function to size up strings 
        let measurestring s = g.MeasureString(s, x.Font) 
 
        // Work out the size of the box to show the values 
        let valBox = 
            let minbox = measurestring (String.Format(verticalLabelFormat, lastMin)) 
            let maxbox = measurestring (String.Format(verticalLabelFormat, lastMax)) 
            let vbw = max minbox.Width maxbox.Width 
            let vbh = max minbox.Height maxbox.Height 
            SizeF(vbw, vbh) 
 
        // Work out the size of the box to show the times 
        let timeBox = 
            let lasttime = x.GetTime(initView + int64(visibleSamples)) 
            let timelbl = String.Format(timeFormat, lasttime) 
            measurestring timelbl 
 
        // Work out the plot area for the graph 
        let plotBox = 
            let ltm = leftTopMargin 
            let rbm = rightBottomMargin 
 
            let ltm,rbm = 
                let ltm = Size(width=max ltm.Width (int(valBox.Width)+5), 
                               height=max ltm.Height (int(valBox.Height/2.0f) + 2)) 
                let rbm = Size(width=rightBottomMargin.Width, 
                               height=max rbm.Height (int(timeBox.Height) + 5)) 
                ltm,rbm 
 
            // Since we invert y axis use Top instead of Bottom and vice versa 
            Rectangle(ltm.Width, rbm.Height, 
                      x.Width - ltm.Width - rbm.Width, 
                      x.Height - ltm.Height - rbm.Height) 
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        // The time interval per visible sample 
        let timePerUnit = 
            let samplew = float32(visibleSamples) / float32(plotBox.Width) 
            max 1.0f samplew 
 
        // The pixel interval per visible sample 
        let pixelsPerUnit = 
            let pixelspan = float32(plotBox.Width) / float32(visibleSamples) 
            max 1.0f pixelspan 
 
        // Compute the range we need to plot 
        let (lo, hi) = data.FindMinMax(int64(timePerUnit), 
                                       initView, 
                                       initView + int64(visibleSamples), 
                                       minVisibleValue, 
                                       maxVisibleValue) 
 
        // Save the range to help with computing sizes next time around 
        lastMin <- lo; lastMax <- hi 
 
        // We use these graphical resources during plotting 
        use linePen  = new Pen(x.ForeColor) 
        use axisPen  = new Pen(axisColor) 
        use beginPen = new Pen(beginColor) 
        use gridPen  = new Pen(Color.FromArgb(127, axisColor), 
                               DashStyle=DashStyle.Dash) 
        use fontColor = new SolidBrush(axisColor) 
 
        // Draw the title 
        if (x.Text <> null && x.Text <> string.Empty) then 
 
            let sz = measurestring x.Text 
            let mw = (float32(plotBox.Width) - sz.Width) / 2.0f 
            let tm = float32(plotBox.Bottom - plotBox.Height) 
 
            let p = PointF(float32(plotBox.Left) + mw, tm) 
            g.DrawString(x.Text, x.Font, new SolidBrush(x.ForeColor), p) 
 
        // Draw the labels 
        let nly = int((float32(plotBox.Height) /valBox.Height) / 3.0f) 
        let nlx = int((float32(plotBox.Width) / timeBox.Width) / 3.0f) 
        let pxly = plotBox.Height / max nly 1 
        let pxlx = plotBox.Width / max nlx 1 
        let dvy = (hi - lo) / float32(nly) 
        let dvx = float32(visibleSamples) / float32(nlx) 
        let drawString (s:string) (xp:float32) (yp:float32) = 
            g.DrawString(s,x.Font,fontColor,xp,yp) 
 
        // Draw the value (y) labels 
        for i = 0 to nly do 
          let liney = i * pxly + int(valBox.Height / 2.0f) + 2 
          let lblfmt = verticalLabelFormat 
          let posy = float32(x.Height - plotBox.Top - i * pxly) 
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          let label = String.Format(lblfmt, float32(i) * dvy + lo) 
          drawString label (float32(plotBox.Left) - valBox.Width) 
                           (posy - valBox.Height / 2.0f) 
 
          if (i = 0 ||((i > 0) && (i < nly))) then 
            g.DrawLine(gridPen, plotBox.Left,liney,plotBox.Right, liney) 
 
        // Draw the time (x) labels 
        for i = 0 to nlx do 
          let linex = i * pxlx + int(timeBox.Width / 2.0f) + 2 
          let time = int64(float32(i) * dvx + float32(initView)) 
          let label = String.Format(timeFormat, x.GetTime(time)) 
 
          if (time > 0L) then 
            drawString label 
                 (float32(plotBox.Left + i * pxlx) + timeBox.Width / 2.0f) 
                 (float32(x.Height - plotBox.Top + 2)) 
 
        // Set a transform on the graphics state to make drawing in the 
        // plotBox simpler 
        g.TranslateTransform(float32(plotBox.Left), 
                              float32(x.Height - plotBox.Top)); 
        g.ScaleTransform(1.0f, -1.0f); 
 
        // Draw the plotBox of the plot area 
        g.DrawLine(axisPen, 0, 0, 0, plotBox.Height) 
        g.DrawLine(axisPen, 0, 0, plotBox.Width, 0) 
        g.DrawLine(axisPen, plotBox.Width, 0, plotBox.Width, plotBox.Height) 
        g.DrawLine(axisPen, 0, plotBox.Height, plotBox.Width, plotBox.Height) 
 
 
        // Draw the vertical lines in the plotBox 
        let px = plotBox.Width / (verticalLines + 1) 
        for i = 1 to verticalLines do 
            g.DrawLine(gridPen, i*px, 0, i*px, plotBox.Height) 
 
        // Draw the 'begin' marker that shows where data begins 
        if (initView - startTime <= 0L) then 
            let off = float32(Math.Abs(x.StartTime - initView)) 
            let sx = int((off/timePerUnit) * pixelsPerUnit) 
            g.DrawLine(beginPen, sx, 0, sx, plotBox.Height) 
 
        // Draw the 'zero' horizontal line if it's visible 
        if (hi <> lo && lo < 0.0f) then 
            let sy = int((float32(plotBox.Height)/(hi - lo))*(0.0f - lo)) 
            g.DrawLine(axisPen, 0, sy, plotBox.Width, sy) 
 
        // Draw the visible data samples 
        let rec drawSamples i pos = 
            if (i < (float32(plotBox.Width) / pixelsPerUnit) && 
                pos <= (initView + int64 visibleSamples - int64 timePerUnit)) then 
 
                if (pos >= 0L) then 
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                    let dh = float32(plotBox.Height) / (hi - lo) 
                    let sx = int(pixelsPerUnit * i) 
                    let dx = int(pixelsPerUnit * (i + 1.0f)) 
                    let sy = int(dh * (data.GetValue(pos) - lo)) 
                    let dy = int(dh * (data.GetValue(pos + int64 timePerUnit) - lo)) 
                    g.DrawLine(linePen, sx, sy, dx, dy); 
 
                drawSamples (i + 1.0f) (pos + int64 timePerUnit) 
 
        drawSamples 0.0f initView 

Double Buffering 

Flickering is a very annoying phenomenon of graphical applications. It happens when two updates of a 
graphical element are interleaved by a refresh of its background. The graphic adapter sends the video 
signal to the display, reading bytes from video memory at a given frequency that is different than the 
update frequency of the paint message. 

Flickering happens during animations when a pixel is cleared with the background color and then with the 
desired one. The graphic adapter may display the pixel before the update, making it blink. A standard 
technique to avoid this phenomenon is known as double buffering: it consists of performing the drawing 
primitives into a bitmap offscreen; then, when the entire drawing is finished, the bitmap is drawn. 

You can easily implement double buffering explicitly, although modern frameworks provide support for it. 
The example uses the SetStyle method inherited from UserControl to enable implicit support for 
double buffering. If you comment the two invocations to that method, you see flickering in action. 

Putting It Together 
The following code uses the control that defines the application shown in Figure 11-6: 
 
let form = new Form(Text="Chart test",Size=Size(800, 600),Visible=true,TopMost=true) 
let graph = new GraphControl(VisibleSamples=60, Dock=DockStyle.Fill) 
let properties = new PropertyGrid(Dock=DockStyle.Fill) 
let timer = new Timer(Interval=200) 
let container = new SplitContainer(Dock=DockStyle.Fill, SplitterDistance=350) 
 
// We use a split container to divide the area into two parts 
container.Panel1.Controls.Add(graph) 
container.Panel2.Controls.Add(properties) 
 
 
// Configure the property grid to display only properties in the 
// category "Graph Style" 
properties.SelectedObject <- graph 
let graphStyleCat = (CategoryAttribute("Graph Style") :> Attribute) 
properties.BrowsableAttributes <- AttributeCollection([| graphStyleCat |]) 
form.Controls.Add(container) 
let rnd = new Random() 
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let time = ref 0 
// A timer is used to simulate incoming data 
timer.Tick.Add(fun _ -> 
    incr time 
    let v = 48.0 + 2.0 * rnd.NextDouble() 
    graph.AddSample(int64(!time),float32(v))) 
timer.Start() 
form.Disposed.Add(fun _ -> timer.Stop()) 
 

The form uses a SplitContainer control to define two areas, one for GraphControl and the other 
for a PropertyGrid control. A timer object is used to add samples periodically, and you use the 
AddSample method to add random samples to the control. 

The PropertyGrid Control 

PropertyGrid is a graphic control that lets you inspect object properties at runtime and change them, 
as shown in the right side of the window in Figure 11-6. You set the SelectedObject property to 
indicate the control to display, in this case the GraphControl. 

PropertyGrid uses the reflection abilities of the Common Language Runtime to dynamically inspect the 
object and generate the visual grid. By default, the control displays the properties of the given object 
annotated using the BrowsableAttribute custom attribute. You set the BrowsableAttributes property 
to indicate you’re interested in displaying only the properties annotated as [<Category("Graph 
Style")>]. 

Not all types can be edited from the PropertyGrid, although the control can deal with many. A property 
of type Color, for instance, causes the grid to display the preview of the color and lets you define the 
value several ways, including the Color Chooser dialog box. 

Creating a Mandelbrot Viewer 
Fractals are one of the diamonds of mathematics. They show the beauty of mathematical structures 
visually, which allows non-experts to see something that is often hidden by formulas that few really 
appreciate. The Mandelbrot set is one of the most famous fractals. This section shows how to develop 
an application to browse this set. The result is shown in Figure 11-7. 

This application adopts the delegation programming style, subscribing to events rather than using 
inheritance to override the behavior of a component. This allows you to develop the application 
interactively using fsi.exe. This is a good example of how effectively you can use F# to develop an 
application interactively while retaining the performance of a compiled language, which is extremely 
important in such CPU-intensive tasks as computing the points of the Mandelbrot set. 
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Figure 11-7. The Mandelbrot viewer in action 

Computing Mandelbrot 
First you need to be familiar with the math required to generate the Mandelbrot set. The set is defined 
over the set of complex numbers, which is an extension of the real numbers, allowing computation of 
square roots over negative numbers. A complex number has the following form, where a and b are real 
numbers and i is the imaginary unit (by definition, i2 = –1): 
 
c = a + bi 
 

Using standard algebraic calculations, you can define the sum and product of these numbers: 
 
c1+c2 = (a1+a2) + i(b1+b2) 
c1·c2 = (a1·a2 – b1·b2) + i(a1·b2 + a2·b1) 
 

Because you have two components in the definition of the number, you can graphically represent 
complex numbers using a plane. 
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This Mandelbrot viewer shows a portion of the complex plane, where each point in the plane is 
colored according to a relation that defines the Mandelbrot set. The relation is based on the following 
iterative definition: 

 

A complex number belongs to the Mandelbrot set if zn converges for n. You can test each number c 
in the complex plane and decide whether the number belongs to the Mandelbrot set. Because it’s not 
practical to perform an infinite computation to test each number of the complex plane, there is an 
approximation of the test based on a theorem that if the distance of zi from the origin passes 2, then the 
sequence will diverge and the corresponding z0 won’t belong to the set. 

The code to compute membership of the Mandelbrot set is as follows: 
 
open System.Numerics 
 
let sqrMod (x:Complex) = x.Real * x.Real + x.Imaginary * x.Imaginary 
let rec mandel maxit (z:Complex) (c: Complex) count = 
    if (sqrMod(z) < 4.0) &&  (count < maxit) then 
        mandel maxit ((z * z) + c) c (count + 1) 
    else count 
 

You can create a simple visual representation of the Mandelbrot set by coloring all the points 
belonging to the set. In this way, you obtain the black portion of Figure 11-7. How can you obtain the 
richness of color? The trick is to color points depending on how fast the sequence reaches the distance 
of 2 from the origin. You use 250 colors and map the [0, maxit] interval to the [0, 250] discrete color 
interval. 

Setting Colors 
In order for the Mandelbrot viewer application to have appealing coloring, you need to produce some 
form of continuity in the color variation in the chosen range. You use an array of colors to store these 
values, but you need a procedure to fill this array so that colors change continuously. 

Colors in the Red Green Blue (RGB) space used in the graphics libraries are known to define a 
color space that isn’t perceived as continuous by human vision. A color space known to be more 
effective in this respect is the Hue Saturation Value (HSV), where a color is defined in terms of hue, 
color saturation, and the value of luminance (see Figure 11-8). This model was inspired by the method 
used by painters to create colors in oil painting. 
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Figure 11-8. The RGB (left) and HSV (right) color spaces and their geometric representation 

Figure 11-8 shows a typical geometric representation of the two color spaces. In the RGB color 
model, the three axes represent the three base colors varying from black to the full color; in the HSV 
space, the angle is used to indicate the hue, the distance from the axis of the cone represents the 
saturation, and the value corresponds to the height of the point inside the cone. 

You can define a conversion from RGB color space to HSV, and vice versa. Listing 11-5 shows the 
F# functions performing the conversions between the two models. These functions assume the three 
components R, G, and B are in the interval [0, 1] rather than integers between 0 and 255. 

Listing 11-5. Conversion from RGB to HSV, and Vice Versa 

let RGBtoHSV (r, g, b) = 
    let (m:float) = min r (min g b) 
    let (M:float) = max r (max g b) 
    let delta = M - m 
    let posh (h:float) = if h < 0.0 then h + 360.0 else h 
    let deltaf (f:float) (s:float) = (f - s) / delta 
    if M = 0.0 then (-1.0, 0.0, M) else 
        let s = (M - m) / M 
        if r = M then (posh(60.0 * (deltaf g b)), s, M) 
        elif g = M then (posh(60.0 * (2.0 + (deltaf b r))), s, M) 
        else (posh(60.0 * (4.0 + (deltaf r g))), s, M) 
 
let HSVtoRGB (h, s, v) = 
    if s = 0.0 then (v, v, v) else 
    let hs = h / 60.0 
    let i = floor (hs) 
    let f = hs - i 
    let p = v * ( 1.0 - s ) 
    let q = v * ( 1.0 - s * f ) 
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    let t = v * ( 1.0 - s * ( 1.0 - f )) 
    match int i with 
      | 0 -> (v, t, p) 
      | 1 -> (q, v, p) 
      | 2 -> (p, v, t) 
      | 3 -> (p, q, v) 
      | 4 -> (t, p, v) 
      | _ -> (v, p, q) 
 

To let users choose the coloring of the set, you create an array of 10 functions, given an integer 
between 0 and 250, for a corresponding color. The default color function is based on the HSV color 
model; it uses the input parameter to set the hue of the color, leaving the saturation and luminance at 
the maximum values. The other functions use the RGB color space, following directions in the color 
cube. You use the createPalette function to generate the color palette that is used while drawing 
fractal points; the palette mutable variable holds this palette. Listing 11-6 shows the code that deals 
with colors. The pickColor function is responsible for mapping the iteration, it, at which the 
computation of the Mandelbrot set terminates given the maximum number of iterations allowed, 
maxit. 

Listing 11-6. Color Palette Definition 

let makeColor (r, g, b) = 
    Color.FromArgb(int32(r * 255.0), int32(g * 255.0), int32(b * 255.0)) 
 
let defaultColor i = makeColor(HSVtoRGB(360.0 * (float i / 250.0), 1.0, 1.0)) 
 
let coloring = 
    [| defaultColor; 
       (fun i -> Color.FromArgb(i, i, i)); 
       (fun i -> Color.FromArgb(i, 0, 0)); 
       (fun i -> Color.FromArgb(0, i, 0)); 
       (fun i -> Color.FromArgb(0, 0, i)); 
       (fun i -> Color.FromArgb(i, i, 0)); 
       (fun i -> Color.FromArgb(i, 250 - i, 0)); 
       (fun i -> Color.FromArgb(250 - i, i, i)); 
       (fun i -> if i % 2 = 0 then Color.White else Color.Black); 
       (fun i -> Color.FromArgb(250 - i, 250 - i, 250 - i)) 
    |] 
 
let createPalette c = 
    Array.init 253 (function 
        | 250 -> Color.Black 
        | 251 -> Color.White 
        | 252 -> Color.LightGray 
        | i ->   c i) 
 
 
let mutable palette = createPalette coloring.[0] 
 
let pickColor maxit it = 
    palette.[int(250.0 * float it / float maxit)] 
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Creating the Visualization Application 
You’re now ready to implement the graphical application. The basic idea is to map a rectangle of the 
complex plane in the client area of your form. Each point of your window corresponds to a complex 
number and is colored according to the value computed by the mandel function. 

A typical value for maxit is 150 for the initial rendering of the Mandelbrot set, although it should be 
incremented when zooming into the fractal. The total computation required to generate an entire image 
is significant; therefore, you can’t rely on the main thread to perform the computation of the various 
points. It’s important to recall that event handlers are invoked by the graphical interface’s thread, and if 
this thread is used to perform heavy computations, the application windows won’t respond to other events. 

You introduce a thread responsible for performing the computations required by the Mandelbrot 
set so that the GUI thread can continue to handle events. (Chapter 13 discusses threads in more detail.) 
Here, you use shared memory to communicate the results between the threads by using a bitmap 
image in memory, referenced by the bitmap variable, which is updated by the thread performing the 
computation task and read by the GUI thread when the form must be painted. The bitmap is 
convenient because you need a matrix of points to be colored, and the device context is designed to 
avoid pixel coloring to be device independent (it doesn’t provide a SetColor(x, y) operation). To 
avoid race conditions, you use the lock function to guarantee exclusive access to the bitmap shared 
between the two threads. Chapter 13 looks at this in more detail. The thread responsible for the set 
computation executes the following function: 
 
let run filler (form:#Form) (bitmap:Bitmap) (tlx, tly) (brx, bry) = 
    let dx = (brx - tlx) / float bmpw 
    let dy = (tly - bry) / float bmph 
    let maxit = iterations (tlx, tly) (brx, bry) 
    let x = 0 
    let y = 0 
    let transform x y = new Complex(tlx + (float x) * dx, tly - (float y) * dy ) 
    form.Invoke(new MethodInvoker(fun () -> 
        form.Text <- sprintf "Mandelbrot set [it: %d] (%f, %f) -> (%f, %f)" 
                     maxit tlx tly brx bry 
    )) |> ignore 
    filler maxit transform 
    timer.Enabled <- false 
 

You use dx and dy variables to map the x and y coordinates of the bitmap into the complex plane. 
You then invoke the filler function responsible for performing the calculation. There are different 
possible filling strategies to compute the colors of the set; the straightforward approach is left to right 
and top to bottom, implemented by the linearFill function: 
 
let linearFill (bw:int) (bh:int) maxit map = 
    for y = 0 to bh - 1 do 
        for x = 0 to bw - 1 do 
            let c = mandel maxit Complex.Zero (map x y) 0 
            lock bitmap (fun () -> bitmap.SetPixel(x, y, pickColor maxit c)) 
 

Another typical filling strategy is to gradually refine the set by computing points in blocks and 
filling the blocks of the appropriate color; then, the missing points are computed by refining the block 
size. Using this strategy, you can provide a quick preview of the fractal without having to wait for the 
entire computation. The blockFill function implements this strategy: 
 
let blockFill (bw:int) (bh:int) maxit map = 
    let rec fillBlock first sz x y = 
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        if x < bw then 
            let c = mandel maxit Complex.Zero (map x y) 0 
            lock bitmap (fun () -> 
               let g = Graphics.FromImage(bitmap) 
                g.FillRectangle(new SolidBrush(pickColor maxit c), x, y, sz, sz) 
                g.Dispose() 
            ) 
            fillBlock first sz (if first || ((y / sz) % 2 = 1) then x + sz 
                                else x + 2 * sz) y 
        elif y < bh then 
            fillBlock first sz (if first || ((y / sz) % 2 = 0) then 0 else sz) 
                         (y + sz) 
        elif sz > 1 then 
            fillBlock false (sz / 2) (sz / 2) 0 
 
    fillBlock true 64 0 0 
 

The variable fillFun is used to store the current filling function: 
 
let mutable fillFun = blockFill 
 

You clear the bitmap by obtaining a device context to the bitmap and clearing it. The global 
variable bitmap is used to access the image from the code; this is an effective choice to speed up the 
development of the application. However, this technique can be a problem from a software 
engineering standpoint because the program is less modular and the mutable state isn’t encapsulated: 
 
let clearOffScreen (b : Bitmap) = 
    use g = Graphics.FromImage(b) 
    g.Clear(Color.White) 
 
let mutable bitmap = new Bitmap(form.Width, form.Height) 
let mutable bmpw = form.Width 
let mutable bmph = form.Height 
 
To refresh the application form while the fractal computation is ongoing, you use a 
timer that triggers a refresh of the form every tenth of a second. The paint function 
draws the bitmap that is updated by the worker thread: 
 
let paint (g: Graphics) = 
    lock bitmap (fun () -> g.DrawImage(bitmap, 0, 0)) 
    g.DrawRectangle(Pens.Black, rect) 
    g.FillRectangle(new SolidBrush(Color.FromArgb(128, Color.White)), rect) 
 
let timer = new Timer(Interval=100) 
timer.Tick.Add(fun _ -> form.Invalidate() ) 
 
let stopWorker () = 
    if worker <> Thread.CurrentThread then 
        worker.Abort() 
        worker <- Thread.CurrentThread 
 

The drawMandel function is responsible for starting the rendering process: 
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let drawMandel () = 
    let bf = fillFun bmpw bmph 
    stopWorker(); 
    timer.Enabled <- true 
    worker <- new Thread(fun () -> run bf form bitmap tl br) 
    worker.IsBackground <- true 
    worker.Priority <- ThreadPriority.Lowest 
    worker.Start() 

Creating the Application Plumbing 
Now thatyou’ve defined the architecture of the application, you can define the graphical aspects, the form, 
and the menus, as well as how users interact with the application. The code is similar to the previous 
applications, as shown in Listing 11-7. Note two aspects: the rect variable contains the current selection, 
and it’s drawn as a rectangle filled with transparent white; the application uses the clipboard to store and 
retrieve the coordinates of a particular fractal view or save the current state of the drawn bitmap. When 
Ctrl+C is pressed, a small XML document similar to the following is saved to the clipboard: 
 
<Mandel iter="1000"> 
  <topleft> 
    <re>-7.47421339220139e-001</re> 
    <im>1.64667039391667e-001</im> 
  </topleft> 
  <bottomright> 
    <re>-7.47082959511805e-001</re> 
    <im>1.64413254610417e-001</im> 
  </bottomright> 
</Mandel> 
 

The saved parameters are the most compact representation of the current view and are loaded 
back if Ctrl+V is pressed; this way, you can save the state of navigation. You save and read text from the 
clipboard using the Clipboard class’s SetText and GetText methods. When the Ctrl+Shift+C key 
sequence is pressed, the current bitmap is copied to the clipboard using the SetDataObject method; the 
bitmap can be pasted in any program capable of pasting images. 

The selection rectangle is updated by the mouse event handlers. You obtain the zoom facility by 
setting the bounds of the complex plane defined by the variables tl and br. 

Listing 11-7. Setup of the Application Form and Event Handling 

type CanvasForm() as x = 
    inherit Form() 
    do x.SetStyle(ControlStyles.OptimizedDoubleBuffer, true) 
    override x.OnPaintBackground(args) = () 
 
// Creates the Form 
let form = new CanvasForm(Width=800, Height=600,Text="Mandelbrot set") 
 
let mutable worker = Thread.CurrentThread 
 
 
let mutable startsel = Point.Empty 
let mutable rect = Rectangle.Empty 
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let mutable tl = (-3.0, 2.0) 
let mutable br = (2.0, -2.0) 
 
let mutable menuIterations = 150 
 
let iterations (tlx, tly) (brx, bry) = 
    menuIterations 
 
let setCoord (tlx:float, tly:float) (brx:float, bry:float)  = 
    let dx = (brx - tlx) / float bmpw 
    let dy = (tly - bry) / float bmph 
    let mapx x = tlx + float x * dx 
    let mapy y = tly - float y * dy 
    tl <- (mapx rect.Left, mapy rect.Top) 
    br <- (mapx rect.Right, mapy rect.Bottom) 
 
let ensureAspectRatio (tlx:float, tly:float) (brx:float, bry:float) = 
    let ratio = (float bmpw / float bmph) 
    let w, h = abs(brx - tlx), abs(tly - bry) 
    if ratio * h > w then 
        br <- (tlx + h * ratio, bry) 
    else 
        br <- (brx,tly - w / ratio) 
 
let updateView () = 
    if rect <> Rectangle.Empty then setCoord tl br 
    ensureAspectRatio tl br 
    rect <- Rectangle.Empty 
    stopWorker() 
    clearOffScreen bitmap 
    drawMandel() 
let click (arg:MouseEventArgs) = 
    if rect.Contains(arg.Location) then 
        updateView() 
    else 
        form.Invalidate() 
        rect <- Rectangle.Empty 
        startsel <- arg.Location 
 
let mouseMove (arg:MouseEventArgs) = 
    if arg.Button = MouseButtons.Left then 
        let tlx = min startsel.X arg.X 
        let tly = min startsel.Y arg.Y 
        let brx = max startsel.X arg.X 
        let bry = max startsel.Y arg.Y 
        rect <- new Rectangle(tlx, tly, brx - tlx, bry - tly) 
        form.Invalidate() 
 
let resize () = 
    if bmpw <> form.ClientSize.Width || 
       bmph <> form.ClientSize.Height then 
         stopWorker() 
         rect <- form.ClientRectangle 
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         bitmap <- new Bitmap(form.ClientSize.Width, form.ClientSize.Height) 
         bmpw <- form.ClientSize.Width 
         bmph <- form.ClientSize.Height 
 
         updateView() 
 
let zoom amount (tlx, tly) (brx, bry) = 
    let w, h = abs(brx - tlx), abs(tly - bry) 
    let nw, nh = amount * w, amount * h 
    tl <- (tlx + (w - nw) / 2., tly - (h - nh) / 2.) 
    br <- (brx - (w - nw) / 2., bry + (h - nh) / 2.) 
    rect <- Rectangle.Empty 
    updateView() 
 
let selectDropDownItem (l:ToolStripMenuItem) (o:ToolStripMenuItem) = 
    for el in l.DropDownItems do 
      let item = (el :?> ToolStripMenuItem) 
      item.Checked <- (o = item) 
let setFillMode (p:ToolStripMenuItem) (m:ToolStripMenuItem) filler _ = 
    if (not m.Checked) then 
        selectDropDownItem p m 
        fillFun <- filler 
        drawMandel() 
 
let setupMenu () = 
  let m = new MenuStrip() 
  let f = new ToolStripMenuItem("&File") 
  let c = new ToolStripMenuItem("&Settings") 
  let e = new ToolStripMenuItem("&Edit") 
  let ext = new ToolStripMenuItem("E&xit") 
  let cols = new ToolStripComboBox("ColorScheme") 
  let its = new ToolStripComboBox("Iterations") 
  let copybmp = new ToolStripMenuItem("Copy &bitmap") 
  let copy = new ToolStripMenuItem("&Copy") 
  let paste = new ToolStripMenuItem("&Paste") 
  let zoomin = new ToolStripMenuItem("Zoom &In") 
  let zoomout = new ToolStripMenuItem("Zoom &Out") 
  let fillMode = new ToolStripMenuItem("Fill mode") 
  let fillModeLinear = new ToolStripMenuItem("Line") 
  let fillModeBlock = new ToolStripMenuItem("Block") 
 
  let itchg = fun _ -> 
    menuIterations <- System.Int32.Parse(its.Text) 
    stopWorker() 
    drawMandel() 
    c.HideDropDown() 
  ext.Click.Add(fun _ -> form.Dispose()) |> ignore 
 
  copybmp.Click.Add(fun _ -> Clipboard.SetDataObject(bitmap))|> ignore 
  copybmp.ShortcutKeyDisplayString <- "Ctrl+Shift+C" 
  copybmp.ShortcutKeys <- Keys.Control ||| Keys.Shift ||| Keys.C 
 
  copy.Click.Add(fun _ -> 
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      let maxit = (iterations tl br) 
      let tlx, tly = tl 
      let brx, bry = br 
      Clipboard.SetText 
          (sprintf "<Mandel iter=\"%d\"> 
                      <topleft><re>%.14e</re><im>%.14e</im></topleft> 
                      <bottomright><re>%.14e</re><im>%.14e</im></bottomright> 
                    </Mandel>" maxit tlx tly brx bry) 
  ) |> ignore 
  copy.ShortcutKeyDisplayString <- "Ctrl+C" 
  copy.ShortcutKeys <- Keys.Control ||| Keys.C 
 
  paste.Click.Add(fun _ -> 
      if Clipboard.ContainsText() then 
        let doc = new XmlDocument() 
        try 
          doc.LoadXml(Clipboard.GetText()) 
          menuIterations <-  
             int (doc.SelectSingleNode("/Mandel").Attributes.["iter"].Value) 
          tl <- (float (doc.SelectSingleNode("//topleft/re").InnerText),  
                 float (doc.SelectSingleNode("//topleft/im").InnerText)) 
          br <- (float (doc.SelectSingleNode("//bottomright/re").InnerText),  
                 float (doc.SelectSingleNode("//bottomright/im").InnerText)) 
          rect <- Rectangle.Empty 
          updateView() 
        with _ -> () 
  ) |> ignore 
  paste.ShortcutKeyDisplayString <- "Ctrl+V" 
  paste.ShortcutKeys <- Keys.Control ||| Keys.V 
  zoomin.Click.Add(fun _ -> zoom 0.9 tl br) |> ignore 
  zoomin.ShortcutKeyDisplayString <- "Ctrl+T" 
  zoomin.ShortcutKeys <- Keys.Control ||| Keys.T 
  zoomout.Click.Add(fun _ -> zoom 1.25 tl br) |> ignore 
  zoomout.ShortcutKeyDisplayString <- "Ctrl+W" 
  zoomout.ShortcutKeys <- Keys.Control ||| Keys.W 
 
  for x in [ f;e;c ] do m.Items.Add(x) |> ignore 
  f.DropDownItems.Add(ext) |> ignore 
  let tsi x = (x :> ToolStripItem) 
  for x in [ tsi cols; tsi its; tsi fillMode] do c.DropDownItems.Add(x) |> ignore 
  for x in [ tsi copy; tsi zoomin; tsi zoomout ] do e.DropDownItems.Add(x) |> ignore 
  for x in ["HSL Color"; "Gray"; "Red"; "Green"] do cols.Items.Add(x) |> ignore 
  fillMode.DropDownItems.Add(fillModeLinear) |> ignore 
  fillMode.DropDownItems.Add(fillModeBlock) |> ignore 
  cols.SelectedIndex <- 0 
  cols.DropDownStyle <- ComboBoxStyle.DropDownList 
 
  cols.SelectedIndexChanged.Add(fun _ -> 
    palette <- createPalette coloring.[cols.SelectedIndex] 
    stopWorker() 
    drawMandel() 
    c.HideDropDown() 
  ) 
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  its.Text <- string_of_int menuIterations 
  its.DropDownStyle <- ComboBoxStyle.DropDown 
  for x in [ "150"; "250"; "500"; "1000" ] do its.Items.Add(x) |> ignore 
  its.LostFocus.Add(itchg) 
  its.SelectedIndexChanged.Add(itchg) 
  fillModeBlock.Checked <- true 
  fillModeLinear.Click.Add(setFillMode fillMode fillModeLinear linearFill) 
  fillModeBlock.Click.Add(setFillMode fillMode fillModeBlock blockFill) 
  m 
 
clearOffScreen bitmap 
form.MainMenuStrip <- setupMenu() 
form.Controls.Add(form.MainMenuStrip) 
form.MainMenuStrip.RenderMode <- ToolStripRenderMode.System 
form.Paint.Add(fun arg ->  paint arg.Graphics) 
form.MouseDown.Add(click) 
form.MouseMove.Add(mouseMove) 
form.ResizeEnd.Add(fun _ -> resize()) 
form.Show() 
 
Application.DoEvents() 
 
drawMandel() 
 
[<STAThread>] 
do Application.Run(form) 
 

You should use the program’s last statement only if the application is compiled; with fsi.exe, it 
must be omitted. As already noted, the plumbing code is dominated by setting up menus and 
configuring the application form; the rest contains the event handlers that are registered with the 
various controls. 

Windows Presentation Foundation 
Microsoft introduced a new presentation framework called Windows Presentation Foundation (WPF) 
for programming graphical applications on the Windows platform with Windows Vista. It’s not merely 
a new framework such as Windows Forms; rather than another layer on top of the traditional Win32 
presentation system, it’s a complete new rendering system that coexists with the traditional one. 

■ Note WPF is a .NET framework and thus accessible to F# applications. In Visual Studio 2010, the tight 
integration with XAML markup language used by WPF isn’t supported by the F# project system, and you should 
instead add your XAML files to your Visual Studio solution. You can use F# to develop Silverlight code, because 

Silverlight is a web plug-in featuring a subset of WPF capabilities. 

At first sight, a WPF application doesn’t differ much from a Windows Forms application. Here are 
few lines of code to open a window from F# Interactive: 
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#r "WindowsBase" 
#r "PresentationCore" 
#r "PresentationFramework" 
#r "System.Xaml" 
 
open System.Windows 
open System.Windows.Controls 
 
let w = new Window() 
 
let b = new Button(Content="Hello from WPF!") 
b.Click.Add(fun _ -> w.Close()) 
 
w.Content <- b 
w.Show() 
 

The application has an event loop (see the sidebar “WPF Event Loop”) hosted by F# Interactive. 
With a few (very important) differences, you’ve created a window hosting a huge button that closes it 
when clicked. 

WPF Event Loop 

WPF applications have an event loop because events are still one of the foundations of this new 
presentation system; this event loop, however, differs from that used by Windows Forms applications. It’s 
started through an instance of the System.Windows.Application class (note that in Windows Forms, 
the System.Windows.Forms.Application class is used as a singleton without the need to create 
instances). 

To run the button example as a standalone application, you must add the same references to the F# 
project. And instead of the w.Show() method invocation, you can add the following lines: 

let a = new Application() 
 
[<STAThread>] 
do a.Run(w) |> ignore 

F# Interactive can host both Windows Forms and WPF event loops, so you can create windows using both 
frameworks, even at the same time. F# Interactive, however, uses Windows Forms by default. At the time 
of writing, the F# Power Pack includes a script load_wpf.fsx that you should load into F# Interactive 
using #load "load_wpf.fsx" to enable full WPF support. You must also explicitly refer to WPF 
assemblies before creating WPF objects. 

It’s reassuring that events are still there, even within a framework based on a different 
programming paradigm. Moreover, you still obtain interfaces by composing graphical controls and 
attaching to their event handlers. The button is the only control hosted by the window! You don’t access a 
Controls property of the window to add the button to a list of children controls. Instead, you set all of the 
window content with a button, resulting in a huge button that occupies the window’s entire client area. 

WPF’s layout model is completely different from that you’ve grown accustomed to using Windows 
Forms: objects are positioned by the container and don’t have Top and Left properties to explicitly set 
a control position. 
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Layout is only one of many aspects of WPF that diverge from the traditional structure of graphic 
toolkits; this section introduces the most relevant. You’re encouraged to look for more information 
about the framework in dedicated publications. The most important changes introduced by WPF are 
as follows: 

• Retention-based device-independent rendering 

• XML-based composition language 

• Dependency properties and animations 

When GUIs Meet the Web 
The long-established model of GUI toolkits has its roots in a world very different from nowadays. Several of 
the assumptions made by these programming models are still true, but others no longer hold. There’s an 
important point that you must always consider when working with WPF after any other graphical toolkit. 

One of the authors was introduced to graphical programming during the 1980s, using Turbo 
Pascal, and was surprised that drawing primitives weren’t retained by the system like console 
characters. But the situation was better than it was a few years later, on a MS-DOS PC with graphics: 
the screen buffer was owned by a single application, so redrawing was needed to remove a primitive 
and restore its background. With windowing systems, the user experience improved significantly for 
the user, but the situation worsened for the application programmer: the application’s main control 
must be delegated to the graphical toolkit, and everything becomes an event. Events significantly 
optimize resource usage because applications are notified only when needed, so that a user can 
execute multiple applications simultaneously; but events are also used to optimize drawing resources 
through the paint architecture discussed previously. As you’ve seen, the GUI system sends the paint 
message to a window whenever its content needs to be updated; therefore, primitives aren’t retained 
by the windowing system. It’s up to you to issue them as necessary. 

In essence, the familiar paint-event based paradigm you’re used to exists because of the need to 
save memory when it’s scarce; this is a form of Kolmogorov-style compression, where a program 
generates information instead of storing it. As illustrated by web browsers, today’s computers have 
enough memory to change this underlying assumption and revise the original decision of who is 
responsible for retaining graphics primitives. With WPF, Microsoft decided to radically change the 
toolkit model and define a foundation based on the notion of graphics-primitive retention. 

The following example shows how a typical drawing is performed by a WPF application: 
 
#r "WindowsBase" 
#r "PresentationCore" 
#r "PresentationFramework" 
#r "System.Xaml" 
 
open System.Windows 
open System.Windows.Controls 
open System.Windows.Shapes 
open System.Windows.Media 
 
let w = new Window(Topmost=true) 
w.Show() 
let c = new Canvas() 
w.Content <- c 
 
let r = new Rectangle(Width=100.,Height=100.,RadiusX=5., 
                      RadiusY=5.,Stroke=Brushes.Black) 
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c.Children.Add(r) 
 
let e = new Ellipse(Width=150.,Height=150.,Stroke=Brushes.Black) 
c.Children.Add(e) 
Canvas.SetLeft(e, 100.) 
Canvas.SetTop(e, 100.) 
 
e.MouseLeftButtonUp.Add(fun _ -> 
  e.Fill <-  
    if e.Fill = (Brushes.Yellow :> Brush) then Brushes.Red 
    else Brushes.Yellow 
) 
 

At first, this example doesn’t differ much from the one showing a button in a window: you create a 
Canvas object, which is a container for multiple UI elements, and add two graphic objects. In the 
Windows Form world, you’d think of two graphic controls used for drawing, although they wouldn’t 
blend because each traditional window is opaque. In fact, these two graphics primitives are 
represented by two objects and are retained by the presentation system; pick correlation and event 
dispatching are guaranteed by the graphical toolkit.  

Note that the ellipse is an outline, so the click event is raised only by clicking the outline; when 
the fill brush is specified, you can change the fill color by clicking inside the ellipse. Another relevant 
aspect is the positioning of an element: there is no Left or Top property because it’s the responsibility 
of the container (in this case, the canvas) to lay out contained objects. 

Drawing 
An application can draw any shape by adding graphics primitives to a WPF window’s visual tree.3  
Because the system retains these primitives, you don’t need to implement an event handler for the 
paint message: it’s up to the graphical toolkit to render the tree in the appropriate way whenever 
needed. Problems such as visible primitives and efficient drawing fade away quickly and are dealt 
with by the system; nevertheless, you’re still responsible for using the visual tree. 

Because graphics primitives are organized in a tree structure, it’s natural to use an XML-based 
language to initialize this tree with the window’s initial state. WPF introduced the XAML language for this 
purpose; it recalls HTML, though it was designed for defining rich UIs instead of hypertext. The drawing 
example shown in the previous section can be expressed using the XAML markup in Listing 11-8. 

Listing 11-8. Example of a Window Definition Using XAML. 

<Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 
        xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 
        Title="MainWindow" Height="350" Width="525"> 
    <Canvas> 
        <Rectangle Width="100" Height="100" Stroke="Black"  
                   RadiusX="5" RadiusY="10"/> 
        <Ellipse Name="Circle" 
                 Canvas.Left="100" Canvas.Top="100"  
                 Width="150" Height="150" Stroke="Black"/> 
    </Canvas> 
</Window> 

                                                   
3  The visual tree plays a similar role to the DOM tree in Dynamic HTML applications. 
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The markup syntax is a wonderful tool for compacting several programming-language statements 
into a single line, because properties can be set as attributes. XAML adopts a well-defined bridge 
between the XML elements and the corresponding .NET classes and objects. Tag names are mapped 
onto classes and implicitly define instances, attributes are used to assign objects’ properties, and 
attributes containing a dot are interpreted as static properties (for example, Canvas.Left and 
Canvas.Top). Each node may have a name, which is useful for retrieving a reference to the node; in this 
case, the ellipse element is named Circle. 

Loading XAML into F# Applications 

At the time of writing, the F# project system in Visual Studio 2010 doesn’t include full XAML support. This 
means there is no WPF Visual Studio Wizard for the F# language. For C#, the compilation process for WPF 
applications involves a precompilation of XAML files in C# source files and an optimized representation of 
XAML called Binary XAML (BAML). The source-code generation has the goal of making it easier to interact 
with graphical objects defined within the XAML file using a mechanism successfully employed for ASP.NET 
files: code behind. Using the special attribute x:Class, you can indicate a class in which to inject the 
definition of graphical elements of the XAML file, so that C# methods can be referred to through XML 
attributes (to indicate event handlers) and XAML objects are exposed as fields. It’s possible, however, to 
load XAML at runtime, letting F# applications benefit from the ability to use XAML UI definitions instead of 
having to manipulate WPF objects explicitly. The following is a simple example of a function that loads 
XAML markup from a file and, assuming it contains the definition of a window, converts the reference into 
an instance of the Window class: 

open System.Windows 
open System.Windows.Controls 
open System.Windows.Markup 
open System.Windows.Media 
open System.Xml 
 
let loadXamlWindow (filename:string) = 
    let reader = XmlReader.Create(filename) 
    XamlReader.Load(reader) :?> Window 
 
let app = new Application() 
let wnd = loadXamlWindow("Window.xaml") 

You can use a WYSIWYG editor for XAML to visually author UIs. To load it in an F# application, you must 
ensure that the x:Class attribute is removed; otherwise, the Load method will raise an exception. Don’t 
associate event handlers through the UI: they should be explicitly associated inside the F# code. 

Using these functions, you can load any XAML fragment; in F#, the most common case is to load the 
definition of a window. Note that it’s also possible to parse XAML code embedded in strings: for instance, 
in the resources embedded in the application or embedded as a string within the program. The rest of this 
chapter refers to this function without including its definition. 

XAML has been rightly touted as separating the world of business logic from that of UI design, 
offering direct control to graphic designers through XAML and allowing programmers to rely on 
names to instrument graphical controls. The XAML and the names of graphical elements are the 
contract between programmers and designers, allowing for concurrent work on GUI application 
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development. This approach has proven successful for the Web and shows that hardware is powerful 
enough to shift toward a more programmer-friendly paradigm. 

XAML can be generated and manipulated from a number of graphical editors, including Visual 
Studio and Microsoft Expression Blend. Even though full support isn’t yet available for developing 
WPF applications using F#, it’s easy to load XAML-based UIs into F# applications; this largely 
addresses the lack of graphical environments for developing GUIs (see the sidebar “Loading XAML 
into F# Applications”). Assuming that the XAML in Listing 11-8 is saved in a file named 
window.xaml, you can use it from F# as follows (assuming the appropriate references and the 
loadXamlWindow  function are defined): 
 
let w = loadXamlWindow(@"window.xaml") 
w.Show() 
 
let e = w.FindName("Circle”) :?> Ellipse 
 
e.MouseLeftButtonUp.Add(fun _ -> 
  e.Fill <-  
    if e.Fill = (Brushes.Yellow :> Brush) then Brushes.Red 
    else Brushes.Yellow 
) 
 

Note that you use the FindName method to find a reference to the ellipse object; this is how you can 
refer from F# code to elements defined in the XAML markup. Because you can define animations in 
markup and connect to user actions (for example, sliding or collapsing menus can be defined entirely 
in XAML), the number of statements needed to connect the F# state to the visual tree is small—
drastically smaller than the amount of code needed to do GUIs in Windows Forms. Sometimes it may 
be useful to navigate the entire visual tree in which WPF stores the graphics primitives; the 
VisualTreeHelper class features navigation methods useful for doing so. 

Drawing primitives refer to the coordinates of some coordinate space. Traditionally, computer 
programs relied on pixels, even though Win32 API supported different coordinate systems from the 
beginning. WPF features vector graphics, supporting affine transformations of the coordinate system 
(translation, rotation, scaling, and skew); the use of a pixel-based system seemed obsolete in a world 
where the dots per inch (dpi) of display devices changes significantly. The adopted unit is 1/96th of an inch 
(in honor of the standard monitor resolution), whatever the target display device, including printers. 

You can apply transformations to any subtree of the visual tree, transforming all the primitives, 
including those issued by contained controls.  

Let’s consider the XAML example shown in Listing 11-9. It uses a container that stacks graphical 
elements horizontally to lay out three elements: a block of text, a text box, and a line. Nodes may also 
have explicit names, like the TextBox node here. The application’s output is shown in Figure 11-9, 
where the elements are rotated according to the indicated transformations: the container is laid out 
rotated 45 degrees counterclockwise, and the text box is rotated 90 degrees clockwise. 

Listing 11-9. XAML Defining the Composition of Transformed Elements 

<Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 
        xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 
        Title="MainWindow" Height="350" Width="525"> 
    <Canvas> 
            <StackPanel Orientation="Horizontal" VerticalAlignment="Center"> 
                <StackPanel.LayoutTransform> 
                    <RotateTransform Angle="-45"/> 
                </StackPanel.LayoutTransform> 
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                <TextBlock>This is a test</TextBlock> 
                <TextBox Name="Input"> 
                    <TextBox.LayoutTransform> 
                        <RotateTransform Angle="90"/> 
                    </TextBox.LayoutTransform> 
                        Input here 
                </TextBox> 
                <Line X1="0" X2="50" Y1="0" Y2="50" Stroke="Black"/> 
            </StackPanel> 
    </Canvas> 
</Window> 

 

Figure 11-9. F# application demonstrating the XAML 

Transformations are implemented using matrices, as already discussed for Windows Forms; you 
can use them to obtain nontrivial transformations of the coordinate space. These transformations 
affect the subtree rooted in the node to which they’re applied and can be programmatically accessed 
through the LayoutTransform and RenderTransform properties; the former affects the layout 
computation, and the latter affects the final rendering, possibly overflowing the container node. 

Drawing involves brushes and pens, which are similar to their Windows Forms counterparts. 

Controls 
The ability to instantiate and use existing controls is one of the pillars of user interfaces. In the earlier 
discussion of the difference between writing components and combining them, it was evident that a 
control in a traditional framework is opaque: the container allocates a rectangle and delegates event-
handling and drawing to the window procedure coordinated by the event loop. 

In WPF, things are less clear cut, which opens new horizons to graphical developers who 
appreciate the visual tree and the different role played by controls. To appreciate the extent of this 
statement, let’s modify the example from Listing 11-9 by enclosing the StackPanel element in a 
Button element (add a <Button> tag immediately after <Canvas> and </Button> immediately before 
</Canvas>). The resulting window looks like the one shown in Figure 11-10: you’ve nested two 
controls, which is an almost impossible task in traditional graphical toolkits. 
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Figure 11-10. Nested controls in WPF 

The designers of the WPF framework must have considered problems that never came up with 
traditional toolkits, given the system’s ability to retain graphics primitives in the form of a tree. You 
can think of a button as a background shaped like a button, with the label in the middle; it can be 
defined as a subtree of the primitives needed to draw its borders and a placeholder in the middle to 
insert the label. In an opaque system, the content could be another rectangle but nothing more; in a 
retention-based system, you can replace the label node in the tree with an arbitrary complicated 
subtree. 

You can display the visual tree of any WPF element using the static methods of the 
VisualTreeHelper class. The following F# function prints to the console (or in the F# Interactive tool 
window) the visual tree associated with a WPF element: 
 
let ShowVisualTree(obj:DependencyObject) = 
  let rec browse indentlvl node = 
    let indent n = for i = 0 to (n - 1) do printf "  " 
    let n = VisualTreeHelper.GetChildrenCount(node) 
     
    indent indentlvl  
    printfn "<%s%s>" (node.GetType().Name) (if n = 0 then "/" else "") 
    for i = 0 to (n - 1) do 
      browse (indentlvl + 1) (VisualTreeHelper.GetChild(node, i)) 
    if n > 0 then 
      indent indentlvl 
      printfn "</%s>" (node.GetType().Name) 
 
  browse 0 obj 

■ Note WPF also defines the logical tree, which is a simplified version of the visual tree that hides formatting 

nodes. The logical tree makes it easier to find relevant controls without having to deal with unneeded nodes. 
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The function implements a recursive visit to the visual tree rooted in the given element. If you 
pass the instance returned by loadXamlWindow, you get an idea of how many primitives are issued by 
the various controls you’re using in the window. If you pass the instance of a button, perhaps found 
using the FindName method as you did earlier, you obtain output similar to the following: 
 
<Button> 
  <ButtonChrome> 
    <ContentPresenter> 
      <TextBlock/> 
    </ContentPresenter> 
  </ButtonChrome> 
</Button> 
 

ContentPresenter is the root of the subtree dedicated to the button content; the rest defines the 
graphics primitives surrounding the node. The ButtonChrome node refers to a class used to implement 
a specific theme; it’s even possible to change the definition of the button without affecting its logic or 
its content. You can find more information about this ability of WPF in textbooks or online. 

What are the consequences of a model in which controls are no longer black boxes? The most 
important is the notion of pick correlation: in the example, if you click the text block or line, you get the 
container button that has been pressed; but if the click is directed to the text box, the button doesn’t 
receive it. Event routing in WPF is more complicated than in toolkits, because events are tunneled to 
tree nodes from the root toward the control and then bubbled up backward. In this way, the button may 
know that it’s clicked in the first phase but may ignore the click event in the second phase. In addition, 
transparency may cause the same event to be triggered to more than one control at the same time. All 
these possibilities require further study of WPF that is beyond the scope of this book. 

The type expected by the ShowVisualTree function is DependencyObject, which returns to the notion 
of dependency—a pervasive concept deeply entrenched within the framework. Dependency is a relation 
among two or more elements; in its asymmetry, it expresses something whose nature depends on 
something else. Dependency properties are a programming pattern used across WPF to define properties 
that you can listen to for change. If w is a Window object obtained from parsing the XAML contained in 
Listing 11-9, you can read and set the Text property of the TextBox object from F# as follows: 
 
let t = w.FindName("Input") 
MessageBox.Show(sprint "Input value is %s " t.Text) |> ignore 
t.Text <- "Hello" 
MessageBox.Show(sprint "Input value now is %s " t.Text) |> ignore 
 

The Text property behaves as a standard property, and you can use it programmatically as you’re 
used to doing with all properties. Text is a dependency property, and any observer in the code can 
listen for changes. You can detect its change as follows: 
 
open System.ComponentModel 
 
let desc =  
    DependencyPropertyDescriptor.FromProperty(TextBox.TextProperty, typeof<TextBox>) 
desc.AddValueChanged(t, fun _ _ -> MessageBox.Show("Text changed!") |> ignore) 
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You use the conventions used by TextBox implementers to access the descriptor of the Text 
dependency property called TextProperty and rely on appropriate data structures to register your 
callback. Whenever the text-box value changes, a message box is displayed. 

Implementing a dependency property is easy: in the class, you define a static field describing the 
property; then, the property must be registered in a global structure hosted by the 
DependencyProperty class. You then add a standard .NET property using the GetValue and SetValue 
methods—inherited from the DependencyObject class, which must be an ancestor of the class defining 
the property—hiding the implementation details. Supported callbacks are registered to inform the 
framework about the observable events on the property (such as the property-value change).  

At first, this may seem unnecessarily verbose: why is it useful to be able to observe when a 
property changes its value? The answer lies in WPF’s ability to support the animation of virtually any 
element property, and the fact that dependency properties are the building blocks of the animation 
engine. Animations often correlate properties of different visual objects. For instance, think of an 
object and its shadow: whenever the object’s position changes, its shadow must follow. Dependency 
properties provide a pervasive infrastructure to propagate property changes across visual tree nodes 
in a consistent way. To exemplify this idea, let’s change Listing 11-9 again by replacing the TextBox 
element definition with the following: 
 
<TextBlock Text="{Binding Path=Text, ElementName=Input}"></TextBlock> 
 

The expression in curly braces is a data-binding expression, which is an expression evaluated by 
WPF engine to set the Text property of the TextBlock node. If you run the example, the text block 
updates its content when the text box changes its value. WPF defines several forms of data binding to 
declare how dependency properties must be updated without explicit coding; you can define several 
automatic actions using these mechanisms. 

In WPF, controls are a way to instantiate subtrees and attach predefined behaviors to nodes and 
properties. They’re less opaque in WPF than it before; nevertheless, if a change in the visual tree disrupts 
the assumptions made by a control’s logic, a control may fail. For this reason, controls in WPF offer 
placeholders for inserting content, as you’ve seen with buttons, as well as a means to change the control’s 
appearance while preserving the essential traits of the visual subtree that make its inner code work. 

Bitmaps and Images 
Vector graphics, after being abandoned in favor of raster graphics, have again become popular 
because they let you define graphics that can be scaled without the annoying pixelated effects typical of 
raster graphics. Vector primitives are exact, and the rendering engine can compute the value of any 
number of pixels affected by the primitive. If you zoom a line, you can compute all the pixels of the line 
without any loss in detail. If the line is contained in a bitmap, this isn’t possible: the zoomed line 
contains artifacts introduced by the algorithm that resized the image. 

It’s impossible to imagine a user interface without images. But what does it means to work with 
pixels in a world of abstract coordinates where points are considered sizeless entities as in geometry? 
An image’s size is defined in the application space, and WPF is responsible for the rastering process 
and for generating enough pixels at a given resolution. A 100×100 image at 96dpi uses the same 
number of pixels on a standard monitor, or more pixels if the device has a higher dpi resolution. This 
concept isn’t unfamiliar: in the Mandelbrot example, you used a bitmap to set pixel colors, because of 
the lack of a SetPixel method on the Graphics object representing the device context for drawing. But 
WPF defines its own set of classes to deal with images, featuring a slightly different set of properties 
and capabilities. 

To exemplify the use of images with WPF, let’s consider a simple but useful application: a batch-
size conversion for JPEG images. The application is a command-line tool that converts a directory 
containing hi-res pictures into a mirrored version containing resized versions of the same pictures for 
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a specific resolution. With this tool, it’s easy to convert thousands of photos into versions suitable for a 
photo frame, thus saving space. The conversion process preserves JPEG metadata information such as 
tags, which may be useful after conversion. 

The two main functions are shown in Listing 11-10. transformFile is responsible for transforming a 
single JPEG image and saving it into a new file; transformDir performs a recursive visit to a directory tree 
and builds a mirror tree in the destination directory, relying on the first function to convert the image files. 

The image transformation relies on JpegBitmapDecoder and JpegBitmapEncoder, two classes 
dealing with the JPEG format. These classes support a streaming model for decoding and encoding 
images, so you read information about the first frame (an image may contain more than a single 
frame) to ensure that all the metadata is read from the source image. The desired output size is passed 
in the form of a screen resolution through the width and height arguments, and a best-fit policy is 
used to define the size of an in-memory bitmap instance of the class BitmapImage. The image resize is 
performed by asking the in-memory image to load data from the source file and fit the desired size; 
this way, you avoid allocating the full image in memory and performing the resize operation while 
reading pixels from disk. You then use the encoder to save the image, with the desired quality, in the 
new file, along with the metadata and the creation-time and change-time information. 

Listing 11-10. A Function to Resize All the Images in a Directory 

open System 
open System.IO 
open System.Windows.Media.Imaging 
 
let transformFile quality width height srcFileName outFileName = 
    let dec = new JpegBitmapDecoder( 
                Uri(srcFileName), 
                BitmapCreateOptions.PreservePixelFormat, 
                BitmapCacheOption.Default) 
    let w = dec.Frames.[0].Width 
    let h = dec.Frames.[0].Height 
 
    let b = new BitmapImage() 
    b.BeginInit() 
    b.UriSource <- new Uri(srcFileName) 
    if width > 0 then 
        if w >= h then b.DecodePixelWidth <- width 
        else b.DecodePixelHeight <- height 
    b.EndInit() 
 
    let metadata = dec.Frames.[0].Metadata 
 
    let enc = new JpegBitmapEncoder() 
    enc.Frames.Add(BitmapFrame.Create(b,null, metadata :?> BitmapMetadata, null)) 
    let fs = new FileStream(outFileName, FileMode.OpenOrCreate) 
    enc.QualityLevel <- quality 
    enc.Save(fs) 
    fs.Close() 
    let fin = new FileInfo(srcFileName) 
    let fout = new FileInfo(outFileName) 
    fout.CreationTime <- fin.CreationTime 
    fout.LastWriteTime <- fin.LastWriteTime 
 
let transformDir quality width height src dest = 
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    let rec visit (dirin:DirectoryInfo) (dirout:DirectoryInfo) = 
      for f in dirin.EnumerateFiles() do 
        if f.Extension.ToUpper() = ".JPG" then 
          printfn "Processing file %s..." f.FullName 
          transformFile  
              quality width height f.FullName  
              (dirout.FullName + "\\" + f.Name) 
 
      for d in dirin.EnumerateDirectories() do 
        visit d (dirout.CreateSubdirectory(d.Name)) 
 
    let dirin = new DirectoryInfo(src) 
    let dirout =  
        if not(Directory.Exists(dest)) then Directory.CreateDirectory dest  
        else new DirectoryInfo(dest) 
    visit dirin dirout 
 

You start the transformation process by invoking the transformDir function with the JPEG 
compression quality, the target screen size, and the input and output folders. The following lines 
assume that you’re converting summer photos for a frame supporting 1024×768 resolution: 
 
let dn = @"C:\Users\SomeUser\Pictures\Summer 2010" 
let dno = @"e:\Summer PhotoFrame 2010" 
 
transformDir 75 1027 768 dn dno 
 

Bitmap manipulation can be very tricky using WPF, and some tasks are more difficult than they are 
using Windows Forms. In particular, it’s easy to obtain a device context to a bitmap and draw using GDI 
functions. You can raster WPF primitives into a bitmap, but many programmers prefer to refer to both 
libraries and convert images from one framework to the other, in an attempt to benefit from both worlds. 

Final Considerations 
WPF isn’t just another framework built on top of the traditional Win32 and GDI rastering engine: it’s a 
new presentation system designed with a different programming paradigm in mind. This section 
introduced some of the important ideas behind this new presentation system and how you can use it 
from F# applications. The content is far from exhaustive, and several topics have been left out or only 
mentioned in an attempt to convey the core ideas as a starting point for further investigation. The 
literature about WPF is very rich, and we encourage you to read more specific material. 

Summary 
Event-driven programming is the dominant paradigm of graphical applications. Although object-
oriented programming is used to build the infrastructure for graphical frameworks, events are 
naturally expressed in terms of calling back a given function. F# is effective in GUI programming 
because it supports both paradigms and provides access to full-featured frameworks such as Windows 
Forms. 

This chapter covered the basics of GUI programming. It introduced controls and applications, 
including details typical of real-world applications. The presentation was based on the Windows 
Forms framework, but many of the ideas discussed can be easily transposed to other graphical 
frameworks: the fundamental structure of this class of applications is mostly unchanged. Finally, we 
introduced WPF and discussed differences between it and Windows Forms. 
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Working with Symbolic 
Representations 

Symbols are everywhere. Numbers are symbols that stand for quantities, and you can add, multiply, or 
take square roots of numbers that are so small or large that it’s hard to imagine the quantity they 
represent. You can solve equations, multiply polynomials, approximate functions using series, and 
differentiate or integrate numerically or symbolically—these are just a few everyday examples of using 
symbols in mathematics. 

It would be a mistake to think symbols are useful only in mathematics and related fields. General 
problem-solving can’t do without symbols; they provide the ability to abstract away details to make the 
larger picture clearer and help you understand relationships that may not appear obvious otherwise. 
Symbols always stand for something and have an attached meaning; they’re created to bind this 
additional content to an existing object. This gives you an extraordinary tool to solve problems, describe 
behavior, make strategic decisions, create new words, and write poetry—the list could go on forever. 

F# is well suited for symbolic computations. This chapter covers in depth two symbolic 
manipulation problems. First, it presents an implementation of a symbolic differentiation application, 
including expression rendering using techniques based on Windows Forms programming (discussed in 
Chapter 11). The second example shows how you can use symbolic programming to model hardware 
circuits and presents the core of a symbolic hardware-verification engine based on binary decision 
diagrams. (We could have chosen other examples of symbolic programming, but we found these two 
particularly enjoyable to code in F#.) 

Chapter 9 already covered many of the foundational techniques for symbolic programming. One 
technique that is particularly important in this chapter is the use of discriminated unions to capture the 
shape of the abstract syntax trees for symbolic languages. Using functions as first-class values and 
applying recursive problem decomposition also leads to a natural and clean approach to computations 
on symbolic entities. These and other features of F# combine to make symbolic programming concise 
and painless, allowing you to focus on the really interesting parts of your application domain. 
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Symbolic Differentiation and Expression Rendering 
You’ve probably come across the need to perform symbolic differentiation one way or another; and 
unless you had access to a full-fledged mathematics application such as Matlab or Mathematica, you 
had to resort to working out the math yourself on paper. This no longer has to be the case, because you 
can develop your own symbolic differentiation tool in almost no time and with surprising brevity and 
clarity. Figure 12-1 shows the symbolic differentiation application that you implement in this chapter. 

 

Figure 12-1. The visual symbolic differentiation application 

Modeling Simple Algebraic Expressions 
Let’s take it easy at first and assume you’re dealing with simple algebraic expressions that can consist 
only of numbers, a single variable (it doesn’t matter what it is, but let’s assume it’s x), sums, and 
products. Listing 12-1 shows the implementation of symbolic differentiation over this simple 
expression type. 



CHAPTER 12 ■  WORKING WITH SYMBOLIC REPRESENTATIONS 

 

323 

 

Listing 12-1. Symbolic Differentiation Over a Simple Expression Type 

open System 
type Expr = 
    | Var 
    | Num of int 
    | Sum of Expr * Expr 
    | Prod of Expr * Expr 
 
let rec deriv expr = 
    match expr with 
    | Var           -> Num 1 
    | Num _         -> Num 0 
    | Sum (e1, e2)  -> Sum (deriv e1, deriv e2) 
    | Prod (e1, e2) -> Sum (Prod (e1, deriv e2), Prod (e2, deriv e1)) 
 

The type of the deriv function is as follows: 

val deriv : Expr -> Expr 

Now, let’s find the derivative of a simple expression, say 1+2x: 

> let e1 = Sum (Num 1, Prod (Num 2, Var));; 
val e1 : Expr = Sum (Num 1,Prod (Num 2,Var)) 
 
> deriv e1;; 
val it : Expr = Sum (Num 0,Sum (Prod (Num 2,Num 1),Prod (Var,Num 0))) 

The resulting expression is a symbolic representation of 0+(2*1+x*0), which indeed is 2— so it’s right. 
You should do a couple of things next. First, install a custom printer so that F# Interactive responds 
using expressions that you’re more used to using. Before you apply brute force and put parentheses 
around the expressions in each sum and product, let’s contemplate it a bit. Parentheses are usually 
needed to give precedence to operations that would otherwise be applied later in the sequence of 
calculations. For instance, 2+3*4 is calculated as 2+(3*4) because the product has a higher precedence; if 
you were to find (2+3)*4, you would need to use parentheses to designate the new order of calculation. 
Taking this argument further, you can formulate the rule for using parentheses: they’re needed in places 
where an operator has lower precedence than the one surrounding it. You can apply this reasoning to 
the expression printer by passing a context precedence parameter: 
 
let precSum = 10 
let precProd = 20 
 
let rec stringOfExpr prec expr = 
    match expr with 
    | Var   -> "x" 
    | Num i -> i.ToString() 
    | Sum (e1, e2) -> 
        if prec > precSum 
        then "(" + stringOfExpr precSum e1 + "+" + stringOfExpr precSum e2 + ")" 
        else       stringOfExpr precSum e1 + "+" + stringOfExpr precSum e2 
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    | Prod (e1, e2) -> 
        stringOfExpr precProd e1 + "*" + stringOfExpr precProd e2 
 

You can add this as a custom printer for this expression type: 

> fsi.AddPrinter (fun expr -> stringOfExpr 0 expr);; 
val it : unit = () 
 
> let e3 = Prod (Var, Prod (Var, Num 2));; 
val e3 : Expr = x*x*2 
 
> deriv e3;; 
val it : Expr = x*(x*0+2*1)+x*2*1 

Parentheses are omitted only when a sum is participating in an expression that has a higher 
precedence, which in this simplified example means products. If you didn’t add precedence to the 
pretty-printer, you’d get x*x*0+2*1+x*2*1 for the last expression, which is incorrect. 

Implementing Local Simplifications 
The next thing to do is to get your symbolic manipulator to simplify expressions so you don’t have to do so. 
One easy modification is to replace the use of the Sum and Prod constructors in deriv with local functions 
that perform local simplifications such as removing identity operations, performing arithmetic, bringing 
forward constants, and simplifying across two operations. Listing 12-2 shows how to do this. 

Listing 12-2. Symbolic Differentiation with Local Simplifications 

let simpSum = function 
    | Num n, Num m -> Num (n+m)      // constants! 
    | Num 0, e | e, Num 0 -> e       // 0+e = e+0 = e 
    | e1, e2 -> Sum(e1,e2) 
 
let simpProd = function 
    | Num n, Num m -> Num (n*m)      // constants! 
    | Num 0, e | e, Num 0 -> Num 0   // 0*e=0 
    | Num 1, e | e, Num 1 -> e       // 1*e = e*1 = e 
    | e1, e2 -> Prod(e1,e2) 
 
let rec simpDeriv = function 
    | Var           -> Num 1 
    | Num _         -> Num 0 
    | Sum (e1, e2)  -> simpSum (simpDeriv e1, simpDeriv e2) 
    | Prod (e1, e2) -> simpSum (simpProd (e1, simpDeriv e2), 
                                simpProd (e2, simpDeriv e1)) 
 

These measures produce significant improvement over the previous naive approach, but they don’t 
place the result in a normal form, as the following shows: 

> simpDeriv e3;; 
val it : Expr = x*2+x*2 
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However, you can’t implement all simplifications using local rules; for example, collecting like terms 
across a polynomial involves looking at every term of the polynomial. 

■ Note Listing 12-2 uses the expression form function pattern-rules -> expression. This is equivalent to 
(fun x -> match x with pattern-rules -> expression) and is especially convenient as a way to define 

functions working directly over discriminated unions. 

A Richer Language of Algebraic Expressions 
This section goes beyond the approach presented so far and shows how to develop a UI application that 
can accept algebraic expressions as input and simplify, differentiate, and render them graphically. Figure 
12-2 shows the project structure. Note in particular that you need to add library references to 
FSharp.PowerPack and System.Windows.Forms. Furthermore, you add the lexer ExprLexer.fsl and the parser 
ExprParser.fsy to the project so you can quickly edit them if necessary. You can manually include a 
reference to the PowerPack targets in the project file to automatically generate code for the parser and lexer 
definitions, or you can manually generate these files. You do the latter for this example, but in both cases 
you need to add the generated files (ExprParser.fs and ExprLexer.fs) to the project. 

The main Expr type that represents algebraic expressions is contained in Expr.fs. Although you can 
use the expression constructors defined in this type to create expression values on the fly, the most 
convenient method for embedding complex expressions into this representation is by parsing them. 

 

Figure 12-2. The SymbolicDifferentiation project in Visual Studio 2010 

Armed with the ability to encode and parse algebraic expressions, you place the derivation and 
simplification logic in its own module and file (ExprUtil.fs). The last piece is rendering (in 
VisualExpr.fs). Finally, a simple UI client in Main.fs completes the application. 
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Listing 12-3 shows the definition of the abstract syntax representation of expressions using a single 
Expr type. Expressions contain numbers, variables, negation, sums, differences, products, fractions, 
exponents, basic trigonometric functions (sin x, cos x), and ex. 

Let’s look at this abstract syntax design more closely. In Chapter 9, you saw that choosing an 
abstract syntax often involves design choices, and that these choices often relate to the roles the abstract 
syntax representation should serve. In this case, you use the abstract syntax to compute symbolic 
derivatives and simplifications (using techniques similar to those earlier in this chapter) and also to 
graphically visualize the resulting expressions in a way that is pleasant for the human user. For this 
reason, you don’t use an entirely minimalistic abstract syntax (for example, by replacing quotients with 
an inverse node), because it’s helpful to maintain some additional structure in the input. 

Here, you represent sums and differences not as binary terms (as you do for products and quotients) 
but instead as a list of expression terms. The Sub term also carries the minuend, the term that is to be 
reduced, separately. As a result, you have to apply different strategies when simplifying them. 

Listing 12-3. Expr.fs: The Core Expression Type for the Visual Symbolic Differentiation Application 

namespace Symbolic.Expressions 
 
type Expr = 
    | Num  of decimal 
    | Var  of string 
    | Neg  of Expr 
    | Add  of Expr list 
    | Sub  of Expr * Expr list 
    | Prod of Expr * Expr 
    | Frac of Expr * Expr 
    | Pow  of Expr * decimal 
    | Sin  of Expr 
    | Cos  of Expr 
    | Exp  of Expr 
 
    static member StarNeeded e1 e2 = 
        match e1, e2 with 
        | Num _, Neg _ | _, Num _ -> true 
        | _ -> false 
 
    member self.IsNumber = 
        match self with 
        | Num _ -> true | _ -> false 
 
    member self.NumOf = 
        match self with 
        | Num num -> num | _ -> failwith "NumOf: Not a Num" 
 
    member self.IsNegative = 
        match self with 
        | Num num | Prod (Num num, _) -> num < 0M 
        | Neg e -> true | _ -> false 
 
    member self.Negate = 
        match self with 
        | Num num -> Num (-num) 
        | Neg e -> e 
        | exp -> Neg exp 
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Listing 12-3 also shows the definition of some miscellaneous augmentations on the expression type, 
mostly related to visual layout and presentation. The StarNeeded member is used internally to determine 
whether the multiplication operator (the star symbol, or asterisk) is needed in the product of two 
expressions, e1 and e2. You may want to extend this simple rule: any product whose right side is a 
number requires the explicit operator, and all other cases don’t. Thus, expressions such as 2(x+1) and 2x 
are rendered without the asterisk. 

The IsNumber member returns true if the expression at hand is numeric and is used in conjunction with 
NumOf, which returns this numeric component. Similarly, the IsNegative and Negate members determine 
whether you have an expression that starts with a negative sign, and they negate it on demand. 

Parsing Algebraic Expressions 
This sample uses a lexer and a parser generated by the F# tools fsyacc.exe and fslex.exe. Chapter 16 
describes these tools in more detail; this chapter skips over the details of how the tools work. Listings 12-
4 and 12-5 show the code for the lexer and parser. You need to manually build the lexer (generating 
ExprLexer.fs) and parser (generating ExprParser.fs) from the Windows command line as follows: 

C:\samples> fsyacc ExprParser.fsy --module ExprParser 
C:\samples> fslex ExprLexer.fsl --unicode 

Listing 12-4. ExprLexer.fsl: Tokenizing the Concrete Syntax for Algebraic Expressions 

{ 
module ExprLexer 
 
open System 
open Microsoft.FSharp.Text.Lexing 
open ExprParser 
 
let lexeme = LexBuffer<_>.LexemeString 
 
let special lexbuf = function 
    | "+" -> PLUS    | "-" -> MINUS 
    | "*" -> TIMES   | "/" -> DIV 
    | "(" -> LPAREN  | ")" -> RPAREN  | "^" -> HAT 
    | _   -> failwith "Invalid operator" 
 
let id lexbuf = function 
    | "sin" -> SIN   | "cos" -> COS 
    | "e"   -> E     | id    -> ID id 
} 
 
let digit     = ['0'-'9'] 
let int       = digit+ 
let float     = int ('.' int)? (['e' 'E'] int)? 
let alpha     = ['a'-'z' 'A'-'Z'] 
let id        = alpha+ (alpha | digit | ['_' '$'])* 
let ws        = ' ' | '\t' 
let nl        = '\n' | '\r' '\n' 
let special   = '+' | '-' | '*' | '/' | '(' | ')' | '^' 
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rule main = parse 
    | int        { INT     (Convert.ToInt32(lexeme lexbuf)) } 
    | float      { FLOAT   (Convert.ToDouble(lexeme lexbuf)) } 
    | id         { id      lexbuf (lexeme lexbuf) } 
    | special    { special lexbuf (lexeme lexbuf) } 
    | ws | nl    { main    lexbuf } 
    | eof        { EOF } 
    | _          { failwith (lexeme lexbuf) } 
 

The parser has some syntactic sugar for polynomial terms, so it can parse 2x, 2x^3, or x^4 without 
requiring you to add an explicit multiplication after the coefficient. 

Listing 12-5. ExprParser.fsy: Parsing the Concrete Syntax for Algebraic Expressions 

%{ 
open System 
open Symbolic.Expressions 
%} 
 
%token <int> INT 
%token <float> FLOAT 
%token <string> ID 
 
%token EOF LPAREN RPAREN PLUS MINUS TIMES DIV HAT SIN COS E 
 
%left ID 
%left prec_negate 
%left LPAREN 
%left PLUS MINUS 
%left TIMES DIV 
%left HAT 
 
 
%start expr 
%type <Expr> expr 
%% 
 
expr: 
    | exp EOF { $1 } 
 
number: 
    | INT                           { BigNum.of_int $1 } 
    | FLOAT                         { BigNum.of_string (Float.to_string $1) } 
    | MINUS INT %prec prec_negate   { BigNum.of_int (-$2) } 
    | MINUS FLOAT %prec prec_negate { BigNum.of_string (Float.to_string (-$2)) } 
 
exp: 
    | number                  { Num $1 } 
    | ID                      { Var $1 } 
    | exp PLUS exp            { Add [$1; $3] } 
    | exp MINUS exp           { Sub ($1, [$3]) } 
    | exp TIMES exp           { Prod ($1, $3) } 
    | exp DIV exp             { Frac ($1, $3) } 
    | SIN LPAREN exp RPAREN   { Sin $3 } 
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    | COS LPAREN exp RPAREN   { Cos $3 } 
    | E HAT exp               { Exp $3 } 
    | term                    { $1 } 
    | exp HAT number          { Pow ($1, $3) } 
    | LPAREN exp RPAREN       { $2 } 
    | MINUS LPAREN exp RPAREN { Neg $3 } 
 
term: 
    | number ID               { Prod (Num $1, Var $2) } 
    | number ID HAT number    { Prod (Num $1, Pow (Var $2, $4)) } 
    | ID HAT number           { Prod (Num 1M, Pow (Var $1, $3)) } 

Simplifying Algebraic Expressions 
At the start of this chapter, you simplified expressions using local techniques, but you also saw the 
limitations of this approach. Listing 12-6 shows a more complete implementation of a separate function 
(Simplify) that performs some nonlocal simplifications as well. Both this function and the one for 
derivation shown in the subsequent section are placed in a separate file (ExprUtil.fs). 

Simplify uses two helper functions (collect and negate). The former collects constants from 
products using a bottom-up strategy that reduces constant subproducts and factors out constants by 
bringing them outward (to the left). Recall that product terms are binary. 

Listing 12-6. ExprUtils.fs: Simplifying Algebraic Expressions 

module Symbolic.Expressions.Utils 
 
open Symbolic.Expressions 
 
/// A helper function to map/select across a list while threading state 
/// through the computation 
let selectFold f l s = 
    let l,s' = List.fold 
                  (fun (l',s') x -> 
                       let x',s'' = f x s' 
                       (List.rev x') @ l',s'') 
                  ([],s) l 
    List.rev l,s' 
 
/// Collect constants 
let rec collect = function 
    | Prod (e1, e2) -> 
        match collect e1, collect e2 with 
        | Num num1, Num num2       -> Num (num1 * num2) 
        | Num n1, Prod (Num n2, e) 
        | Prod (Num n2, e), Num n1 -> Prod (Num (n1 * n2), e) 
        | Num n, e | e, Num n      -> Prod (Num n, e) 
        | Prod (Num n1, e1), Prod (Num n2, e2) -> 
            Prod (Num (n1 * n2), Prod (e1, e2)) 
        | e1', e2'                 -> Prod (e1', e2') 
    | Num _ | Var _ as e   -> e 
    | Neg e                -> Neg (collect e) 
    | Add exprs            -> Add (List.map collect exprs) 
    | Sub (e1, exprs)      -> Sub (collect e1, List.map collect exprs) 
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    | Frac (e1, e2)        -> Frac (collect e1, collect e2) 
    | Pow (e1, num)        -> Pow (collect e1, num) 
    | Sin e                -> Sin (collect e) 
    | Cos e                -> Cos (collect e) 
    | Exp _ as e           -> e 
 
/// Push negations through an expression 
let rec negate = function 
    | Num num           -> Num (-num) 
    | Var v as exp      -> Neg exp 
    | Neg e             -> e 
    | Add exprs         -> Add (List.map negate exprs) 
    | Sub _             -> failwith "unexpected Sub" 
    | Prod (e1, e2)     -> Prod (negate e1, e2) 
    | Frac (e1, e2)     -> Frac (negate e1, e2) 
    | exp               -> Neg exp 
 
/// Simplify an expression 
let rec simp = function 
    | Num num           -> Num num 
    | Var v             -> Var v 
    | Neg e             -> negate (simp e) 
    | Add exprs -> 
        let filterNums (e:Expr) n = 
           if e.IsNumber 
           then [], n + e.NumOf 
           else [e], n 
        let summands = function | Add es -> es | e -> [e] 
        let exprs', num = 
            selectFold (simp >> summands >> selectFold filterNums) exprs 0N 
        match exprs' with 
        | [Num _ as n] when num = 0M -> n 
        | []                         -> Num num 
        | [e] when num = 0M          -> e 
        | _ when num = 0M            -> Add exprs' 
        | _                          -> Add (exprs' @ [Num num]) 
    | Sub (e1, exprs) -> 
         simp (Add (e1 :: List.map Neg exprs)) 
    | Prod (e1, e2) -> 
        match simp e1, simp e2 with 
        | Num num, _ | _, Num num when num = 0M -> Num 0M 
        | Num num, e | e, Num num when num = 1M -> e 
        | Num num1, Num num2                    -> Num (num1 * num2) 
        | e1, e2                                -> Prod (e1, e2) 
    | Frac (e1, e2) -> 
        match simp e1, simp e2 with 
        | Num num, _ when num = 0M  -> Num num 
        | e1, Num num when num = 1M -> e1 
        | Num (_  as num), Frac (Num (_ as num2), e) -> 
             Prod (Frac (Num num, Num num2), e) 
        | Num (_  as num), Frac (e, Num (_ as num2)) -> 
             Frac (Prod (Num num, Num num2), e) 
        | e1, e2                    -> Frac (e1, e2) 
    | Pow (e, n) when n=1M -> simp e 
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    | Pow (e, n)           -> Pow (simp e, n) 
    | Sin e                -> Sin (simp e) 
    | Cos e                -> Cos (simp e) 
    | Exp e                -> Exp (simp e) 
 
let Simplify e = e |> simp |> simp |> collect 
 

The main simplification algorithm works as follows: 

• Constants and variables are passed through verbatim. You use negate when 
simplifying a negation, which assumes the expression at hand no longer contains 
differences and that sums were flattened (see the next item in this list). 

• Sums are traversed and nested sums are flattened, at the same time all constants 
are collected and added up. This reduces the complexity of further simplification 
considerably. 

• Differences are converted to sums: for instance, A-B-C is converted to A+(-B)+(-C). 
Thus, the first element is preserved without negation. 

• When simplifying a product, you first simplify its factors, and then you remove 
identity operations (multiplying by zero or one) and reduce products of constants. 

• Fractions are handled similarly. Zero divided by anything is 0, anything divided by 
1 is itself, and multiline fractions can be collapsed if you find numeric 
denominators or numerators. 

• The rest of the match cases deal with simplifying subexpressions. 

Symbolic Differentiation of Algebraic Expressions 
Applying symbolic differentiation is a straightforward translation of the mathematical rules of 
differentiation into code. You could use local functions that act as constructors and perform local 
simplifications, but with the simplification function described earlier, this isn’t needed. Listing 12-7 
shows the implementation of symbolic differentiation for the Expr type. Note how beautifully and 
succinctly the code follows the math behind it: the essence of the symbolic processing is merely 20 lines 
of code! 

Listing 12-7. ExprUtil.fs (continued): Symbolic Differentiation for Algebraic Expressions 

let Differentiate v e = 
    let rec diff v = function 
        | Num num               -> Num 0M 
        | Var v' when v'=v      -> Num 1M 
        | Var v'                -> Num 0M 
        | Neg e                 -> diff v (Prod ((Num -1M), e)) 
        | Add exprs             -> Add (List.map (diff v) exprs) 
        | Sub (e1, exprs)       -> Sub (diff v e1, List.map (diff v) exprs) 
        | Prod (e1, e2)         -> Add [Prod (diff v e1, e2); Prod (e1, diff v e2)] 
        | Frac (e1, e2) -> 
            Frac (Sub (Prod (diff v e1, e2), [Prod (e1, diff v e2)]), Pow (e2, 2N)) 
        | Pow (e1, num) -> 
            Prod (Prod(Num num, Pow (e1, num - 1M)), diff v e1) 
        | Sin e                 -> Prod (Cos e, diff v e) 
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        | Cos e                 -> Neg (Prod (Sin e, diff v e)) 
        | Exp (Var v') as e when v'=v  -> e 
        | Exp (Var v') as e when v'<>v -> Num 0M 
        | Exp e                 -> Prod (Exp e, diff v e)  
    diff v e 

Rendering Expressions 
Now that you have the basic machinery to easily parse, simplify, and differentiate expressions, you can 
start looking into how to visualize them to really enjoy the benefits of the application. The rendering 
engine (placed in VisualExpr.fs) has two main parts: converting expressions to VisualExpr values and 
then rendering them directly. Ideally, you should hide the representation of the VisualExpr (and its 
related VisualElement) type with a signature (not shown here) so that it isn’t possible to construct these 
values directly. 

Before you get to the conversion and rendering functions, you need to do a bit of setup. To control 
how the different parts of an expression are rendered on the screen, you introduce the RenderOptions 
type containing the fonts and pen (which determines the color used to draw) that are applied during 
rendering. Listing 12-8 shows the code that defines the rendering options used in the remainder of this 
example. 

Listing 12-8. VisualExpr.fs: Rendering Options for the Visual Symbolic Differentiation Application 

namespace Symbolic.Expressions.Visual 
 
open Symbolic.Expressions 
open System.Drawing 
open System.Drawing.Imaging 
 
type RenderOptions = 
    { NormalFont: Font;  SmallFont: Font;  IsSuper: bool;  Pen: Pen; } 
 
    static member Default = 
        { NormalFont = new Font("Courier New",18.0f,FontStyle.Regular); 
          SmallFont = new Font("Courier New", 12.0f, FontStyle.Regular); 
          IsSuper = false; 
          Pen = new Pen(Color.Black, 1.0f); } 
 
    member self.Brush = 
        (new SolidBrush(Color.FromArgb(255, self.Pen.Color)) :> Brush) 
 

Each algebraic expression is converted to a VisualExpr value as part of the rendering process. This 
ensures that you don’t have to deal with the variety of expression forms but only with a small set of 
simple shapes that can be rendered according to a few simple rules. These simpler building blocks are 
defined in the VisualElement type and shown in Listing 12-9. For instance, there are no sums or 
products; these and similar expressions are broken down into sequences of symbols (such as 1, x, and +). 
The two other visual elements are exponentiation and fractions, which are used to guide the display 
logic later during the rendering phase. Each visual element carries a size value that is calculated using a 
given set of rendering options. 
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Listing 12-9. VisualExpr.fs (continued): Visual Elements and Sizes for the Visual Symbolic Differentiation 
Application 

type VisualElement = 
    | Symbol   of string * ExprSize 
    | Power    of VisualElement * VisualElement * ExprSize 
    | Sequence of VisualElement list * ExprSize 
    | Fraction of VisualElement * VisualElement * ExprSize 
    member self.Size = 
        match self with 
        | Symbol (_, size)   | Power (_, _, size) 
        | Sequence (_, size) | Fraction (_, _, size) -> size 
 
    member self.Height = self.Size.height 
    member self.Width = self.Size.width 
    member self.Midline = self.Size.midline 
 
and ExprSize = 
    {  width: int;  height: int;  midline: int; } 
 
    member self.CenterOnMidline size x y = 
        x + (size.width-self.width)/2, y + (size.midline-self.midline) 
 
    member self.Frac size opt = 
        { width = max self.width size.width; 
          height = self.height + size.height + self.FracSepHeight opt; 
          midline = self.height + (self.FracSepHeight opt)/2; } 
 
    member self.FracSepHeight (opt: RenderOptions) = 
        max (int (opt.Pen.Width*5.0f)) 4 
 
    member self.AddPower (e: VisualElement) = 
        {  width = self.width + e.Width; 
           height = self.height + e.Height; 
           midline = self.midline + e.Height; } 
 
    static member ExpandOne (size: ExprSize) (e: VisualElement) = 
        { width   = size.width + e.Width; 
          height  = max size.height e.Height; 
          midline = max size.midline e.Midline; } 
 
    member self.Expand (exprs: VisualElement list) = 
        List.fold ExprSize.ExpandOne self exprs 
 
    static member Seq (exprs: VisualElement list) = 
        List.fold ExprSize.ExpandOne ExprSize.Zero exprs 
 
    static member Zero = 
        { width=0; height=0; midline=0; } 
 

The size value encodes the dimensions (width and height in pixels) of the related visual expression 
and is managed through the ExprSize type, which provides various members to compute precise 
dimensions. Basically, this type handles the gory details of putting together small visuals to compose a 
large expression and manages how and where these small visuals should be placed. The main guideline 
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is to align these visuals on a line (measured from the top of the expression in pixels and stored in the 
midline field), as depicted in Figure 12-3. 

 

Figure 12-3. Expressions and their sizes 

The darker rectangles in this figure denote arbitrary expressions, whereas the lighter rectangles 
mark the dimensions of the parent expression aligned on the midline. 

Converting to VisualExpr 
Listing 12-10 shows the type VisualExpr that carries the main visual element and the rendering options 
that were used to produce it. This type also provides the method OfExpr to build a VisualExpr from an Expr. 

Listing 12-10. VisualExpr.fs (continued): Visual Expressions for the Visual Symbolic Differentiation 

Application 

type VisualExpr = 
    {  Expression : VisualElement;  RenderOptions: RenderOptions; } 
 
    static member OfExpr (opt: RenderOptions) e = 
        use bmp = new Bitmap(100, 100, PixelFormat.Format32bppArgb) 
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        use gra = Graphics.FromImage(bmp) 
        let sizeOf (opt: RenderOptions) s = 
            use sFormat = new StringFormat(StringFormat.GenericTypographic) 
            let font = if opt.IsSuper then opt.SmallFont else opt.NormalFont 
            let size = gra.MeasureString(s, font, PointF(0.0f, 0.0f), sFormat) 
            let height = int size.Height 
            { width = int size.Width + 2; 
              height = height; 
              midline = height/2; } 
        let precPow = 70 
        let precProd1, precProd2 = 30, 40 
        let precAdd1, precAdd2 = 10, 11 
        let precStart = 5 
        let precNeg1, precNeg2 = 1, 20 
        let sym opt s = Symbol (s, sizeOf opt s) 
 
        let applyPrec opt pprec prec exprs (size: ExprSize) = 
            if pprec > prec then 
                sym opt "(" :: exprs @ [sym opt ")"], 
                size.Expand [sym opt "("; sym opt ")"] 
            else 
                exprs, size 
 
        let mkSequence opt pprec prec exprs = 
            let size = ExprSize.Seq exprs 
            let exprs, size = applyPrec opt pprec prec exprs size 
            Sequence (exprs, size) 
 
        let rec expFunc opt f par = 
            let f' = sym opt f 
            let exprs' = [sym opt "("; exp opt precStart par; sym opt ")"] 
            Sequence (f' :: exprs', f'.Size.Expand exprs') 
 
        and exp (opt: RenderOptions) prec = function 
            | Num n -> 
                let s = n.ToString() in Symbol (s, sizeOf opt s) 
            | Var v -> 
                Symbol (v, sizeOf opt v) 
            | Neg e -> 
                 let e' = exp opt precNeg1 e 
                 let exprs, size = applyPrec opt prec precNeg1 [e'] e'.Size 
                 let exprs' = [sym opt "-"] @ exprs 
                 mkSequence opt prec precNeg2 exprs' 
            | Add exprs -> 
                 let exprs' = 
                     [ for i,e in Seq.mapi (fun i x -> (i,x)) exprs do 
                           let first = (i=0) 
                           let e' = exp opt (if first then precAdd1 else precAdd2) e 
                           if first || e.IsNegative 
                           then yield! [e'] 
                           else yield! [sym opt "+"; e'] ] 
                 mkSequence opt prec precAdd1 exprs' 
            | Sub (e1, exprs) -> 
                 let e1' = exp opt prec e1 
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                 let exprs' = 
                     [ for e in exprs do 
                           if e.IsNegative then 
                              let e' = exp opt precAdd2 e.Negate 
                              yield! [sym opt "+"; e'] 
                           else 
                              let e' = exp opt precAdd2 e 
                              yield! [sym opt "-"; e'] ] 
 
                 mkSequence opt prec precAdd1 (e1'::exprs') 
            | Prod (e1, e2) -> 
                 let e1' = exp opt precProd1 e1 
                 let e2' = exp opt precProd2 e2 
                 let exprs' = 
                     if Expr.StarNeeded e1 e2 
                     then [e1'; sym opt "*"; e2'] 
                     else [e1'; e2'] 
                 mkSequence opt prec precProd1 exprs' 
            | Pow (e1, e2) -> 
                 let e1' = exp opt precPow e1 
                 let e2' = exp { opt with IsSuper=true } precPow (Num e2) 
                 Power (e1', e2', e1'.Size.AddPower e2') 
            | Sin e -> 
                 expFunc opt "sin" e 
            | Cos e -> 
                 expFunc opt "cos" e 
            | Exp expo -> 
                 let e' = sym opt "e" 
                 let expo' = exp { opt with IsSuper=true } precPow expo 
                 Power (e', expo', e'.Size.AddPower expo') 
 
            | Frac (e1, e2) -> 
                 let e1' = exp opt precStart e1 
                 let e2' = exp opt precStart e2 
                 Fraction (e1', e2', e1'.Size.Frac e2'.Size opt) 
        let exp = exp opt precStart e 
        { Expression=exp; RenderOptions=opt; } 
 

The conversion implemented in Listing 12-10 is relatively straightforward. It uses various local 
helper functions to break each expression into smaller visual elements, carefully keeping track of the 
bounding-box calculation. There are a number of things to consider: precedence is enforced, and 
expressions are parenthesized as necessary. For example, consider how you convert a product: 
 
| Prod (e1, e2) -> 
     let e1' = exp opt precProd1 e1 
     let e2' = exp opt precProd2 e2 
     let exprs' = 
         if Expr.StarNeeded e1 e2 
         then [e1'; sym opt "*"; e2'] 
         else [e1'; e2'] 
     mkSequence opt prec precProd1 exprs' 
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This code converts the two interior expressions and decides on a list of display symbols by first checking 
whether a multiplication symbol is required. The function mkSequence then calculates the size of this new 
list of expressions, applies precedence rules to determine whether parentheses are required, and 
produces a final visual element as a result. 

Other cases are handled similarly; for sums, you iterate through the elements exprs in the sum using 
sequence expression notation. If you find a negative term, you omit the plus sign (so 1+(-2) is rendered 
as 1-2). Differences are treated similarly, but here you change negative terms to positive, so 3-2-(-1) 
becomes 3-2+1. When converting products, you omit the multiplication operator if you can. 

Rendering 
Listing 12-11 shows the code for rendering visual expressions. You may have noticed in the definition of 
the VisualElement type that the only directly drawable visual element is Symbol. The other constructors 
carry one or more visual elements that must be drawn recursively and according to a well-defined logic. 
The key observation in the rendering function in Listing 12-11 is that, when drawing each element, you 
pass in the x and y coordinates of the bounding box in which it’s to be drawn. You also pass in the size of 
the parent box in which the element is to be aligned (as guided by the midline property). 

Listing 12-11. VisualExpr.fs (continued): Rendering Visual Expressions 

type VisualExpr = 
    ... 
    member self.Render = 
        let pt x y = PointF(float32 x, float32 y) 
        let rec draw (gra: Graphics) opt x y psize = function 
            | Symbol (s, size) -> 
                let font = if opt.IsSuper then opt.SmallFont else opt.NormalFont 
                let x', y' = size.CenterOnMidline psize x y 
                gra.DrawString(s, font, opt.Brush, pt x' y') 
            | Power (e1, e2, size) -> 
                let x', y' = size.CenterOnMidline psize x y 
                draw gra opt x' (y'+e2.Height) e1.Size e1 
                draw gra { opt with IsSuper=true } (x'+e1.Width) y' e2.Size e2 
            | Sequence (exps, size) -> 
                let x', y' = size.CenterOnMidline psize x y 
                List.fold (fun (x, y) (e: VisualElement) -> 
                     let psize' = { width = e.Width; height = psize.height; 
                                    midline=size.midline; } 
                     draw gra opt x y psize' e 
                     x+e.Width, y) (x', y') exps |> ignore 
            | Fraction (e1, e2, size) as e -> 
                let psize1 = { psize with height=e1.Height; midline=e1.Midline } 
                let psize2 = { psize with height=e2.Height; midline=e2.Midline } 
                draw gra opt x y psize1 e1 
                gra.DrawLine(self.RenderOptions.Pen, x, y+size.midline, 
                             x+psize.width, y+size.midline); 
                draw gra opt x (y+e1.Height+size.FracSepHeight opt) psize2 e2 
        let bmp = new Bitmap(self.Expression.Width, self.Expression.Height, 
                             PixelFormat.Format32bppArgb) 
        let gra = Graphics.FromImage(bmp) 
        gra.FillRectangle(new SolidBrush(Color.White), 0, 0, 
                          self.Expression.Width+1, self.Expression.Height+1) 
        draw gra self.RenderOptions 0 0 self.Expression.Size self.Expression 
        bmp 
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Building the User Interface 
Listing 12-12 is the final piece: the UI client (Main.fs). It’s simple yet powerful. The main form contains 
an input field and a preview panel where the expressions are rendered on the fly as typed in. When the 
user presses the Enter key, a new MDI child window is created, and the original, simplified, derived, and 
final expressions are rendered on it. A bit of extra work is involved in creating the child windows to make 
them scrollable. 

Listing 12-12. Main.fs: The User Interface Client for the Visual Symbolic Differentiation Application 

module Symbolic.Expressions.UI 
 
open Symbolic.Expressions 
open Symbolic.Expressions.Visual 
open System.Windows.Forms 
open System.Drawing 
 
let CreateScrollableChildWindow parent = 
    let scroll = new ScrollableControl(Dock=DockStyle.Fill, AutoScroll=true) 
    let form2 = new Form(MdiParent=parent, BackColor=Color.White) 
    form2.Controls.Add scroll 
    form2, scroll 
 
let NewExpression parent s es = 
    let form, scroll = CreateScrollableChildWindow parent 
    let AddLabel (top, maxw) (parent: Control) s = 
        let l = new Label(Text=s, AutoSize=true, Top=top) 
        parent.Controls.Add l 
        (top+l.Height), max maxw l.Width 
    let AddPic (top, maxw) (parent: Control) (e: Expr) = 
        let e' = VisualExpr.OfExpr RenderOptions.Default e 
        let bmp = e'.Render 
        let pic = new PictureBox(Image=bmp, Height=bmp.Height, 
                                 Width=bmp.Width, Top=top) 
        parent.Controls.Add pic 
        (top+bmp.Height), max maxw bmp.Width 
    let height, width = List.fold (fun top (lab, e) -> 
        AddPic (AddLabel top scroll lab) scroll e) (0, 0) es 
    form.Text <- s 
    form.Height <- min 640 (height+40) 
    form.Width <- min 480 (width+40) 
    form.Show() 
 
let UpdatePreview (scroll: Control) e = 
    let e' = VisualExpr.OfExpr RenderOptions.Default e 
    let bmp = e'.Render 
    let pic = new PictureBox(Image=bmp, Height=bmp.Height, Width=bmp.Width) 
    scroll.Controls.Clear() 
    scroll.Controls.Add pic 
 
let NewExpressionError form s = 
    let cform, scroll = CreateScrollableChildWindow form 
    let label = new Label(Text=s, Font=new Font("Courier New", 10.f), AutoSize=true) 
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    scroll.Controls.Add label 
    cform.Show() 
 
exception SyntaxError 
 
let Parse s = 
    let lex = Lexing.LexBuffer<char>.FromString s 
    try ExprParser.expr ExprLexer.main lex 
    with _ -> raise SyntaxError 
 
let NewStringExpression form s = 
    try 
        let e1 = Parse s 
        let e2 = Utils.Simplify e1 
        let e3 = Utils.Differentiate "x" e2 
        let e4 = Utils.Simplify e3 
        NewExpression form s ["Original:", e1; "Simplified:", e2; 
                              "Derivative:", e3; "Simplified:", e4] 
    with 
      | SyntaxError -> 
          let msg = Printf.sprintf "Syntax error in:\n%s" s 
          NewExpressionError form msg 
      | Failure msg -> 
          NewExpressionError form msg 
 
let ConstructMainForm () = 
    let form   = new Form(Text="Symbolic Differentiation Example", 
                          IsMdiContainer=true, 
                          Visible=true, Height=600, Width=700) 
    let label   = new Label(Text="Enter function=", Width=100, Height=20) 
    let tb      = new TextBox(Width=150, Left=100) 
    let panel   = new Panel(Dock=DockStyle.Top, Height=tb.Height+50) 
    let preview = new Panel(Dock=DockStyle.Bottom, BackColor=Color.White, 
                            Height=50, BorderStyle=BorderStyle.FixedSingle) 
    panel.Controls.AddRange([|label; preview; tb |]) 
    form.Controls.Add(panel) 
    tb.KeyUp.Add (fun arg -> 
       if arg.KeyCode = Keys.Enter then 
           NewStringExpression form tb.Text 
           tb.Text <- "" 
           tb.Focus() |> ignore 
       else 
           try 
               let e = Parse tb.Text 
               UpdatePreview preview e 
           with 
           | _ -> ()) 
    form 
 
let form = ConstructMainForm () 
NewStringExpression form "cos(sin(1/(x^2+1)))" 
Application.Run(form) 
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To recap, in this example you’ve seen the following: 

• Two abstract syntax representations for different classes of algebraic expressions: 
one simple, and one much more realistic 

• How to implement simplification and symbolic differentiation routines on these 
representations of algebraic expressions 

• How to implement parsing and lexing for concrete representations of algebraic 
expressions 

• How to perform size estimation and visual layout for abstract syntax 
representations of algebraic expressions, here using Windows Forms 

• How to put this together into a final application 

Verifying Circuits with Propositional Logic 
The next example turns to a traditional application area for functional programming: describing digital 
hardware circuits and symbolically verifying their properties. We assume a passing familiarity with 
hardware design, but if you haven’t looked inside a microprocessor chip for some time, a brief recap is 
included in the “About Hardware Design” sidebar. 

In this example, you model circuits by propositional logic, a simple and familiar symbolic language 
made up of constructs such as AND, OR, NOT, and TRUE/FALSE values. You then implement an 
analysis that converts propositional logic formulae into a canonical form called binary decision diagrams 
(BDDs). Converting to a canonical form allows you to check conditions and properties associated with 
the digital circuits. 

About Hardware Design 

Digital hardware circuits such as microprocessors almost universally manipulate bits—that is, signals that 
are either low or high, represented by 0/1 or false/true values, respectively. The building blocks of 
interesting hardware circuits are primitives such as gates and registers. Gates are logical components that 
relate their inputs to their outputs; for example, an AND gate takes two input signals, and if both are high, 
it gives a high signal on its output. Registers are stateful components associated with a clock. This chapter 
doesn’t consider registers and stateful circuits, although they can be tackled using techniques similar to 
those described here. 

Hardware design is largely about building interesting behavior out of these primitives. For example, you 
can build arithmetic circuits that compute the sum or product of integers by using logical gates alone. 
These combinatorial circuits can be massive, and a key concern is to both verify their correctness and 
minimize the overall electrical delay through the circuit. 
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■ Note The examples in this section are inspired by the tutorials for the HOL88 system, a symbolic theorem 
prover implemented using an F#-like language that has been used for many purposes, including hardware 
verification. The carry/select adder and the BDD implementation follow those given by John Harrison in his HOL 

Light version of the same system. You can find out more about these and other systems, as well as delve into 
theorem proving, in Handbook of Practical Logic and Automated Reasoning by John Harrison (Cambridge 

University Press, 2009). 

Representing Propositional Logic 
You begin by using language-oriented programming techniques to implement a little logic of Boolean 
expressions, of the kind that might be used to describe part of a hardware circuit or a constraint. Let’s 
assume these have forms like the following: 
 
P1 AND P2 
P1 OR P2 
P1 IMPLIES P2 
NOT(P1) 
v                    -- variable, ranging over true/false 
TRUE 
FALSE 
Exists v. P[v]       -- v ranges over true/false, P may use v 
Forall v. P[v]       -- v ranges over true/false, P may use v 
 

This is known as quantified Boolean formulae (QBF) and is an expressive way of modeling many 
interesting problems and artifacts that work over finite data domains. Listing 12-13 shows how you 
model this language in F#. 

Listing 12-13. A Minimalistic Representation of Propositional Logic 

type Var = string 
 
type Prop = 
    | And of Prop * Prop 
    | Var of Var 
    | Not of Prop 
    | Exists of Var * Prop 
    | False 
 
let True = Not(False) 
let Or(p,q)      = Not(And(Not(p),Not(q))) 
let Iff(p,q)     = Or(And(p,q),And(Not(p),Not(q))) 
let Implies(p,q) = Or(Not(p),q) 
let Forall(v,p)  = Not(Exists(v,Not(p))) 
 
let (&&&) p q = And(p,q) 
let (|||) p q = Or(p,q) 
let (~~~) p   = Not (p) 
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let (<=>) p q = Iff(p,q) 
let (===) p q = (p <=> q) 
let (==>) p q = Implies(p,q) 
let (^^^) p q = Not (p <=> q) 
 
let var (nm:Var) = Var(nm) 
 
let fresh = 
    let count = ref 0 
    fun nm -> incr count; (sprintf "_%s%d" nm !count : Var) 
 

Listing 12-13 uses a minimalistic encoding of propositional logic terms, where True, Or, Iff, Implies, 
and Forall are derived constructs, defined using their standard classical definitions in terms of the 
primitives Var, And, Not, Exists, and False. This is adequate for your purposes because you aren’t so 
interested in preserving the original structure of formulae; if you do need to display a symbolic 
propositional formula, you’re happy to display a form different than the original input. 

Variables in formulae of type Prop are primitive propositions. A primitive proposition is often used 
to model some real-world possibility. For example, “it is raining,” “it is cold,” and “it is snowing” can 
be represented by Var("raining"), Var("cold"), and Var("snowing"). A Prop formula may be a 
tautology—that is, something that is always true regardless of the interpretation of these primitives. A 
formula is satisfiable if there is at least one interpretation for which it’s true. A formula can also be an 
axiom; for example, “if it’s snowing, then it’s cold” can be represented as the assumption 
Implies(Var("snowing"), Var("cold")). In this example, variables are used to represent a wire in a 
digital circuit that may be low or high. 

When you’re dealing directly with the abstract syntax for Prop, it can be convenient to define infix 
operators to help you build abstract syntax values. Listing 12-13 shows the definition of seven operators 
(&&&, |||, ~~~, <=>, ===, ==>, and ^^^) that look a little like the notation you expect for propositional logic. 
You also define the function var for building primitive propositions and fresh for generating fresh 
variables. The types of these functions are as follows: 

val var : Var -> Prop 
val fresh : (string -> Var) 

NOTE The operators in Listing 12-13 aren’t overloaded and indeed outscope the default overloaded bitwise 
operations on integers discussed in Chapter 3. However, that doesn’t matter for the purposes of this chapter. If 

necessary, you can use alternative operator names. 

Evaluating Propositional Logic Naively 
Before tackling the problem of representing hardware using propositional logic, let’s look at some naive 
approaches for working with propositional logic formulae. Listing 12-14 shows routines that evaluate 
formulae given an assignment of variables and that generate the rows of a truth table for a Prop formula. 
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Listing 12-14. Evaluating Propositional Logic Formulae 

let rec eval (env : Map<Var,bool>) inp = 
    match inp with 
    | Exists(v,p) -> eval (env.Add(v,false)) p || eval (env.Add(v,true)) p 
    | And(p1,p2)  -> eval env p1 && eval env p2 
    | Var(v)      -> if env.ContainsKey(v) then env.[v] 
                     else failwithf "env didn't contain a value for %A" v 
    | Not(p)      -> not (eval env p) 
    | False       -> false 
 
let rec support f = 
    match f with 
    | And(x,y)    -> Set.union (support x) (support y) 
    | Exists(v,p) -> (support p).Remove(v) 
    | Var(p)      -> Set.singleton p 
    | Not(x)      -> support x 
    | False       -> Set.empty 
 
let rec cases supp = 
    seq { match supp with 
          | [] ->  yield Map.empty 
          | v::rest -> 
              yield! rest |> cases |> Seq.map (Map.add v false) 
              yield! rest |> cases |> Seq.map (Map.add v true) } 
 
let truthTable x = 
    x |> support |> Set.toList |> cases |> Seq.map (fun env -> env,eval env x) 
 
let satisfiable x = 
    x |> truthTable |> Seq.exists(fun (env,res) -> res) 
 
let tautology x = 
    x |> truthTable |> Seq.forall (fun (env,res) -> res) 
 
let tautologyWithCounterExample x = 
    x |> truthTable |> Seq.tryFind (fun (env,res) -> not res) |> Option.map fst 
 
let printCounterExample = 
    (function None -> printfn "tautology verified OK" 
            | Some env -> printfn "tautology failed on %A" (Seq.toList env)) 
 

The types of these functions are as follows: 

val eval : Map<Var,bool> -> Prop -> bool 
val support : Prop -> Set<Var> 
val cases : 'a list -> seq<Map<'a,bool>> when 'a : comparison 
val truthTable : Prop -> seq<Map<Var,bool> * bool> 
val satisfiable : Prop -> bool 
val tautology : Prop -> bool 
val tautologyWithCounterExample : Prop -> Map<Var,bool> option 
val printCounterExample : seq<'a> option -> unit 
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The function eval computes the value of a formula given assignments for each of the variables that 
occurs in the formula. support computes the set of variables that occurs in the formula. You can now use 
these functions to examine truth tables for some simple formulae, although first you may want to define 
the following functions to display truth tables neatly in F# Interactive: 
 
let stringOfBit b = (if b then "T" else "F") 
let stringOfEnv env = 
    Map.fold (fun acc k v -> sprintf "%s=%s;" k (stringOfBit v)+acc) "" env 
let stringOfLine (env,res) = sprintf "%20s %s" (stringOfEnv env) (stringOfBit res) 
let stringOfTruthTable tt = 
    "\n" + (tt |> Seq.toList |> List.map stringOfLine |> String.concat "\n") 
 

Here are the truth tables for x, x AND y, and x OR NOT(x): 

> fsi.AddPrinter(fun tt -> tt |> Seq.truncate 20 |> stringOfTruthTable);; 
 
> truthTable (var "x");; 
> val it : seq<Map<Var,bool> * bool> 
= 
                x=F; F 
                x=T; T 
 
> truthTable (var "x" &&&  var "y");; 
> val it : seq<Map<Var,bool> * bool> 
= 
            x=F;y=F; F 
            x=F;y=T; F 
            x=T;y=F; F 
            x=T;y=T; T 
 
> truthTable (var "x" ||| ~~~(var "x"));; 
> val it : seq<Map<Var,bool> * bool> 
= 
                x=F; T 
                x=T; T 

From this, you can see that x OR NOT(x) is a tautology, because it always evaluates to TRUE regardless of 
the value of the variable x. 

From Circuits to Propositional Logic 
Figure 12-4 shows a diagrammatic representation of three hardware circuits: a half adder, a full adder, 
and a 2-bit carry ripple adder. The first of these has two input wires, x and y, and sets the sum wire high if 
exactly one of these is high. If both x and y are high, then the sum is low, and the carry wire is high 
instead. Thus, the circuit computes the 2-bit sum of the inputs. Likewise, a full adder computes the sum 
of three Boolean inputs, which, because it’s at most three, can still be represented by 2 bits. A 2-bit carry 
ripple adder is formed by composing a half adder and a full adder together, wiring the carry from the first 
adder to one of the inputs of the second adder. The overall circuit has four inputs and three outputs. 
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Figure 12-4. Three simple hardware circuits 

The following code models these circuit components. This uses relational modeling, where each 
circuit is modeled not as a function but as a propositional logic predicate that relates its input wires to its 
output wires: 
 
let sumBit x y = (x ^^^ y) 
let carryBit x y = (x &&& y) 
let halfAdder x y sum carry = 
    (sum === sumBit x y)  &&& 
    (carry === carryBit x y) 
 
let fullAdder x y z sum carry = 
    let xy = (sumBit x y) 
    (sum === sumBit xy z) &&& 
    (carry === (carryBit x y ||| carryBit xy z)) 
 
let twoBitAdder (x1,x2) (y1,y2) (sum1,sum2) carryInner carry = 
    halfAdder x1 y1 sum1 carryInner &&& 
    fullAdder x2 y2 carryInner sum2 carry 
 

Note the close relation between the diagram for the 2-bit adder and its representation as code. You 
can read the implementation as a specification of the diagram, and vice versa. But the types of these 
functions are a little less informative: 

val sumBit : Prop -> Prop -> Prop 
val carryBit : Prop -> Prop -> Prop 
val halfAdder : Prop -> Prop -> Prop -> Prop -> Prop 
val fullAdder : Prop -> Prop -> Prop -> Prop -> Prop -> Prop 
val twoBitAdder : Prop * Prop -> Prop * Prop -> Prop * Prop -> Prop -> Prop -> Prop 

In practice, circuits are defined largely with respect to vectors of wires, not just individual wires. You 
can model these using arrays of propositions; and because it’s now clear that you’re modeling bits via 
propositions, you make an appropriate type abbreviation for them as well: 
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type bit = Prop 
type bitvec = bit[] 
 
let Lo : bit = False 
let Hi : bit = True 
let vec n nm : bitvec = Array.init n (fun i -> var (sprintf "%s%d" nm i)) 
let bitEq (b1:bit) (b2:bit) = (b1 <=> b2) 
let AndL l = Seq.reduce (fun x y -> And(x,y)) l 
let vecEq (v1:bitvec) (v2:bitvec) = AndL (Array.map2 bitEq v1 v2) 
 

These functions have types as follows: 

type bit = Prop 
type bitvec = bit [] 
val Lo : bit 
val Hi : bit 
val vec : int -> string -> bitvec 
val bitEq : bit -> bit -> Prop 
val AndL : #seq<Prop> -> Prop 
val vecEq : bitvec -> bitvec -> Prop 

You can now proceed to define larger circuits. For example: 
 
let fourBitAdder  (x:bitvec) (y:bitvec) (sum:bitvec) (carry:bitvec) = 
    halfAdder  x.[0] y.[0]           sum.[0] carry.[0] &&& 
    fullAdder  x.[1] y.[1] carry.[0] sum.[1] carry.[1] &&& 
    fullAdder  x.[2] y.[2] carry.[1] sum.[2] carry.[2] &&& 
    fullAdder  x.[3] y.[3] carry.[2] sum.[3] carry.[3] 
 

Or, more generally, you can chain an arbitrary series of adders to form an N-bit adder. First you 
define an abbreviation for the AndL function to represent the composition of multiple circuit blocks: 
 
let Blocks l = AndL l 
 

And here is the definition of an N-bit adder with a halfAdder at one end: 
 
let nBitCarryRippleAdder (n:int) (x:bitvec) (y:bitvec) (sum:bitvec) (carry:bitvec) = 
    Blocks [ for i in 0 .. n-1 -> 
                if i = 0 
                then halfAdder x.[i] y.[i] sum.[i] carry.[i] 
                else fullAdder x.[i] y.[i] carry.[i-1] sum.[i] carry.[i]  ] 
 

Using a similar approach, you get the following satisfying specification of a symmetric N-bit adder 
that accepts a carry as input and also gives a carry as output: 
 
let rippleAdder (n:int) (x:bitvec) (y:bitvec) (sum:bitvec) (carry:bitvec)  = 
    Blocks [ for i in 0 .. n-1 -> 
                fullAdder x.[i] y.[i] carry.[i] sum.[i] carry.[i+1] ] 
 

Let’s now look at the propositional formula for a halfAdder with variable inputs and outputs: 
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> halfAdder (var "x") (var "y") (var "sum") (var "carry");; 
> val it : Prop = 
  And 
    (Not 
       (And 
          (Not 
             (And 
                (Var "sum", 
                 Not 
                   (Not 
                      (And 
                         (Not (And (Var "x",Var "y")), 
                          Not (And (Not (Var "x"),Not (Var "y")))))))), 
           Not 
             (And 
                (Not (Var "sum"), 
                 Not 
                   (Not 
                      (Not 
                         (And 
                            (Not (And (Var "x",Var "y")), 
                             Not (And (Not (Var "x"),Not (Var "y"))))))))))), 
     Not 
       (And 
          (Not (And (Var "carry",And (Var "x",Var "y"))), 
           Not (And (Not (Var "carry"),Not (And (Var "x",Var "y"))))))) 

Clearly, you don’t want to be doing too much of that! You see better ways of inspecting circuits and 
the symbolic values of bit vectors in the section “Representing Propositional Formulae Efficiently 
Using BDDs.” 

In passing, note that the twoBitAdder uses an internal wire. You can model this using an existential 
formula: 
 
let twoBitAdderWithHiding (x1,x2) (y1,y2) (sum1,sum2) carry = 
    let carryInnerVar = fresh "carry" 
    let carryInner = var(carryInnerVar) 
    Exists(carryInnerVar, halfAdder x1 y1 sum1 carryInner &&& 
                          fullAdder x2 y2 carryInner sum2 carry) 
 
However, this brings up issues beyond the scope of this chapter. Instead, you take an approach to 
modeling where there are no boundaries to the circuits and where all internal wires are exposed. 

Checking Simple Properties of Circuits 
Now that you’ve modeled the initial hardware circuits, you can check simple properties of these 
circuits. For example, you can check that if you give a fullAdder all low (that is, false) inputs, then the 
output wires may be low as well, and, conversely, that you have a contradiction if one of the output 
wires is high: 

 



CHAPTER 12 ■ WORKING WITH SYMBOLIC REPRESENTATIONS 

 

348 

 

> tautology (fullAdder Lo Lo Lo Lo Lo);; 
val it : bool = true 
 
> satisfiable (fullAdder Lo Lo Lo Hi Lo);; 
val it : bool = false 

It’s of course much better to check these results symbolically by giving symbolic inputs. For 
example, you can check that if the same value is given to the two inputs of a halfAdder, then the sum 
output is low and the carry output is the same as the input: 

> tautology (halfAdder (var "x") (var "x") Lo (var "x"));; 
val it : bool = true 

Likewise, you can check that a 2-bit adder is commutative—in other words, that it doesn’t matter if 
you swap the x and y inputs: 

> tautology 
    (nBitCarryRippleAdder 2 (vec 2 "x") (vec 2 "y") (vec 2 "sum") (vec 3 "carry") 
 === nBitCarryRippleAdder 2 (vec 2 "y") (vec 2 "x") (vec 2 "sum") (vec 3 "carry"));; 
val it : bool = true 

However, if you repeat the same for sizes of 5 or bigger, things start to slow down, and the naive 
implementation of checking propositional logic tautology based on truth tables begins to break down. 
Hence, you have to turn to more efficient techniques to process propositional formulae. 

Representing Propositional Formulae Efficiently Using BDDs 
In practice, propositional formulae to describe hardware can be enormous, involving hundreds of 
thousands of nodes. As a result, hardware companies have an interest in smart algorithms to process 
these formulae and check them for correctness. The circuits in the computers you use from day to day 
have almost certainly been verified using advanced propositional logic techniques, often using a 
functional language as the means to drive and control the analysis of the circuits. 

A major advance in the application of symbolic techniques to hardware design occurred in the late 
1980s with the discovery of binary decision diagrams, a representation for propositional logic formulae 
that is compact for many common circuit designs. BDDs represent a propositional formula via the use of 
if ... then ... else conditionals alone, which you write as (variable => true-branch | false-
branch). Special nodes are used for true and false at the leaves: you write these as T and F. Every BDD is 
constructed with respect to a global variable ordering, so x AND NOT y can be represented as (x => (y 
=> F | T) | F) if x comes before y in this ordering and as (y => F | (x => T | F)) if y comes before x. 
The variable ordering can be critical for performance of the representation. 

BDDs are efficient because they use some of the language representation techniques you saw in 
Chapter 9. In particular, they work by uniquely memoizing all BDD nodes that are identical, which works 
by representing a BDD as an integer index into a lookup table that stores the real information about the 
node. Furthermore, negative indexes are used to represent the negation of a particular BDD node 
without creating a separate entry for the negated node. Listing 12-15 shows an implementation of BDDs. 
Fully polished BDD packages are often implemented in C. It’s easy to access those packages from F# 
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using the techniques described in Chapter 19. Here, you have a clear and simple implementation 
entirely in F# code. 

Listing 12-15. Implementing Binary Decision Diagrams 

open System.Collections.Generic 
 
let memoize f = 
    let tab = new Dictionary<_,_>() 
    fun x -> if tab.ContainsKey(x) then tab.[x] 
             else let res = f x in tab.[x] <- res; res 
 
type BddIndex = int 
type Bdd = Bdd of BddIndex 
type BddNode = Node of Var * BddIndex * BddIndex 
type BddBuilder(order : Var -> Var -> int) = 
 
    // The core data structures that preserve uniqueness 
    let uniqueTab = new Dictionary<BddNode,BddIndex>() 
    let nodeTab   = new Dictionary<BddIndex,BddNode>() 
 
    // Keep track of the next index 
    let mutable nextIdx = 2 
    let trueIdx = 1 
    let falseIdx = -1 
    let trueNode = Node("",trueIdx,trueIdx) 
    let falseNode = Node("",falseIdx,falseIdx) 
 
    // Map indexes to nodes. Negative indexes go to their negation. The special 
    // indexes -1 and 1 go to special true/false nodes. 
    let idxToNode(idx) = 
        if idx = trueIdx then trueNode 
        elif idx = falseIdx then falseNode 
        elif idx > 0 then nodeTab.[idx] 
        else let (Node(v,l,r)) = nodeTab.[-idx] 
             Node(v,-l,-r) 
 
    // Map nodes to indexes. Add an entry to the table if needed. 
    let nodeToUniqueIdx(node) = 
        if uniqueTab.ContainsKey(node) then uniqueTab.[node] 
        else 
            let idx = nextIdx 
            uniqueTab.[node] <- idx 
            nodeTab.[idx] <- node 
            nextIdx <- nextIdx + 1 
            idx 
 
    // Get the canonical index for a node. Preserve the invariant that the 
    // left-hand node of a conditional is always a positive node 
    let mkNode(v:Var,l:BddIndex,r:BddIndex) = 
        if l = r then l 
        elif l >= 0 then nodeToUniqueIdx(Node(v,l,r) ) 
        else -nodeToUniqueIdx(Node(v,-l,-r)) 
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    // Construct the BDD for a conjunction "m1 AND m2" 
    let rec mkAnd(m1,m2) = 
        if m1 = falseIdx || m2 = falseIdx then falseIdx 
        elif m1 = trueIdx then m2 elif m2 = trueIdx then m1 
        else 
            let (Node(x,l1,r1)) = idxToNode(m1) 
            let (Node(y,l2,r2)) = idxToNode(m2) 
            let v,(la,lb),(ra,rb) = 
                match order x y with 
                | c when c = 0 -> x,(l1,l2),(r1,r2) 
                | c when c < 0 -> x,(l1,m2),(r1,m2) 
                | c            -> y,(m1,l2),(m1,r2) 
            mkNode(v,mkAnd(la,lb), mkAnd(ra,rb)) 
 
    // Memoize this function 
    let mkAnd = memoize mkAnd 
 
 
    // Publish the construction functions that make BDDs from existing BDDs 
    member g.False = Bdd falseIdx 
    member g.And(Bdd m1,Bdd m2) = Bdd(mkAnd(m1,m2)) 
    member g.Not(Bdd m) = Bdd(-m) 
    member g.Var(nm) = Bdd(mkNode(nm,trueIdx,falseIdx)) 
    member g.NodeCount = nextIdx 
 

The types of these functions are as follows: 

val memoize : ('a -> 'b) -> ('a -> 'b) when 'a : equality 
type BddIndex = int 
type Bdd = Bdd of BddIndex 
type BddNode = Node of Var * BddIndex * BddIndex 
type BddBuilder = 
    new : order:(Var -> Var -> int) -> BddBuilder 
    member And : _arg1:Bdd * _arg2:Bdd -> Bdd 
    member Not : _arg3:Bdd -> Bdd 
    member Var : nm:Var -> Bdd 
    member False : Bdd 
    member NodeCount : int 

In addition to the functions that ensure that nodes are unique, the only substantial function in the 
implementation is mkAnd. It relies on the following logical rules for constructing BDD nodes formed by 
taking the conjunction of existing nodes. Note how the second rule is used to interleave variables: 

•  (x => P | Q) AND (x => R | S) is identical to (x => P AND R | Q AND S). 

•  (x => P | Q) AND (y => R | S) is identical to (x => P AND T | Q AND T) where T is 
simply (y => R | S). 

One final important optimization in the implementation is to memoize the application of the mkAnd 
operation. 
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Given the previous implementation of BDDs, you can now add the members ToString to convert 
BDDs to strings, Build to convert a Prop representation of a formula into a BDD, and Equiv to check for 
equivalence between two BDDs: 
 
type BddBuilder(order : Var -> Var -> int) = 
    ... 
    member g.ToString(Bdd idx) = 
        let rec fmt depth idx = 
            if depth > 3 then "..." else 
            let (Node(p,l,r)) = idxToNode(idx) 
            if p = "" then if l = trueIdx then "T" else "F" 
            else sprintf "(%s => %s | %s)" p (fmt (depth+1) l) (fmt (depth+1) r) 
        fmt 1 idx 
 
    member g.Build(f) = 
        match f with 
        | And(x,y) -> g.And(g.Build x, g.Build y) 
        | Var(p) -> g.Var(p) 
        | Not(x) -> g.Not(g.Build x) 
        | False -> g.False 
        | Exists(v,p) -> failwith "Exists node" 
 
    member g.Equiv p1 p2 = (g.Build(p1) = g.Build(p2)) 
 

You can now install a pretty-printer and inspect the BDDs for some simple formulae: 

> let bddBuilder = BddBuilder(compare);; 
val bddBuilder: BddBuilder 
 
> fsi.AddPrinter(fun bdd -> bddBuilder.ToString(bdd));; 
val it: unit = () 
 
> bddBuilder.Build(var "x");; 
val it : Bdd = (x => T | F) 
 
> bddBuilder.Build(var "x" &&& var "x");; 
val it : Bdd = (x => T | F) 
 
> bddBuilder.Build(var "x") = bddBuilder.Build(var "x" &&& var "x");; 
val it : bool = true 
 
> (var "x") = (var "x" &&& var "x");; 
val it : bool = false 
 
> bddBuilder.Build(var "x" &&& var "y");; 
val it : Bdd = (x => (y => T | F) | F) 
 
> bddBuilder.Equiv (var "x") (var "x" &&& var "x");; 
val it : bool = true 
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Note that the BDD representations of x and x AND x are identical, whereas the Prop representations 
aren’t. The Prop representation is an abstract syntax representation, whereas the BDD representation is 
more of a semantic or computational representation. The BDD representation incorporates all the logic 
necessary to prove propositional formula equivalent; in other words, this logic is built into the 
representation. 

Circuit Verification with BDDs 
You can now use BDDs to perform circuit verification. For example, the following verifies that you can 
swap the x and y inputs to an 8-bit adder: 

> bddBuilder.Equiv 
    (nBitCarryRippleAdder 8 (vec 8 "x") (vec 8 "y") (vec 8 "sum") (vec 9 "carry")) 
    (nBitCarryRippleAdder 8 (vec 8 "y") (vec 8 "x") (vec 8 "sum") (vec 9 "carry"));; 
val it : bool = true 

Thirty-three variables are involved in this circuit. A naive exploration of this space would involve 
searching a truth table of more than eight billion entries. The BDD implementation takes moments on 
any modern computer. Efficient symbolic representations pay off! 

A more substantial verification problem involves checking the equivalence of circuits that have 
substantial structural differences. To explore this, let’s take a different implementation of addition called 
a carry select adder. This avoids a major problem with ripple adders caused by the fact that the carry 
signal must propagate along the entire length of the chain of internal adders, causing longer delays in 
the electrical signals and thus reducing the clock rates of a circuit or possibly increasing power 
consumption. A carry select adder gets around this through a common hardware trick of speculative 
execution. It divides the inputs into blocks and adds each block twice: once assuming the carry is low 
and once assuming it’s high. The result is then selected after the circuit, when the carry for the block has 
been computed. Listing 12-16 shows the specification of the essence of the hardware layout of a carry 
select adder using the techniques developed so far. The specification uses the slicing syntax for arrays 
described in Chapter 4. 

Listing 12-16. A Carry Select Adder Modeled Using Propositional Logic 

let mux a b c = ((~~~a ==> b) &&& (a ==> c)) 
 
let carrySelectAdder 
       totalSize maxBlockSize 
       (x:bitvec) (y:bitvec) 
       (sumLo:bitvec) (sumHi:bitvec) 
       (carryLo:bitvec) (carryHi:bitvec) 
       (sum:bitvec) (carry:bitvec) = 
  Blocks 
    [ for i in 0..maxBlockSize..totalSize-1 -> 
        let sz = min (totalSize-i) maxBlockSize 
        let j = i+sz-1 
        let carryLo = Array.append [| False |] carryLo.[i+1..j+1] 
        let adderLo = rippleAdder sz x.[i..j] y.[i..j] sumLo.[i..j] carryLo 
        let carryHi = Array.append [| True  |] carryHi.[i+1..j+1] 
        let adderHi = rippleAdder sz x.[i..j] y.[i..j]  sumHi.[i..j] carryHi 
        let carrySelect = (carry.[j+1] === mux carry.[i] carryLo.[sz] carryHi.[sz]) 
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        let sumSelect = 
            Blocks [for k in i..j -> 
                         sum.[k] === mux carry.[i] sumLo.[k] sumHi.[k]] 
        adderLo &&& adderHi &&& carrySelect &&& sumSelect ] 
 

You can now check that a carrySelectAdder is equivalent to a rippleAdder. Here’s the overall 
verification condition: 
 
let checkAdders n k = 
    let x = vec n "x" 
    let y = vec n "y" 
    let sumA    = vec n "sumA" 
    let sumB    = vec n "sumB" 
    let sumLo   = vec n "sumLo" 
    let sumHi   = vec n "sumHi" 
    let carryA  = vec (n+1) "carryA" 
    let carryB  = vec (n+1) "carryB" 
    let carryLo = vec (n+1) "carryLo" 
    let carryHi = vec (n+1) "carryHi" 
    let adder1 = carrySelectAdder n k x y sumLo sumHi carryLo  carryHi  sumA carryA 
    let adder2 = rippleAdder n x y sumB carryB 
    (adder1 &&& adder2 &&& (carryA.[0] === carryB.[0]) ==> 
         (vecEq sumA sumB &&& bitEq carryA.[n] carryB.[n])) 
 

Ignoring the construction of the inputs, the verification condition specifies the following: 

• Assume you have the two adder circuits, with the same inputs. 

• Assume the input carry bits are the same. 

• Then, the output sum vectors are identical, and the final output carry bits are 
identical. 

Here is the verification condition being checked interactively, for 5-bit inputs, in chunks of 2 for the 
carrySelectAdder: 

> bddBuilder.Equiv (checkAdders 5 2) True;; 
val it : bool = true 

In practice, BDDs require a good variable ordering, and the default alphabetic ordering is unlikely to 
be the best. Here is a larger verification using a more random ordering induced by first comparing on the 
hash codes of the names of the variables: 
 
let approxCompareOn f x y = 
    let c = compare (f x) (f y) 
    if c <> 0 then c else compare x y 
let bddBuilder2 = BddBuilder(approxCompareOn hash) 
 

> bddBuilder2.Equiv (checkAdders 7 2) True;; 
val it : bool = true 
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Seventy-four Boolean variables are involved in this last verification problem. You would have to generate 
up to 274 test cases to explore this systematically via testing; that’s 22 thousand billion billion test cases. 
By using symbolic techniques, you’ve explored this entire space in a matter of seconds and in only a few 
hundred lines of code. 

■ Note Hardware and software verification are highly active areas of research and one of the most important 

applications of symbolic programming techniques in the industrial arena. The verifications performed here aim to 
give you a taste of how symbolic techniques can provide nontrivial results about circuits in a matter of seconds. 
We’ve omitted some simple techniques that can make these verifications scale to very large circuits; for example, 

we expand equivalence nodes in propositional formulae. Preserving them can lead to smaller symbolic 

descriptions and more efficient processing with BDDs.  

Summary 
This chapter looked at two applications of language-oriented symbolic programming. The first was 
algebraic symbolic differentiation and visualization, where you learned how to differentiate, simplify, and 
display algebraic expressions. The second was hardware modeling and verification using propositional 
logic and binary decision diagrams, where you saw how to use symbolic techniques to describe circuits as 
propositional logic formulae and then used brute-force and/or binary decision diagram techniques to 
analyze these for correctness. These examples are only two of the many in the large domain of symbolic 
computation problems, a domain where functional programming and F# truly excels. 
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Reactive, Asynchronous, and 
Parallel Programming 

So far in this book, you’ve seen functions and objects that process their inputs immediately using a 
single thread of execution where the code runs to completion and produces useful results or state 
changes. In this chapter, you turn your attention to concurrent, parallel, asynchronous, and reactive 
programs. These represent substantially different approaches to programming from those you’ve seen 
so far. Some of the reasons for turning to these techniques are as follows: 

• To achieve better responsiveness in a graphical user interface (GUI) 

• To report progress results during a long-running computation and to support 
cancellation of these computations 

• To achieve greater throughput in a reactive application or service 

• To achieve faster processing rates on a multiprocessor machine or cluster 

• To take advantage of the I/O parallelism available in modern disk drives or 
network connections 

• To sustain processing while network and disk I/O operations are in process 

This chapter covers some of the techniques that can help achieve these outcomes: 

• Using .NET threads and the BackgroundWorker class for background computations 

• Using events and messages to report results back to a GUI 

• Using F# asynchronous workflows and the .NET thread pool to handle network 
requests and other asynchronous I/O operations 

• Using F# pattern-matching to process message queues 

• Using low-level .NET shared-memory primitives to implement new 
concurrency techniques and control access to mutable data structures 

Chapter 11 looked at the most common type of reactive program: GUI programs that respond to 
events raised on the GUI thread. The inner loop of such an application (contained in the Windows 
Forms library) spends most of its time blocked and waiting for the underlying operating system to 
notify it of a relevant event, such as a click from the user or a timer event from the operating system. 
This notification is received as an event in a message queue. Many GUI programs have only a single 
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thread of execution, so all computation happens on the GUI thread. This can lead to problems such as 
nonresponsive user interfaces. This is one of many reasons it’s important to master some of the 
techniques of concurrent and asynchronous programming. 

Introducing Some Terminology 
Let’s begin by looking more closely at some terminology: 

• Processes are, in the context of this chapter, standard operating system (OS) 
processes. Each instance of the .NET Common Language Runtime (CLR) runs in 
its own process, and multiple instances of the .NET CLR are often running on the 
same machine. 

• Threads are, in the context of this chapter, standard .NET threads. On most 
implementations of .NET, these correspond to operating system threads. Each 
.NET process has many threads running within the one process. 

• Concurrent programs are ones with multiple threads of execution, each typically 
executing different code, or at different execution points within the same code. 
Simultaneous execution may be simulated by scheduling and descheduling the 
threads, which is done by the OS. For example, most OS services and GUI 
applications are concurrent. 

• Parallel programs are one or more processes or threads executing 
simultaneously. For example, many modern microprocessors have two or more 
physical CPUs capable of executing processes and threads in parallel. Parallel 
programs can also be data parallel. For example, a massively parallel device such 
as a graphics processor unit (GPU) can process arrays and images in parallel. 
Parallel programs can also be a cluster of computers on a network, 
communicating via message passing. Historically, some parallel scientific 
programs have even used e-mail for communication! 

• Asynchronous programs perform requests that don’t complete immediately but 
are fulfilled at a later time and where the program issuing the request has to do 
meaningful work in the meantime. For example, most network I/O is inherently 
asynchronous. A web crawler is also a highly asynchronous program, managing 
hundreds or thousands of simultaneous network requests. 

• Reactive programs are ones whose normal mode of operation is to be in a state of 
waiting for some kind of input, such as waiting for user input or for input from a 
message queue via a network socket. For example, GUI applications and web 
servers are reactive programs. 

Parallel, asynchronous, concurrent, and reactive programs bring many interesting challenges. 
For example, these programs are nearly always nondeterministic. This makes debugging more 
challenging because it’s difficult to step through a program; even pausing a running program with 
outstanding asynchronous requests may cause timeouts. Most dramatically, incorrect concurrent 
programs may deadlock, which means all threads are waiting on results from some other thread and 
no thread can make progress. Programs may also livelock, where processing is occurring and messages 
are being sent between threads but no useful work is being performed. 
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Using and Designing Background Workers 
One of the easiest ways to get going with concurrency and parallelism is to use the 
System.ComponentModel.BackgroundWorker class of the .NET Framework. A BackgroundWorker class runs 
on its own dedicated operating system thread. These objects can be used in many situations but are 
especially useful for coarse-grained concurrency and parallelism such as checking the spelling of a 
document in the background. This section shows some simple uses of BackgroundWorker and how to 
build similar objects that use BackgroundWorker internally. 

Listing 13-1 shows a simple use of BackgroundWorker that computes the Fibonacci numbers on the 
worker thread. 

Listing 13-1. A Simple BackgroundWorker 

open System.ComponentModel 
open System.Windows.Forms 
 
let worker = new BackgroundWorker() 
let numIterations = 1000 
 
worker.DoWork.Add(fun args -> 
 
    let rec computeFibonacci resPrevPrev resPrev i = 
        // Compute the next result 
        let res = resPrevPrev + resPrev 
 
        // At the end of the computation write the result into mutable state 
        if i = numIterations then 
            args.Result <- box res 
        else 
            // Compute the next result 
            computeFibonacci resPrev res (i+1) 
 
    computeFibonacci 1 1 2) 
 
worker.RunWorkerCompleted.Add(fun args -> 
    MessageBox.Show(sprintf "Result = %A" args.Result) |> ignore) 
 
// Execute the worker 
worker.RunWorkerAsync() 
 

Table 13-1 shows the primary members of a BackgroundWorker object. The execution sequence of 
the code in Listing 13-1 is as follows: 

1. The main application thread creates and configures a BackgroundWorker 
object. 

2. After configuration is complete, the main application thread calls the 
RunWorkerAsync method on the BackgroundWorker object. This causes the DoWork 
event to be raised on the worker thread. 

3. The DoWork event handler is executed in the worker thread and computes the 
one-thousandth Fibonacci number. At the end of the computation, the result is 
written into args.Result, a mutable storage location in the event arguments 
for the DoWork event. The DoWork event handler then completes. 
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4. At some point after the DoWork event handler completes, the 
RunWorkerCompleted event is automatically raised on the main application 
thread. This displays a message box with the result of the computation, 
retrieved from the args field of the event arguments. 

Table 13-1. Primary Members of the BackgroundWorker Class 

Member and Type Description 

RunWorkerAsync: unit -> unit Starts the process on a separate thread asynchronously. 
Called from the main thread. 

CancelAsync: unit -> unit Sets the CancellationPending flag of the background task. 
Called from the main thread. 

CancellationPending: bool Set to true by raising CancelAsync. Used by the worker 
thread. 

WorkerReportsProgress: bool Set to true if the worker can support progress updates. 
Used by the main thread. 

WorkerSupportsCancellation: bool Set to true if the worker can support cancellation of the 
current task in progress. Used by the main thread. 

ReportProgress: int -> unit Indicates the progress of the operation. Used by the 
worker thread. 

DoWork: IEvent<DoWorkEventArgs> Fires in response to a call to RunWorkerAsync. Invoked on 
the worker thread. 

RunWorkerCompleted: 
IEvent<RunWorkerCompletedEventArgs> 

Fires when the background operation is canceled, when 
the operation is completed, or when an exception is 
thrown. Invoked on the main thread. 

ProgressChanged: 
IEvent<ProgressChangedEventArgs> 

Fires whenever the ReportProgress property is set. 
Invoked on the main thread. 

■ Note Objects such as a BackgroundWorker are two-faced: they have some methods and events that are for 
use from the main thread and some that are for use on the worker thread. This is common in  concurrent 
programming. In particular, be careful to understand which thread an event is raised on. For BackgroundWorker, 

the RunWorkerAsync and CancelAsync methods are for use from the GUI thread, and the ProgressChanged and 
RunWorkerCompleted events are raised on the GUI thread. The DoWork event is raised on the worker thread, and 
the ReportProgress method and the CancellationPending property are for use from the worker thread when 

handling this event. 
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The members in Table 13-1 show two additional facets of BackgroundWorker objects: they can 
optionally support protocols for cancellation and reporting progress. To report progress percentages, 
a worker must call the ReportProgress method, which raises the ProgressChanged event in the GUI 
thread. For cancellation, a worker computation need only check the CancellationPending property at 
regular intervals, exiting the computation as a result. 

Building a Simpler Iterative Worker 
Capturing common control patterns such as cancellation and progress reporting is an absolutely 
essential part of mastering concurrent programming. However, one of the problems with .NET classes 
such as BackgroundWorker is that they’re often more imperative than you may want, and they force 
other common patterns to be captured by using mutable data structures shared between threads. This 
leads to the more difficult topic of shared-memory concurrency, discussed later in the chapter. 
Furthermore, the way BackgroundWorker handles cancellation means that you must insert flag-checks 
and early-exit paths in the executing background process. Finally, BackgroundWorker isn’t useful for 
background threads that perform asynchronous operations, because the background thread exits too 
early, before the callbacks for the asynchronous operations have executed. 

For this reason, it can often be useful to build abstractions that are similar to BackgroundWorker but 
that capture richer or different control patterns, preferably in a way that doesn’t rely on the use of 
mutable state and that interferes less with the structure of the overall computation. Much of the rest of 
this chapter looks at various techniques to build these control structures. 

You start with a case study in which you build a type IterativeBackgroundWorker that represents a 
variation on the BackgroundWorker design pattern. Listing 13-2 shows the code. 

Listing 13-2. A Variation on the BackgroundWorker Design Pattern for Iterative Computations 

open System.ComponentModel 
open System.Windows.Forms 
 
/// An IterativeBackgroundWorker follows the BackgroundWorker design pattern 
/// but instead of running an arbitrary computation it iterates a function 
/// a fixed number of times and reports intermediate and final results. 
/// The worker is paramaterized by its internal state type. 
/// 
/// Percentage progress is based on the iteration number. Cancellation checks 
/// are made at each iteration. Implemented via an internal BackgroundWorker. 
type IterativeBackgroundWorker<'T>(oneStep:('T -> 'T), 
                                   initialState:'T, 
                                   numIterations:int) = 
 
    let worker = 
        new BackgroundWorker(WorkerReportsProgress=true, 
                             WorkerSupportsCancellation=true) 
 
 
    // Create the events that we will later trigger 
    let completed = new Event<_>() 
    let error     = new Event<_>() 
    let cancelled = new Event<_>() 
    let progress  = new Event<_>() 
 
    do worker.DoWork.Add(fun args -> 



CHAPTER 13 ■ REACTIVE, ASYNCHRONOUS, AND PARALLEL PROGRAMMING 

 

360 

 

        // This recursive function represents the computation loop. 
        // It runs at "maximum speed", i.e. is an active rather than 
        // a reactive process, and can only be controlled by a 
        // cancellation signal. 
        let rec iterate state i = 
            // At the end of the computation terminate the recursive loop 
            if worker.CancellationPending then 
               args.Cancel <- true 
            elif i < numIterations then 
                // Compute the next result 
                let state' = oneStep state 
 
                // Report the percentage computation and the internal state 
                let percent = int ((float (i+1)/float numIterations) * 100.0) 
                do worker.ReportProgress(percent, box state); 
 
                // Compute the next result 
                iterate state' (i+1) 
            else 
                args.Result <- box state 
 
        iterate initialState 0) 
 
    do worker.RunWorkerCompleted.Add(fun args -> 
        if args.Cancelled       then cancelled.Trigger() 
        elif args.Error <> null then error.Trigger args.Error 
        else completed.Trigger (args.Result :?> 'T)) 
 
    do worker.ProgressChanged.Add(fun args -> 
        progress.Trigger (args.ProgressPercentage,(args.UserState :?> 'T))) 
 
    member x.WorkerCompleted  = completed.Publish 
    member x.WorkerCancelled  = cancelled.Publish 
    member x.WorkerError      = error.Publish 
    member x.ProgressChanged  = progress.Publish 
 
    // Delegate the remaining members to the underlying worker 
    member x.RunWorkerAsync()    = worker.RunWorkerAsync() 
    member x.CancelAsync()       = worker.CancelAsync() 
 

The types inferred for the code in Listing 13-2 are as follows: 

type IterativeBackgroundWorker<'State> = 
    new : ('State -> 'State) * 'State * int -> IterativeBackgroundWorker<'State> 
    member RunWorkerAsync : unit -> unit 
    member CancelAsync : unit -> unit 
 
    member ProgressChanged : IEvent<int * 'State> 
    member WorkerCompleted : IEvent<'State> 
    member WorkerCancelled : IEvent<unit> 
    member WorkerError     : IEvent<exn> 
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Let’s look at this signature first, because it represents the design of the type. The worker 
constructor is given a function of type 'State -> 'State to compute successive iterations of the 
computation, plus an initial state and the number of iterations to compute. For example, you can 
compute the Fibonacci numbers using the following iteration function: 
 
let fibOneStep (fibPrevPrev:bigint,fibPrev) = (fibPrev, fibPrevPrev+fibPrev);; 
 

The type of this function is as follows: 

val fibOneStep : bigint * bigint -> bigint * bigint 

The RunWorkerAsync and CancelAsync members follow the BackgroundWorker design pattern, as do 
the events, except that you expand the RunWorkerCompleted event into three events to correspond to the 
three termination conditions and modify the ProgressChanged to include the state. You can instantiate 
the type as follows: 

> let worker = new IterativeBackgroundWorker<_>( fibOneStep,(1I,1I),100);; 
val worker : IterativeBackgroundWorker<bigint * bigint> 
 
> worker.WorkerCompleted.Add(fun result -> 
      MessageBox.Show(sprintf "Result = %A" result) |> ignore);; 
val it : unit = () 
 
> worker.ProgressChanged.Add(fun (percentage, state) -> 
    printfn "%d%% complete, state = %A" percentage state);; 
val it : unit = () 
 
> worker.RunWorkerAsync();; 
1% complete, state = (1I, 1I) 
2% complete, state = (1I, 2I) 
3% complete, state = (2I, 3I) 
4% complete, state = (3I, 5I) 
... 
98% complete, state = (135301852344706746049I, 218922995834555169026I) 
99% complete, state = (218922995834555169026I, 354224848179261915075I) 
100% complete, state = (354224848179261915075I, 573147844013817084101I) 
val it : unit = () 

One difference here is that cancellation and percentage progress reporting are handled 
automatically based on the iterations of the computation. This is assuming each iteration takes roughly 
the same amount of time. Other variations on the BackgroundWorker design pattern are possible. For 
example, reporting percentage completion of fixed tasks such as installation is often performed by 
timing sample executions of the tasks and adjusting the percentage reports appropriately. 
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■ Note You implement IterativeBackgroundWorker via delegation rather than inheritance. This is because its 
external members are different from those of BackgroundWorker. The .NET documentation recommends that you 
use implementation inheritance for this, but we disagree. Implementation inheritance can only add complexity to 

the signature of an abstraction and never makes things simpler, whereas an IterativeBackgroundWorker is in 
many ways simpler than using a BackgroundWorker, despite that it uses an instance of the latter internally. 

Powerful, compositional, simple abstractions are the primary building blocks of functional programming. 

Raising Additional Events from Background Workers 
Often, you need to raise additional events from objects that follow the BackgroundWorker design 
pattern. For example, let’s say you want to augment IterativeBackgroundWorker to raise an event when 
the worker starts its work and for this event to pass the exact time that the worker thread started as an 
event argument. Listing 13-3 shows the extra code you need to add to the IterativeBackgroundWorker 
type to make this happen. You use this extra code in the next section. 

Listing 13-3. Code to Raise GUI-Thread Events from an IterativeBackgroundWorker Object 

open System 
open System.Threading 
 
// Pseudo-code for adding event-raising to this object 
type IterativeBackgroundWorker<'T>(...) = 
 
    let worker = ... 
 
    // The constructor captures the synchronization context. This allows us to post 
    // messages back to the GUI thread where the BackgroundWorker was created. 
    let syncContext = SynchronizationContext.Current 
    do if syncContext = null then failwith "no synchronization context found" 
 
    let started = new Event<_>() 
 
    // Raise the event when the worker starts. This is done by posting a message 
    // to the captured synchronization context. 
    do worker.DoWork.Add(fun args -> 
        syncContext.Post(SendOrPostCallback(fun _ -> started.Trigger(DateTime.Now)), 
                         state=null) 
        ... 
 
    /// The Started event gets raised when the worker starts. It is 
    /// raised on the GUI thread (i.e. in the synchronization context of 
    /// the thread where the worker object was created). 
    // It has type IEvent<DateTime> 
    member x.Started             = started.Publish 
 

The simple way to raise additional events is often wrong. For example, it’s tempting to create an 
event, arrange for it to be triggered, and publish it, as you would do for a GUI control. However, if you 
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do that, you end up triggering the event on the background worker thread, and its event handlers run 
on that thread. This is dangerous, because most GUI objects (and many other objects) can be accessed 
only from the thread they were created on; this is a restriction enforced by most GUI systems. 

■ Note One of the nice features of the BackgroundWorker class is that it automatically arranges to raise the 
RunWorkerCompleted and ProgressChanged events on the GUI thread. Listing 13-3 shows how to achieve this. 
Technically speaking, the extended IterativeBackgroundWorker object captures the synchronization context of 

the thread where it was created and posts an operation back to that synchronization context. A synchronization 
context is an object that lets you post operations back to another thread. For threads such as a GUI thread, this 

means that posting an operation posts a message through the GUI event loop. 

Connecting a Background Worker to a GUI 
To round off this section on the BackgroundWorker design pattern, Listing 13-4 shows the full code 
required to build a small application with a background worker task that supports cancellation and 
reports progress.  

Listing 13-4. Connecting an IterativeBackgroundWorker to a GUI 

open System.Drawing 
open System.Windows.Forms 
 
let form = new Form(Visible=true,TopMost=true) 
 
let panel = new FlowLayoutPanel(Visible=true, 
                                Height = 20, 
                                Dock=DockStyle.Bottom, 
                                BorderStyle=BorderStyle.FixedSingle) 
 
let progress = new ProgressBar(Visible=false, 
                               Anchor=(AnchorStyles.Bottom ||| AnchorStyles.Top), 
                               Value=0) 
 
let text = new Label(Text="Paused", 
                     Anchor=AnchorStyles.Left, 
                     Height=20, 
                     TextAlign= ContentAlignment.MiddleLeft) 
 
panel.Controls.Add(progress) 
panel.Controls.Add(text) 
form.Controls.Add(panel) 
 
let fibOneStep (fibPrevPrev:bigint,fibPrev) = (fibPrev, fibPrevPrev+fibPrev) 
 
// Run the iterative algorithm 500 times before reporting intermediate results 
let rec repeatMultipleTimes n f s =  
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    if n <= 0 then s else repeatMultipleTimes (n-1) f (f s) 
 
// Burn some additional cycles to make sure it runs slowly enough 
let rec burnSomeCycles n f s =  
    if n <= 0 then f s else ignore (f s); burnSomeCycles (n-1) f s 
 
let step = (repeatMultipleTimes 500 (burnSomeCycles 1000 fibOneStep)) 
 
// Create the iterative worker. 
let worker = new IterativeBackgroundWorker<_>(step,(1I,1I),80) 
 
worker.ProgressChanged.Add(fun (progressPercentage,state)-> 
    progress.Value <- progressPercentage) 
 
worker.WorkerCompleted.Add(fun (_,result) -> 
    progress.Visible <- false; 
    text.Text <- "Paused"; 
    MessageBox.Show(sprintf "Result = %A" result) |> ignore) 
 
worker.WorkerCancelled.Add(fun () -> 
    progress.Visible <- false; 
    text.Text <- "Paused"; 
    MessageBox.Show(sprintf "Cancelled OK!") |> ignore) 
 
worker.WorkerError.Add(fun exn -> 
    text.Text <- "Paused"; 
    MessageBox.Show(sprintf "Error: %A" exn) |> ignore) 
 
form.Menu <- new MainMenu() 
let workerMenu = form.Menu.MenuItems.Add("&Worker") 
 
workerMenu.MenuItems.Add(new MenuItem("Run",onClick=(fun _ args -> 
    text.Text <- "Running"; 
    progress.Visible <- true; 
    worker.RunWorkerAsync()))) 
 
 
workerMenu.MenuItems.Add(new MenuItem("Cancel",onClick=(fun _ args -> 
    text.Text <- "Cancelling"; 
    worker.CancelAsync()))) 
 
form.Closed.Add(fun _ -> worker.CancelAsync()) 
 

When you run the code in F# Interactive, a window appears, as shown in Figure 13-1. 
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Figure 13-1. A GUI window with a BackgroundWorker reporting progress percentage 

■ Note Forcibly aborting computations uncooperatively isn’t recommended in .NET programming. You can 
attempt to do this using System.Threading.Thread.Abort(), but using this method may have many unintended 

consequences, discussed later in this chapter. 

Introducing Asynchronous and Parallel Computations 
The two background worker samples shown so far run at full throttle. In other words, the computations 
run on the background threads as active loops, and their reactive behavior is limited to flags that check 
for cancellation. In reality, background threads often have to do different kinds of work, either by 
responding to completed asynchronous I/O requests, by processing messages, by sleeping, or by 
waiting to acquire shared resources. Fortunately, F# comes with a powerful set of techniques for 
structuring asynchronous programs in a natural way. These are called asynchronous workflows. The 
next three sections cover how to use asynchronous workflows to structure asynchronous and message-
processing tasks in ways that preserve the essential logical structure of your code. 

Fetching Multiple Web Pages in Parallel, Asynchronously 
One of the most intuitive asynchronous tasks is fetching a web page; we all use web browsers that can 
fetch multiple pages simultaneously. The samples in Chapter 2 showed how to fetch pages 
synchronously. This is useful for many purposes, but browsers and high-performance web crawlers 
have tens or thousands of connections in flight at once. 

The type Microsoft.FSharp.Control.Async<'T> lies at the heart of F# asynchronous workflows. A 
value of type Async<'T> represents a program fragment that will generate a value of type 'T at some 
point in the future. Listing 13-5 shows how to use asynchronous workflows to fetch several web 
pages simultaneously. (This example uses a method AsyncReadToEnd defined in the open source 
library called the F# Power Pack. If you like, you can replace this with a call to the synchronous 
method ReadToEnd, defined in the standard .NET libraries. Doing so may increase the thread count 
used by executing this code.) 
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Listing 13-5. Fetching Three Web Pages Simultaneously 

#r "FSharp.PowerPack.dll" // contains the definition for AsyncReadToEnd 
open System.Net 
open System.IO 
 
let museums = ["MOMA",           "http://moma.org/"; 
               "British Museum", "http://www.thebritishmuseum.ac.uk/"; 
               "Prado",          "http://museoprado.mcu.es"] 
 
let fetchAsync(nm,url:string) = 
    async { printfn "Creating request for %s..." nm 
            let req  = WebRequest.Create(url) 
 
            let! resp  = req.AsyncGetResponse() 
 
            printfn "Getting response stream for %s..." nm 
            let stream = resp.GetResponseStream() 
 
            printfn "Reading response for %s..." nm 
            let reader = new StreamReader(stream) 
            let! html = reader.AsyncReadToEnd() 
 
            printfn "Read %d characters for %s..." html.Length nm } 
 
for nm,url in museums do 
    Async.Start (fetchAsync(nm,url)) 
 

The types of these functions and values are as follows: 

val museums : (string * string) list 
val fetchAsync : string * string -> Async<unit> 

When run on one of our machines via F# Interactive, the output of the code from Listing 13-5 is as 
follows: 

Creating request for MOMA... 
Creating request for British Museum... 
Creating request for Prado... 
Getting response for MOMA... 
Reading response for MOMA... 
Getting response for Prado... 
Reading response for Prado... 
Read 188 characters for Prado... 
Read 41635 characters for MOMA... 
Getting response for British Museum... 
Reading response for British Museum... 
Read 24341 characters for British Museum... 
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The heart of the code in Listing 13-5 is the construct introduced by async { ... }. This is an 
application of the workflow syntax introduced in Chapter 9.  

Let’s take a closer look at Listing 13-5. The key operations are the two let! operations within the 
workflow expression: 
 
    async { ... 
            let! resp  = req.AsyncGetResponse() 
            ... 
            let! html = reader.AsyncReadToEnd() 
            ... } 
 

Within asynchronous workflow expressions, the language construct let! var = expr in body 
means “perform the asynchronous operation expr and bind the result to var when the operation 
completes. Then, continue by executing the rest of the computation body.” 

With this in mind, you can now see what fetchAsync does: 

• It synchronously requests a web page. 

• It asynchronously awaits a response to the request. 

• It gets the response Stream and StreamReader synchronously after the 
asynchronous request completes. 

• It reads to the end of the stream asynchronously. 

• After the read completes, it prints the total number of characters read 
synchronously. 

Finally, you use the method Async.Start to initiate the execution of a number of asynchronous 
computations. This works by queuing the computations in the .NET thread pool. The following section 
explains the .NET thread pool in more detail. 

Understanding Thread Hopping 
Asynchronous computations are different from normal, synchronous computations: an asynchronous 
computation tends to hop between different underlying .NET threads. To see this, let’s augment the 
asynchronous computation with diagnostics that show the ID of the underlying .NET thread at each 
point of active execution. You can do this by replacing uses of printfn in the function fetchAsync with 
uses of the following function: 
 
let tprintfn fmt = 
    printf "[.NET Thread %d]" System.Threading.Thread.CurrentThread.ManagedThreadId; 
    printfn fmt 
 

After doing this, the output changes to the following: 

[.NET Thread 12]Creating request for MOMA... 
[.NET Thread 13]Creating request for British Museum... 
[.NET Thread 12]Creating request for Prado... 
[.NET Thread 8]Getting response for MOMA... 
[.NET Thread 8]Reading response for MOMA... 
[.NET Thread 9]Getting response for Prado... 
[.NET Thread 9]Reading response for Prado... 
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[.NET Thread 9]Read 188 characters for Prado... 
[.NET Thread 8]Read 41635 characters for MOMA... 
[.NET Thread 8]Getting response for British Museum... 
[.NET Thread 8]Reading response for British Museum... 
[.NET Thread 8]Read 24341 characters for British Museum... 

Note how each individual Async program hops between threads; the MOMA request started on .NET 
thread 12 and finished life on .NET thread 8. Each asynchronous computation in Listing 13-5 executes 
in the following way: 

• It starts life as a work item in the .NET thread pool. (The .NET thread pool is 
explained in the “What Is the .NET Thread Pool?” sidebar.) These are processed 
by a number of .NET threads. 

• When the asynchronous computations reach the AsyncGetResponse and 
AsyncReadToEnd calls, the requests are made, and the continuations are 
registered as I/O completion actions in the .NET thread pool. No thread is used 
while the request is in progress. 

• When the requests complete, they trigger a callback in the .NET thread pool. 
These may be serviced by different threads than those that originated the calls. 

What Is the .NET Thread Pool? 

.NET objects such as BackgroundWorker use a single .NET background thread, which corresponds to a 
single Windows or other OS thread. OS threads have supporting resources such as an execution stack that 
consume memory and are relatively expensive to create and run. 

However, many concurrent processing tasks require only the ability to schedule short-lived tasks that then 
suspend, waiting for further input. To simplify the process of creating and managing these tasks, the .NET 
Framework provides the System.Threading.ThreadPool class. The thread pool consists of two main sets 
of suspended tasks: a queue containing user work items and a pool of I/O completion callbacks, each 
waiting for a signal from the operating system. The number of threads in the thread pool is automatically 
tuned, and items can be either queued asynchronously or registered against a .NET WaitHandle 
synchronization object (for example, a lock, a semaphore, or an I/O request). This is how to queue a work 
item in the .NET thread pool: 

    open System.Threading 
 
    ThreadPool.QueueUserWorkItem(fun _ -> printf "Hello!") |> ignore 
  

Under the Hood: What Are Asynchronous Computations? 
Async<'T> values are essentially a way of writing continuation-passing or callback programs explicitly. 
Continuations themselves were described in Chapter 8 along with techniques to pass them explicitly. 
Async<'T> computations call a success continuation when the asynchronous computation completes and 
an exception continuation if it fails. They provide a form of managed asynchronous computation, where 
managed means that several aspects of asynchronous programming are handled automatically: 
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• Exception propagation is added for free: If an exception is raised during an 
asynchronous step, then the exception terminates the entire asynchronous 
computation and cleans up any resources declared using use, and the exception 
value is then handed to a continuation. Exceptions may also be caught and 
managed within the asynchronous workflow by using try/with/finally. 

• Cancellation checking is added for free: The execution of an Async<'T> workflow 
automatically checks a cancellation flag at each asynchronous operation. 
Cancellation can be controlled through the use of cancellation tokens. 

• Resource lifetime management is fairly simple: You can protect resources across 
parts of an asynchronous computation by using use inside the workflow syntax. 

If you put aside the question of cancellation, values of type Async<'T> are effectively identical to 
the following type: 
 
type Async<'T> = Async of ('T -> unit) * (exn -> unit) -> unit 
 

Here, the functions are the success continuation and exception continuations, respectively. Each 
value of type Async<'T> should eventually call one of these two continuations. The async object is of 
type AsyncBuilder and supports the following methods, among others: 

type AsyncBuilder with 
    member Return : 'T -> Async<'T> 
    member Delay : (unit -> Async<'T>) -> Async<'T> 
    member Using: 'T * ('T -> Async<'U>) -> Async<'U> when 'T :> System.IDisposable 
    member Bind: Async<'T> * ('T -> Async<'U>) -> Async<'U> 

The full definition of Async<'T> values and the implementations of these methods for the async 
object are given in the F# library source code. As you saw in Chapter 9, builder objects such as async 
containing methods like those shown previously mean that you can use the syntax async { ... } as a 
way of building Async<'T> values. 

Table 13-2 shows the common constructs used in asynchronous workflow expressions. For 
example, the following asynchronous workflow 
 
async { let req  = WebRequest.Create("http://moma.org/") 
        let! resp  = req.AsyncGetResponse() 
        let stream = resp.GetResponseStream() 
        let reader = new StreamReader(stream) 
        let! html = reader.AsyncReadToEnd() 
        html } 
 
is shorthand for the following code: 
 
async.Delay(fun () -> 
    let req = WebRequest.Create("http://moma.org/") 
    async.Bind(req.AsyncGetResponse(), (fun resp -> 
        let stream = resp.GetResponseStream()  
        let reader = new StreamReader(stream)   
        async.Bind(reader.AsyncReadToEnd(), (fun html -> 
            async.Return html))) 

As you saw in Chapter 9, the key to understanding the F# workflow syntax is always to understand 
the meaning of let!. In the case of async workflows, let! executes one asynchronous computation and 
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schedules the next computation for execution after the first asynchronous computation completes. This 
is syntactic sugar for the Bind operation on the async object. 

Table 13-2. Common Constructs Used in async { ... } Workflow Expressions 

Construct Description 

let! pat = expr Executes the asynchronous computation expr, and binds its result to pat when it 
completes. If expr has type Async<'T>, then pat has type 'T. Equivalent to 
async.Bind(expr,(fun pat -> ...)). 

let pat = expr Executes an expression synchronously, and binds its result to pat immediately. 
If expr has type 'T, then pat has type 'T. 

do! expr Equivalent to let! () = expr. 

do expr Equivalent to let () = expr. 

return expr Evaluates the expression, and returns its value as the result of the containing 
asynchronous workflow. Equivalent to async.Return(expr). 

return! expr Executes the expression as an asynchronous computation, and returns its result as 
the overall result of the containing asynchronous workflow. Equivalent to expr. 

use pat = expr Executes the expression immediately, and binds its result immediately. Calls the 
Dispose method on each variable bound in the pattern when the subsequent 
asynchronous workflow terminates, regardless of whether it terminates normally 
or by an exception. Equivalent to async.Using(expr,(fun pat -> ...)). 

Parallel File Processing Using Asynchronous Workflows 
This section shows a slightly longer example of asynchronous I/O processing. The running sample is 
an application that must read a large number of image files and perform some processing on them. 
This kind of application may be compute bound (if the processing takes a long time and the file system 
is fast) or I/O bound (if the processing is quick and the file system is slow). Using asynchronous 
techniques tends to give good overall performance gains when an application is I/O bound and can 
also give performance improvements for compute-bound applications if asynchronous operations are 
executed in parallel on multicore machines. 

Listing 13-6 shows a synchronous implementation of the image-transformation program. 

Listing 13-6. A Synchronous Image Processor 

open System.IO 
let numImages = 200 
let size = 512 
let numPixels = size * size 
 
let makeImageFiles () = 
    printfn "making %d %dx%d images... " numImages size size 
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    let pixels = Array.init numPixels (fun i -> byte i) 
    for i = 1 to numImages  do 
        System.IO.File.WriteAllBytes(sprintf "Image%d.tmp" i, pixels) 
    printfn "done." 
 
let processImageRepeats = 20 
 
let transformImage (pixels, imageNum) = 
    printfn "transformImage %d" imageNum; 
    // Perform a CPU-intensive operation on the image. 
    for i in 1 .. processImageRepeats do  
        pixels |> Array.map (fun b -> b + 1uy) |> ignore 
    pixels |> Array.map (fun b -> b + 1uy) 
 
let processImageSync i = 
    use inStream =  File.OpenRead(sprintf "Image%d.tmp" i) 
    let pixels = Array.zeroCreate numPixels 
    let nPixels = inStream.Read(pixels,0,numPixels); 
    let pixels' = transformImage(pixels,i) 
    use outStream =  File.OpenWrite(sprintf "Image%d.done" i) 
    outStream.Write(pixels',0,numPixels) 
 
let processImagesSync () = 
    printfn "processImagesSync..."; 
    for i in 1 .. numImages do 
        processImageSync(i) 
 

You assume the image files are already created using the following code: 

> System.Environment.CurrentDirectory <- __SOURCE_DIRECTORY__;; 
val it : unit = () 
 
> makeImageFiles();; 
val it : unit = () 

You leave the transformation on the image largely unspecified, such as the function 
transformImage. By changing the value of processImageRepeats, you can adjust the computation from 
compute bound to I/O bound. 

The problem with this implementation is that each image is read and processed sequentially, when in 
practice multiple images can be read and transformed simultaneously, giving much greater throughput. 
Listing 13-7 shows the implementation of the image processor using an asynchronous workflow. 

Listing 13-7. The Asynchronous Image Processor 

let processImageAsync i = 
    async { use inStream = File.OpenRead(sprintf "Image%d.tmp" i) 
            let! pixels = inStream.AsyncRead(numPixels) 
            let  pixels' = transformImage(pixels,i) 
            use outStream = File.OpenWrite(sprintf "Image%d.done" i) 
            do! outStream.AsyncWrite(pixels')  } 
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let processImagesAsync() = 
    printfn "processImagesAsync..."; 
    let tasks = [ for i in 1 .. numImages -> processImageAsync(i) ] 
    Async.RunSynchronously (Async.Parallel tasks)  |> ignore 
    printfn "processImagesAsync finished!"; 
 

On one of our machines, the asynchronous version of the code ran up to three times as fast as the 
synchronous version (in total elapsed time), when processImageRepeats is 20 and numImages is 200. A 
factor of 2 was achieved consistently for any number of processImageRepeats because this machine had 
two CPUs. 

Let’s take a closer look at this code. The call Async.Run  (Async.Parallel ...) executes a set of 
asynchronous operations in the thread pool, collects their results (or their exceptions), and returns the 
overall array of results to the original code. The core asynchronous workflow is introduced by the 
async { ... } construct. Let’s look at the inner workflow line by line: 
 
    async { use inStream = File.OpenRead(sprintf "Image%d.tmp" i) 
            ... } 
 
This line opens the input stream synchronously using File.OpenRead. Although this is a synchronous 
operation, the use of use indicates that the lifetime of the stream is managed over the remainder of the 
workflow. The stream is closed when the variable is no longer in scope: that is, at the end of the 
workflow, even if asynchronous activations occur in between. If any step in the workflow raises an 
uncaught exception, then the stream is also closed while handling the exception. 

The next line reads the input stream asynchronously using inStream.AsyncRead: 
 
    async { use inStream =  File.OpenRead(sprintf "Image%d.tmp" i) 
            let! pixels = inStream.AsyncRead(numPixels) 
            ... } 
 

Stream.AsyncRead is an extension method added to the .NET System.IO.Stream class defined in the 
F# library and generates a value of type Async<byte[]>. The use of let! executes this operation 
asynchronously and registers a callback. When the callback is invoked, the value pixels is bound to the 
result of the operation, and the remainder of the asynchronous workflow is executed. The next line 
transforms the image synchronously using transformImage: 
 
    async { use inStream =  File.OpenRead(sprintf "Image%d.tmp" i) 
            let! pixels = inStream.AsyncRead(numPixels) 
            let  pixels' = transformImage(pixels,i) 
            ... } 
 
Like the first line, the next line opens the output stream. Using use guarantees that the stream is closed 
by the end of the workflow regardless of whether exceptions are thrown in the remainder of the 
workflow: 
 
    async { use inStream =  File.OpenRead(sprintf "Image%d.tmp" i) 
            let! pixels = inStream.AsyncRead(numPixels) 
            let  pixels' = transformImage(pixels,i) 
            use outStream =  File.OpenWrite(sprintf "Image%d.done" i) 
            ... } 
 

The final line of the workflow performs an asynchronous write of the image. Once again, 
AsyncWrite is an extension method added to the .NET System.IO.Stream class defined in the F# library: 
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    async { use inStream =  File.OpenRead(sprintf "Image%d.tmp" i) 
            let! pixels = inStream.AsyncRead(numPixels) 
            let  pixels' = transformImage(pixels,i) 
            use outStream =  File.OpenWrite(sprintf "Image%d.done" i) 
            do! outStream.AsyncWrite(pixels')  } 
 

If you now return to the first part of the function, you can see that the overall operation of the 
function is to create numImages individual asynchronous operations, using a sequence expression that 
generates a list: 
 
    let tasks = [ for i in 1 .. numImages -> processImageAsync(i) ] 
 

You can compose these tasks in parallel using Async.Parallel and then run the resulting process 
using Async.Run. This waits for the overall operation to complete and returns the result: 
 
    Async.Run (Async.Parallel tasks) 
 

Table 13-3 shows some of the primitives and combinators commonly used to build asynchronous 
workflows. Take the time to compare Listings 13-7 and 13-6. Notice the following: 

• The overall structure and flow of the core of Listing 13-7 is similar to Listing 13-
6: that is, the synchronous algorithm, even though it includes steps executed 
asynchronously. 

• The performance characteristics of Listing 13-7 are the same as those of Listing 
13-6. Any overhead involved in executing the asynchronous workflow is easily 
dominated by the overall cost of I/O and image processing. It’s also much easier 
to experiment with modifications such as making the write operation 
synchronous. 

Table 13-3. Some Common Primitives Used to Build Async<'T> Values 

Member/Type Description 

Async.FromContinuations Builds a single primitive asynchronous step of an 
asynchronous computation. The function that implements the 
step is passed continuations to call after the step is complete 
or if the step fails. 

Async.Parallel: seq<Async<'T>> -> 
Async<'T[]> 

Builds a single asynchronous computation that runs the 
given asynchronous computations in parallel and waits for 
results from all to be returned. Each may either terminate 
with a value or return an exception. If any raise an exception, 
then the others are cancelled, and the overall asynchronous 
computation also raises the same exception. 
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Running Asynchronous Computations 
Values of type Async<'T> are usually run using the functions listed in Table 13-4. You can build 
Async<'T> values using functions and members in the F# libraries. 

Table 13-4. Common Methods in the Async Type Used to Run Async<'T> Values 

Member/Type Description 

Async.RunSynchronously: Async<'T> -> 'T Runs an operation in the thread pool and waits for its 
result. 

Async.Start: Async<unit> -> unit Queues the asynchronous computation as an operation 
in the thread pool. 

Async.StartChild: Async<unit> -> 
Async<unit> 

Queues the asynchronous computation, initially as a 
work item in the thread pool, but inherits the 
cancellation handle from the current asynchronous 
computation. 

Common I/O Operations in Asynchronous Workflows 
Asynchronous programming is becoming more widespread because of the use of multicore machines 
and networks in applications, and many .NET APIs now come with both synchronous and 
asynchronous versions of their functionality. For example, all web service APIs generated by .NET 
tools have asynchronous versions of their requests. A quick scan of the .NET API documentation on the 
Microsoft website reveals the asynchronous operations listed in Table 13-5. These all have equivalent 
Async<'T> operations defined in the F# libraries as extensions to the corresponding .NET types. 

Table 13-5. Some Asynchronous Operations in the .NET Libraries and Corresponding Expected F# Naming 

Scheme 

.NET Asynchronous Operation F# Naming Scheme Description 

Stream.Begin/EndRead AsyncRead Reads a stream of bytes asynchronously. 
See also FileStream, NetworkStream, 
DeflateStream, IsolatedStorageFileStream, 
and SslStream. 

Stream.Begin/EndWrite AsyncWrite Writes a stream of bytes asynchronously. 
See also FileStream. 

Socket.BeginAccept/ 
EndAccept 

AsyncAccept Accepts an incoming network socket 
request asynchronously. 

Socket.BeginReceive/ 
EndReceive 

AsyncReceive Receives data on a network socket 
asynchronously. 
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.NET Asynchronous Operation F# Naming Scheme Description 

Socket.BeginSend/EndSend AsyncSend Sends data on a network socket 
asynchronously. 

WebRequest.Begin/ 
EndGetResponse 

AsyncGetResponse Makes an asynchronous web request. See 
also FtpWebRequest, SoapWebRequest, and 
HttpWebRequest. 

SqlCommand.Begin/ 
EndExecuteReader 

AsyncExecuteReader Executes an SqlCommand asynchronously. 

SqlCommand.Begin/ 
EndExecuteXmlReader 

AsyncExecuteXmlReader Executes a read of XML asynchronously. 

SqlCommand.Begin/ 
EndExecuteNonQuery 

AsynExecuteNonQuery Executes a nonreading SqlCommand 
asynchronously. 

Sometimes, you may need to write a few primitives to map .NET asynchronous operations into the 
F# asynchronous framework. You see some examples later in this section and in Chapter 14. 

 

Under the Hood: Implementing Async.Parallel 
Async.Parallel can  appear magical. Computation tasks are created, executed, and resynchronized 
almost without effort. Listing 13-9 shows that a basic implementation of this operator is simple and 
again helps you see how Async<'T> values work under the hood. 

Listing 13-9. A Basic Implementation of a Fork-Join Parallel Operator 

let forkJoinParallel(taskSeq) = 
    Async.FromContinuations (fun (cont,econt,ccont) -> 
        let tasks = Seq.toArray taskSeq 
        let count = ref tasks.Length 
        let results = Array.zeroCreate tasks.Length 
        tasks |> Array.iteri (fun i p -> 
            Async.Start 
               (async { let! res = p 
                        results.[i] <- res; 
                        let n = System.Threading.Interlocked.Decrement(count) 
                        if n=0 then cont results }))) 
 

This basic implementation first converts the input task sequence to an array and then creates 
mutable state count and results to record the progress of the parallel computations. It then iterates 
through the tasks and queues each for execution in the .NET thread pool. Upon completion, each writes 
its result and decrements the counter using an atomic Interlocked.Decrement operator, discussed 
further in the section “Using Shared-Memory Concurrency” at the end of this chapter. The last process 
to finish calls the continuation with the collected results. 

In practice, Async.Parallel is implemented more efficiently and takes into account exceptions and 
cancellation; again, see the F# library code for full details. 
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Using async for CPU Parallelism with Fixed Tasks 
One of the great advantages of F# async programming is that it can be used for both CPU and I/O 
parallel programming tasks. For example, you can use it for many CPU parallelism tasks that don’t 
perform any I/O but rather carry out straight CPU-bound computations.  

For optimized, partitioned CPU parallelism, this is often done by using Async.Parallel with a 
number of tasks that exactly matches the number of physical processors on a machine. For example, the 
following code shows parallel initialization of an array where each cell is filled by running the input 
function. The implementation of this function makes careful use of shared memory primitives (a topic 
discussed later in this book) and is highly efficient: 
 
open System.Threading 
open System 

 
// Initialize an array by a parallel init using all available processors 
// Note, this primitive doesn't support cancellation. 
let parallelArrayInit n f =  
   let currentLine = ref -1 
   let res = Array.zeroCreate n 
   let rec loop () =  
       let y = Interlocked.Increment(&currentLine.contents) 
       if y < n then res.[y] <- f y; loop() 
 
   // Start just the right number of tasks, one for each physical CPU 
   Async.Parallel [ for i in 1 .. Environment.ProcessorCount -> async { do loop()} ] 
      |> Async.Ignore  
      |> Async.RunSynchronously 
 
   res 

> let rec fib x = if x < 2 then 1 else fib (x - 1) + fib (x - 2) 
> parallelArrayInit 25 (fun x -> fib x);; 
val it : int [] = 
  [|1; 1; 2; 3; 5; 8; 13; 21; 34; 55; 89; 144; 233; 377; 610; 987; 1597; 2584; 
    4181; 6765; 10946; 17711; 28657; 46368; 75025; 121393; 196418; 317811; 
    514229; 832040|] 

Understanding Exceptions and Cancellation 
Two recurring topics in asynchronous programming are exceptions and cancellation. Let’s first 
explore some of the behavior of asynchronous programs with regard to exceptions: 

> let failingTask = async { do failwith "fail" };; 
val failingTask: Async<unit> 
 
> Async.RunSynchronously failingTask;; 
Microsoft.FSharp.Core.FailureException: fail 
stopped due to error 
 
> let failingTasks = [ async { do failwith "fail A" }; 
                       async { do failwith "fail B" }; ];; 
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val failingTasks: Async<unit> 
 
> Async.RunSynchronously (Async.Parallel failingTasks);; 
Microsoft.FSharp.Core.FailureException: fail A 
stopped due to error 
 
> Async.RunSynchronously (Async.Parallel failingTasks);; 
Microsoft.FSharp.Core.FailureException: fail B 
stopped due to error 

From these examples, you can see the following: 

• Tasks fail only when they’re actually executed. The construction of a task using 
the async { ... } syntax never fails. 

• Tasks run using Async.RunSynchronously report any failure back to the 
controlling thread as an exception. 

• It’s nondeterministic which task will fail first. 

• Tasks composed using Async.Parallel report the first failure from among the 
collected set of tasks. An attempt is made to cancel other tasks by setting the 
cancellation flag for the group of tasks, and any further failures are ignored. 

You can wrap a task using the Async.Catch combinator. This has the following type: 

static member Catch : Async<'T> -> Async<Choice<'T,exn>> 

For example: 

> Async.RunSynchronously (Async.Catch failingTask);; 
val it : Choice<unit,exn> = Choice2_2 (FailureException ()) 

You can also handle errors by using try/finally in an async { ... } workflow. 

Passing and Processing Messages 
A distinction is often made between shared-memory concurrency and message passing concurrency. 
The former is often more efficient on local machines and is covered in the section “Using Shared-
Memory Concurrency” later in this chapter. The latter scales to systems where there is no shared 
memory—for example, distributed systems—and can also be used to avoid performance problems 
associated with shared memory. Asynchronous message passing and processing is a common 
foundation for concurrent programming, and this section looks at some simple examples of message-
passing programs. 
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Introducing Message Processing 
In a sense, you’ve already seen a good deal of message passing in this chapter. For example: 

• In the BackgroundWorker design pattern, the CancelAsync method is a simple kind 
of message. 

• Whenever you raise events on a GUI thread from a background thread, you are, 
under the hood, posting a message to the GUI’s event queue. On Windows, this 
event queue is managed by the OS, and the processing of the events on the GUI 
thread is called the Windows event loop. 

This section covers a simple kind of message processing called mailbox processing that’s popular 
in languages such as Erlang. A mailbox is a message queue that you can scan for a message particularly 
relevant to the message-processing agent you’re defining. Listing 13-10 shows a concurrent agent 
that implements a simple counter by processing a mailbox as messages arrive. The type 
MailboxProcessor is defined in the F# library. 

Listing 13-10. Implementing a Counter Using a MailboxProcessor 

let counter = 
    new MailboxProcessor<_>(fun inbox -> 
        let rec loop n = 
            async { printfn "n = %d, waiting..." n 
                    let! msg = inbox.Receive() 
                    return! loop (n+msg) } 
        loop 0) 
 

The type of counter is MailboxProcessor<int>, where the type argument indicates that this object 
expects to be sent messages of type int: 

val counter : MailboxProcessor<int> 

The “Message Processing and State Machines” sidebar describes the general pattern of Listing 13-
10 and the other MailboxProcessor examples in this chapter, all of which can be thought of as state 
machines. With this in mind, let’s take a closer look at Listing 13-10. First, let’s use counter on some 
simple inputs: 

> counter.Start();; 
n = 0, waiting... 
 
> counter.Post(1);; 
n = 1, waiting... 
 
> counter.Post(2);; 
n = 3, waiting... 
 
> counter.Post(1);; 
n = 4, waiting... 
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Looking at Listing 13-10, note that calling the Start method causes the processing agent to enter 
loop with n = 0. The agent then performs an asynchronous Receive request on the inbox for the 
MailboxProcessor; that is, the agent waits asynchronously until a message has been received. When the 
message msg is received, the program calls loop (n+msg). As additional messages are received, the 
internal counter (actually an argument) is incremented further. 

You post messages to the agent using counter.Post. The type of inbox.Receive is as follows: 

member Receive: unit -> Async<'Message> 

Using an asynchronous receive ensures that no real threads are blocked for the duration of the 
wait. This means the previous techniques scale to many thousands of concurrent agents. 

Message Processing and State Machines 

Listing 13-10 shares a common structure with many of the other message-processing components you 
see in this chapter, all of which are state machines. This general structure is as follows: 

let agent = 
    MailboxProcessor.Start(fun inbox -> 
 
        // The states of the state machine 
        let rec state1(args) =  async { ... } 
        and     state2(args) =  async { ... } 
        ... 
        and     stateN(args) =  async { ... } 
 
        // Enter the initial state 
        state1(initialArgs)) 

That is, message-processing components typically use sets of recursive functions, each defining an 
asynchronous computation. Each of these functions can be thought of as a state, and one of these states is 
identified as the initial state. You can pass arguments between these states just as you pass them between 
any other set of recursive functions. 

Creating Objects That React to Messages 
Often, it’s wise to hide the internals of an asynchronous computation behind an object, because the use 
of message passing can be seen as an implementation detail. Listing 13-10 doesn’t show you how to 
retrieve information from the counter, except by printing it to the standard output. Furthermore, it 
doesn’t show how to ask the processing agent to exit. Listing 13-11 shows how to implement an object 
wrapping an agent that supports Increment, Stop, and Fetch messages. 
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Listing 13-11. Hiding a Mailbox and Supporting a Fetch Method 

/// The internal type of messages for the agent 
type internal msg = Increment of int | Fetch of AsyncReplyChannel<int> | Stop 
 
type CountingAgent() = 
    let counter = MailboxProcessor.Start(fun inbox -> 
             // The states of the message-processing state machine... 
             let rec loop n = 
                async { let! msg = inbox.Receive() 
                        match msg with 
                        | Increment m -> 
                            // increment and continue... 
                            return! loop(n+m) 
                        | Stop -> 
                            // exit 
                            return () 
                        | Fetch  replyChannel  -> 
                            // post response to reply channel and continue 
                            do replyChannel.Reply n 
                            return! loop n } 
 
             // The initial state of the message-processing state machine... 
             loop(0)) 
 
    member a.Increment(n) = counter.Post(Increment n) 
    member a.Stop() = counter.Post Stop 
    member a.Fetch() = counter.PostAndReply(fun replyChannel -> Fetch replyChannel) 
 

The inferred public types indicate how the presence of a concurrent agent is successfully hidden 
by the use of an object: 

type CountingAgent = 
     new : unit -> CountingAgent 
     member Fetch : unit -> int 
     member Increment : n:int -> unit 
     member Stop : unit -> unit 

Here, you can see an instance of this object in action: 

> let counter = new CountingAgent();; 
val counter : CountingAgent 
 
> counter.Increment(1);; 
val it : unit = () 
 
> counter.Fetch();; 
val it : int = 1 
 
> counter.Increment(2);; 
val it : unit = () 
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> counter.Fetch();; 
val it : int = 3 
 
> counter.Stop();; 
val it : unit = () 

Listing 13-11 shows several important aspects of message passing and processing using the 
mailbox-processing model: 

• Internal message protocols are often represented using discriminated unions. 
Here the type msg has cases Increment, Fetch, and Stop, corresponding to the three 
methods accepted by the object that wraps the overall agent implementation. 

• Pattern matching over discriminated unions gives a succinct way to process 
messages. A common pattern is a call to inbox.Receive() or inbox.TryReceive() 
followed by a match on the message contents. 

• The PostAndReply on the MailboxProcessor type gives a way to post a message 
and wait for a reply. A temporary reply channel is created and should form part of 
the message. A reply channel is an object of type 
Microsoft.FSharp.Control.AsyncReplyChannel<'reply>, which in turn supports a 
Post method. The MailboxProcessor can use this to post a reply to the waiting 
caller. In Listing 13-11, the channel is sent to the underlying message-
processing agent counter as part of the Fetch message. 

Table 13-6 summarizes the most important members available on the MailboxProcessor type. 

Table 13-6. Some Members of the MailboxProcessor<'Message> Type 

Member/Type Description 

Post: 'Message -> unit Posts a message to a mailbox queue. 

Receive: ?timeout:int -> 
Async<'Message> 

Returns the next message in the mailbox queue. If no messages 
are present, performs an asynchronous wait until the message 
arrives. If a timeout occurs, then raises a TimeoutException. 

Scan: ('Message -> Async<'T> 
option) * ?timeout:int -> 
Async<'T> 

Scans the mailbox for a message where the function returns a 
Some(_) value. Returns the chosen result. If no messages are 
present, performs an asynchronous wait until more messages 
arrive. If a timeout occurs, then raises a TimeoutException. 

TryReceive : ?timeout:int -> 
Async<'Message option> 

Like Receive, but if a timeout occurs, then returns None. 

TryScan : ('Message -> Async<'T> 
option) * ?timeout:int -> 
Async<'T option> 

Like Scan, but if a timeout occurs, then returns None. 
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Scanning Mailboxes for Relevant Messages 
It’s common for a message-processing agent to end up in a state where it’s not interested in all 
messages that may appear in a mailbox but only a subset of them. For example, you may be awaiting a 
reply from another agent and aren’t interested in serving new requests. In this case, it’s essential that 
you use MailboxProcessor.Scan rather than MailboxProcessor.Receive. Table 13-6 shows the signatures 
of both of these. The former lets you choose between available messages by processing them in order, 
whereas the latter forces you to process every message. Listing 13-12 shows an example of using 
MailboxProcessor.Scan. 

Listing 13-12. Scanning a Mailbox for Relevant Messages 

type Message = 
    | Message1 
    | Message2 of int 
    | Message3 of string 
 
let agent = 
    MailboxProcessor.Start(fun inbox -> 
        let rec loop() = 
            inbox.Scan(function 
                | Message1 -> 
                   Some (async { do printfn "message 1!" 
                                 return! loop() }) 
                | Message2 n -> 
                   Some (async { do printfn "message 2!" 
                                 return! loop() }) 
                | Message3 _ -> 
                   None) 
        loop()) 
 

You can now post these agent messages, including messages of the ignored kind Message3: 

> agent.Post(Message1) ;; 
message 1! 
val it : unit = () 
 
> agent.Post(Message2(100));; 
message 2! 
val it : unit = () 
 
> agent.Post(Message3("abc"));; 
val it : unit = () 
 
> agent.Post(Message2(100));; 
message 2! 
val it : unit = () 
 
> agent.CurrentQueueLength;; 
val it : int = 1 
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When you send Message3 to the message processor, the message is ignored. However, the last line 
shows that the unprocessed Message3 is still in the message queue, which you examine using the 
backdoor property UnsafeMessageQueueContents. 

Example: Asynchronous Web Crawling 
At the start of this chapter, we mentioned that the rise of the Web and other forms of networks is a major 
reason for the increasing importance of concurrent and asynchronous programming. Listing 13-13 shows 
an implementation of a web crawler using asynchronous programming and mailbox-processing 
techniques. 

Listing 13-13. A Scalable, Controlled Asynchronous Web Crawler 

open System.Collections.Generic 
open System.Net 
open System.IO 
open System.Threading 
open System.Text.RegularExpressions 
 
let limit = 50 
let linkPat = "href=\s*\"[^\"h]*(http://[^&\"]*)\"" 
let getLinks (txt:string) = 
    [ for m in Regex.Matches(txt,linkPat)  -> m.Groups.Item(1).Value ] 
 
// A type that helps limit the number of active web requests 
type RequestGate(n:int) = 
    let semaphore = new Semaphore(initialCount=n,maximumCount=n) 
    member x.AsyncAcquire(?timeout) = 
        async { let! ok = Async.AwaitWaitHandle(semaphore, 
                                                ?millisecondsTimeout=timeout) 
                if ok then 
                   return 
                     { new System.IDisposable with 
                         member x.Dispose() = 
                             semaphore.Release() |> ignore } 
                else 
                   return! failwith "couldn't acquire a semaphore" } 
 
// Gate the number of active web requests 
let webRequestGate = RequestGate(5) 
 
// Fetch the URL, and post the results to the urlCollector. 
let collectLinks (url:string) = 
    async { // An Async web request with a global gate 
            let! html = 
                async { // Acquire an entry in the webRequestGate. Release 
                        // it when 'holder' goes out of scope 
                        use! holder = webRequestGate.AsyncAcquire() 
 
                        let req = WebRequest.Create(url,Timeout=5) 
 
                        // Wait for the WebResponse 
                        use! response = req.AsyncGetResponse() 
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                        // Get the response stream 
                        use reader = new StreamReader(response.GetResponseStream()) 
 
                        // Read the response stream (note: a synchronous read) 
                        return reader.ReadToEnd()  } 
 
            // Compute the links, synchronously 
            let links = getLinks html 
 
            // Report, synchronously 
            do printfn "finished reading %s, got %d links" url (List.length links) 
 
            // We're done 
            return links } 
 
/// 'urlCollector' is a single agent that receives URLs as messages. It creates new 
/// asynchronous tasks that post messages back to this object. 
let urlCollector = 
    MailboxProcessor.Start(fun self -> 
 
        // This is the main state of the urlCollector 
        let rec waitForUrl (visited : Set<string>) = 
 
           async { // Check the limit 
                   if visited.Count < limit then 
 
                       // Wait for a URL... 
                       let! url = self.Receive() 
                       if not (visited.Contains(url)) then 
                           // Start off a new task for the new url. Each collects 
                           // links and posts them back to the urlCollector. 
                           do! Async.StartChild 
                                   (async { let! links = collectLinks url 
                                            for link in links do 
                                               self.Post link }) |> Async.Ignore 
 
                       // Recurse into the waiting state 
                       return! waitForUrl(visited.Add(url)) } 
 
        // This is the initial state. 
        waitForUrl(Set.empty)) 
 

You can initiate a web crawl from a particular URL as follows: 

> urlCollector <-- "http://news.google.com";; 
finished reading http://news.google.com, got 191 links 
finished reading http://news.google.com/?output=rss, got 0 links 
finished reading http://www.ktvu.com/politics/13732578/detail.html, got 14 links 
finished reading http://www.washingtonpost.com/wp-dyn/content/art..., got 218 links 
finished reading http://www.newsobserver.com/politics/story/646..., got 56 links 
finished reading http://www.foxnews.com/story/0,2933,290307,0...l, got 22 links 
... 
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The key techniques shown in Listing 13-13 are as follows: 

• The type RequestGate encapsulates the logic needed to ensure that you place a 
global limit on the number of active web requests occurring at any point in time. 
This is instantiated to the particular instance webRequestGate with limit 5. This 
uses a System.Threading.Semaphore object to coordinate access to this shared 
resource. Semaphores are discussed in more detail in the section “Using Shared-
Memory Concurrency.” 

• The RequestGate type ensures that web requests sitting in the request queue 
don’t block threads but rather wait asynchronously as callback items in the 
thread pool until a slot in the webRequestGate becomes available. 

• The collectLinks function is a regular asynchronous computation. It first enters 
the RequestGate (that is, acquires one of the available entries in the Semaphore). 
After a response has been received, it reads off the HTML from the resulting 
reader, scrapes the HTML for links using regular expressions, and returns the 
generated set of links. 

• The urlCollector is the only message-processing program. It’s written using a 
MailboxProcessor. In its main state, it waits for a fresh URL and spawns a new 
asynchronous computation to call collectLinks once one is received. For each 
collected link, a new message is sent back to the urlCollector’s mailbox. Finally, 
you recurse to the waiting state, having added the fresh URL to the overall set of 
URLs you’ve traversed so far. 

• The operator <-- is used as shorthand for posting a message to an agent. This is a 
recommended abbreviation in F# asynchronous programming. 

• The AsyncAcquire method of the RequestGate type uses a design pattern called a 
holder. The object returned by this method is an IDisposable object that 
represents the acquisition of a resource. This holder object is bound using use, 
and this ensures that the resource is released when the computation completes 
or when the computation ends with an exception. 

Listing 13-13 shows that it’s relatively easy to create sophisticated, scalable asynchronous 
programs using a mix of message passing and asynchronous I/O techniques. Modern web crawlers 
have thousands of outstanding open connections, indicating the importance of using asynchronous 
techniques in modern scalable web-based programming. 

Using Shared-Memory Concurrency 
The final topics covered in this chapter are the various primitive mechanisms used for threads, shared-
memory concurrency, and signaling. In many ways, these are the assembly language of concurrency. 

This chapter has concentrated mostly on techniques that work well with immutable data 
structures. That isn’t to say you should always use immutable data structures. It is, for example, 
perfectly valid to use mutable data structures as long as they’re accessed from only one particular 
thread. Furthermore, private mutable data structures can often be safely passed through an 
asynchronous workflow, because at each point the mutable data structure is accessed by only one 
thread, even if different parts of the asynchronous workflow are executed by different threads. This 
doesn’t apply to workflows that use operators such as Async.Parallel and Async.StartChild that start 
additional threads of computation. 

This means we’ve largely avoided covering shared-memory primitives so far, because F# provides 
powerful declarative constructs such as asynchronous workflows and message passing that often 
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subsume the need to resort to shared-memory concurrency. However, a working knowledge of thread 
primitives and shared-memory concurrency is still very useful, especially if you want to implement your 
own basic constructs or highly efficient concurrent algorithms on shared-memory hardware. 

Creating Threads Explicitly 
This chapter has avoided showing how to work with threads directly, instead relying on abstractions 
such as BackgroundWorker and the .NET thread pool. If you want to create threads directly, here is a short 
sample: 
 
open System.Threading 
let t = new Thread(ThreadStart(fun _ -> 
                printfn "Thread %d: Hello" Thread.CurrentThread.ManagedThreadId)); 
t.Start(); 
printfn "Thread %d: Waiting!" Thread.CurrentThread.ManagedThreadId 
t.Join(); 
printfn "Done!" 
 

When run, this gives the following: 

val t : Thread 
 
Thread 1: Waiting! 
Thread 10: Hello 
Done! 

■ Caution Always avoid using Thread.Suspend, Thread. Resume, and Thread.Abort. These are guaranteed 
ways to put obscure concurrency bugs in your program. The MSDN website has a good description of why 
Thread.Abort may not even succeed. One of the only compelling uses for Thread.Abort is to implement Ctrl+C 

in an interactive development environment for a general-purpose language such as F# Interactive. 

Shared Memory, Race Conditions, and the .NET Memory Model 
Many multithreaded applications use mutable data structures shared between multiple threads. 
Without synchronization, these data structures will almost certainly become corrupt: threads may read 
data that has been only partially updated (because not all mutations are atomic), or two threads may 
write to the same data simultaneously (a race condition). Mutable data structures are usually protected 
by locks, although lock-free mutable data structures are also possible. 

Shared-memory concurrency is a difficult and complicated topic, and a considerable amount of 
good material on .NET shared-memory concurrency is available on the Web. All this material applies 
to F# when you’re programming with mutable data structures such as reference cells, arrays, and hash 
tables and the data structures can be accessed from multiple threads simultaneously. F# mutable data 
structures map to .NET memory in fairly predictable ways; for example, mutable references become 
mutable fields in a .NET class, and mutable fields of word size can be assigned atomically. 
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On modern microprocessors, multiple threads can see views of memory that aren’t consistent; 
that is, not all writes are propagated to all threads immediately. The guarantees given are called a 
memory model and are usually expressed in terms of the ordering dependencies between instructions 
that read/write memory locations. This is, of course, deeply troubling, because you have to think about 
a huge number of possible reorderings of your code, and it’s one of the main reasons why shared 
mutable data structures are difficult to work with. You can find further details on the .NET memory 
model at www.expert-fsharp.net/topics/MemoryModel. 

Using Locks to Avoid Race Conditions 
Locks are the simplest way to enforce mutual exclusion between two threads attempting to read or 
write the same mutable memory location. Listing 13-14 shows an example of code with a race 
condition. 

Listing 13-14. Shared-Memory Code with a Race Condition 

type MutablePair<'T,'U>(x:'T,y:'U) = 
    let mutable currentX = x 
    let mutable currentY = y 
    member p.Value = (currentX,currentY) 
    member p.Update(x,y) = 
        // Race condition: This pair of updates is not atomic 
        currentX <- x; 
        currentY <- y 
 
let p = new MutablePair<_,_>(1,2) 
do Async.Start (async { do (while true do p.Update(10,10)) }) 
do Async.Start (async { do (while true do p.Update(20,20)) }) 
 

Here is the definition of the F# lock function: 
 
open System.Threading 
let lock (lockobj : obj) f  = 
    Monitor.Enter lockobj; 
    try 
        f() 
    finally 
        Monitor.Exit lockobj 
 

The pair of mutations in the Update method isn’t atomic; that is, one thread may have written to 
currentX, another then writes to both currentX and currentY, and the final thread then writes to 
currentY, leaving the pair holding the value (10,20) or (20,10). Mutable data structures are inherently 
prone to this kind of problem if shared between multiple threads. Luckily, F# code tends to have fewer 
mutations than imperative languages, because functions normally take immutable values and return 
a calculated value. However, when you do use mutable data structures, they shouldn’t be shared 
between threads, or you should design them carefully and document their properties with respect to 
multithreaded access. 

Here is one way to use the F# lock function to ensure that updates to the data structure are atomic. 
Locks are also required on uses of the property p.Value: 
 
do Async.Start (async { do (while true do lock p (fun () -> p.Update(10,10))) }) 
do Async.Start (async { do (while true do lock p (fun () -> p.Update(20,20))) }) 
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■ Caution If you use locks inside data structures, then do so only in a simple way that uses them to enforce the 
concurrency properties you’ve documented. Don’t lock just for the sake of it, and don’t hold locks longer than 
necessary. In particular, beware of making indirect calls to externally supplied function values, interfaces, or 

abstract members while a lock is held. The code providing the implementation may not be expecting to be called 

when a lock is held and may attempt to acquire further locks in an inconsistent fashion. 

Using ReaderWriterLock 
It’s common for mutable data structures to be read more than they’re written. Indeed, mutation is 
often used only to initialize a mutable data structure. In this case, you can use a .NET ReaderWriterLock 
to protect access to a resource. For example, consider the following two functions: 
 
open System.Threading 
 
let readLock (rwlock : ReaderWriterLock) f  = 
  rwlock.AcquireReaderLock(Timeout.Infinite) 
  try 
      f() 
  finally 
      rwlock.ReleaseReaderLock() 
 
let writeLock (rwlock : ReaderWriterLock) f  = 
  rwlock.AcquireWriterLock(Timeout.Infinite) 
  try 
      f(); 
      Thread.MemoryBarrier() 
  finally 
      rwlock.ReleaseWriterLock() 
 

Listing 13-15 shows how to use these functions to protect the MutablePair class. 

Listing 13-15. Shared-Memory Code with a Race Condition 

type MutablePair<'T,'U>(x:'T,y:'U) = 
    let mutable currentX = x 
    let mutable currentY = y 
    let rwlock = new ReaderWriterLock() 
    member p.Value = 
        readLock rwlock (fun () -> 
            (currentX,currentY)) 
    member p.Update(x,y) = 
        writeLock rwlock (fun () -> 
            currentX <- x; 
            currentY <- y) 
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Some Other Concurrency Primitives 
Table 13-7 shows some of the other shared-memory concurrency primitives available in the .NET 
Framework. 

Table 13-7. .NET Shared-Memory Concurrency Primitives 

Type Description 

System.Threading.WaitHandle A synchronization object for signaling the control of threads. 

System.Threading.AutoResetEvent A two-state (on/off) WaitHandle that resets itself to “off” 
automatically after the signal is read. Similar to a two-state 
traffic light. 

System.Threading.ManualResetEvent A two-state (on/off) WaitHandle that requires a call to 
ManualResetEvent.Reset() to set it “off.” 

System.Threading.Mutex A lock-like object that can be shared between operating 
system processes. 

System.Threading.Semaphore Used to limit the number of threads simultaneously accessing 
a resource. However, use a mutex or lock if at most one thread 
can access a resource at a time. 

System.Threading.Interlocked Atomic operations on memory locations. Especially useful for 
atomic operations on F# reference cells. 

Summary 
This chapter covered concurrent, reactive, and asynchronous programming, which is a set of topics of 
growing importance in modern programming because of the widespread adoption of multicore 
microprocessors, network-aware applications, and asynchronous I/O channels. It discussed in depth 
background processing and a powerful F# construct called asynchronous workflows. Finally, the 
chapter covered applications of asynchronous workflows to message-processing agents and web 
crawling, and examined covered some of the shared-memory primitives for concurrent programming 
on the .NET platform. The next chapter looks at web programming, from serving web pages to 
delivering applications via web browsers. 
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Building Smart Web Applications 

Delivering content and applications via web browsers is one of the most important aspects of modern 
software development. This chapter examines how you can build web applications using F#. The topics 
covered are as follows: 

• Serving static files and dynamic content by directly responding to HTTP 
requests 

• Using the ASP.NET framework to develop page-based, server-side web 
applications that use input controls and read data from a database using F# LINQ 

• A walk-through of the ASP.NET essentials: organizing web forms and sites, 
understanding the various types of server controls (web and HTML), user 
creating controls, and configuring and debugging web applications  

• The fundamentals of the ASP.NET event model: page and control events, the 
page life cycle, posting information from a page (postback and cross-page 
posting), and maintaining state 

• A look at techniques to build client-based web applications, including the use of 
the WebSharper project 

• Consuming web services to deliver programmatic services via web connections 

Serving Static Web Content 
When you point your browser at a web page or call a web service from your application, you’re 
effectively issuing one or more requests (commands) to a web (HTTP) server. HTTP commands are 
simple text-based instructions that are automatically generated by your web browser. For instance, 
when your browser goes to a particular URL, it does the following: 

• Requests the page from the web server and waits for the response 

• Analyzes the contents of the page in the response for further content to be 
fetched (images, for example), and issues the appropriate requests if necessary 

• Displays the results, and executes any dynamic scripts and content contained in 
the page 

A response can be a verbatim copy of a resource found on the web server (most often a static file 
such as an image, a style sheet, or a media file) or can be generated on the fly. This section shows how 
you can use F# to serve content directly. 

Listing 14-1 shows a simple web server written directly in F#. 
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Listing 14-1. A Simple Web Server 

open System.Net 
open System.Net.Sockets 
open System.IO 
open System.Text.RegularExpressions 
open System.Text 
 
/// A table of MIME content types 
let mimeTypes = 
    dict [".html", "text/html"; 
          ".htm",  "text/html"; 
          ".txt",  "text/plain"; 
          ".gif",  "image/gif"; 
          ".jpg",  "image/jpeg"; 
          ".png",  "image/png"] 
 
/// Compute a MIME type from a file extension 
let getMimeType(ext) = 
    if mimeTypes.ContainsKey(ext) then mimeTypes.[ext] 
    else "binary/octet" 
 
/// The pattern Regex1 uses a regular expression to match 
/// one element 
let (|Regex1|_|) (patt: string) (inp: string) = 
    try Some(Regex.Match(inp, patt).Groups.Item(1).Captures.Item(0).Value) 
    with _ -> None 
 
/// The root for the data we serve 
let root = @"c:\inetpub\wwwroot" 
 
/// Handle a TCP connection for an HTTP GET. We use an  
/// asynchronous task in case any future actions in 
/// handling a request need to be asynchronous. 
let handleRequest(client: TcpClient) = 
    async { 
        use stream = client.GetStream() 
        let out = new StreamWriter(stream) 
        let inp = new StreamReader(stream) 
        match inp.ReadLine() with 
        | Regex1 "GET (.*?) HTTP/1\\.[01]$" fileName -> 
            let fname = root + @"\" + fileName.Replace("/", @"\") 
            let mimeType = getMimeType(Path.GetExtension(fname)) 
            let content = File.ReadAllBytes fname 
            fprintfn out "HTTP/1.0 200 OK" 
            fprintfn out "Content-Length: %d" content.Length 
            fprintfn out "Content-Type: %s" mimeType 
            fprintfn out "" 
            out.Flush() 
            stream.Write(content, 0, content.Length) 
        | line -> 
            ()  
    } 
 



CHAPTER 14 ■  BUILDING SMART WEB APPLICATIONS 

 

393 

 

/// The server as an asynchronous process. We handle requests 
/// sequentially. 
let server = 
    async {  
        let socket = new TcpListener(IPAddress.Parse("127.0.0.1"), 8090) 
        socket.Start() 
        while true do 
            use client = socket.AcceptTcpClient() 
            try  
                Async.Start (handleRequest client)  
            with _ ->  
                () 
    } 
 

You can use this code as follows, where http is the function defined in Chapter 2 for requesting 
web pages and where you assume the directory c:\inetpub\wwwroot contains the file iisstart.htm: 

> Async.Start server;; 
val it : unit = () 
 
> http "http://127.0.0.1:8090/iisstart.htm";; 
val it : string = "..."   // the text of the iisstart.htm file will be shown here 

This HTTP request (you can also open the previous URL in a browser) ultimately sends the 
following text down the TCP socket connection: 
 
GET iisstart.htm HTTP/1.1 
 

When started, the server in Listing 14-1 attaches itself to a given port (8090) on the local machine 
(which has IP 127.0.0.1) and listens for incoming requests. These requests are line-based, so when one 
comes in, you read the full input line and attempt to parse a valid GET request using regular 
expression matching. Other commands and error recovery aren’t dealt with. 

The server’s actions in response are simple: it locates the requested file relative to a root web 
directory, determines the MIME type from a fixed table, and sends the necessary response header and 
the content of the file through the client TCP connection. When all this is done, the connection is 
disposed, and the session ends. The main loop of the server task is a busy waiting loop—you wait for 
requests indefinitely and handle them one by one. 

Listing 14-1 uses two techniques not directly related to web programming: 

• Regex1 is a very simple and common active pattern for regular expression 
pattern matching. You learned about active patterns in Chapter 9. This 
example is particularly interesting because it also shows how to use a 
parameterized active pattern. 

• The value server is an asynchronous task, as is the handleRequest function. You 
learned about asynchronous tasks in Chapter 13. Many web servers handle 
multiple requests simultaneously, and high-performance web servers use 
asynchronous techniques extensively. In this example, the server task serves 
requests sequentially using a single thread, but you can just as well start a 
dedicated thread for the server using more explicit threading techniques from 
System.Threading. 
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While the above example may look simple, many common server-side applications are primarily 
TCP-based, and you can use the pattern shown above to implement many of these. For example, the 
following encapsulates an arbitrary TCP server: 
 
type AsyncTcpServer(addr,port,handleServerRequest) =  
    let socket = new TcpListener(addr, port) 
    member x.Start() = async { do x.Run() } |> Async.Start 
    member x.Run() =  
        socket.Start() 
        while true do 
            let client = socket.AcceptTcpClient() 
            Async.Start (async { try // Client has lifetime equal to the async request 
                                     use _holder = client 
                                     do! handleServerRequest client  
                                  with e -> () }) 

 
This class can now be instantiated and developed in many ways, including more interesting 

applications than simple HTTP servers. For example, the code below is a simulation of a “quote server” 
that serves “quotes” (represented here as a blob of bytes) to a TCP client every 1 second. Because 
serving each quote is very simple (simply writing a few bytes to the socket), you can serve many 
thousands of clients simultaneously using this technique. 
 
let quoteSize = 512 // one quote 
let quote = Array.init<byte> quoteSize (fun i -> 1uy) 
 
let handleRequest (client: TcpClient) = 
    async { 
        // Cleanup the client at the end of the request 
        let stream = client.GetStream() 
        do! stream.AsyncWrite(quote, 0, 1)  // write header 
        while true do 
            do! stream.AsyncWrite(quote, 0, quote.Length)  
            // Mock an I/O wait for the next quote 
            do! Async.Sleep 1000 
 
        stream.Close() 
    } 
 
 
let server() =  
    AsyncTcpServer(IPAddress.Loopback, 10003, handleRequest) 
 

Additionally, you should consider using secure sockets (https) for your application. Secure 
network programming is a big topic, beyond the scope of this book, but the code below indicates the 
basic shape of an SSL server, built compositionally using a non-secure one, and indicates the .NET 
types you can use to implement authentication-related functionality: 
 
type AsyncTcpServerSecure(addr,port,handleServerRequest) =  
 
    let getCertficate() = 
        // Instantiate the x509Store object to represent the Certificate Store 
        // that contains the certificate to use for server authentication. 
        let store = new X509Store(StoreName.My, StoreLocation.CurrentUser); 
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        // Open the store for read-only access. 
        store.Open(OpenFlags.ReadOnly); 
 
        // Extract all the certificates that match your certificate criteria.  
        // Return all certificates that have the identifying value in their name. 
        let cert = store.Certificates.Find(X509FindType.FindBySubjectName,  
                                           "localhost", true); 
 
        // This assumes the collection contains one certificate,  
        // based on the search criteria. 
        cert.[0]; 
 
    let handleServerRequestSecure (client: TcpClient) =  
        async { 
            let stream = new SslStream(client.GetStream()); 
            do! stream.AsyncAuthenticateAsServer(getCertficate()); 
             
            if (stream.IsAuthenticated) then 
                Console.WriteLine("IsAuthenticated: {0}", stream.IsAuthenticated); 
 
                // In this example only the server is authenticated. 
                Console.WriteLine("IsEncrypted: {0}", stream.IsEncrypted); 
                Console.WriteLine("IsSigned: {0}", stream.IsSigned); 
 
                // Indicates whether the current side of the connection  
                // is authenticated as a server. 
                Console.WriteLine("IsServer: {0}", stream.IsServer); 
 
            return! handleServerRequest stream 
        } 
 
    let server = AsyncTcpServer(addr,port,handleServerRequestSecure) 
 
    member x.Start() = server.Start() 
 

TCP-based applications achieve excellent scaling, and cloud-computing solutions such as Azure 
allow you to host your TCP-based services on a load-balanced set of machines dedicated to serving 
requests, under one common TCP address. The modern web is built with server-side programs 
following the architectures similar to those laid out above. 

Serving Dynamic Web Content with ASP.NET 
In practice, it’s rare to develop and implement a web server manually as you did in the previous 
section. Instead, most web development adds an extension to an existing web server via a web 
development framework such as ASP.NET, PHP, or JavaServer Pages (JSP). This section covers how you 
can use F# to write server-side applications using ASP.NET. 

ASP.NET is a fully compiled dynamic server technology that allows you to write web applications 
as a set of dynamic pages and to describe how the pages should interact via a rich object model and an 
abundance of server-side controls. The resulting web applications are easy to deploy—they’re 
independent of the hosting environment and the system registry—and can be configured through an 
integrated web application configuration tool or via XML-based configuration files. ASP.NET was 
originally designed by Microsoft and is often used with Microsoft’s Internet Information Services (IIS) 
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web server but can also be used with Apache and others via the Mono implementation of ASP.NET and 
the Common Language Infrastructure (CLI). 

■ Note Modern web-development frameworks allow you to put together sophisticated web sites with many useful 
features and almost no coding. Code is often used as glue between the incoming requests and back-end 

databases. For this reason, web programmers often need a variety of design, security, database, and system skills 

in addition to mastery of one or more programming languages.  

About Dynamic Page-Based Web Development Frameworks 

You may already be familiar with various web scripting languages and technologies that allow you to 
embed bits of code (usually in certain metatags or inside special markers) in your pages. When a request 
is made to such pages (which typically have a different file extension, such as .asp, .aspx, .php, .jsp, 
and so on), the web server invokes a preprocessor that consumes the page script and outputs the resulting 
HTML after evaluating each dynamic block. Depending on your web-server architecture, such processors 
can be plugged in on demand (as with Apache’s modules) or tied directly to the server technology (as with 
the Java-based web server Tomcat or as with ASP.NET). 

Roughly speaking, there are two main types of dynamic content generation. In the first, the scripting type, 
requests for the same scripted resource produce the same actions: the source page is pumped through the 
preprocessor every time, and each dynamic construct is distilled to HTML. Typically, this type of content 
generation is limited to using special tags and local code expressions that may refer only to a set of built-in 
features and occasionally a set of global state variables such as the server response. The problem with this 
approach is inherent: the dynamic functionality is often too limited, although it’s simple to use. Most 
important, no caching or compilation is done, and as such it’s much slower than the compiled alternatives. 
Furthermore, as dynamic functionality is added to a page, it becomes progressively more complex and 
more difficult to maintain, often leading to spaghetti code. Tying the dynamic content to the presentation 
layer in this way is well recognized as a significant drawback. 

The second approach is the one taken by ASP.NET and JSP. A page-scripting model is combined with an 
underlying compiled language (Java for JSP, and any .NET language for ASP.NET) and the speed of serving 
static content. In this model, pages are composed of objects with complex life cycles and are 
generated/maintained by compiled programs, so a scripted page is translated to a program that generates 
the final HTML page and as a result can contain arbitrary logic expressed in the source language. These 
programs are produced on the fly and maintained by the web container. A change to a web page results in 
updating the server-side resource responsible for creating that web page. This compilation causes a one-
time penalty, but subsequent requests are served without any processing by sending the result of the new 
page-behind code. 
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Understanding the Languages Used in ASP.NET 
Web development frameworks such as ASP.NET can be a little bewildering at first. One reason is the 
number of languages involved in even simple web sites. For example, developing a minimal web site 
using ASP.NET involves using at least five different languages to represent the necessary 
information: 

• ASP.NET page markup (ASPX): Used for the declarative construction and 
configuration of server controls that form the page 

• HTML: Used for the basic presentation content embedded in the ASP.NET 
markup 

• Cascading Style Sheets (CSS): Used for declarative control over visual 
characteristics of the presentation content 

• XML: Used for the web site’s configuration files   

• F# and/or another .NET language: Used for expressing the web site’s logic 

In contrast, the programs you’ve seen so far in this book have used only one language (F#) with 
only one kind of file (source code files with the suffix .fs). Furthermore, a fully fledged web site can 
involve additional languages and schemas: 

• SQL: For queries and commands used for database access and management 

• JavaScript: For dynamic client-side behavior, a topic discussed later in this 
chapter 

• Further XML schemas: For files specifying additional web-site data or security 
and configuration information 

• Database connection strings: For configuring access to underlying databases 

This has the effect of making simple web site projects seem quite complex. To help you through 
this, Table 14-1 shows the most common file types used when writing web applications using F# and 
ASP.NET. Table 14-2 shows some additional file types you should be aware of. 

Table 14-1. The Most Common File Types for F# and ASP.NET 

Extension Type Language Characteristics 

.aspx Web form  (web page) ASPX The presentation layer, often authored using 
visual editing tools. These files include ASP.NET 
control declarations and embedded HTML tags. 
They may also include fragments of other 
languages such as CSS and scripts written in F#. 

.ascx User control ASPX Similar to the .aspx file but is used for writing 
elementary building blocks that can be reused 
on multiple pages in the application. 

.fs Server-side code F# The programmatic portion of the web-site logic. 
Typically makes extensive use of the 
System.Data and System.Web namespaces. 
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Extension Type Language Characteristics 

.dll Precompiled server-
side code 

Binary Compiled DLLs referenced by your server-side 
code. 

web.config Configuration XML Configuration files that may be located in every 
application directory and are used to specify 
aspects such as security or compilation options. 

Table 14-2. Additional File Types Used with ASP.NET 

Extension Type Language Characteristics 

.resx Resource XML Resources such as bitmaps and error strings, 
often used for localizing web sites to multiple 
languages. Resources were described in passing 
in Chapter 7. These files use the .NET resource 
schema. 

.sql Database scripts and 
stored procedures 

T-SQL Many web sites use relational databases 
heavily. Operations on these databases are 
typically described using scripts written in 
database scripting languages such as T-SQL. 

.css Style CSS Cascading Style Sheets, a W3C standard for 
declarative configuration of the HTML 
presentation layer. CSS fragments can also 
appear in HTML and ASPX documents. 

.master Master page ASPX Similar to the .aspx file but used as a template 
for other pages in the web site. When used with a 
page, the content page must fill the placeholders 
declared in the master page. 

.sitemap Site map XML Defines the structure of the web site and can be 
used with ASP.NET navigation controls to 
generate content like a menu bar, a 
breadcrumb, or a site map. 

.mdf Database file Binary Many web sites use databases accessed via SQL 
Server Express 2005. The .mdf format is a 
detached, file-based database used by SQL 
Server Express. 
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Understanding the Structure of an ASP.NET Web Site 

ASP.NET files of the types shown in Tables 14-1 and 14-2 are located in the web application’s web root 
directory and the various subfolders within. The standard ASP.NET folders are as follows: 

• App_Code: Utility, application, and data access layer code—basically, all source 
files that aren’t code-behind files 

• App_Data: Database and XML files 

• App_GlobalResources: Global resource files, such as those related to localization 

• App_LocalResources: Resource files associated with specific controls or pages 

• App_WebReferences: Web reference discovery files and service descriptions (wsdl) 

• Bin: Third-party binaries, libraries—these are automatically referenced in the web 
application 

 

A Simple ASP.NET Web Application 
The simplest web sites use only HTML static content. This book doesn’t consider these, although we 
assume you’re familiar with authoring HTML. Beyond this, the building blocks of the dynamic content 
on ASP.NET web sites are .aspx web forms (web pages). These are essentially HTML files that contain 
ASPX markup for server-side controls, although they aren’t processed as embedded scripts; instead, the 
page should be viewed as an object type that produces the final HTML based on the declarative markup 
and the behavior expressed as code inside standard HTML <script> blocks or in code-behind files. 
Listing 14-2 shows a simple web form that uses the server to compute the current time and allows the 
user to refresh the page. Listing 14-3 (later in this chapter) shows an ASP.NET web.config web site 
configuration file suitable for use with all the examples in this chapter. 

Listing 14-2. Time.aspx: A Simple ASP.NET Web Form with an Embedded F# Server-Side Script 

<%@ Page Language="F#" %> 
 
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
                      "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> 
 
<script language="F#" runat="server"> 
     /// F# scripts embedded in ASPX pages must be a set of 'member' declarations. 
     /// ASP.NET inserts these into the code generated for the page object type. 
 
     /// This member is invoked on the server when the page is loaded. It tests 
     /// whether the page was loaded for the first time and updates the content of 
     /// the this.Time control. 
     member this.Form1_Load(sender: obj, e: EventArgs) = 
         if not this.Page.IsPostBack then 
             this.Time.Text <- DateTime.Now.ToString() 
 
     /// This member is invoked on the server when the Reload button is clicked. 
     member this.Reload_Click(sender: obj, e: EventArgs) = 



CHAPTER 14 ■ BUILDING SMART WEB APPLICATIONS 

 

400 

 

         this.Time.Text <- "(R) " + DateTime.Now.ToString() 
</script> 
 
<html xmlns="http://www.w3.org/1999/xhtml"> 
<head runat="server"> 
   <title>Current time</title> 
   <style type="text/css"> 
      body { font-family:calibri,verdana,sans-serif; } 
   </style> 
</head> 
<body> 
   <form id="Form1" runat="server" OnLoad="Form1_Load"> 
      The current time is: 
      <asp:Label  runat="server" id="Time" /> 
      <asp:Button runat="server" id="Reload" text="Reload" OnClick="Reload_Click" /> 
   </form> 
</body> 
</html> 

■ Note You need to make sure the F# compiler is referenced in web.config, as shown in Listing 14-3. Check 
that the version number (the listing uses 1.9.9.9) matches the one reported by F# Interactive and that the other 

information matches what is used in the ASP.NET samples in your F# distribution. 

Let’s take a closer look at Listing 14-2. ASP.NET files can initially look like a sea of strange 
symbols. Table 14-3 shows the meanings of some of the symbolic forms you see in ASP.NET files. 

Table 14-3. The Primary Symbolic and HTML Directives in ASP.NET .aspx Files 

Example Directive What It Means 

<%@ ... %> ASP.NET directives. See Table 14-4 for a list of commonly used 
ASP.NET directives. 

<!-- ... --> HTML comment. 

<!DOCTYPE ... > HTML meta-information. Usually generated when the file is first 
created. Can be ignored. 

<script language="F#" 
runat="server">...</script> 

Inserts F# or other scripting code as part of the generated code for the 
page. The F# code should be a portion of an object type definition. 

<form id="Form1" 
runat="server"> 

Indicates that the given HTML element is treated as an ASP.NET 
control and generated dynamically on the server as part of the page 
object (with the ID as its name). 
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Example Directive What It Means 

<%= ... %> Inserts F# or other scripting code into a rendering of the page as an 
expression. For example, <%= let a = 40+2 in a.ToString() %>. 

<%# ... %> Data-binding expression: inserts F# code as the current item of  
an ASP.NET data control. A convenient shortcut for referring to a 
given data field is via the Eval method. For example, <%# 
this.Eval("Rgb") %>. 

Beyond the HTML and ASP.NET controls, the key code in Listing 14-2 is the embedded F# script 
beginning with <script language="F#" runat="server">. F# scripts embedded in .aspx pages must be a 
set of member declarations—in other words, fragments of an F# type definition. ASP.NET inserts these 
into the code generated for the page object. 

The embedded F# script contains two members. The first is as follows: 
 
    member this.Form1_Load(sender: obj, e: EventArgs) = 
       if not this.Page.IsPostBack then 
           this.Time.Text <- DateTime.Now.ToString() 
 

This member is associated with the Form1 control and is invoked on the server when the page is 
loaded—in other words, as part of the process of generating the final HTML for the page. You can see 
this because the event callback for the control mentions this event handler: 
 
   <form id="Form1" runat="server" onload="Form1_Load"> 
 

The implementation of Form1_Load uses the IsPostBack property of the page object to detect whether 
the page is loaded for the first time or whether it’s loaded in reaction to some event invoked by a control. 
The reaction to an event that involves executing server-side code is called a postback, and it’s triggered 
by sending data from the client back to the current page. When the page is loaded for the first time, this 
event handler sets the content of this.Time. This is the label element of the page being presented to the 
user (note the close correspondence between ASP.NET elements and HTML elements). 

The second part of the script is the following member: 
 
    member this.Reload_Click(sender: obj, e: EventArgs) = 
       this.Time.Text <- "(R) " + DateTime.Now.ToString() 
 

This member is associated with the Reload button control and is invoked when the button is 
clicked. Because the event handler associated with the button must be executed on the server, the page 
is reloaded, and the event is triggered. Note that the entire page is reloaded, so the Form1_Load handler 
is called as well; but for this and subsequent reloads, the IsPostBack property is set to true and the label 
isn’t updated by that event handler. 

■ Note When ASP.NET serves the page, it generates F# code using the F# CodeDOM dynamic code generator. 
The text of embedded script fragments is added verbatim to the generated code, indented to an appropriate 
position. The generated code may appear in error messages including syntax errors, so you may occasionally need 

to look at the details of the generated ASP.NET code. 
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Deploying and Running the Application 
Figure 14-1 shows the simple web application from Listing 14-2 accessed via a web browser on the 
local machine. You can deploy and run web applications like this in three ways. 

• You can create an ASP.NET project inside Visual Studio, add the Time.aspx file to 
the project, and adjust the web.config file in the project to contain the given 
compiler entry. Visual Studio comes with its own built-in web server so that 
when you run the web application using F5 from inside Visual Studio, a browser 
is automatically opened with a reference to this web server. 

• You can deploy the application to your local web server. For example, copy 
Time.aspx and web.config to an application directory in an ASP.NET-enabled 
web server. When using IIS, you can copy them to a directory inside your default 
web root such as c:\inetpub\wwwroot\Time and reference the web site via 
http://localhost/Time/Time.aspx, or you can set up IIS virtual directories and 
copy to their corresponding folders. Ensure that your web server is ASP.NET-
enabled as described later in the sidebar “Serving ASP.NET Pages Locally.” 

• You can deploy the files to a live web server. Again, copy Time.aspx and 
web.config to an application directory in an ASP.NET-enabled web server. 
Ensure that the F# compiler has been installed on the web server, or deploy the 
F# binaries as part of the bin directory of your web application. 

Figure 14-1 shows the results of launching the application via the second technique. 

 

Figure 14-1. The simple web application from Listing 14-1 
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Serving ASP.NET Pages Locally 

You need to enable a number of configuration settings in order to ensure that you can use your local 
machine as an experimental development web server. 

When using Visual Studio, by far the easiest way to get going with developing web applications is to use 
the local web server built into Visual Studio, which is invoked when you run ASP.NET projects using F5. 
This starts the built-in web server using a random port and opens the default page by constructing a URL 
such as http://localhost:59120/Time/time.aspx. 

Another option is using Microsoft’s IIS web server; you can deploy web applications under separate folders 
in the main web root folder—for instance, c:\inetpub\wwwroot\Time—and these can then be accessed 
via URLs such as http://localhost/Time/time.aspx. Here are some tips for doing this: 

• Ensure that ASP.NET support is enabled in IIS. On Windows 7, you do so using 
Control Panel ➤ Programs ➤ Programs and Features ➤ Turn Windows features 
on or off. Be sure the check box at Internet Information Services ➤ World Wide 
Web Services ➤ Application Development Features ➤ ASP.NET is selected. 

• Ensure that the default web root folder c:\inetpub\wwwroot exists and that 
you’ve copied your .aspx and web.config files to that directory. 

• Ensure that the web.config file contains an entry for the F# compiler, as shown in 
Listing 14-3. If not, ASP.NET can’t invoke the compiler dynamically. This is 
automatically done if you use the F# Website project type. 

• Check that you can access other local URLs such as 
http://localhost/iisstart.htm, the default starting page for IIS. If not, check 
the settings for IIS under Control Panel ➤ Administrative Tools ➤ Internet 
Information Services (IIS) Manager. 

• Add a debug entry to your web.config file, as shown in Listing 14-3, to ensure 
that verbose debugging information is generated for your F# code. Otherwise, 
errors reported by ASP.NET will be difficult to diagnose. 

A number of application settings are relevant to web applications, but most of them are beyond the scope 
of this book. The easiest way to get some guidance is to look at the web.config.comments file. For 
Microsoft .NET, you can find this file in your Windows directory and the Microsoft.Net\Framework\{your 
.NET version}\CONFIG folder within. This same directory also contains a configuration file called 
machine.config, which has settings that apply to all web applications on the host machine. Many of the 
common, default settings are stored in this file. 

Listing 14-3. web.config: An ASP.NET Web Site Configuration File for Listing 14-2 

<?xml version="1.0"?> 
<configuration> 
  <system.web> 
    <compilation debug="true" /> 
  </system.web> 
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  <system.codedom> 
    <compilers> 
      <compiler language="F#;f#;fs;fsharp" 
                extension=".fs" 
                type="Microsoft.FSharp.Compiler.CodeDom.FSharpAspNetCodeProvider, 
                      FSharp.Compiler.CodeDom, 
                      Version=1.9.9.9, 
                      Culture=neutral, 
                      PublicKeyToken=a19089b1c74d0809"/> 
    </compilers> 
  </system.codedom> 
</configuration> 

Using Code-Behind Files 
Embedded scripts in web applications tend to create spaghetti code that confuses details of the 
presentation layer with the underlying logic of the application. However, embedding scripts is a useful 
way of trying new features. 

The normal practice for ASP.NET web site development is for each Page.aspx file to have backing 
code in a particular language, such as Page.aspx.fs for F# code. Listing 14-4 shows the code from 
Listing 14-2 but without the embedded script and with ASP.NET directives at the top of the file 
indicating that a code-behind file is being used. 

Listing 14-4. Time2.aspx: A Simple ASP.NET Web Form with F# Code-Behind 

<%@ Page Language="F#" 
         AutoEventWireup="true" 
         CodeFile="Time2.aspx.fs" 
         Inherits="FSharpWeb.Time2" %> 
 
 
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
                      "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> 
 
<html xmlns="http://www.w3.org/1999/xhtml"> 
<head runat="server"> 
    <title>Current time</title> 
    <style type="text/css"> 
        body { font-family:calibri,verdana,sans-serif; } 
    </style> 
</head> 
<body> 
    <form runat="server"> 
      The current time is: 
      <asp:Label  runat="server" id="Time" /> 
      <asp:Button runat="server" id="Reload" text="Reload" OnClick="Reload_Click" /> 
    </form> 
</body> 
</html> 
 

In turn, Listing 14-5 shows the accompanying F# code placed in a code-behind file. To place F# 
code in the code-behind file, you do the following: 
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• Place the code in a namespace. 

• Define a page type with the same base name as the .aspx page. The code 
generated from the .aspx file uses implementation inheritance to merge with 
the type defined here (see Chapter 6 for a description of implementation 
inheritance). This is standard practice for ASP.NET and matches the Inherits 
directive in Listing 14-4. 

• Place the implementation of the callback members into the page. 

Listing 14-5. Time2.aspx.fs: The F# Code-Behind for Time2.aspx 

namespace FSharpWeb 
 
open System 
open System.Web 
open System.Web.UI 
open System.Web.UI.WebControls 
 
type Time2() = 
    inherit Page() 
 
    [<DefaultValue>] 
    val mutable Time : Label 
    [<DefaultValue>] 
    val mutable Reload : Button 
 
    member this.Page_Load(sender: obj, e: EventArgs) = 
        if not this.Page.IsPostBack then 
            this.Time.Text <- DateTime.Now.ToString() 
 
    member this.Reload_Click(sender: obj, e: EventArgs) = 
        this.Time.Text <- "(R) " + DateTime.Now.ToString() 

Using ASP.NET Input Controls 
The minimalist application shown in Listing 14-2 and Figure 14-1 does nothing but use the server to 
compute the time, something easily done on the local machine. Listing 14-6 shows the .aspx code for a 
web application shown in Figure 14-2 that computes a list of prime numbers for a selected range. The 
web.config file for this application remains the same. 

Listing 14-6. Computing and Displaying a Range of Prime Numbers Using the Web Server 

<%@ Page Language="F#" %> 
 
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
                      "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> 
 
<script language="F#" runat="server"> 
    member page.GenerateData_Click(sender: obj, e: EventArgs) = 
        let isPrime(i: int) = 
            let lim = int(sqrt(float(i))) 
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            let rec check j = 
                j > lim or (i % j <> 0 && check (j+1)) 
            check 2 
 
        let lowerLimit = System.Convert.ToInt32(page.LowerLimit.Text) 
        let upperLimit = System.Convert.ToInt32(page.UpperLimit.Text) 
        let data = 
            [ let previousTime = ref System.DateTime.Now 
              for i in lowerLimit..upperLimit do 
                  if isPrime(i) then 
                      let time = System.DateTime.Now 
                      yield (i, time-previousTime.Value) 
                      do previousTime := time ] 
        page.Repeater.DataSource <- data 
        page.Repeater.DataBind() 
</script> 
 
<html xmlns="http://www.w3.org/1999/xhtml"> 
<head id="Head1" runat="server"> 
    <title>Current time</title> 
    <style type="text/css"> 
        body { font-family:calibri,verdana,sans-serif; } 
    </style> 
</head> 
<body> 
    <form id="Form1" runat="server"> 
        <h2>Displaying data</h2> 
        <p> 
            Compute primes 
            from <asp:TextBox runat="server" id="LowerLimit" /> 
            to   <asp:TextBox runat="server" id="UpperLimit" />. 
        </p> 
        <asp:Button runat="server" 
                    id="GenerateData" 
                    text="Generate" OnClick="GenerateData_Click" /> 
        <p> 
        Results: 
 
        <ul> 
        <asp:Repeater id="Repeater" runat="server"> 
            <ItemTemplate> 
                <li style="color:blue"> 
                    n = <%# this.Eval("Item1") %>, 
                    time since previous: <%# this.Eval("Item2") %></li> 
            </ItemTemplate> 
            <AlternatingItemTemplate> 
                <li style="color:green"> 
                    n = <%# this.Eval("Item1") %>, 
                    time since previous: <%# this.Eval("Item2") %></li> 
            </AlternatingItemTemplate> 
        </asp:Repeater> 
        </ul> 
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        </p> 
    </form> 
</body> 
</html> 
 

The application in Listing 14-6 consists of two input controls with the ASP.NET names LowerLimit 
and UpperLimit and an ASP.NET data-listing control called Repeater. The rest of the code is HTML 
markup and the F# embedded script to naively compute a sequence of prime numbers in the given 
range: 

• The function isPrime implements the basic naive primality test. 

• The computed value data is a list of tuples containing the prime numbers found 
in the given range. The type of each entry of this data list is (int * 
System.TimeSpan). 

This code demonstrates how to acquire input data from forms filled in by the client and how to 
display data grids back to the client. The input data is acquired by using page.LowerLimit.Text and 
page.UpperLimit.Text in the server-side event handlers. 

The data grid is generated by using the Repeater control to iteratively generate HTML; 
conceptually, this is somewhat like a for loop that prints HTML at each step. Here is the relevant 
snippet: 
 
        <asp:Repeater id="Repeater" runat="server"> 
            <ItemTemplate> 
                <li style="color:blue"> 
                    n = <%# this.Eval("Item1") %>, 
                    time since previous: <%# this.Eval("Item2") %></li> 
            </ItemTemplate> 
            <AlternatingItemTemplate> ... </AlternatingItemTemplate> 
        </asp:Repeater> 
 

The repeater control contains two templates that define the HTML code that is generated during 
the iteration. It’s common that subsequent lines use different formatting, and Repeater automatically 
switches between ItemTemplate and AlternatingItemTemplate. The body of the template uses somewhat 
cryptic ASP.NET constructs such as <%# this.Eval("Item1") %>. These are instances of one of the 
ASP.NET-embedded F# expression forms from Table 14-3. ASP.NET textually evaluates this element at 
each step of the repeated iteration. 

The repeater iterates over a data source. The data source can be specified either declaratively as 
you see later or programmatically as in this example using the following lines: 
 
        page.Repeater.DataSource <- data 
        page.Repeater.DataBind() 
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Figure 14-2. Computing a data table using Listing 14-4 

Displaying Data from Databases 
Now that you’ve been introduced to the ASP.NET framework and the usual organization of the code in 
ASP.NET web applications, you’re ready for a more complicated example. The next few pages present a 
web application that displays data from the standard sample AdventureWorks database. 

If you don’t have the AdventureWorks database installed, you can grab a copy following the 
instructions at 
 
http://msftdbprodsamples.codeplex.com/wikipage?title=Installing%20Databases 
 

The Visual Studio solution has three projects: a C# library project for the Data Access Object (DAO) 
layer, an F# library project for the backend logic, and a C# web application project for the web-
application user interface. This organization encourages a better separation of concerns by breaking 
the parts of the application into separate projects, each of the type that is best suited for the purpose.  

The Dao project contains a single class representing the AdventureWorks database. You can follow 
the steps described in Chapter 15 and generate the LINQ bindings with the SqlMetal tool, or you can use 
the Visual Studio support to do the same. To do the latter, create a new C# library project called Dao and a 
LINQ to SQL Classes item called Dao.dbml to it. Under Server Explorer, you can add a new or select an 
existing data connection—use the one that points to the AdventureWorks database. Open this connection, 
browse down to the data tables, select all, and move them to the Object Relational Designer surface. 
Make sure that in the Project Properties, the assembly name and the default namespace are set to Dao. At 
this point, you can save the project and compile it to create the library for the DAO. 
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Next, implement an F# module in the Backend F# library project, DataSource.fs, as shown in 
Listing 14-7; it contains functions for accessing the database. To do this, you use F# LINQ, which is 
described in more detail in Chapter 15. In short, F# LINQ makes it possible to use F# sequence 
expressions and quotations to write database queries and thus reduces the number of languages you 
need to master when writing data-aware web applications. To compile this project, add a project 
reference to the Dao project and the System.Configuration, System.Data, System.Data.Linq, and the 
FSharp.PowerPack.Linq libraries. The first three are standard .NET libraries; you need to reference the 
last one from the F# Power Pack (and download it if you don’t have it installed). 

Listing 14-7. Backend/DataSource.fs: The F# Module for Accessing Data from the AdventureWorks 

Database 

namespace FSharpWeb 
 
open System.Configuration 
open Microsoft.FSharp.Linq.Query 
 
type Category = 
    val mutable _Name : string 
    val mutable _CategoryID : int 
 
    member this.Name 
        with get () = this._Name 
        and  set name = this._Name <- name 
 
    member this.CategoryID 
        with get () = this._CategoryID 
        and  set name = this._CategoryID <- name 
 
    new (categoryID, name) = { _CategoryID=categoryID; _Name=name } 
 
type Product = 
    val mutable _Name : string 
    val mutable _Price : System.Decimal 
 
    member this.Name 
        with get () = this._Name 
        and  set name = this._Name <- name 
 
    member this.Price 
        with get () = this._Price 
        and  set name = this._Price <- name 
 
    new (name, price) = { _Name=name; _Price=price } 
 
module DataSource = 
    let cs = ConfigurationManager.ConnectionStrings 
                 .Item("AdventureWorks").ConnectionString 
    let db = new Dao.DaoDataContext(cs) 
    let GetCategories () = 
        query <@ seq { for c in db.ProductCategories 
                       -> new Category(c.ProductCategoryID, c.Name) } @> 
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    let GetProducts categoryId = 
        query <@ seq {  for p in db.Products do 
                        if p.ProductCategoryID = categoryId then 
                            yield new Product(p.Name, p.ListPrice) } @> 

 
The code in Listing 14-7 first declares two simple class types Category and Product that are used in 

the helper functions to return results from the database queries. You could use tuples or records for these 
results, but class types are easier to work with when accessing the information stored using ASP.NET 
markup. The database itself is referenced by the Dao.DaoDataContext type (provided that you named the 
LINQ to SQL Classes item Dao.dbml and set the default namespace as described earlier). The constructor 
of this type takes the connection string as an argument, which you can read via the ConfigurationManager 
provided by ASP.NET from the web.config file (discussed shortly). Note that the named connection string 
you’re referencing is called AdventureWorks. Finally, the module contains two functions, both 
implemented using F# LINQ. Both database queries are written as a sequence expression and are 
wrapped in F# quotations as discussed in Chapter 9. The queries are executed (or, to be more precise, 
translated to the underlying LINQ mechanism to be executed on demand) using the query function, which 
is discussed in more detail in Chapter 15. The GetCategories function returns the IDs and names of all the 
product categories in the database; the GetProducts function returns information about products in a 
specified category that is passed as a parameter. Note that when referring to a concrete variable in the F# 
LINQ query, you can splice it as is into the query representation. 

Now, let’s look at the Category.aspx file, shown in Listing 14-8, which contains the ASP.NET 
markup for viewing products in a specified category. You can specify the category that is displayed as 
an argument in the URL: for example, Category.aspx?id=18. 

Listing 14-8. Category.aspx: The ASP.NET Page for Displaying Products in a Category 

<%@ Page Language="F#" %> 
<html> 
<head runat="server"> 
    <title>Category Listing</title> 
</head> 
<body> 
    <form runat="server"> 
        <!-- Unordered list of products using ASP.NET Repeater --> 
        <ul> 
        <asp:Repeater runat="server" id="rptProducts" 
                      DataSourceID="awProducts"> 
            <ItemTemplate> 
                <li><%# this.Eval("Name") %> 
                     (price: <%# this.Eval("Price") %>)</li> 
            </ItemTemplate> 
        </asp:Repeater> 
        </ul> 
 
        <!-- ASP.NET DataSource control for loading the data --> 
        <asp:ObjectDataSource id="awProducts" runat="server" 
            TypeName="FSharpWeb.DataSource" SelectMethod="GetProducts"> 
            <SelectParameters> 
                <asp:QueryStringParameter Name="categoryId" Type="Int32" 
                     QueryStringField="id" DefaultValue="0"/> 
            </SelectParameters> 
        </asp:ObjectDataSource> 
    </form> 
</body> 
</html> 
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The ASP.NET markup in Listing 14-8 doesn’t use any code-behind code, because all you need to 
access the data is already available in the module you wrote in Listing 14-7. The first part of the 
markup declares the ASP.NET Repeater control including an ItemTemplate that is used to render a 
single product. Similar to the earlier examples, you use the Eval construct to access the data; but in this 
example, the product is represented using the Product class type declared earlier, so you can use the 
appropriate labels as an argument to the Eval function. 

The second part of the markup is far more interesting; it declares an ASP.NET ObjectDataSource 
control, which is a nonvisual control, meaning it doesn’t generate any HTML code. It serves as a 
source of data for the Repeater control in the first part: these two are linked together using the 
DataSourceID attribute of the Repeater control, which is set to the ID of the data source control. The 
ObjectDataSource is configured using the TypeName attribute, which specifies the .NET type that 
implements the functionality (in this case, you’re using an F# module instead of an object type). The 
attribute SelectMethod sets a name of the method (or a function in this case) that should be called when 
the data is required. Because the method has one argument, you also need to use SelectParameters to 
specify what value should be passed as an argument to the function. You want to take the argument 
from the URL query string so you can use QueryStringParameter provided by ASP.NET. It has several 
attributes; the most important are QueryStringField, which sets the name of the argument in the URL 
address (id in this example), and Name, which has to match the parameter name of the GetProducts 
function in the F# module. 

You looked only at the ASP.NET page for displaying the products in a specified category; but to 
make the application complete, you also need a page that lists all the categories using the 
GetCategories function. To do this, you must create a page similar to Category.aspx and modify a few 
details, so the page isn’t shown here. As the last step, Listing 14-9 shows the web configuration file. 

Listing 14-9. web.config: Configuration of the Sample Database Viewing Application 

<?xml version="1.0"?> 
<configuration> 
  <connectionStrings> 
    <!-- Connection string for the AdventureWorks database --> 
    <add name="AdventureWorks" providerName="System.Data.SqlClient" 
         connectionString=".. database connection string .." /> 
  </connectionStrings> 
  <system.web> 
    <compilation debug="true" /> 
  </system.web> 
  <system.codedom> 
    <compilers> 
      <compiler language="F#;f#;fs;fsharp" 
                extension=".fs" 
                type="Microsoft.FSharp.Compiler.CodeDom.FSharpAspNetCodeProvider, 
                      FSharp.Compiler.CodeDom, 
                      Version=1.9.9.9, 
                      Culture=neutral, 
                      PublicKeyToken=a19089b1c74d0809"/> 
    </compilers> 
  </system.codedom> 
 </configuration> 
 

In the configuration file, you first configure the connection string referenced by name as 
AdventureWorks, which you used earlier in the module that contains the data-access functionality. 
Connection strings describe the connection details to a database and are discussed in Chapter 15. A 
number of libraries are required to run your web application. You can properly track them by adding a 
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project reference to Backend, which carries along its dependencies on the Dao project and the library 
references required to run F# LINQ queries. Finally, the web.config file must also include a 
configuration of the F# CodeDOM provider, which is referenced from the global assembly cache (GAC). 

Going Further with ASP.NET 
So far, you’ve seen some very simple kinds of web applications with ASP.NET and F#. In practice, 
ASP.NET offers an enormously powerful framework for all aspects of server-side web development. 
The following sections explore additional aspects; for full details, consult some of the excellent books 
dedicated to the topic of ASP.NET.  

ASP.NET Directives 
The first line of an .aspx file usually contains special markup embedded inside <%@ ... %> ... %> 
containing a number of ASP.NET directives. These are instructions given to the processing 
environment, indicating, among other things, which scripting language is used. Table 14-4 explains 
the most important directives and some of their attributes. 

Table 14-4. Some ASP.NET Directives and Their Attributes 

Directive/Attribute Description 

Page or Control  

  AutoEventWireup Wires page events that follow the Page_ naming convention automatically if 
true (default). If false, event handlers need to be wired explicitly. 

  CodeFile Specifies the path to the code-behind file. 

  Inherits Specifies the name of the class that goes together with the page. 

  Language Specifies the language used for writing inline code in the page. 

Import Opens a namespace specified by the Namespace attribute and makes it available 
to all code in the page. 

Register Registers a user control for use with the page. See the section “Creating 
Custom ASP.NET Server Controls” later in this chapter. 

OutputCache Declaratively controls caching; if present, ASP.NET keeps the rendered output 
of a page or a control in a cache for a specified amount of time. 

Assembly References an external assembly. You can use the Name attribute to specify the 
name of the assembly (without the extension). 

Implements Specifies that the page implements the interface specified in the Interface 
attribute. 

Reference Associates another page or user control with the current one. You can use the 
Control, Page, or VirtualPath attribute to identify the component to be 
referenced, causing it to be compiled together. 
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Server Controls 
In web forms, ordinary HTML markup such as <strong>, <ul>, and <h2> is treated as text and is passed to 
the browser verbatim (via the LiteralControl server control class). On the other hand, explicit server 
controls (those with the runat="server" attribute) are processed on the server and translated to HTML 
markup (just to illustrate, there are server controls that equate to hundreds of HTML tags, and many 
can be mapped nearly one to one). All server controls can be programmatically managed, which 
typically means you customize the way they respond to various events or how they appear or behave 
visually. Categorically speaking, there are two main types of server controls: HTML server controls 
that directly correspond to an HTML element and web server controls. The second type can be divided 
into several groups depending on the use of the control. For example, validation controls ensure that 
entered values fulfill some criteria, data source controls are similar to the ObjectDataSource 
mentioned earlier, membership controls handle user login and registration, and so on. 

In Listing 14-2, you saw server controls such as labels and buttons, both of which are web-server 
controls. It’s beyond the scope of this book to discuss the great number of web-server controls 
available in ASP.NET 2.0 and above. As a reference, Table 14-5 shows some of the ones most 
commonly used. 

Table 14-5. Common ASP.NET Server Controls 

Type Controls 

Basic Button, TextBox, Label, Panel, CheckBox, ListBox, RadioButton, PlaceHolder, 
DropDownList 

Data viewing/editing Repeater, DataList, GridView, DetailsView 

Data sources ObjectDataSource, SqlDataSource 

Membership Login, LoginView 

Validation RequiredFieldValidator, CompareValidator, RegularExpressionValidator 

HTML server controls correspond to a given HTML tag and are applied by adding the 
runat="server" attribute. This turns the standard HTML tag into a server control, allowing you to 
change its appearance or behavior programmatically. Because web-server controls offer a more 
robust object model, they’re almost always preferable to HTML server controls. 

Validation controls are a special type of web controls that perform typical validation patterns on 
your web form input fields and display error messages where appropriate. The Validation section of 
the Visual Studio Toolbox contains the available validation controls, as summarized in Table 14-6. 

Table 14-6. Common ASP.NET Validation Controls 

Control Name Description 

RequiredFieldValidator Ensures that the associated input control isn’t empty. 

RangeValidator Validates that the user input is in a given range. 

RegularExpressionValidator Checks whether the user input matches a regular expression pattern. 
See Chapter 10 for a description of using .NET regular expressions. 
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Control Name Description 

CompareValidator Compares the user input against a given value or another control. 

CustomValidator Validates the user input based on custom, user-specified logic. 

ValidationSummary Lists all validation error messages. 

Each validator has an ErrorMessage and a Text property that you can set in conjunction with 
displaying an error message. When the validator fails, it displays the content of the Text property at 
the place where it’s inserted in your page markup. A typical scenario ensures that a given user-input 
control has a value entered. Here, all you need to do is add your input control and a 
RequiredFieldValidator next to it, set its ControlToValidate property to the ID of the associated input 
control, and set the Text property to *. This shows an asterisk when no value is entered in the input 
control at the time the page is submitted. Using another validator is just as easy, except you need to 
customize different properties. Table 14-7 summarizes the main properties for each validator. 

Table 14-7. The Main Customizable Validator Properties 

Control Name Main Properties 

RequiredFieldValidator InitialValue 

RangeValidator MinimumValue, MaximumValue, Type 

RegularExpressionValidator ValidationExpression 

CompareValidator ControlToCompare, Operator, ValueToCompare, Type 

CustomValidator ClientValidationFunction, ServerValidate (event) 

ValidationSummary DisplayMode, HeaderText, ValidationGroup 

You may end up working with complex web pages that have many, even dozens, of input controls 
that belong to different forms on the page (for instance, a web page with a search form, a user 
registration form, and a contact form). By default, all validators defined on the page run and most 
likely prohibit your end user from moving to the next page because of validation errors that are 
seemingly unrelated to the user’s chosen action. To solve this problem, you can use validation groups, 
which specify a set of related controls and their validators. You form a validation group by specifying a 
common group name (as a string) for the ValidationGroup property of each validator and the input 
control that triggers a page submission. Doing so ensures that only validators related to the control 
initiating the page submission run. Finally, you can disable any validation by setting the 
CausesValidation property of a postback control to false. 
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Debugging, Profiling, and Tracing 
Debugging ASP.NET applications is easy when you use a tool such as Visual Studio. You can set 
breakpoints in your F# code that let you break into the middle of code executing when server requests 
are performed. Chapter 18 discusses debugging techniques for regular F# code. 

During development, it’s often necessary to trace what happens on a page, as well as during the 
process of serving that page. You can enable page tracing by adding the Trace="true" page attribute to 
your web form. This appends the information shown in Table 14-8 to the page displayed. Figure 14-3 
shows an example of this information for the application from Listing 14-4. 

Table 14-8. Information Generated by Tracing an ASP.NET Page 

Section Information Collected 

Request Details Shows the session ID, request type, time of request, status 
code, and request/response encoding for the request 

Trace Information Shows the various page life-cycle events and the time spent 
on processing each 

Control Tree Shows each server control and its type, render size, view 
state size, and control state size in a parent-child tree 

Session State Shows the various keys, their associated values, and their 
types defined in the page’s session state 

Application State Shows the various keys, their associated values, and their 
types defined in the server’s application state 

Request/Response Cookies Collection Shows the name/value/size of each cookie 

Headers Collection Shows the name and value of each page header 

Response Headers Collection Shows the name and value for the server response 

Server Variables Shows the various server variables and their values at the 
time of processing 



CHAPTER 14 ■ BUILDING SMART WEB APPLICATIONS 

 

416 

 

 

Figure 14-3. Debugging and tracing an ASP.NET web page 

Understanding the ASP.NET Event Model 
In the previous sections, you saw various server controls triggering events, submitting pages with 
form data, validating input controls, and so on. These all involve events. ASP.NET has an event-driven 
architecture: each web form and server control supports a number of events that it can respond to, and 
these events can be attached to various event handlers. As you’d expect, these events fall into two 
categories: page and control events, respectively. Consider what happens as you interact with a simple 
SayHello.aspx page that has a text box for a name, an empty label, and a submit button: 

1. An HTTP GET request is made for SayHello.aspx to the server. 

2. On receiving this request, the server processes the page (doing compilation if 
necessary), calls the appropriate page event handlers (Page_Load, and so on), 
and ultimately returns an HTML response. 

3. This HTML response, along with the state/content of the HTML controls (the 
view state: an empty text box and label), is sent back to the browser, and the 
page is displayed. 

4. You fill in your name and click the submit button. This causes the form 
containing the text box and button controls to post back to the server, passing 
the view state with it. 
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5. The server executes the appropriate page handlers and the control event 
handler(s) for the button click, and an HTML response is generated (the same 
page with the label now greeting you by name). 

6. This HTML response is sent back to the browser and displayed. 

As this simple but representative example shows, the server controls on a given page are in 
constant contact with the server: they catch events and pass them onto the server where they’re 
handled and responded to accordingly. 

Page events occur when a page is requested from the server, via either the GET (the first time) or 
POST (when data is posted to the page) HTTP methods. For instance, there are events for page 
initialization (PreInit, Init), page loading (Load), rendering (Render), and so on. These page events are 
always handled in a given order as defined by the ASP.NET page life cycle (see the sidebar “The 
ASP.NET Page Life Cycle”). Although you can programmatically bind a delegate to a given page event, 
ASP.NET makes it even easier. As you saw it in Listing 14-5, you can add page event handlers by 
declaring members of the form Page_XXX, where XXX is the name of the page event. This works because 
by default, the AutoEventWireup page attribute is true, and this causes wiring of the intended event 
handler (using this naming convention) to the appropriate event automatically. 

Control events are triggered by the end user: clicking a button, selecting an item in a list box, and 
so on. Unlike page events, control events can’t be automatically wired, and thus you need to establish 
the link between the handler and the event manually. This is quite easy to do: set the OnXXX attribute of 
the server control to the event handler, as you did with the Reload button in the first example. 

Not all control events are immediately posted back to the server; only a few are, such as button 
clicks. All other control events are so-called change events (because they’re triggered as a control 
undergoes some changes: the selected item in a drop-down list changes, or a check box or radio button 
is selected) and as such aren’t posted to the server automatically for efficiency reasons. You can, on the 
other hand, enable postback in such situations by overriding the control’s AutoPostBack property to 
true. This technique can be useful; for instance, a page can respond directly to a change in a drop-
down list without the end user having to click a submit button, thus saving valuable clicks and time in 
the appropriate situations. 

The ASP.NET Page Life Cycle 

The ASP.NET page life cycle consists of a few dozen steps and as such is beyond the scope of this book to 
discuss in detail. However, it’s important to understand the main steps involved in this life cycle. For a 
complete reference, you can refer to books devoted to ASP.NET. Here we give a brief and simplified 
description, sufficient enough for most situations. 

Given a request for a page, and assuming that the appropriate page class exists in a compiled form on the 
server (if not, the ASP.NET runtime kicks in and performs a number of code compilation steps), a page 
instance is created with all server controls declared but not yet initialized. At this point, there are three 
main life-cycle phases: initialization, loading, and rendering. Initialization starts with determining whether 
the page requested is in postback mode (in which case the view state is encoded in the page request) or is 
being requested for the first time. The PreInit handler is executed, and the page theme and master page 
are applied. Next, the Init handler is called, initializing all server controls and the page itself, and then the 
InitCompleted event is triggered. 

The loading phase involves loading any view state (in the case of a postback request) from the page 
request and loading it into the server controls. When the view state is restored, the PreLoad event is 
triggered, followed by the Load event. This is where you normally put page-processing logic that runs on 
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every page request. Following this event, loading the view state is executed again to catch any dynamically 
added controls (for instance, those created in the Load event handler). Then, any control-change events 
and postback events are handled, and finally the LoadComplete event is raised. 

The rendering phase starts by performing all data binding (which involves the DataBinding and 
DataBound events for each data-bound control); then, the PreRender event is triggered. Next, any 
asynchronous tasks (registered via RegisterAsyncTask) are fired off, and the PreRenderComplete event 
is called. Before the actual rendering takes place, the view state is saved back to the page (by default to 
the default hidden input field). Finally, the page’s Render method is called: it produces HTML by recursively 
invoking the same method on each server control. Before this HTML is passed to the client, the Unload 
event is triggered, and every object involved in the page creation is disposed. 

Both page and control events are executed on the server. When they’re triggered, the parent page 
and its view state are posted to the server, where the event is handled and a response (the same or 
another page) is sent back to the client. A postback occurs if a page posts information to the server 
requesting the same page back. This round-trip scenario is common: the Reload button in Listing 14-2 
and the Generate button in Listing 14-4 are examples of triggering a postback. 

In both of these cases, you have a postback because you remain on the same page; for example, the 
originating page handles the data submission by updating the content of a label (an HTML <span> 
element) in the button click handler. More often, though, data is posted to another page, in which case it’s 
referred to as cross-page posting. You can easily enable cross-page posting by setting the PostBackUrl 
property of the submitting control. For instance, a SayHello button can be declared as follows: 
 
<asp:Button ID="btnSayHello" runat="server" Text="Greet" PostBackUrl="SayIt.aspx" /> 
 

There is a significant difference between how data submissions are handled via postback and 
cross-page posting: whereas the former is done in the submitting control’s click event handler (for 
example, Reload_Click in the timer example), with cross-page posting, the submission event is handled 
in the Load event handler of the page to which the postback URL points. What slightly complicates 
matters is that the form data submitted isn’t available directly on the receiving page: instead, you have 
to reference it through the page’s PreviousPage property. 

Because you often place initialization or cross-page posting code in a page event (typically for the 
Load event), you need to make sure this code is executed only for initialization or when data is being 
posted to the page. You can do so by checking the IsPostBack property of the Page object, which returns 
false if the page is requested the first time. 

Maintaining the View State 
HTTP is a stateless protocol, so you must take special care to preserve the state of a given page. For 
instance, suppose a visitor fills out a long form and, as sometimes happens, makes an error. After 
posting the page, this visitor expects to see all entered data preserved, with an indication of where the 
missing or incorrect entry is. Recovering form values after a postback is possible because ASP.NET 
maintains the view state: the state of all server controls on the page. These values are passed as HTTP 
form variables on a post and returned as hard-wired HTML. 

View state is automatically encoded as a hidden <input> element in your pages, and no special 
handling is needed to enable it. You can, on the other hand, disable it by adding EnableViewState="false" 
to your Page directive, or disable it partially on the control level by setting the same control property for 
any control for which no view state is to be maintained. This may be necessary if your page displays 
large amounts of data with no possibility of a postback or the data on the page can’t be modified, thus 
making the page source considerably smaller and quicker to download to your clients. 
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Understanding the Provider Model 
ASP.NET comes with a number of built-in application services that you can use and customize as you 
build your web applications. These encapsulate much of the core functionality common to most web 
sites, such as membership and role management, profiles and personalization, and site navigation, 
and you can easily plug them into your web-site logic out of the box. 

These services interact with service-specific data (the users registered, the different user roles your 
site is programmed for, various data associated with the authenticated users, and so on) via providers, 
which are classes that implement the appropriate interfaces to fulfill contracts for various services. 
ASP.NET comes with a number of built-in providers; for instance, it has a SQL and an Active Directory 
membership provider. The provider model allows you to plug in your own providers (by specifying them in 
the appropriate section of your web.config), so you may write an Oracle or a custom membership provider 
to your existing user/membership database or a role service provider based on simple XML files. 

Table 14-9 shows some common provider-based services in ASP.NET. 

Table 14-9. ASP.NET Provider-Based Services 

Service Description 

Encryption Handles the encryption and decryption of ASP.NET configuration files and 
sections within 

Membership Manages users and their accounts 

Profile Adds user information (for instance, user preferences) that is to be collected 
and stored for each user 

Role Management Manages roles and their associated access rights 

Session Management Manages session state for a user visit 

Site Map Stores information about each page and its place in the site’s structure 

Web Events Allows the monitoring of an application for control purposes 

Web Parts Manages a set of controls and their content and appearance that make up a 
portal 

Configuring the Provider Database 
By default (as guided by the server’s machine.config file), the data-aware services use SQL providers 
that work against a SQL Express database (by default, aspnetdb.mdf in the App_Data folder). The 
relevant part of the machine.config containing the default connection strings is as follows: 
 
    <connectionStrings> 
        <clear /> 
        <add name="LocalSqlServer" 
             connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI; 
AttachDBFilename=|DataDirectory|aspnetdb.mdf;User Instance=true" 
             providerName="System.Data.SqlClient" /> 
    </connectionStrings> 
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This defines a LocalSqlServer connection string that all data-centric providers use by default, 
which points to the aspnetdb.mdf SQL Express database in the web data directory. (Note how the 
database server is set to be running as a SQL Express named instance.) This database file is 
automatically created on first use or by triggering the web-site administration console. It’s important 
to remember that these default settings work only with SQL Express; but on a typical development 
machine with a standard SQL Express installation, everything works like a charm out of the box. 

Even if you’re using SQL Express and all the default providers, you should (re)define the 
connection string settings in your site web.config file, mostly because it’s more portable that way and 
because this becomes necessary if you use a different database server, say SQL Server. At the time of 
writing, SQL Server doesn’t let you attach database files to the server using the AttachDBFilename 
property, so you need to use a regular database and refer to it using the Initial Catalog or Database 
keyword in your connection string. 

If for some reason you can’t automatically generate the default database when using SQL Server, 
you can build it by hand by first creating an empty database (for instance, by right-clicking Server 
Explorer/Data Connections and selecting Create New SQL Server Database) and running 
aspnet_regsql.exe (found in your .NET installation folder) in wizard mode with the information about 
your newly created database. This tool generates all the data tables and stored procedures needed by 
the default providers. You can then change your web.config file to include a reference to this new 
database: 
 
   <connectionStrings> 
      <remove name="LocalSqlServer" /> 
      <add name="LocalSqlServer" 
            connectionString="Data Source=localhost;Integrated Security=SSPI; 
Initial Catalog=YourDatabase" 
            providerName="System.Data.SqlClient" /> 
   </connectionStrings> 
 

Here you use localhost for SQL Server and the YourDatabase database. You may need to change the 
host when you deploy your application to point to the right database server. Furthermore, be aware 
that SQL Server doesn’t support detached databases  (.mdf files); if you’re migrating from a SQL 
Express instance (for example, when your hosting provider supports only SQL Server), you need to 
manually import the contents of the detached database file into a SQL Server database (either by 
attaching it from the hosting provider’s administrative console or creating a backup from the Express 
database and importing it). In other words, there is no way to use the .mdf database with SQL Server 
directly. 

Creating Custom ASP.NET Server Controls 
You can create new server controls for ASP.NET on two conceptual levels: user controls and custom 
(web) server controls. User controls are similar to web forms: they’re a collection of server control 
and/or HTML markup, which is named (declared) and then used via reference. They can also expose 
public properties that you can set to control various aspects of the user control. This chapter considers 
only user controls. 

User controls are contained in .ascx files. You can create a new user control in Visual Studio by 
selecting the Web User Control template from the New/File menu option. The new user control is 
empty except for a Control directive that acts similarly to the Page directive of a web form. You can add 
any additional markup as needed. As an example, consider a user control that repeats a given text 
fragment a specified number of times. 

This user control (RepeatText.ascx in Listing 14-10) contains a single control: a placeholder label. 
The code-behind file is located in RepeatText.ascx.fs, shown in Listing 14-11. 
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Listing 14-10. RepeatText.ascx: A Simple User Control Implemented in F# 

<%@ Control Language="F#" 
            AutoEventWireup="true" 
            CodeFile="RepeatText.ascx.fs" 
            Inherits="MyUserControl.RepeatText" %> 
 
<asp:Label ID="Place" runat="server"/> 

Listing 14-11. RepeatText.ascx.fs: The Implementation of an ASP.NET User Control 

namespace MyUserControl 
 
open System 
open System.Web.UI.WebControls 
 
type RepeatText() = 
    inherit System.Web.UI.UserControl() 
 
    /// This is the internal state and parameters of the control 
    let mutable text = "" 
    let mutable count = 0 
 
    /// This internal control is initialized by ASP.NET 
    [<DefaultValue>] 
    val mutable Place : Label 
 
 
    /// These properties allow the state to be used from the page 
    member self.Text        with get() = text  and set(v) = text <- v 
    member self.RepeatCount with get() = count and set(v) = count <- v 
 
    /// This event is automatically wired up through the use of the 
    /// AutoEventWireup ASP.NET directive (true by default) 
    member self.Page_Load (sender: obj, e: EventArgs) = 
        let acc = new Text.StringBuilder() 
        for i in 1..count do 
            acc.Append(self.Text) |> ignore 
        self.Place.Text <- acc.ToString() 
 

The state and parameters of the control are ultimately held in the variables text and count. Note 
how you define public properties (Text and RepeatCount) that are available when you use the control 
from a page. All you need to do to use this user control from a page is to register it using the Register 
directive, giving a tag prefix and a tag name by which you can refer to it. For example, the code in 
Listing 14-12 results in an HTML label element containing the text “Monkey!” 10 times. 

Listing 14-12. TestRepeat.aspx: Using the Control from Listing 14-4 

<%@ Page AutoEventWireup="true" %> 
<%@ Register Src="RepeatText.ascx" TagName="Repeater" TagPrefix="text" %> 
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
                      "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> 
<html xmlns="http://www.w3.org/1999/xhtml"> 
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<head runat="server"> 
    <title>My User Control Test</title> 
</head> 
<body> 
    <form runat="server"> 
        <text:Repeater id="chart" runat="server" RepeatCount="10" Text="Monkey!" /> 
    </form> 
</body> 
</html> 

Building Ajax Rich Client Applications 
So far in this chapter, you’ve looked at programming server-side web applications. In recent years, a 
new class of rich-client web applications has emerged, leading to what is commonly called the Ajax 
development paradigm. This is a general term for any web application that incorporates substantial 
amounts of code executed on the client side of the application by running JavaScript in the web 
browser. 

You can develop Ajax applications in at least three ways using F#: 

• You can manually write and serve additional JavaScript files as part of your web 
application. This isn’t hard, but you don’t benefit from existing frameworks. 

• You can use the Ajax support via ASP.NET and develop Ajax web applications with 
F# code-behind files or F# library code exposed via C# or VB code-behind. 

• You can use the WebSharper platform to write both client and server code in F#. 

Developing Ajax applications with the first two techniques follows a fairly standard path mostly 
independent of F#. The remainder of this section gives a brief overview of some of the core 
WebSharper features, including pagelets, formlets, and flowlets. 

More on the WebSharper Platform 
WebSharper enables robust, rapid, client-based web application development with F# and provides a 
wealth of composable primitives to build web applications from small to large-scale. These represent 
an extremely powerful way of writing robust, efficient, integrated client/server applications in a 
single, type-checked framework. In particular, WebSharper employs several advanced features of F#, 
the combination of which offers a unique programming experience for web applications: 

• Client-side and server-side code are marked with custom attributes and can be 
authored in a single F# project. Client-side code, called pagelets, is automatically 
translated to JavaScript using F# quotations and reflection and is served to the 
client on demand. (See Chapter 9 for details on F# quotations and reflection.) 

• The program runs initially as a server-side application, generating JavaScript 
code to populate and handle the interactions of the web user interface. 

• Web forms can be expressed in an extraordinarily compact form as first-class, 
type-safe values and are represented as formlets. They can be composed and 
enhanced with just a few lines of code, including adding validation and complex 
user interactions, and defining dependent formlets. 

• Sequences of web forms, flowlets, are first-class values, providing an elegant and 
concise way to express larger-than-page functionality, yet remaining in Ajax space. 
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• The client-side code can use functionality from many .NET and F# libraries. The 
calls are mapped to corresponding JavaScript functionality through sophisticated 
techniques. You can also provide custom proxies to any .NET type, describing how 
to translate it to JavaScript. 

• The client side may make calls to any JavaScript technology via WebSharper stubs 
implemented for that technology. At the time of writing, WebSharper comes with a 
number of extensions to various JavaScript libraries, including JQuery, Google 
Maps, Google Visualization, Yahoo UI, JQuery UI, and JQuery Tools, among others. 

• The client side may make asynchronous calls to the server using variations on 
the techniques described in Chapter 13.  

• The resulting web applications are dramatically shorter and easier to maintain 
and extend, and can be readily deployed under IIS on the top of ASP.NET. 

Getting Started with WebSharper 
WebSharper is available free of charge for noncommercial purposes, and it’s the recommended way of 
developing Rich Internet Applications (RIAs) with F#. You can grab the latest WebSharper from 
www.websharper.com. 

WebSharper installs as a set of tools, most notably the F# to JavaScript compiler, and a new Visual 
Studio project type that provides a template to build WebSharper applications. At the time of writing, 
this Visual Studio template creates two projects: an F# library project that contains WebSharper 
application code, and a web application project that exposes WebSharper site functionality via ASPX 
markup and includes the settings and post-processing hooks to make compiling, running, and 
deploying a pleasant experience. This WebSharper template also includes a quick sample application; 
after you create a new WebSharper project, you can press F5 to start it using ASP.NET. 

WebSharper Pagelets 
As you’ve seen in the previous sections, handling user input in ASP.NET applications involves 
declaring server-side controls that are rendered to HTML to take input from the end user, and 
defining various event handlers to handle that input. You can add validators by declaring further 
server-side controls and connecting them with the controls they’re to validate against. Similarly, the 
ASP.NET controls defined in ASPX markup are paired with their event handlers either by a predefined 
naming convention or by connecting them via strings in the markup. 

The earlier examples of loose coupling between the various ASP.NET components easily lead to 
problems when you need to code more complex web applications. Furthermore, the server-centric 
view requires that all components be rendered to code on the server side, which then executes to 
produce HTML with any submission/processing event delegated to the server again, leaving little 
opportunity to customize interaction on the client side. 

WebSharper takes a fundamentally different approach and views web applications from a client-
based perspective. WebSharper applications are made up of pagelets, annotated F# code that is 
automatically translated to JavaScript to run on the client on demand. You can combine pagelets to 
form larger pagelets; you can develop web pages and even entire web sites in a single pagelet. 
Pagelets that create DOM nodes can be exposed as ASP.NET server controls and composed into ASPX 
markup seamlessly. 

Consider the following simple example: 
 

open IntelliFactory.WebSharper 
open IntelliFactory.WebSharper.Html 
 
[<JavaScript>] 
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let HelloWorld = 
    let welcome = P [Text "Welcome"] 
    Div [ 
        welcome 
        Input [Type "Button"; Value "Click me!"] 
        |> OnClick (fun e args -> 
            welcome.Text <- "Hello, world!") 
    ] 
 

HelloWorld defines a pagelet that returns a DOM node: a DIV tag with two child nodes. The first 
child node is a paragraph containing welcome text, and the second is an HTML button with “Click me!” 
as its title. The key thing to note here is the use of the [<JavaScript>] attribute, which defines a 
particular code element to be available in JavaScript and thus on the client side. The button’s click 
event handler is attached using OnClick, a shorthand function for the On Events.Click sequence. 
Additional HTML combinators are available in the IntelliFactory.WebSharper.Html namespace. Each 
combinator takes a sequence of DOM nodes or a sequence of attributes. If both are required, you can 
use the -< combinator, such as 
 
Div [Class "your-css-class"] -< [ … ] 

Calling Server Code from the Client 
You can define server-side functionality such as functions to fetch data from server files or databases 
as easily as you define client-side code. Server-side functions, such as those defined to execute over 
RPC, can be called from client-code seamlessly; the communication protocol is implemented by the 
WebSharper runtime as JavaScript code. The following is example skeleton code: 
 
module YourWebApplication = 
    open IntelliFactory.WebSharper  
    ... 
    [<Rpc.Callable>] 
    let YourServerFunction (...) = ... 
 
    [<JavaScript>] 
    let YourClientFunction () = 
        let data = YourServerFunction (...) 
        ... 

WebSharper Formlets 
Nearly all web pages need to take user input in one way or another. For example, the user may click buttons 
or links, or enter values in a web form. Furthermore, web forms typically impose various limitations for the 
values entered: many fields are required and must be supplied a value, date fields can only be set using date 
values, fields that expect numeric values reject alpha and special characters, and so on. 

WebSharper formlets provide an elegant, type-safe, robust way to build web forms and represent 
the structural make-up, the validations involved, and the layout and other presentation details as a 
single F# value. They’re composable building blocks that can be enhanced and customized to an 
arbitrary complexity. 

The IntelliFactory.WebSharper.Formlet namespace contains various formlet controls and 
enhancements that you can apply, along with important formlet combinators such as Formlet.Run, 
which renders a formlet into a DOM node. A simple example is a text-box formlet that takes a string 
input from the user: 
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let snippet1 = Controls.Input "initial value" 
 

You can test this and other formlets quickly by writing a short wrapper function that takes a render 
function that translates values to DOM nodes and a formlet that supplies those values: 
 
[<JavaScript>] 
let RunInBlock f formlet = 
    let output = Div [] 
    formlet 
    |> Formlet.Run (fun res -> 
        let (elem: Element) = f res 
        output -< [ elem ] |> ignore) 
    |> fun form -> 
        Div [ 
            form 
            output 
        ] 
 

Another helper function takes simple string formlets and echoes what has been accepted by those 
formlets: 
 
[<JavaScript>] 
let RunSnippet formlet = 
    formlet 
    |> RunInBlock (fun name -> 
        Div [ 
            P ["Hi " + name + "!" |> Text] 
        ]) 
 

RunSnippet returns a DOM node so you can wrap it in an ASP.NET server control: 
 
[<JavaScriptType>] 
type Snippet1() =  
    inherit Web.Control() 
 
    [<JavaScript>] 
    override this.Body = snippet1 |> RunSnippet 
 

Adding this ASP.NET server control to an ASPX markup displays a text box to write text into and an 
empty echo message. Each time you press a key, an event is triggered, and the formlet enters an 
accepting state; subsequently it displays a new echo message that is appended to the previous ones. 

To remove the initial empty echo message, you can add a validator that doesn’t accept values with 
fewer than three characters by enhancing the plain input formlet: 
 
[<JavaScript>] 
let Snippet1a = 
    Formlet.Yield (fun name -> name) 
    <*> (Controls.Input "" 
         |> Validator.Is (fun s -> s.Length > 3) "Enter a valid name") 
 

This is a slightly more elaborate version of the input formlet, enhanced with a particular validator 
and wrapped in a Formlet.Yield combinator. This function defines how the values collected in the 
formlet are returned from the formlet and comes in handy for larger formlets that carry multiple fields. 
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You can equip your formlets with a visual form container by adding a further enhancement, this 
time with a validator that accepts any non-empty string: 
 
[<JavaScript>] 
let Snippet1b = 
    Formlet.Yield (fun name -> name) 
    <*> (Controls.Input "" 
         |> Validator.IsNotEmpty "Enter a valid name" 
         |> Enhance.WithFormContainer) 
 

You can also cause the formlet not to submit until a submit button is pressed. In addition, you can 
supply a reset button that resets the formlet to its original state. This example adds both: 
 
[<JavaScript>] 
let Snippet1c = 
    Formlet.Yield (fun name -> name) 
    <*> (Controls.Input "" 
         |> Validator.IsNotEmpty "Enter a valid name" 
         |> Enhance.WithFormContainer 
         |> Enhance.WithSubmitAndResetButtons) 
 

The accepting status of the formlet and any validation error messages can be revealed to the user 
via a validation icon or an error summary enhancement. You can do the former, and move the submit 
and reset buttons into the form container, as follows: 
 
[<JavaScript>] 
let Snippet1d = 
    Formlet.Yield (fun name -> name) 
    <*> (Controls.Input "" 
         |> Validator.IsNotEmpty "Enter a valid name" 
         |> Enhance.WithValidationIcon 
         |> Enhance.WithSubmitAndResetButtons 
         |> Enhance.WithFormContainer) 
 

Adding a label for the input control is yet another enhancement: 
 
[<JavaScript>] 
let Snippet1e = 
    Formlet.Yield (fun name -> name) 
    <*> (Controls.Input "" 
         |> Validator.IsNotEmpty "Enter a valid name" 
         |> Enhance.WithValidationIcon 
         |> Enhance.WithTextLabel "Name" 
         |> Enhance.WithSubmitAndResetButtons 
         |> Enhance.WithFormContainer) 
 

And finally, you can add an information icon before the label: 
 
[<JavaScript>] 
let Snippet1f = 
    Formlet.Yield (fun name -> name) 
    <*> (Controls.Input "" 
         |> Validator.IsNotEmpty "Enter a valid name" 
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         |> Enhance.WithValidationIcon 
         |> Enhance.WithLabelAndInfo "Name" "Enter your name" 
         |> Enhance.WithSubmitAndResetButtons 
         |> Enhance.WithFormContainer) 
 

These formlets are shown in Figure 14-4. Although these examples contain a single input field, 
you can create further input formlets as shown in the following example: 
 
[<JavaScript>] 
let input (label: string) (err: string) =  
    Controls.Input "" 
    |> Validator.IsNotEmpty err 
    |> Enhance.WithValidationIcon 
    |> Enhance.WithTextLabel label 
 
[<JavaScript>] 
let inputInt (label: string) (err: string) =  
    Controls.Input "" 
    |> Validator.IsInt err 
    |> Enhance.WithValidationIcon 
    |> Enhance.WithTextLabel label 
 
[<JavaScript>] 
let Snippet2 : Formlet<string * int> = 
    Formlet.Yield (fun name age -> name, age |> int) 
    <*> input "Name" "Please enter your name" 
    <*> inputInt "Age" "Please enter a valid age" 
    |> Enhance.WithSubmitAndResetButtons 
    |> Enhance.WithFormContainer 
 

Note how this formlet returns a string-int pair for the name and age obtained from the user, in 
essence providing a type-safe and robust way to collect and handle the input values. 
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Figure 14-4. Various formlet snippets using WebSharper 

Another useful formlet combinator is Formlet.Many. It gives you the ability to collect a list of values 
and visuals: 
 
[<JavaScript>] 
let Snippet3a = 
    Formlet.Yield (fun name age -> name, age |> int) 
    <*> input "Name" "Please enter your name" 
    <*> inputInt "Age" "Please enter a valid age" 
    |> Enhance.WithLegend "Person" 
    |> Enhance.WithTextLabel "Person" 
    |> Formlet.Many 
    |> Enhance.WithLegend "People" 
    |> Enhance.WithSubmitAndResetButtons 
    |> Enhance.WithFormContainer 
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.NET Proxies and JavaScript Stubs 
WebSharper enables you to use F# in your client-side coding and gives you nearly the entire F# 
language to develop client code including powerful language features such as pattern matching, active 
patterns, discriminated unions and records, classes, interfaces, exceptions, and asynchronous 
computations, among others. It also comes with proxies for a large part of the F# core libraries and 
.NET namespaces, enabling you to use those seamlessly in your WebSharper applications without 
having to worry about how to map them to JavaScript. 

WebSharper also lets you map additional .NET libraries and enlist them in the WebSharper space 
by writing proxies for them. Similarly, you can provide stubs for existing JavaScript libraries and 
technologies and write F# code to access them, freeing you from developing untyped JavaScript code. 
For more information about writing .NET proxies and JavaScript stubs, please refer to the 
documentation available on the WebSharper project site. At the time of writing, WebSharper comes 
with a number of extensions to various JavaScript technologies, including JQuery, Google Maps and 
Visualization, Yahoo UI, JQuery UI, JQuery Tools, and others. 

Automated Resource Tracking and Handling 
Pagelets can define their own resource dependencies, such as style sheets, JavaScript code, and other 
artifacts that they need to work properly. These dependencies are automatically referenced by the 
WebSharper script manager tag in ASPX markup when those pagelets are used in the page. For 
instance, the formlet examples in the preceding section came with a dependency on the main formlet 
style sheet provided by WebSharper (along with additional skins), giving the appearance shown in 
Figure 14-4. 

Dependent Formlets and Flowlets 
Often, web forms need more elaborate considerations. For instance, a given part of a web form may 
depend on what is entered in another. You can express these dependencies using dependent formlets, 
which you can create most conveniently using the formlet computation expression builder. As plain 
formlets, dependent formlets are also first-class values and further encode linear dependencies 
between the various form parts. Consider the following simple example in which the name and age are 
obtained one after the other; a name must be entered before the input field for the age is displayed: 
 
[<JavaScript>] 
let Snippet4 = 
    formlet { 
        let! name = input "Name" "Please enter your name" 
        let! age = inputInt "Age" "Please enter a valid age" 
        return name, age |> int 
    } 
    |> Enhance.WithSubmitAndResetButtons 
    |> Enhance.WithFormContainer 
 

The IntelliFactory.WebSharper.Formlet namespace provides additional combinators you can use 
to express nonlinear dependencies and build complex user interface interactions and forms. 

Similar to dependent formlets, flowlets provide a slightly different visual experience and enable 
you to serve various formlets as a sequence of steps, collecting and accumulating the composite result 
of the entire flowlet. The following example dresses up each primitive formlet step in a form container 
with reset and submit buttons: 
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[<JavaScript>] 
    let Snippet4b = 
        flowlet { 
            let! name = input "Name" "Please enter your name" 
                        |> Enhance.WithSubmitAndResetButtons 
                        |> Enhance.WithFormContainer 
            let! age =  inputInt "Age" "Please enter a valid age" 
                        |> Enhance.WithSubmitAndResetButtons 
                        |> Enhance.WithFormContainer 
            return name, age |> int 
        } 

Using WSDL Web Services 
You can use web services to implement service-oriented architectures, a popular application integration 
strategy where the interacting software components and services are loosely coupled in a distributed 
environment. The benefits of such integration include offering services as independent entities that 
can be used and reused from different systems within an organization or around the world. 
Consuming web services is a great way to expand the functionality of your application. 

A web service is a set of functionality that is offered through a platform-independent interface. 
Applications can explore the pieces of functionality offered by a web service by examining its Web 
Services Description Language (WSDL) signature. This WSDL definition uses XML to describe the 
signature of each operation by declaring the data types of the parameters and optional return values. 
Communicating with a web service occurs via the Simple Object Access Protocol (SOAP), which encodes 
service invocations and return values in an XML envelope over HTTP. Because web services are 
invoked over HTTP, they can be used by any application with Internet connectivity. 

Communicating with web services is usually performed via so-called proxy classes. A proxy 
performs all the grunge work involved in calling the service and deciphering the results, freeing you 
from a lot of work. A typical workflow when calling a web service is as follows: 

1. The client instantiates the proxy and calls the desired operation on it. 

2. The proxy creates a SOAP XML request and sends it to the web service via 
HTTP. 

3. The web service receives the request and performs the requested operation. 

4. The web service packages the return value from the operation (or any 
exception that occurred) into a SOAP XML response and returns it to the proxy 
via HTTP. 

5. The proxy deserializes the response into a .NET data type and returns it to the 
calling class. 

Consuming Web Services 
Many great web services are available on the Internet. For instance, Microsoft’s TerraService is a free 
web service at msrmaps.com; it enables you to integrate USGS images and data into your applications. 
webservicex.net is another great source for web services; for instance, its WeatherForecast web service 
can supply weather information for any given U.S. location. Calling these and other web services in 
your .NET applications is painless using F# web references. Finally, www.programmableweb.com is an 
excellent online directory with a huge number of well-documented web services, using both SOAP and 
other protocols such as REST. 
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All web services are called via generated proxy code. The easiest way to generate this code is to 
add a web reference to Visual Studio, which automatically generates a .NET proxy class for the given 
web service. Figure 14-5 shows the available operations for the web service from 
http://terraservice.net/TerraService.asmx. 

 

Figure 14-5. Adding a web service reference 

 
You can also generate code using the .NET command-line tool wsdl.exe. The following example 

generates C# code for TerraService and WeatherForecast and compiles it explicitly: 

C:\fsharp> wsdl /namespace:WebReferences http://webservicex.net/WeatherForecast.asmx 
Microsoft (R) Web Services Description Language Utility 
Writing file 'C:\fsharp\WeatherForecast.cs'. 
 
C:\fsharp> csc /target:library /r:System.dll /r:System.Web.Services.dll  
              /r:System.Xml.dll WeatherForecast.cs 
 
C:\fsharp> wsdl /namespace:WebReferences http://terraservice.net/terraservice.asmx 
Microsoft (R) Web Services Description Language Utility 
Writing file 'C:\fsharp\TerraService.cs'. 
 
C:\fsharp> csc /target:library /r:System.dll /r:System.Web.Services.dll  
               /r:System.Xml.dll TerraService.cs 
 
C:\fsharp> dir *.dll 
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... 
03/09/2010  00:18            10,752 WeatherForecast.dll 
03/09/2010  00:18            47,616 TerraService.dll 

■ Note You can also use wsdl.exe to generate F# code by adding a command-line option that gives an explicit 
reference to the F# CodeDOM dynamic code generator, part of the F# Power Pack on www.codeplex.com. For 
example, you can use an option such as /language:"Microsoft.FSharp.Compiler.CodeDom. 

FSharpCodeProvider, FSharp.Compiler.CodeDom, Version=1.9.9.9, Culture=neutral, 

PublicKeyToken=a19089b1c74d0809". Note the similarity to the CodeDOM reference used in the web.config file in 
Listing 14-2. The generated file can then be compiled as normal, although we have found that small adjustments 

sometimes need to be made to the generated code. 

You can reference these two generated DLLs from F# Interactive using the following references: 

> #r @"C:\fsharp\WeatherForecast.dll";; 
> #r @"C:\fsharp\TerraService.dll";; 

You can now use these web services directly from F# Interactive: 

> open System;; 
> open WebReferences;; 
 
> let ws = new WeatherForecast();; 
val ws : WeatherForecast = WebReferences.WeatherForecast 
 
> let weather = ws.GetWeatherByPlaceName("Los Angeles");; 
val weather : WeatherForecasts 
 
> let today = weather.Details.[0];; 
val today : WeatherData 
 
> printf "Temperature: %sF/%sC\n" today.MaxTemperatureF today.MaxTemperatureC;; 
Temperature: 72F/22C 
val it : unit = () 
 
> let ts = new TerraService();; 
val ts : TerraService = WebReferences.TerraService 
 
> let place = new Place(City="Los Angeles", State="CA", Country="USA");; 
val place : Place 
 
> let facts = ts.GetPlaceFacts(place);; 
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val facts : PlaceFacts 
 
> printfn "Lat/Lon: %f/%f" facts.Center.Lat facts.Center.Lon;; 
Lat/Lon: 33.833000/-118.217003 

Calling Web Services Asynchronously 
If you put a timer on these web service calls, you’d see that they take significant time to execute—even 
seconds, depending on your network connection. This can be serious idle time for your application. To 
remedy this problem, you can either minimize the number of web-service calls through some sort of 
caching (for instance, in a web application you can store web-service data in the session or the 
application state and reuse it instead of making new calls) or make these calls in parallel, 
asynchronously. For example, it makes sense to connect to two web services simultaneously and wait 
for both responses to come back before proceeding with the rest of an operation. 

The easiest and most compositional way to access a web service asynchronously is to use the 
asynchronous workflows discussed in Chapter 13. The proxy code generated for the web service 
includes methods such as BeginGetWeatherByPlaceName and EndGetWeatherByPlaceName, which follow the 
style for .NET library asynchronous invocations described in Chapter 13. You first map these pairs of 
operations into methods that construct asynchronous tasks. As in Chapter 13, you do this by defining 
extension members to the types in the generated code: 
 
type WebReferences.WeatherForecast with 
    member ws.GetWeatherByPlaceNameAsyncr placeName = 
        Async.FromBeginEnd(placeName, 
                            ws.BeginGetWeatherByPlaceName, 
                            ws.EndGetWeatherByPlaceName) 
 
 
type WebReferences.TerraService with 
    member ws.GetPlaceFactsAsyncr place = 
        Async.FromBeginEnd(place, 
                            ws.BeginGetPlaceFacts, 
                            ws.EndGetPlaceFacts) 
 

These have the following types: 

member ws.GetWeatherByPlaceNameAsyncr : placeName:string -> Async<WeatherForecast> 
member ws.GetPlaceFactsAsyncr: place:Place -> Async< PlaceFacts> 

You can now define various asynchronous tasks using these primitives. For example, you can 
define a function getWeather that collects both the weather and position data for a given location but 
executes the two calls simultaneously: 
 
type Microsoft.FSharp.Control.Async with 
    static member Parallel2 (a1, a2) = 
        async { let! job1 = Async.StartChild a1 
                let! job2 = Async.StartChild a2 
                let! res1 = job1 
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                let! res2 = job2 
                return res1, res2 } 
 
let getWeather(city,state,country) = 
    async { let ws = new WeatherForecast() 
            let ts = new TerraService() 
            let place = new Place(City=city, State=state, Country=country) 
            let! weather,facts = 
                Async.Parallel2 ( 
                     ws.GetWeatherByPlaceNameAsyncr(city), 
                     ts.GetPlaceFactsAsyncr(place)) 
            let today = weather.Details.[0] 
            return (today.MinTemperatureF,today.MaxTemperatureC, 
                    facts.Center.Lat,facts.Center.Lon) } 
 

The type of this function is as follows: 

val getWeather : string * string * string -> Async<string * string * float * float> 

One simple use of this task is to run it and print the results when the operation completes: 
 
Async.RunSynchronously ( 
    async { let! (maxF, maxC, lat, lon) = getWeather("Los Angeles", "CA", "USA") 
            do printfn "Temperature: %sF/%sC" maxF maxC 
            do printfn "Lat/Lon: %f/%f" lat lon }) 
 

With an active web connection, this results in output such as the following (after a short delay 
while the connections are resolved): 

Temperature: 72F/22C 
Lat/Lon: 33.833000/-118.217003 

Summary 
In this chapter, you’ve seen how to use F# to perform a range of web programming tasks. You started by 
using sockets and TCP/IP to implement a web server and other TCP-based services directly, an 
example of a system or web network programming task. You can learned how to use ASP.NET to 
implement web applications involving HTML and input server controls and how to use embedded 
scripts and code-behind files. We also showed how you can query a database and display its data. You 
then looked briefly at web applications that incorporate significant client-side scripting using the 
WebSharper Platform, the recommended way to develop Rich Internet Applications (RIAs) with F#. 
Finally, you saw how to use web services from F#, including making compositional asynchronous 
invocations of web services. 

Data access is a topic that complements web programming and often forms a major part of server-
based web applications. The next chapter discusses how to access relational databases from F# 
programs and also examines other aspects of working with data from F#. 
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Working with Data 

Software applications deal with data in a wide array of forms: single values such as integers or strings; 
composite values paired together as tuples, records, or objects; collections of smaller pieces of data 
represented as lists, sets, arrays, or sequences; XML strings with tags describing the shape and kind of 
data; and data coming from relational or object-oriented databases, just to name a few. 

This chapter looks at ways of working with some common data sources: 

• In Chapter 3, you saw that sequences, similar to other enumerable data types 
such as lists, arrays, maps, and sets, have various aggregate iteration, query, and 
transform operators. This chapter first looks at how you can use these operators 
in a straightforward manner to form SQL-like operations over in-memory 
collections. This mechanism can be further tuned and applied to other data 
sources where the original data source is mapped to a sequence. 

• We cover how you can work with relational databases from F# programs using 
the ADO.NET libraries. You learn how to connect to a database; create, update, 
and delete tables and records using simple SQL statements; access database data 
sequentially; and work with parts of tables using disconnected in-memory 
representations. You also learn how to manage database connections and data 
sources; create databases; add new tables; and work with relationships, 
constraints, and stored procedures using Visual Studio. 

• We cover how you can use the Language Integrated Query (LINQ) infrastructure 
in combination with F# metaprogramming to bring relational data query logic 
into reach without explicit use of SQL. The essential goal is to write database 
queries in F# itself using the same techniques you use to query in-memory data 
structures. 

• Finally, the chapter looks at the use of XML as a generic data format. You saw in 
Chapter 9 how to work with the XML Document Object Model (DOM), and we 
briefly survey how to desugar XML into sequences using LinqToXml. 

Querying In-Memory Data Structures 
Query languages are often made up of building blocks that transform and filter data. Functional 
programming gives you the basic tools that allow you to apply standard query logic on all F# types that 
are compatible with the F# sequence type, such as F# lists, arrays, sequences, and anything else that 
implements the IEnumerable<'a>/seq<'a> interface. 
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Select/Where/From Queries Using Aggregate Operators 
Consider the following aggregate operators described in Chapter 3: 
 
let select = Seq.map 
let where  = Seq.filter 
 
Here you rename the operations in the F# Seq module to correspond to more standard database query 
terminology: the select operator is defined as a transform operation, because in a selection you take 
sequence elements and map (often narrow) them to new values. Similarly, the where operator is 
defined as a filter applied on a sequence that takes an 'a -> bool predicate to filter out the desired 
elements. You can use these aggregate operators in a straightforward manner to query and transform 
in-memory data. The only other piece you need is the glue that makes the query and transform 
operators work together: the standard pipe operator (|>). Recall that this operator flips the order of its 
arguments; being an infix operator, it feeds the left-side argument into the function on the right. This 
is useful because the argument to the function is seen before the function itself, propagating important 
typing information into the function. 

For instance, given a string * int * string array representing the name, age, and department of 
various employees, you can select those names that start with the letter R as follows: 
 
let people = [| ("Joe", 27, "Sales");  ("Rick", 35, "Marketing"); 
                ("Mark", 40, "Sales"); ("Rob", 31, "Administration"); 
                ("Bob", 34, "Marketing") |] 
 
let namesR = 
    people |> select (fun (name, age, dept) -> name) 
           |> where  (fun name -> name.StartsWith "R") 
 

Note that the types of name, age, and dept are inferred from people, and no type annotation is 
necessary. Finding those people who work in sales and are older than 30 years old is also 
straightforward: 

> let namesSalesOver30 = 
    people |> where  (fun (_, age, _)  -> age >= 30) 
           |> where  (fun (_, _, dept) -> dept = "Sales") 
           |> select (fun (name, _, _) -> name);; 
val namesSalesOver30 : seq<string> 
 
> namesSalesOver30;; 
val it : seq<string> = seq ["Mark"] 

Using Aggregate Operators in Queries 
In the previous section, you used alternative names such as select and where for some standard F# 
operations such as Seq.map and Seq.filter. This is for illustrative purposes to show the connection 
between these operators and SQL-like querying. In most F# code, you should continue to use the 
standard F# operators from the Seq module. 

In addition to the restriction (filter/where) and projection (map/select) operators, the Seq module 
contains other useful functions, many of which were described in Chapter 3; and you can easily define 
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further operators. For instance, you can define sorting over sequences by using a custom sorting 
function together with Seq.sortBy. 

Another useful query-like function is Seq.truncate, which takes the first n elements and truncates 
the rest. Using these new operators—given, for example, an unbounded stream of random numbers—
you can extract the first three even numbers and return a pair of those numbers and their square in 
reverse order, as the following example shows: 
 
let rand = System.Random() 
let numbers = seq { while true do yield rand.Next(1000) } 
 
numbers |> Seq.filter (fun i -> i % 2 = 0)  // "where" 
        |> Seq.truncate 3 
        |> Seq.sort                         // sort ascending 
        |> Seq.map (fun i -> i, i*i)        // "select" 

// random – results will vary! 
val it : seq<int * int> = seq [(814, 662596); (686, 470596); (242, 58564)] 

Accumulating Using Folding Operators 
Some of the most general operators supported by most F# data structures are reduce, fold, and 
foldBack. These apply a function to each element of a collection and accumulate a result. For fold 
and foldBack, the function is applied in left-to-right or right-to-left order, respectively. If you use the 
name fold, then typically the ordering is left to right. Both functions also take an initial value for the 
accumulator. For example: 

> List.fold (fun acc x -> acc + x) 0 [4; 5; 6];; 
val it : int = 15 
 
> Seq.fold (fun acc x -> acc + x) 0.0 [4.0; 5.0; 6.0];; 
val it : float = 15.0 
 
> List.foldBack (fun x acc -> min x acc) [4; 5; 6; 3; 5] System.Int32.MaxValue;; 
val it : int = 3 

The following are equivalent, but no explicit anonymous function values are used: 

> List.fold (+) 0 [4; 5; 6];; 
val it : int = 15 
 
> Seq.fold (+) 0.0 [4.0; 5.0; 6.0];; 
val it : float = 15.0 
 
> List.foldBack min [4; 5; 6; 3; 5] System.Int32.MaxValue;; 
val it : int = 3 
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If used carefully, the various foldBack operators are pleasantly compositional, because they let you 
apply a selection function as part of the accumulating function: 

> List.foldBack (fst >> min) [(3, "three"); (5, "five")] System.Int32.MaxValue;; 
val it : int = 3 

The F# library also includes more direct accumulation functions such as Seq.sum and Seq.sumBy. 
These use a fixed accumulation function (addition) with a fixed initial value (zero). 

■ Caution Folding operators are very powerful and can help you avoid many explicit uses of recursion or loops in 
your code. However, they’re sometimes overused in functional programming and can be hard for novice users to 

read and understand. Take the time to document uses of these operators, or consider using them to build simpler 

operators that apply a particular accumulation function. 

Expressing Some Queries Using Sequence Expressions 
Using aggregate operators to form queries is closely related to the sequence expression notation 
described in Chapter 3 and is used frequently in this book. For example, namesSalesOver30 defined 
previously can also be defined as follows: 
 
seq { for (name, age, dept) in people do 
        if age >= 30 && dept = "Sales" then 
          yield name } 
 
This is a different notation for the same computation. For very simple queries, F# sequence 
expressions also support an even more compact form where if/then clauses are replaced by when, the 
final do is dropped from the for statement, and yield is replaced by ->: 
 
seq { for (name, age, dept) in people do 
        if age >= 30 && dept = "Sales" then 
          yield name } 
 
There is no difference between these two sequence expressions—it’s just a matter of syntax. 

You can use sequence expressions in conjunction with the |> operator. For example: 
 
seq { for i in numbers do 
          if i % 2 = 0 then 
              yield (i, i*i) } 
|> Seq.truncate 3 
|> Seq.sort 
 

There are pros and cons to using sequence-expression syntax for some parts of queries: 

• Sequence expressions are very good for the subset of queries expressed using 
iteration (for), mapping (select/yield), and filtering (if/then/when/where). 
They’re particularly good for queries containing multiple nested for statements. 
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• Other query constructs such as ordering, truncating, grouping, and aggregating 
must be expressed directly using aggregate operators such as Seq.sortBy and 
Seq.groupBy. 

• Some queries depend on the index position of an item within a stream. These are 
best expressed directly using aggregate operators such as Seq.mapi. 

• Many queries are part of a longer series of transformations chained by |> 
operators. Often, the type of the data being transformed at each step varies 
substantially through the chain of operators. These queries are best expressed 
using aggregate operator chains. 

■ Note It’s likely that in the future, the F# sequence-expression syntax will include support for specifying 
grouping and aggregation operations within the expression syntax. However, at the time of writing, it’s necessary 

to explicitly use operators such as Seq.sortBy and Seq.groupBy for these operations. 

In-Memory Queries and LINQ 

In this section, you’ve seen how you can use aggregate sequence operators and sequence expressions to 
query and manipulate in-memory data structures using a SQL-like syntax. This is essentially the idea 
behind Microsoft’s LINQ technology. You apply the same techniques to queries over relational data (LINQ to 
SQL) later in this chapter. 

In Chapter 3, you saw that sequences can be used to wrap collections and that a number of collection data 
types implement the sequence interface. It’s possible to provide parallel implementations for the iteration, 
aggregation, and transformation operations of these data types—for instance, a parallel list 
implementation that uses worker threads—and assume independence between the transformation steps. 
This idea forms the basis of Parallel LINQ, a parallel version of LINQ. This library can be accessed using the 
F# Power Pack library FSharp.PowerPack.Parallel.Seq.dll, for parallel sequence operations. 

Using Databases to Manage Data 
Storing data in various files, reading them into memory, and querying and manipulating the resulting 
in-memory data collection is a sufficient approach for many applications working with data, but there 
comes a point where more persistent data handling is required. 

For example, consider a business that has two applications that need to access the same set of data 
about employees. One way to do this is to store data in a text file and work with this data file from both 
applications. But this approach is vulnerable; you’d quickly realize how redundant text files can get 
when adding new pieces of data (say you wanted to add an address next to the name, department, and 
age of each employee) or if you wanted to group your employee data by introducing various 
relationships (say, multiple addresses per employee). Even if you managed to find a good storage 
alternative, you’d still have to modify both applications to read and write this new data format. 
Databases make scenarios like these much easier to cope with by enforcing centralized control of 
persistent data (data that is more persistent than what appears in a single application) and by giving 
you the freedom to define, manipulate, and query this data in an application-neutral way. 
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Databases provide many benefits. Some of the more important ones are listed here: 

• Data security: When you have centralized control of your data, you can erect a full 
security system around the data, implementing specific access rules for each type 
of access or parts of the database. 

• Sharing data: Any number of applications with the appropriate access rights can 
connect to your database and read the data stored within—without needing to 
worry about containing the logic to extract this data. As you see shortly, 
applications use various query languages (most notably SQL) to communicate 
with databases. 

• A logical organization of data: You can write new applications that work with the 
same data without having to worry about how the data is physically represented 
and stored. On the basic level, this logical structure is provided by a set of 
entities (data tables) and their relationships. 

• Avoiding data redundancy: Having all requirements from each consuming 
application up front helps to identify a logical organization for your data that 
minimizes possible redundancy. For instance, you can use foreign keys instead 
of duplicating pieces of data. Data normalization is the process of systematically 
eliminating data redundancy, a large but essential topic that we don’t consider 
in this book. 

• Transactions: Reading from and writing to databases occurs atomically, and as a 
result, two concurrent transactions can never leave data in an inconsistent, 
inaccurate state. Isolation levels refer to specific measures taken to ensure 
transaction isolation by locking various parts of the database (fields, records, 
tables). Higher isolation levels increase locking overhead and can lead to a loss 
of parallelism by rendering concurrent transactions sequential; on the other 
hand, no isolation can lead to inconsistent data. 

• Maintaining data integrity: Databases make sure the data stored within is 
accurate. Having no redundancy is one way to maintain data integrity (if a piece 
of data is changed, it’s changed in the only place it occurs; thus, it remains 
accurate); on the other hand, data security and transaction isolation are needed 
to ensure that the data stored is modified in a controlled manner. 

The Relational Model: Data Relations 

A relational database table is essentially a two-dimensional matrix with rows  (records) and columns 
(fields). A primary key is a column that uniquely identifies each row, and that means you can’t store the 
same value in a primary-key column of any two records (so it’s also a unique key). The primary key is 
usually a single numeric or GUID column, but it can also be composed as a set of columns, in which case 
it’s called a composite primary key. 

Tables can be linked or related to one another using relationships. To set up a relationship, you need 
foreign keys, which are columns that store primary key values in a host table. For instance, in a  one-to-
one relationship, a record in table A can be associated with a record in table B by A containing a foreign 
key to B’s primary key column, or vice versa, or both, depending on the navigability of the relationship. A 
one-to-one relationship is rare because it makes more sense to merge the two tables, unless the foreign 
key is allowed to be null. On the other hand, one-to-many (1..*) relationships are ubiquitous, allowing 
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records in table A to be associated with multiple records in table B. For instance, a Customers table is 
likely to be associated with an Orders table this way, allowing each customer to have multiple orders. This 
can be modeled by storing a foreign key in Orders that refers to a Customers primary key. By moving two 
(or more) foreign keys into a separate association table, you obtain a many-to-many relationship between 
those tables. 

Referential integrity refers to the fact that only valid primary key values are allowed in a foreign-key 
column—that is, the rows these keys reference are present in the related table. 

Choosing Your Database Engine 
Table 15-1 shows some of the most common database engines, all of which can be used from F# and .NET. 

Table 15-1. Common Databases 

Name Type Description Available From 

PostgreSQL Open source Open source database engine http://postgresql.org/ 

SQLite Open source Small, embeddable, zero-
configuration SQL database engine 

www.sqlite.org/ 

DB2 Commercial IBM’s database engine www-01.ibm.com/software/ 
data/db2/ad/dotnet.html 

Firebird Open source Based on Borland Interbase www.firebirdsql.org/ 

MySQL Open source Reliable and popular database www.mysql.com/ 

Mimer SQL Commercial Reliable database engine www.mimer.com/ 

Oracle Commercial One of the most popular enterprise 
database engines 

www.oracle.com/ 

SQL Server Commercial Microsoft’s main database engine www.microsoft.com/sql/ 
default.mspx 

SQL Server 
Express 

Commercial Free and easy-to-use version of SQL 
Server 

www.microsoft.com/express/
database/default.aspx 

Sybase 
iAnywhere 

Commercial Mobile database engine www.ianywhere.com/ 

Applications communicate with relational databases using Structured Query Language (SQL). Each 
time you create tables, create relationships, insert new records, or update or delete existing ones, 
you’re explicitly or implicitly issuing SQL statements to the database. The examples in this chapter use 
a dialect of Standard SQL called Transact-SQL (T-SQL), used by SQL Server and SQL Server Express. 
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SQL has syntax to define the structure of a database schema (loosely speaking, a collection of data 
tables and their relations) and also syntax to manage the data within. These subsets of SQL are called 
Data Definition Language (DDL) and Data Manipulation Language (DML), respectively. The most 
important DDL statements are the following: 
 
CREATE/ALTER/DROP TABLE 
CREATE/DROP VIEW 

Understanding ADO.NET 
ADO.NET is the central database-access machinery in the .NET Framework, and it provides full XML 
support, disconnected and typed datasets, scalability, and high performance. This section gives a brief 
overview of the ADO.NET fundamentals. 

With ADO.NET, data is acquired through a connection to the database via a provider. This 
connection serves as a medium against which to execute a command; this can be used to fetch, update, 
insert, or delete data from the data store. Statements and queries are articulated as SQL text (CREATE, 
SELECT, UPDATE, INSERT, and DELETE statements) and are passed to the command object’s constructor. 
When you execute these statements, you obtain data (in the case of queries) or the number of affected 
rows (in the case of UPDATE, INSERT, and DELETE statements). The data returned can be processed via two 
main mechanisms: sequentially in a read-only fashion using a DataReader object or by loading it into 
an in-memory representation (a DataSet object) for further disconnected processing. DataSet objects 
store data in a set of table objects along with metadata that describes their relationships and 
constraints in a fully contained model. 

ADO.NET 2.0 comes with four data providers: SQLClient, OleDb, Oracle, and Odbc. Table 15-2 
describes them and a couple of more commonly used providers. These providers act as the main 
gateway to the database. 

Table 15-2. Common Data Providers 

Name Namespace Available From 

SQLClient System.Data.SqlClient .NET 2.0 

OleDb System.Data.OleDb .NET 2.0 

Oracle System.Data.OracleClient .NET 2.0 

ODBC System.Data.Odbc .NET 2.0 

PostgreSQL Npgsql http://npgsql.projects.postgresql.org/ 

MySql MySql.Data.MySqlClient http://dev.mysql.com/downloads/ 

The OleDb and ODBC data providers are provided for compatibility with earlier database-access 
technologies. All ADO.NET connection and command classes have the data provider name as the 
prefix to their class name, as in OdbcConnection and OdbcCommand or OleDbConnection and OleDbCommand. 
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Establishing Connections to a Database Engine 
Before you can do any work with a database, you need to establish a connection to it. For instance, you 
can connect to a locally running instance of SQL Server 2005 Express using the following code: 
 
open System.Data 
open System.Data.SqlClient 
 
let connString = @"Server='.\SQLEXPRESS';Integrated Security=SSPI" 
let conn = new SqlConnection(connString) 
 
The value connString is a connection string. Regardless of how you created your connection object, to 
execute any updates or queries on it, you need to open it first: 

> conn.Open();; 
val it : unit = () 

If this command fails, then you may need to do one of the following: 

• Install SQL Server 2005 Express or a newer version. 

• Consult the latest SQL Server Express samples for alternative connection strings. 

• Add UserInstance='true' to the connection string. This starts the database 
engine as a user-level process. 

• Change the connection string if you have a different database engine installed and 
running (for instance, if you’re using SQL Server instead of SQL Server Express). 

Connections established using the same connection string are pooled and reused depending on 
your database engine. Connections are often a limited resource and should generally be closed as 
soon as possible within your application. 

■ Tip The “More on Connection Strings” sidebar contains details about creating and managing connection 

strings. A useful web site for complete connection strings is www.connectionstrings.com. 

Creating a Database 
Now that you’ve established a connection to the database engine, you can explicitly create a database 
from F# code by executing a SQL statement directly. For example, you can create a database called 
company as follows: 
 
open System.Data 
open System.Data.SqlClient 
 
let execNonQuery conn s = 
    let comm = new SqlCommand(s, conn, CommandTimeout = 10) 
    comm.ExecuteNonQuery() |> ignore 
 
execNonQuery conn "CREATE DATABASE company" 
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You use execNonQuery in the subsequent sections. This method takes a connection object and a SQL 
string and executes it as a SQL command, ignoring its result. 

■ Note If you try to create the same database twice, you receive a runtime exception. However, if you intend to 
drop an existing database, you can do so by issuing a DROP DATABASE company SQL command. The DROP 

command can also be used for other database artifacts, including tables, views, and stored procedures. 

More on Connection Strings 

Before a connection can be opened, its ConnectionString property must be initialized, typically by 
passing it to the connection constructor. Although you can assemble this connection string by hand, doing 
so is error prone because it’s subject to various insertion traps; and the exact keys that various providers 
accept are many and hard to remember. 

For these reasons, it’s common to either externalize entire connection strings in configuration files 
(discussed next) or use a ConnectionStringBuilder object from the appropriate provider namespace. 
This object contains all the known connection keys as properties that can be safely set, avoiding the 
passing of values of incorrect type or misspelling key names. Consider the following example (this time, 
using SQL Server running on localhost and referencing the company database; before that database is 
created, you should remove or comment out the InitialCatalog reference from your connection string): 

open System.Data 
open System.Data.SqlClient 
 
let connStr = new SqlConnectionStringBuilder(DataSource="localhost", 
                                             IntegratedSecurity=true, 
                                             InitialCatalog="company") 

On the other hand, not all keys accepted by the various providers are contained in these builder objects, 
and it’s sometimes necessary to add custom key/value pairs. You can do this by using the Add method. For 
instance, for an OleDb provider, user credentials can be given as follows: 

connStr.Add("User Id",  "your_user_id") 
connStr.Add("Password", "your_password") 

This naturally requires extra care to ensure that the proper keys are assigned. You can now access the 
resulting connection string by reading the ConnectionString property and use it to create a connection 
object: 

let conn = new SqlConnection(connStr.ConnectionString) 

You can also store your connection strings in configuration files (web.config for web applications or 
YourProgram.exe.config for regular applications). The main advantage is that connection details can be 
configured without affecting the application. Consider the following configuration file: 

<?xml version='1.0' encoding='utf-8'?> 
<configuration> 
  <connectionStrings> 
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    <add name="MyCS" 
         connectionString="Data Source='localhost';Initial Catalog='company'" /> 
  </connectionStrings> 
</configuration> 

This defines a new connection string called MyCS. From within your application, you can read the value of 
this connection string using the ConfigurationManager class: 

#r "System.Configuration.dll" 
open System.Configuration 
open System.Data.SqlClient 
 
let cs = ConfigurationManager.ConnectionStrings.Item("MyCS") 
let conn = new SqlConnection(cs.ConnectionString) 

For this to work, make sure you reference System.Configuration.dll in your project properties using 
the -r option, or use the #r directive in your code as shown here, because this DLL isn’t automatically 
included at compile time. 

Creating Tables and Inserting and Fetching Records 
You can execute a simple SQL command to create a table; all you need to do is specify its data fields and 
their types and whether null values are allowed. The following example creates an Employees table 
with a primary key EmpID and FirstName, LastName, and Birthday fields: 
 
execNonQuery conn "CREATE TABLE Employees ( 
   EmpID int NOT NULL, 
   FirstName varchar(50) NOT NULL, 
   LastName varchar(50) NOT NULL, 
   Birthday datetime, 
   PRIMARY KEY (EmpID))" 
 

You can now insert two new records as follows 
 
execNonQuery conn "INSERT INTO Employees (EmpId, FirstName, LastName, Birthday) 
   VALUES (1001, 'Joe', 'Smith', '02/14/1965')" 
 
execNonQuery conn "INSERT INTO Employees (EmpId, FirstName, LastName, Birthday) 
   VALUES (1002, 'Mary', 'Jones', '09/15/1985')" 
 
and retrieve two columns of what was inserted using a fresh connection and a data reader: 
 
let query() = 
    seq { use conn = new SqlConnection(connString) 
          do conn.Open() 
          use comm = new SqlCommand("SELECT FirstName, Birthday FROM Employees", 
                                     conn) 
          use reader = comm.ExecuteReader() 
          while reader.Read() do 
              yield (reader.GetString 0, reader.GetDateTime 1)  } 
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When you evaluate the query expression in F# Interactive, a connection to the database is created 
and opened, the command is built, and the reader is used to read successive elements: 

> fsi.AddPrinter(fun (d: System.DateTime) -> d.ToString());; 
val it : unit = () 
 
> query();; 
val it : seq<string * System.DateTime> = 
    seq [("Joe", 14/02/1965 00:00:00); ("Mary", 15/09/1985 00:00:00)] 

The definition of query uses sequence expressions that locally define new IDisposable objects such 
as conn, comm, and reader using declarations of the form use var = expr. These ensure that the locally 
defined connection, command, and reader objects are disposed after exhausting the entire sequence. 
See Chapters 4, 8, and 9 for more details about sequence expressions of this kind. 

F# sequences are on-demand (that is, lazy), and the definition of query doesn’t open a connection 
to the database. This is done when the sequence is first iterated; a connection is maintained until the 
sequence is exhausted. 

Note that the command object’s ExecuteReader method returns a DataReader instance that is used to 
extract the typed data returned from the query. You can read from the resulting sequence in a 
straightforward manner using a sequence iterator. For instance, you can use a simple anonymous 
function to print data on the screen: 

> query() |> Seq.iter (fun (fn, bday) -> printfn "%s has birthday %O" fn bday);; 
Joe has birthday 14/02/1965 00:00:00 
Mary has birthday 15/09/1985 00:00:00 
val it : unit = () 

The query brings the data from the database in-memory, although still as a lazy sequence. You can 
then use standard F# in-memory data transformations on the result: 

> query() 
  |> Seq.filter (fun (nm, bday) -> bday < System.DateTime.Parse("01/01/1985")) 
  |> Seq.length;; 
val it : int = 1 

However, be aware that these additional transformations are happening in-memory and not in 
the database. 

The command object has different methods for executing different queries. For instance, if you 
have a nonselect query, you need to use the ExecuteNonQuery method (for UPDATE, INSERT, and DELETE 
statements, as previously in execNonQuery), which returns the number of rows affected (updated, 
inserted, or deleted), or the ExecuteScalar method, which returns the first column of the first row of the 
result, providing a fast and efficient way to extract a single value, such as the number of rows in a table 
or a result set. 

In the previous command, you extracted fields from the result rows using GetXXX methods on the 
reader object. The particular methods have to match the types of the fields selected in the SQL query, 
and a mismatch results in a runtime InvalidCastException. For these and other reasons, DataReader 
tends to be suitable only in situations when the following items are true: 
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• You need to read data only in a sequential order (as returned from the database). 
DataReader provides forward-only data access. 

• The field types of the result are known, and the query isn’t configurable. 

• You’re reading only and not writing data. DataReader provides read-only access. 

• Your use of the DataReader is localized. The data connection is open throughout 
the reader loop. 

Command Behaviors 

Database connections are precious resources, and you should always release them as soon as possible. In 
the previous case, you did this by using a locally defined connection. It’s also sufficient to implicitly close 
the reader by constructing it with the CloseConnection option that causes it to release and close the data 
connection upon closing the reader instance. 

Common options include SchemaOnly, which you can use to extract field information only (without any 
data returned); SingleResult to extract a single value only (the same as using the ExecuteScalar 
method discussed earlier); SingleRow to extract a single row; and KeyInfo to extract additional columns 
(appended to the end of the selected ones) automatically that uniquely identify the rows returned. 

Using Untyped Datasets 
Datasets allow applications to work in a disconnected mode, which means the application connects to 
the database, loads relevant data to an in-memory representation, and processes the data locally. 
When the processing is completed, the data in the in-memory dataset can be synchronized with the 
database. 

ADO.NET datasets are compact in-memory databases and provide similar functionality to real 
databases; however, they’re designed to work with a limited amount of data. A DataSet contains a 
collection of tables, the relationships between those tables, and various constraints. Tables are 
represented by the DataTable type. And as in a SQL server, tables are defined by their columns 
(DataColumn objects), and the data is stored in rows (DataRow objects). 

In ADO.NET, the loading of data into the dataset and the synchronization to the database are 
coordinated by data adapters—for instance, SqlDataAdapter objects. Consider the following example, 
which defines a buildDataSet function that takes a connection and a SQL SELECT query and returns the 
resulting DataSet object: 
 
let dataAdapter = new SqlDataAdapter() 
 
let buildDataSet conn queryString = 
    dataAdapter.SelectCommand <- new SqlCommand(queryString, conn) 
    let dataSet = new DataSet() 
    // This line is needed to configure the command 
    let _ = new SqlCommandBuilder(dataAdapter) 
    dataAdapter.Fill(dataSet) |> ignore  // ignore the number of records returned 
    dataset 
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The inferred types are as follows: 

val dataAdapter : SqlDataAdapter 
val buildDataSet : SqlConnection -> string -> DataSet 

When setting up the data adapter, you initialize its SelectCommand property to the query string that 
was passed as an argument. This SQL query is used to populate the DataSet when the Fill method is 
called. The somewhat mysterious line let _ = new SqlCommandBuilder(dataAdapter) creates a 
command-builder object, which has the side effect of building the INSERT, UPDATE, and DELETE commands 
automatically from the query in SelectCommand, making the dataset capable of persisting changes. Also, 
note that you don’t have to worry about opening or closing connections, because this is taken care of 
with the data adapter; all you need is the connection object itself: 
 
let dataSet = 
    buildDataSet conn "SELECT EmpID, FirstName, LastName, Birthday from Employees" 
 

The resulting DataSet contains a single table; you obtain it by index and print its content. This 
table is assembled based on the query and contains the columns that are part of the SELECT statement: 
 
let table = dataSet.Tables.Item(0) 
for row in table.Rows do 
    printfn "%O, %O - %O" 
        (row.Item "LastName") 
        (row.Item "FirstName") 
        (row.Item "Birthday") 
 

When run in F# Interactive, this produces the following output: 

Smith, Joe - 14/02/1965 00:00:00 
Jones, Mary - 15/09/1985 00:00:00 

You can refer to each column of a row by the same field name used in the SELECT query. Adding a 
new row to table is treated similarly: 
 
let row = table.NewRow() 
row.Item("EmpID") <- 1003 
row.Item("FirstName") <- "Eve" 
row.Item("LastName") <- "Smith" 
row.Item("Birthday") <- System.DateTime.Today 
table.Rows.Add row 
dataAdapter.Update(dataSet) |> ignore  // ignore the number of affected rows 
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Repeating the SQL query from the previous section reveals the addition of the new entry to the 
database table: 

> query();; 
val it : seq<string * System.DateTime> = 
    seq [("Joe", 14/02/1965 00:00:00); 
         ("Mary", 15/09/1985 00:00:00); 
         ("Eve", 27/09/2007 00:00:00)] 

Note that you use the INSERT statement that was built by the command-builder object based on the 
selection query. Using untyped datasets is a great way to execute dynamic queries and to provide ad 
hoc access to your data. On the other hand, the lack of strong typing means it suffers from possible type 
mismatches or incorrect field names. 

Generating Typed Datasets Using xsd.exe 
Typed datasets are derived from ordinary datasets and allow you to work with data in a type-safe 
manner. This means that instead of (row.Item "FirstName" :?> string), you can write row.FirstName. 
You can create typed datasets using the xsd.exe command-line tool included in the .NET SDK. Among 
other things, this tool generates source code from XML schema documents; to use it, you must obtain an 
XSD document for the tables for which you want data objects. (You can quickly generate an XML 
schema document using Visual Studio; select File ➤ New ➤ File ➤ XML Schema, and drag the needed 
data tables onto the design canvas.) 

Alternatively, you can extract this schema definition using code: 
 
open System.IO 
 
let dataSet2 = buildDataSet conn "SELECT * FROM Employees" 
let file name = Path.Combine(@"c:\fsharp", name) 
 
File.WriteAllText(file "employees.xsd", dataSet2.GetXmlSchema()) 
 

Using this extracted XSD document, you can now fire up xsd.exe from the command-line shell: 

C:\fsharp> xsd.exe employees.xsd /d /l:CS /n:Employees.Data 
Writing file 'C:\fsharp\Employees.cs'. 
C:\fsharp> csc /target:library Employees.cs 

This generates a C# file Employees.cs in the Employees.Data namespace, containing a typed 
dataset for the Employees table, which you then compile to Employees.dll. You can now reference this 
DLL and create an instance of a typed dataset: 
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> #r @"employees.dll";; 
Binding session to 'C:\fsharp\Employees.dll'... 
 
> let employeesTable = new Employees.Data.NewDataSet();; 
val employeesTable : Employees.Data.NewDataSet 
 
> dataAdapter.Fill(employeesTable) |> ignore;;  // ignore the number of records 
val it : unit = () 
 
> for emp in employeesTable._Table do 
    printfn "%s, %s - %O" emp.LastName emp.FirstName emp.Birthday;; 
Smith, Joe - 14/02/1965 00:00:00 
Jones, Mary - 15/09/1985 00:00:00 
Smith, Eve - 27/09/2007 00:00:00 

Note that in the iteration emp is known to have a strong type that allows you to access the fields 
LastName, FirstName, and Birthday. 

Finally, it’s very easy to dump out XML for your data: 

> printf "%s" (employeesTable.GetXml());; 
<NewDataSet> 
  <Table> 
    <EmpID>1001</EmpID> 
    <FirstName>Joe</FirstName> 
    <LastName>Smith</LastName> 
    <Birthday>1965-02-14T00:00:00+00:00</Birthday> 
  </Table> 
  <Table> 
    <EmpID>1002</EmpID> 
    <FirstName>Mary</FirstName> 
    <LastName>Jones</LastName> 
    <Birthday>1985-09-15T00:00:00+01:00</Birthday> 
  </Table> 
 
  <Table> 
    <EmpID>1003</EmpID> 
    <FirstName>Eve</FirstName> 
    <LastName>Smith</LastName> 
    <Birthday>2007-09-27T00:00:00+01:00</Birthday> 
  </Table> 
</NewDataSet> 

You can also write it to a file: 

> System.IO.File.WriteAllText(file "employees.xml", employeesTable.GetXml());; 
val it : unit = () 
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Using Stored Procedures 
Stored procedures are defined and stored in your relational database and provide a number of 
benefits over literal SQL. First, they’re external to the application and thus provide a clear division of 
the data logic from the rest of the application. This enables you to make data-related modifications 
without having to change application code or having to redeploy the application. Second, they’re 
stored in the database in a prepared or compiled form and thus are executed more efficiently than 
literal SQL statements (although those can be prepared as well at a one-time cost, but they’re still 
contained in application space, which is undesirable). Supplying arguments to stored procedures 
instantiates the compiled formula. 

In Visual Studio, you can add stored procedures just like any other database artifacts using the 
Server Explorer window: right-click the Stored Procedures item in the appropriate database, and select 
Add New Stored Procedure. Doing so creates a stored procedure template that you can easily 
customize. Alternatively, you can add stored procedures programmatically using the CREATE PROCEDURE 
SQL command. Consider the following stored procedure that returns the first and last names of all 
employees whose last name matches the given pattern: 
 
execNonQuery conn " 
CREATE PROCEDURE dbo.GetEmployeesByLastName 
        ( 
        @Name nvarchar(50) 
        ) 
AS 
    SELECT 
        Employees.FirstName, Employees.LastName 
    FROM Employees 
    WHERE Employees.LastName LIKE @Name" 
 

You can wrap this stored procedure in a function as follows: 
 
let GetEmployeesByLastName (name: string) = 
    use comm = new SqlCommand("GetEmployeesByLastName", conn, 
                              CommandType=CommandType.StoredProcedure) 
 
    comm.Parameters.AddWithValue("@Name", name) |> ignore 
    use adapter = new SqlDataAdapter(comm) 
    let table = new DataTable() 
    adapter.Fill(table) |> ignore 
    table 
 

You can execute the stored procedure as follows to find employees with the last name Smith: 

> for row in (GetEmployeesByLastName "Smith").Rows do 
     printfn "row = %O, %O" (row.Item("FirstName")) (row.Item("LastName"));; 
row = Joe, Smith 
row = Eve, Smith 
val it : unit = () 
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Using Data Grids 
You saw in Chapter 14 how data tables can be visualized in web applications. The return value of 
GetEmployeesByLastName from the previous section is a DataTable. These objects can also be directly 
bound to a Windows Forms data grid, a visual data control that supports the DataSource property and 
that can display data in a tabular format (Windows Forms controls were discussed in Chapter 11): 
 
open System.Windows.Forms 
 
let emps = GetEmployeesByLastName "Smith" 
let grid = new DataGrid(Width=300, Height=200, DataSource=emps) 
let form = new Form(Visible=true, TopMost=true) 
form.Controls.Add(grid) 
 

Figure 15-1 shows what you see when you run this code. 

 

Figure 15-1. Calling the GetEmployeesByLastName stored procedure 

Stored procedures can also perform deletions or updates (executed via the ExecuteNonQuery() 
method of the command object) or return data through out parameters. You can define these using the 
OUTPUT keyword after a single parameter definition in the stored procedure. When calling the stored 
procedure, the out parameter’s direction must be set to ParameterDirection.Output; after the stored 
procedure executes, its return value can be read using the Value property of the given parameter. 

Working with Databases in Visual Studio 
Many of the database tasks you saw earlier in this chapter can be easily performed using the built-in 
capabilities of Visual Studio. It also provides good tools for working with stored procedures and views, 
building SQL queries, and designing entity models. 

Creating a Database 
Assuming you have a version of SQL Server installed, you can create a new SQL Server database in Visual 
Studio’s Server Explorer (Ctrl+Alt+S, or View ➤ Server Explorer) by right-clicking Data Connections and 
selecting the Create New SQL Server Database menu item. In the screen shown in Figure 15-2, you can 
configure your connection details and specify the name of the new SQL Server database. 
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Figure 15-2. Creating a new Microsoft SQL Server database 

In addition to creating a new database, this process also creates a Server Explorer connection to 
the new database, which you can use in Visual Studio to browse, create, manipulate, and delete tables, 
triggers, views, stored procedures, functions, and other database artifacts. 

Visual Data Modeling: Adding Relationships 
Various tools exist to assist application architects in designing the data layer. On a logical level, entity-
relationship (ER) models provide a visual representation of data tables and their relationships, showing 
table fields, primary and foreign keys, and various constraints. Visual Studio simplifies the design 
process and supports visual modeling; let’s take a brief look at how you can exploit its capabilities. 

In the previous section, you used Visual Studio to create an SQL Server database called company; 
and earlier, you saw how to create a table to store data about employees. Let’s extend this database 
with a new table that stores addresses. You can then link the existing Employees table to it to store an 
optional address record for each employee. This means you allow multiple employees to live at the 
same address, but not multiple addresses for a given employee. 

Start by creating the Addresses table: right-click Add New Table in the Tables list item in Server 
Explorer ➤ Data Connections under the company database. Add the columns shown in Figure 15-3. 

 

Figure 15-3. The Addresses table in the designer mode 

Note that you designate AddID as a non-null primary key (right-click, select Set Primary Key, and 
clear the Allow Nulls flag). Also, under Column Properties and Identity Specification, you should set the 
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Is Identity property to Yes; this takes care of automatically incrementing the primary-key value 
when inserting new records.  

Next, create a new database diagram, and add/drag your existing two tables, Employees and 
Addresses, onto it. Before you can add a relationship between these two tables, you must create a new 
nullable field in the Employees table to store the address foreign key; call it AddressID. 

Now you’re ready to link the twotables. First, right-click the Employees table, and select 
Relationships. Next, click Add to add a new foreign-key relationship, name it FK_Employee_Address 
under Identity, and then click the ellipsis icon next to Tables and Columns Specification under 
General to configure the relationship. The foreign-key table (the table that stores references to rows 
in another table) is Employees, which is grayed out because you started by adding a relationship to the 
Employees table; but you can select the foreign-key field to be AddressID. Then, select the primary-key 
table to be Addresses, with the field AddID. Doing so links the two tables by storing unique address IDs 
in the AddressID field of the Employees table records, giving you a one-to-many relationship between 
addresses and employees. Figure 15-4 shows the table design canvas after you’re finished. Similarly, 
linking two primary keys yields a one-to-one relationship. 

■ Note Linking tables via explicit relationships and controlling the nullability of the foreign-key columns gives you 
fine control of referential integrity. For instance, you run into a foreign-key violation if you try to remove a record 
that is linked to another by a foreign-key constraint. On the other hand, storing raw primary-key values without an 

explicit constraint in related tables loses these benefits. 

 

Figure 15-4. Adding a one-to-many relationship between Employees and Addresses 
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In the previous example, you made the AddressID field nullable, meaning it’s possible that not 
every employee has an address. You can also control what happens if employees or addresses are 
removed or updated. (However, as a design decision, you need to carefully consider one-to-many 
relationships such as those shown earlier: should a change in one employee’s address cause the 
same change in the addresses of all other employees with the same address? Probably, if it’s the 
same address; otherwise, a particular employee should be updated with a different address record.) 
Placing a cascade on deletes removes all records that are linked to a record that is deleted; 
naturally, you should treat this option with care. 

Accessing Relational Data with Linq Queries 
The following sections show how to perform relational database queries using FLinq, the F# way of 
doing LinqToSql queries. FLinq uses F# quotation metaprogramming to represent SQL queries. These 
are then translated across to SQL and executed using the Microsoft LINQ libraries that are part of .NET 
Framework 3.5 or higher. At the time of writing, you can work with FLinq as part of the F# Power Pack; 
be sure to check the latest samples in that distribution for full details and updates.  

We assume you’re working with the Northwnd.mdf database, a common database used in many 
LINQ samples. You can download this sample database as part of the F# Power Pack, or from many 
other sources on the Web. 

Generating the Object/Relational Mapping 
The first step in using LINQ with F# is to generate the code that implements the object/relational (O/R) 
mapping for the database tables to which you’re connecting. Let’s first look at why you want to do this. 
You learned previously how to create simple tables and store and retrieve data using SQL code. However, 
this approach doesn’t work well for large data schemas with multiple related tables and constraints. For 
instance, creating a hierarchy of records in a number of related tables connected by foreign keys 
involves issuing multiple SQL statements to create the base data and to connect them in ways that obey 
the foreign-key and other constraints that may be in place. Instead, it can often be much better to view 
records in tables as if they were objects. This is part of what an O/R mapping provides. 

You already saw that datasets can be used to fetch and manipulate data in a disconnected way. These 
datasets are managed by data adapters that handle the gory details of producing the appropriate SQL 
statements and issuing them to the underlying database when fetching records or synchronizing the 
changes made to the dataset back to the database. The main goal of a separate Data Access Layer (DAL) is 
to bridge the gap between two disparate domains: the database and your application logic. Practically 
speaking, this frees you from having to write SQL code and mingle it with your application code. 

O/R mappings use smart data objects that can load and persist record-level data. Underneath, 
they use objects such as ADO.NET datasets that are filled and flushed on demand. 

The tool this section focuses on is SqlMetal, which computes the O/R mapping for LINQ, part of the 
.NET Framework 3.5. For example, to use SqlMetal to generate bindings for the Northwnd.mdf database, 
you can use this: 
 
sqlmetal /code:northwind.cs /namespace:Nwind /server:.\SQLExpress Northwnd.mdf 
 

This assumes you’re running SQL Server Express on your machine as a named instance. Further 
options are available when you run SqlMetal without parameters. You may want to use the /code and 
/xml flags to specify a different output file of the object bindings and to create a schema definition, 
respectively. The resulting code by default uses C#, which you can change using the /language option. 
You can easily add the generated mappings under a separate DLL project in your F# solution and 
reference it from your F# project. 
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The remainder of this section uses the generated data object layer for the classic Northwind 
database, as used by the F# LINQ samples in the F# distribution. This C# source file contains classes for 
each data table in the Northwind database, and the relationships between those tables are strongly typed. 

■ Tip Regardless of your choice to work with SQL explicitly or implicitly, in applied database scenarios you 
frequently want to separate data definitions entirely from application code. DDL scripts that create schemas, 
tables, triggers, and views and scripts that create seed data should be managed as separate artifacts that are 

executed prior to application deployment. 

Building the DataContext Instance 
One of the classes (with the same name as your database) generated by SqlMetal represents the entire 
database. This class inherits from the DataContext class and carries with it all the connection details 
that are used when accessing the data contained in the database through the mapped objects. You can 
supply a connection string when you instantiate this main database object, as the following code 
snippet shows (to run this, you need the Northwnd.mdf file in your source directory): 
 
#I @"c:\Program Files\Reference Assemblies\Microsoft\Framework\v3.5" 
#r "System.Core.dll" 
#r "System.Data.Linq.dll" 
#r "FSharp.PowerPack.Linq.dll" 
#r "Northwind.dll" 
 
open System 
open System.Data.SqlClient 
open Nwind 
 
let db = 
    let connB = new SqlConnectionStringBuilder() 
    connB.AttachDBFilename <- __YOUR_SOURCE_DIRECTORY__ + @"\Northwnd.mdf" 
    connB.IntegratedSecurity <- true 
    connB.Enlist <- false 
    connB.DataSource <- @".\SQLExpress" 
    new Northwnd(connB.ConnectionString) 

Using LINQ from F# 
So far, you’ve seen how you can perform LINQ-style queries using a set of aggregate operators that 
work on enumerable objects, and you see these same operators query and manipulate XML data in the 
coming section. Performing querying and manipulation on relational data is done almost the same 
way, except that these are implemented under the hood by calling LINQ. Assuming you’ve mapped 
your employees database with SqlMetal and created the main database object as db, here is an example 
similar to those in earlier sections using FLinq syntax: 
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open Microsoft.FSharp.Linq.Query 
 
let res = 
    query <@ seq { for emp in db.Employees do 
                     if emp.BirthDate.Value.Year > 1960 
                       && emp.LastName.StartsWith "S" then 
                         yield (emp.FirstName, emp.LastName) } 
             |> Seq.take 5 @> 
 
for (first, last) in res do 
  printfn "%s %s" first last 
 

One notable difference between this and previous queries is the use of F# quotations inside <@ and 
@>. As shown in Chapter 9, quotations are reified syntax trees that can be read and manipulated by F# 
programs. Quoted expressions (provided by the Microsoft.FSharp.Quotations namespace) are of type 
Expr<'a>, where 'a is the type of the unquoted expression. You can read more about metaprogramming 
via F# quotations in depth in Chapter 9. 

Note that in F# quotations, you can splice values bound to identifiers into the quotation expression 
tree. This allows quotations to reference defined objects and values such as those representing the 
database. 

The type of the previous query function is as follows: 

val query: Quotations.Expr<'T> -> 'T 

This function works on F# quotations. These are converted to LINQ Expression objects and passed 
to the underlying LINQ mechanism to produce SQL that is then executed on demand. 

■ Note When writing embedded queries using F# LinqToSql, you can use only a limited subset of operators to 
express your queries, in particular those defined in the F# LinqToSql library. Check the latest F# LINQ 

documentation for more details. 

How LINQ appears from F# 

You can make LINQ-style queries on two types of objects: those implementing the IEnumerable<'a> / 
seq<'a> and IQueryable<'a> interfaces. The former is used for in-memory objects or those that can be 
iterated one by one to provide a uniform way to query and transform, whereas the latter provides more 
customization in terms of the deriving object’s identity and enables you to control how those operations are 
actually carried out. 

Much of the LINQ architecture relies on representing query expressions using reified expression trees 
through the System.Expressions.Expression type. This type is used to encode lambda expressions in 
C#, thus giving a straightforward syntax embedding for LINQ-style queries. In F#, metaprogramming is 
built around a similar mechanism—F# quotations, discussed in Chapter 9. A bridge is used to convert 
between F# quotations and LINQ expression trees. LINQ queries on queryable objects are encoded as 
expression trees and translated to the underlying LINQ machinery at runtime. 
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Working with XML as a Generic Data Format 
XML provides a way to represent data in plain-text format that is independent of the platform, 
operating system, and application. Nowadays, XML is ubiquitous; it’s widely used to describe 
application configuration data, as an output format for applications such as Microsoft Word and Excel, 
to wrap data that is sent across networks, and as a way to interact with the new generation of database 
servers, including Oracle 8i and newer, as well as Microsoft SQL Server 2000 and above. These 
database servers can work with XML data directly, allowing you to update the database from XML 
documents or extract data in XML.  

Data represented as XML carries various tags and metainformation that help to identify what sort 
of data is contained within. This results in a larger size, but typically this can be compensated for by 
applying compression on the XML text. 

As an example, consider the following classic XML example (contacts.xml): 
 
<contacts> 
  <contact> 
    <name>John Smith</name> 
    <phone type="home">+1 626-123-4321</phone> 
  </contact> 
</contacts> 
 

One way to represent and work with XML documents is via the XML Document Object Model 
(DOM) contained in the System.Xml namespace; you saw how to work with this model in Chapter 9. 
Using the XML DOM constructors and methods, you can create the previous XML as follows: 
 
open System.Xml 
 
let doc = new XmlDocument() 
let rootNode = doc.CreateElement "contacts" 
doc.AppendChild rootNode |> ignore 
let contactNode = doc.CreateElement "contact" 
let nameNode = doc.CreateElement "name" 
let nameText = doc.CreateTextNode "John Smith" 
let phoneNode = doc.CreateElement "phone" 
phoneNode.SetAttribute("type", "home") 
let phoneText = doc.CreateTextNode "+1 626-123-4321" 
nameNode.AppendChild nameText |> ignore 
contactNode.AppendChild nameNode |> ignore 
contactNode.AppendChild phoneNode |> ignore 
phoneNode.AppendChild phoneText |> ignore 
rootNode.AppendChild contactNode |> ignore 
 
Here, you build an XML document in a bottom-up fashion via a series of method calls that mutate the main 
XML document object. This means various XML elements can’t be constructed without this document 
container object. In addition, construction by mutation makes the shape of the XML hard to read.  

Using XmlWriter, the result is a bit more readable: 
 
let doc = new XmlDocument() 
let writer = doc.CreateNavigator().AppendChild() 
writer.WriteStartElement "contacts" 
writer.WriteStartElement "contact" 
writer.WriteElementString ("name", "John Smith") 



CHAPTER 15 ■  WORKING WITH DATA 

 

459 

 

writer.WriteStartElement "phone" 
writer.WriteAttributeString ("type", "home") 
writer.WriteString "+1 626-123-4321" 
writer.WriteEndElement() 
writer.Close() 
 
Here, you don’t have to worry about creating the structure of the document; instead, you output each 
element in a sequence. XmlWriter also takes care of the closing tags, even if you forget them before 
closing the writer. 

Constructing XML via LINQ 
LINQ to XML (LinqToXml) offers a new and easier way to work with XML than using the traditional 
XML DOM. The System.Xml.Linq namespace contains everything you need to construct, load and 
save, manipulate, and query over XML documents. You can reference the DLL containing this 
namespace as follows: 
 
#I @"c:\Program Files\Reference Assemblies\Microsoft\Framework\v3.5" 
#r "System.Xml.Linq.dll" 
 

Being a data format for tree-like structures, XML trees are made up of a collection of XNode objects. 
Structurally, two XNode descendants can contain other nodes (and thus inherit from XContainer, a 
subclass of XNode): XDocument and XElement. Therefore, all XML documents are represented either as an 
XDocument with nested XElement objects or as a collection of nested XElements. 

A fully qualified XML document (an instance of XDocument) contains metainformation such as 
declarations (added as a child XDeclaration object) and a DTD (added as an XDocumentType) and may 
contain various XML processing instructions (instances of XProcessingInstruction). Typically, you 
need an XDocument only if the XML you produce is exchanged with the external world (information 
passed through a web service, for instance); in any other case, you’re working with a collection of 
nested XElement objects. These can have other XNode objects such as XText for storing text, which often 
represents binary data encoded using Base64 encoding mentioned in Chapter 10, or XComment for 
embedding comments. On the other hand, XElements typically have attributes (XAttribute)—key/value 
pairs, which are non-XNode objects. Both the XElement names (the tags themselves) and the XAttribute 
keys are XName objects. 

The easiest way to construct an XML document is to call the Parse method of the XDocument or 
XElement class on a string: 
 
open System.Xml.Linq 
 
let xml = 
   "<contacts> 
      <contact> 
         <name>John Smith</name> 
         <phone type=\"home\">+1 626-123-4321</phone> 
      </contact> 
   </contacts>" 
let doc = XDocument.Parse xml 
 

LinqToXml makes functional construction of XML possible. It does so by making all XML 
constituents first-class values that can be created and embedded in each other. The functional 
construction also requires that you treat these values uniformly. Let’s assume you create a few 
shorthand functions for various XML constructors: 
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open System.Xml.Linq 
 
let xname n                    = XName.op_Implicit(n) 
let xdoc (el: seq<XElement>)   = new XDocument(Array.map box (Array.ofSeq el)) 
let xelem s el                 = new XElement(xname s, box el) 
let xatt  a b                  = new XAttribute(xname a, b) |> box 
let xstr  s                    = box s 
 

Using these functions, you can construct the XML from the beginning of this section as follows: 
 
let doc = 
    xdoc 
        [ xelem "contacts" 
            [ xelem "contact" 
                [ (xelem "name" (xstr "John Smith")) 
                  (xelem "phone" 
                       [ xatt "type" "home" 
                         xstr "+1 626-123-4321" ]) 
                ] 
            ] 
        ] 
 

This also includes the default document header (<?xml version="1.0" encoding="utf-8"?>). If this 
header isn’t needed, you can omit the top-level call to xdoc. 

Storing, Loading, and Traversing LinqToXml Documents 
Loading an existing XML document is straightforward; you can call the Load static method on either an 
XDocument or an XElement: 
 
let file name = Path.Combine(__YOUR_SOURCE_DIRECTORY__, name) 
 
XElement.Load (file "contacts.xml") 
 

Saving is just as easy, reusing doc from earlier: 
 
doc.Save (file "contacts.xml") 
 

LinqToXml considers an XML document as a collection of XElement objects, each in a parent/child 
relationship. The root XElement’s Parent property is null, even if it’s embedded in an XDocument, which 
can be ignored as far as the data in the XML is concerned. You can obtain XElement children using the 
Elements() method, or its override, which expects an XName argument and returns all elements with a 
given name: 
 
let contacts = doc.Element(xname "contacts")  // Get the first contact 
for elem in contacts.Elements() do 
    printfn "Tag=%s, Value=%A" elem.Name.LocalName elem.Value 
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Querying XML 
Queries on XML are often expressed using the XPath query language, which this book doesn’t cover in 
detail but which is supported by the types in the System.Xml namespace. As a good alternative to XPath, 
you can use the standard sequence operators to perform queries over XML data. The following 
example uses the helper functions and the file contacts.xml created in the previous section: 
 
open System 
open System.Xml.Linq 
 
let elem (e: XElement) s       = e.Element(xname s) 
let elemv e s                  = (elem e s).Value 
 
let contactsXml = XElement.Load(file "contacts.xml") 
let contacts = contactsXml.Elements () 

> contacts |> Seq.filter (fun e -> (elemv e "name").StartsWith "J") 
           |> Seq.map (fun e -> (elemv e "name"), (elemv e "phone"));; 
val it : seq<string * string> = seq [("John Smith", "+1 626-123-4321")] 

This example also defines some helper functions: elem to extract from an XElement object the first 
child element with a given name, and elemv to convert that to a string value. 

You can also use the query operators in building new XML: 
 
xelem "results" 
   [ contacts |> Seq.filter  (fun e -> (elemv e "name").StartsWith "J")  ] 
 
This creates a <results> tag and inserts all employees whose last name starts with the letter J. You can 
also use sequence expressions to achieve the same result: 
 
xelem "results" 
   [ for e in contacts do 
         if (elemv e "name").StartsWith "J" then 
             yield e ] 

Summary 
In this chapter, you saw how the functional programming techniques from Chapter 3 are often used to 
implement in-memory queries similar to those used to access databases. You also learned how to use 
sequence expressions as an alternative notation for these query expressions. We then turned to 
databases themselves and covered how to use ADO.NET to access relational databases. You saw how to 
perform a variety of database-related tasks from Visual Studio. You next learned how to perform 
simple, typed queries using F# LinqToSql, taking particular advantage of the object/relational data 
objects generated by the LINQ tool SqlMetal.exe. Finally, you saw how to use XML as a generic data 
format, partly by using functionality from the LINQ libraries. 

The next chapter covers parsing techniques, including using the lexer and parser generator tools 
that come with the F# distribution. 
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Lexing and Parsing 

In this chapter, you take a closer look at lexing and parsing, topics introduced briefly in Chapters 9 
and 11. In particular, the chapter introduces the lexer and parser generators, fslex and fsyacc, that 
come with the F# distribution. A typical scenario when these techniques and tools can come in handy 
is the following: 

• You want to read user-readable input that has a well-defined syntax. 

• You have a type (often an abstract syntax tree [AST] type) to represent this input. 

The typical task is to parse the user input into your internal representation by breaking down the 
input string into a sequence of tokens (a process called lexical analysis) and then constructing an 
instance of your internal representation based on a grammar (via syntactic analysis). Lexing and parsing 
don’t have to be separated, and there are often convenient .NET methods for extracting information 
from text in particular formats, as shown in this chapter. Nevertheless, it’s often best to treat the two 
processes separately. 

The goal of this chapter is to provide the background you need to use the built-in lexing and 
parsing facilities of .NET and F# effectively and to understand the options for lexing and parsing other 
input formats: 

• For lexing, we cover simple line-based techniques to crack data formats using the 
.NET libraries directly. You then learn how to use fslex to break text into simple 
tokens, strings with escape characters, and nested comments, and you see table-
based token generation and  stateful lexing (passing state as a parameter as 
opposed to using mutable state). 

• For parsing, we cover the core parsing topics of languages, grammar formalisms, 
and various parser types. We explain the typical problems for recursive-descent 
parsing and introduce fsyacc by giving a parser for Kitty, a small BASIC-like 
language. This highlights how to parse lists of symbols, how to assign precedence 
andassociativity to your tokens and production rules, and how you can recover 
from parsing errors. You also learn about conflicts that can arise in the fsyacc 
specifications and how to resolve them. 

Finally, the chapter covers combinator-based techniques, which are particularly useful for writing 
parsers for binary formats without relying on fslex and fsyacc. 
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Syntax vs. Semantic Analysis 

Lexical analysis is concerned with identifying those tokens that make up a given input. A token is a piece 
of the input text that constitutes a word from the lexer’s perspective. This can be a number, an identifier, a 
special word, or any sequence of characters deemed to make a unit. 

During syntax analysis, you check whether the input (a series of tokens) is structured according to a set of 
grammar rules that make up your language. For instance, the F# construct let a = b*2 in .. is 
syntactically correct, but it’s a semantically valid expression only if the variable b is bound in the preceding 
scope. The notion of scope and binding depends on the semantics of your language, and these are the 
topics of interest for semantic analysis. In a typical compiler, for instance, source programs go through the 
following stages: 

Lexing ➤ Parsing ➤ Semantic analysis ➤ Optimization(s)/Transformations ➤ Code generation 

Chapters 9 and 11 cover examples of semantic analysis and optimization/transformation. 

Processing Line-Based Input 
A common, simple case of parsing and lexing occurs when you’re working with an existing line-based 
text-file format. In this case, parsing is often as easy as splitting each line of input at a particular 
separator character and trimming whitespace off the resulting partial strings: 

> let line = "Smith, John, 20 January 1986, Software Developer";; 
val line : string = "Smith, John, 20 January 1986, Software Developer" 
 
> line.Split [| ',' |];; 
val it : string [] = [|"Smith"; " John"; " 20 January 1986"; " Software Developer"|] 
 
> line.Split [| ',' |] |> Array.map (fun s -> s.Trim());; 
val it : string [] = [|"Smith"; "John"; "20 January 1986"; "Software Developer"|] 

You can then process each column in the data format: 
 
let splitLine (line: string) = 
    line.Split [| ',' |] |> Array.map (fun s -> s.Trim()) 
 
let parseEmployee (line: string) = 
    match splitLine line with 
    | [| last; first; startDate; title |] -> 
        last, first, System.DateTime.Parse(startDate), title 
    | _ -> 
        failwithf "invalid employee format: '%s'" line 
 

The type of this function is as follows: 

val parseEmployee : string -> string * string * System.DateTime * string 
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Here is an example use: 

> parseEmployee line;; 
val it : string * string * System.DateTime * string 
       = ("Smith", "John", 20/01/1986 00:00:00 { ... }, "Software Developer") 

On-Demand Reading of Files 
You can turn a file into an on-demand sequence of results using a sequence builder: 
 
open System.IO 
 
let readEmployees (fileName : string) = 
    seq { 
        use reader = File.OpenText fileName 
        while not reader.EndOfStream do 
            yield reader.ReadLine() |> parseEmployee 
    } 
 

The following example takes the first three entries from an artificially generated file containing 
10,000 copies of the same employee: 

> File.WriteAllLines("employees.txt", Array.create 10000 line);; 
val it : unit 
 
> let firstThree = readEmployees("employees.txt") |> Seq.take 3;; 
val firstThree : (string * string * System.DateTime * string) list 
 
> for (last,first,startDate,title) in firstThree do 
      printfn "%s %s started on %A" first last startDate;; 
John Smith started on 20/01/1986 00:00:00 
John Smith started on 20/01/1986 00:00:00 
John Smith started on 20/01/1986 00:00:00 

This technique is often used to do exploratory analysis of large data files. After the algorithm is 
refined using a prefix of the data, the analysis can then easily be run directly over the full data file. 

Using Regular Expressions 
Another technique that’s frequently used to extract information from strings is to use regular 
expressions. The System.Text.RegularExpressions namespace provides convenient string-matching and 
-replacement functions. For example, let’s say you have a log file containing a record of HTML GET 
requests. Here is a sample request: 
 
GET /favicon.ico HTTP/1.1 
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The following code captures the name of the requested resource (favicon.ico) and the lower 
version number of the HTML protocol (1) used: 
 
open System.Text.RegularExpressions 

 
let parseHttpRequest line = 
    let result = Regex.Match(line, @"GET (.*?) HTTP/1\.([01])$") 
    let file = result.Groups.[1].Value 
    let version = result.Groups.[2].Value 
    file, version 
 

The relevant fields are extracted by using the Groups attribute of the regular expression match to 
access the matched strings for each parenthesized group in the regular expression. 

Tokenizing with FsLex 
Although it’s possible to hand-code lexers by using a range of ad hoc techniques such as those discussed 
in the previous section or by writing functions that explicitly manipulate lists of characters, doing so can 
be boring and time consuming. Instead, it’s often easier to rely on a lexer generator to do this job for you. 
This section looks at how to use the fslex tool that comes with the F# Power Pack to perform lexical 
analysis. The F# Power Pack also includes fsyacc, which is also available as a separate download from 
MSDN and CodePlex. When you use fslex or fsyacc generated code in your projects, you must include a 
library reference to FSharp.PowerPack.dll from the F# Power Pack. 

Let’s start with a simple example. Listing 16-1 shows a lexer that replaces all < and > characters in an 
input stream with their HTML equivalents, &lt; and &gt;. Listing 16-2 shows a small program that uses 
this generated lexer. 

Listing 16-1. Replacing Characters with Their HTML Equivalents: text2htmllex.fsl 

{ 
module Text2HtmlLex 
 
let lexeme = Lexing.LexBuffer<_>.LexemeString 
 
(* You can add your helper functions here *) 
} 
rule convertHtml chan = parse 
 | '<'    { fprintf chan "&lt;" 
            convertHtml chan lexbuf } 
 | '>'    { fprintf chan "&gt;" 
            convertHtml chan lexbuf } 
 | eof    { () } 
 | _      { fprintf chan "%s" (lexeme lexbuf) 
            convertHtml chan lexbuf } 

Listing 16-2. Replacing Characters with Their HTML Equivalents: text2html.fs 

open System.IO 
open System.Text 
 
let main() = 
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   let args = System.Environment.GetCommandLineArgs() 
   if args.Length <= 2 then 
         let exe = Path.GetFileName(args.[0]) 
         eprintfn "Usage: %s dir pattern" exe 
         exit 1 
   let directory = args.[1] 
   let pattern = args.[2] 
 
   for fileName in Directory.GetFiles(directory, pattern) do 
 
      // Open a file stream for the file name 
      use inputReader = File.OpenText fileName 
 
      // Create a lex buffer for use with the generated lexer. The lex buffer 
      // reads the inputReader stream. 
      let lexBuffer = Lexing.LexBuffer<_>.FromTextReader inputReader 
 
      // Open an output channel 
      let outputFile = Path.ChangeExtension(fileName,"html") 
      use outputWriter = (new StreamWriter(outputFile) :> TextWriter) 
 
      // Write the header 
      fprintfn outputWriter "<html>\n<head></head>\n<pre>" 
 
      // Run the generated lexer 
      Text2htmllex.convertHtml outputWriter lexBuffer 
 
      // Write the footer 
      fprintfn outputWriter "</pre>\n</html>\n" 
 
main() 
 

You can produce an F# source file from the previous lexer definition by running the following 
command at the Windows command prompt: 
 
fslex text2htmllex.fsl --unicode 
 

This produces text2htmllex.fs, which contains the implementation of the lexer convertHtml. This 
lexer is imperative, in that it prints to an output stream instead of returning tokens. The signature of the 
entry point to the generated lexer is as follows: 

val Text2HtmlLex.convertHtml: System.IO.TextWriter -> Lexing.Lexbuffer<char> -> unit 

You can now compile the driver and the lexer together: 
 
fsc text2htmllex.fs text2html.fs –r FSharp.PowerPack.dll 
 

You can run the resulting program as follows, giving a source directory and a file pattern and 
producing an .html version of each file that matches by applying the HTML conversion: 
 
text2html . *.txt 
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Let’s look at the previous example more closely. The rule section of text2htmllex.fsl defines the 
lexer, which takes the output channel as an argument before the lexing buffer. It says that if you 
encounter the < or > character, you should output its HTML equivalent and recursively call your lexer to 
process the remaining input. If you find the end of the file, you stop; and for any other character, you 
print it to the output channel. In each rule, you can refer to a predefined variable (visible only inside the 
rule) named lexbuf that is the instantiation of the Microsoft.FSharp.Text.Lexing.LexBuffer type. You 
can access various bits of information through this variable about the lexing state; some of these are 
collected in Table 16-1. 

The driver is all F# code. You check the input arguments and then iterate through files in the 
directory given by the first argument whose name matches the pattern given by the second argument. 
You then open each file and instantiate your generated lexer with the following lines: 
 
      use inputReader = File.OpenText fileName 
      let lexBuffer = Lexing.LexBuffer<_>.FromTextReader inputReader 
      ... 
      Text2HtmlLex.convertHtml outputWriter lexBuffer 
 

This code uses some important functions from the LexBuffer type. Table 16-1 shows the notable 
static members and some of the properties in this type. 

Table 16-1. Some Static Members and Properties of the LexBuffer Type 

Member Type Description 

FromString string -> LexBuffer<char> Makes a LexBuffer for the given string 

FromTextReader TextReader -> LexBuffer<char> Makes a LexBuffer for the given text reader 

FromBinaryReader BinaryReader -> LexBuffer<byte> Makes a LexBuffer for the given binary 
reader 

LexemeString LexBuffer<char> -> string Returns the matched string 

this.EndPos Lexing.Position Gets/sets the current position associated 
with the end of the matched token 

this.IsPastEndOf
Stream 

bool True if the LexBuffer has exhausted the 
available input 

this.StartPos Lexing.Position Gets/sets the current position associated 
with the start of the matched token 

■ Note FsLex works by constructing a table-driven finite automaton that is executed to consume the input 
character sequence one by one until a full token can be returned. The automaton blocks until further input is 
received. The states of this machine are derived from the regular expressions defined by each rule. Single-
character literals advance the machine to a new state, and repetitions cause it to remain in the same state. These 

states form a graph, and the edges between the states are those symbols that advance between the states. 
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The FsLex Input in More Detail 
You saw the basic structure of lexer files in the preceding example, which contained only a handful of 
rules. In general, fslex input files have the following simple structure: 
 
// Preamble – any user code you need for the lexer, such as opening modules, etc. 
{ [Code] } 
 
// Definitions – named patterns that you can use in the rules or other definitions 
let [Ident_1] = [Pattern] 
let ... 
 
// Rules – text patterns that trigger certain actions 
rule [Rule_1] [arg1... argn] = parse 
   | [Pattern] { [Action] } 
   | ... 
   | [Pattern] { [Action] } 
and [Rule_2] [arg1... argn] = parse 
    ... 
rule [Rule_3] ... 
 
// Epilogue – code that can call the lexer rules defined above 
{ [Code] } 
 

Each rule defined in the lexer becomes an F# function that can be accessed from other modules and 
the lexer itself. You can place comments between (* and *), and you can also use // comments in the 
actions just like in any other F# code. Patterns can be any of the forms listed in Table 16-2. 

Lexical actions are pieces of F# code enclosed in braces; they’re executed when a lexer match is 
made. You can put any logic here that you like; typically, you construct a token. Tokens are specified in 
the parser definition using the %token directive (you see this later in this chapter); if you don’t have a 
parser, any user-defined type will do. If your lexer rules don’t construct tokens, or if your lexer is simple 
enough, often you may want to put all driver code in the epilogue section to create a stand-alone lexer. 

Table 16-2. Patterns in Lexer Rules 

Pattern Form Description 

'c' Character constants; in single quotes, such as '+' and '.' 

['a' 'b' 'c'] Character sets; matches any character in the given set 

['a'-'z'] Character ranges; matches any character in the given range, in ASCII ordering 

[^'a' 'b' 'c'] Complementary character sets; matches any character except those in the 
given character set 

"abc" Matches the given string of characters 

_ Matches any character 
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Pattern Form Description 

eof Matches the end of the stream 

identifier A predefined named regular expression (named earlier in the file using a let 
binding) 

pattern? Zero or one occurrences of pattern 

pattern+ One of more occurrences of pattern 

pattern* Zero or more occurrences of pattern 

pattern1 | pattern2 Either pattern1 or pattern 

pattern1 pattern2 Concatenation; pattern1 followed by pattern2 

Generating a Simple Token Stream 
Listing 16-3 shows a lexer that constructs a list of tokens that then is printed. It can recognize integers, 
floats, identifiers, and the symbols ^, *, -, and +. Any other character causes a runtime exception. 

Listing 16-3. SimpleTokensLex.fsl: Lexing Simple Tokens: Integers, Floats, and Identifiers 

{ 
module SimpleTokensLex 
 
open System 
 
type token = 
    | INT    of int 
    | FLOAT  of float 
    | ID     of string 
    | STRING of string 
    | PLUS | MINUS | TIMES | HAT 
    | EOF 
 
let lexeme = Lexing.LexBuffer<_>.LexemeString 
} 
 
let num        = ['0'-'9']+ 
let intNum     = '-'? num 
let floatNum   = '-'? num ('.' num)? (['e' 'E'] num)? 
let ident      = ['a'-'z']+ 
let whitespace = ' ' | '\t' 
let newline    = '\n' | '\r' '\n' 
 
rule token = parse 
    | intNum     { INT (Convert.ToInt32 (lexeme lexbuf)) } 
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    | floatNum   { FLOAT (Convert.ToDouble (lexeme lexbuf))  } 
    | ident      { ID (lexeme lexbuf)  } 
    | '+'        { PLUS } 
    | '-'        { MINUS } 
    | '*'        { TIMES } 
    | '^'        { HAT } 
    | whitespace { token lexbuf } 
    | newline    { token lexbuf } 
    | eof        { EOF } 
    | _          { failwithf "unrecognized input: '%s'" (lexeme lexbuf) } 
 

You can generate the lexer using this: 
 
fslex simpleTokensLex.fsl --unicode 
 

The generated lexer contains a single module SimpleTokensLex with one entry-point function for 
each rule. In this case, the type of this function is as follows: 

val token: Lexing.LexBuffer<char> -> SimpleTokensLex.token 

The following indicates how you can imperatively generate a simple token stream from a string and 
print the results in F# Interactive: 

> #r "FSharp.PowerPack.dll";; 
... 
> #load "SimpleTokensLex.fs";; 
> let lexbuf = Lexing.LexBuffer<_>.FromString "3.4 x 34 xyx";; 
val lexbuf : Lexing.LexBuffer<char> 
 
> SimpleTokensLex.token lexbuf;; 
val it : SimpleTokensLex.token = FLOAT 3.4 
 
> SimpleTokensLex.token lexbuf;; 
val it : SimpleTokensLex.token = ID "x" 
 
> SimpleTokensLex.token lexbuf;; 
val it : SimpleTokensLex.token = INT 34 
 
> SimpleTokensLex.token lexbuf;; 
val it : SimpleTokensLex.token = ID "xyx" 
 
> SimpleTokensLex.token lexbuf;; 
val it : SimpleTokensLex.token = EOF 
 
> SimpleTokensLex.token lexbuf;; 
System.Exception: End of file on lexing stream 
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Tracking Position Information Correctly 
Lexers generated by fslex keep track of partial information about the position of the most recently 
accepted token within the source stream of characters. In particular, the StartPos and EndPos properties on 
the LexBuffer type return Lexing.Position values. A partial signature of this position type is as follows: 

type Position with 
     // The file name associated with the input stream. 
     member FileName : string 
 
     // The line number in the input stream, assuming fresh 
     // positions have been updated modifying the  
     // EndPos property of the LexBuffer. 
     member Line : int 
 
     // The character number in the input stream 
     member AbsoluteOffset : int 
 
     // Return the column number marked by the position, e.g. the 
     // difference between the AbsoluteOffset and the StartOfLineAbsoluteOffset. 
     member Column : int 
 
     // Convert a position just beyond the end of a line to a 
     // position at the start of the next line. 
     member NextLine : Position 
     ... 
end 

In some cases, certain lexer actions must perform extra bookkeeping. In particular, the lexer should 
update the EndPos property of the LexBuffer each time a newline marker is processed (this is left up to 
the lexer because the interpretation of newline characters can differ between various lexers). In 
particular, you can change the endOfLine rule in the lexer in Listing 16-3 to make this update: 
 
    | newline    { lexbuf.EndPos <- lexbuf.EndPos.NextLine; 
                   token lexbuf } 
 

You can now experiment with this updated lexer in F# Interactive and examine the StartPos and 
EndPos properties after fetching each token: 

> let lexbuf = Lexing.LexBuffer<_>.FromString "3.4 \n 34 xyx";; 
val lexbuf : Lexing.LexBuffer<char> 
 
> SimpleTokensLex.token lexbuf;; 
val it : SimpleTokensLex.token = FLOAT 3.4 
 
> (lexbuf.StartPos.Line, lexbuf.StartPos.Column);; 
val it : int * int = (0,0) 
 
> (lexbuf.EndPos.Line, lexbuf.EndPos.Column);; 



CHAPTER 16 ■  LEXING AND PARSING 

 

473 

 

val it : int * int = (0,3) 
 

> SimpleTokensLex.token lexbuf;; 
val it : SimpleTokensLex.token = INT 34 
 
> (lexbuf.StartPos.Line, lexbuf.StartPos.Column);; 
val it : int * int = (1,1) 

Often, you may need to attach position information to each lexer token. However, when you use 
lexers in conjunction with fsyacc parser generators, the position information is automatically read after 
each token is processed and then stored in the parser’s state. We return to this topic later in this chapter. 

Handling Comments and Strings 
So far, you’ve seen examples with one lexing rule only. This is because the main lexer rule was sufficient 
for all tokens and you haven’t yet come across the need to lex input that can’t be described by a regular 
expression. To illustrate this point, for instance, say you want to lex comments enclosed by (* and *). 
Formally, you have an opening delimiter, followed by the body of the comment, and finally enclosed by 
the closing delimiter. The first attempt, shown here 
 
"(*" _* "*)" 
 
fails because the middle pattern matches everything and you never reach the closing *). So, the best 
compromise could be as follows 
 
"(*" [^ '*']* "*)" 
 
where you match the inside of the comment as long as you don’t see an asterisk, and then you try to 
match the closing *). This of course fails on any comment that contains an asterisk. You can play with 
this regular expression a little more. The inside of the comment is either anything but an asterisk or all 
asterisks that aren’t followed by another asterisk or right parenthesis: 
 
"(*" ([^ '*'] | ('*'+ ([^ '*' ')'])))* '*'+ ')' 
 

This is about as close as you can get, and yet even this pattern has a problem: it can’t match nested 
comments; it always stops at the first closing delimiter, ignoring all nested comment openers. 

You can handle this problem by using a multirule lexer. The following rules show the additions 
you can make to the SimpleTokensLex.fsl lexer from Listing 16-3 in order to properly handle 
comments and strings: 
 
rule token = 
    ... 
    | "(*"       { comment lexbuf; token lexbuf } 
    | "\""       { STRING (string lexbuf.StartPos "" lexbuf) } 
    | _          { failwith "unrecognized input: '%s'" (lexeme lexbuf) } 
 
and comment = parse 
    | "(*"       { comment lexbuf; comment lexbuf  } 
    | "*)"       { () } 
    | "\n"       { lexbuf.EndPos <- lexbuf.EndPos.NextLine 
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                   comment lexbuf } 
    | eof        { failwith "Unterminated comment" } 
    | _          { comment lexbuf } 
 
and string pos s = parse 
    | "\\" ('"' | 'n' | 'r' | 't') 
                  { let s' = s + (match lexeme lexbuf with 
                         | "\\\"" -> "\"" 
                         | "\\n" ->  "\n" 
                         | "\\r" ->  "\r" 
                         | "\\t" ->  "\t" 
                         | "\\\\" -> "\\" 
                         | _ ->      "") 
                    string pos s' lexbuf } 
    | "\""         { s } 
    | "\n"         { lexbuf.EndPos <- lexbuf.EndPos.NextLine 
                     string pos (s + "\n") lexbuf } 
    | eof          { failwithf "end of file in string started at or near %A" pos } 
    | _            { string pos (s + (lexeme lexbuf)) lexbuf } 
 

Comment processing begins when you encounter (* in the token rule. When the closing *) is 
encountered, you exit one invocation of the comment rule. The idea is that you deal with nested comments 
by recursively applying the lexer when a nested comment is reached. Note the double invocation of 
comment lexbuf for nested comment delimiters: once to tokenize the comment that belongs to the opener 
and again to tokenize the rest of the enclosing comment. There are also two further matches within the 
comment rule. If you hit the end of the source stream, you have an unterminated comment, and you raise 
an exception; in every other case, you move forward inside the comment. 

In the example, strings are also handled by a separate lexer rule string that is invoked by the token 
lexer when you encounter the double-quote character. This rule takes two parameters: the string 
consumed so far and the start position of the string. The latter is used to report a nicer error for an 
unterminated string (you could also use this technique for the matching case for comments). You can 
also check whether you have an escaped character in the input. If so, you append the appropriate escape 
sequence to the string already accumulated and advance the current position. Upon encountering the 
closing character, you return the overall string. An imperative System.Text.StringBuffer object can also 
be used to accumulate the string, which is more efficient if strings get very long. 

■ Note Because lexer rules can pass arguments, there is little need to use mutable state in a lexer—instead, 

pass additional arguments. 

Recursive-Descent Parsing 
You can now turn your attention to parsing. Let’s assume for the moment that you’re writing an 
application that performs simple symbolic differentiation, say on polynomials only. You want to read 
polynomials such as x^5-2x^3+20 as input from your users, which in turn is converted to your internal 
polynomial representation so that you can perform symbolic differentiation and pretty-print the result 
to the screen. One way to represent polynomials is as a list of terms that are added or subtracted to form 
the polynomial: 
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type Term = 
    | Term  of int * string * int 
    | Const of int 
 
type Polynomial = term list 
 

For instance, the polynomial in this example is as follows: 
 
[Term (1,"x",5); Term (-2,"x",3); Const 20] 
 

In Listing 16-3, you built a lexer and a token type suitable for generating a token stream for the input 
text (shown as a list of tokens here): 
 
[ID "x"; HAT; INT 5; MINUS; INT 2; ID "x"; HAT; INT 3; PLUS; INT 20] 
 

Listing 16-4 shows a recursive-decent parser that consumes this token stream and converts it into the 
internal representation of polynomials. The parser works by generating a lazy list for the token stream. 
Lazy lists are a data structure in the F# library module Microsoft.FSharp.Collections.LazyList, and 
they’re a lot like sequences with one major addition: lazy lists effectively allow you to pattern-match on a 
sequence and return a residue lazy list for the tail of the sequence. 

Listing 16-4. Recursive-Descent Parser for Polynomials 

open SimpleTokensLex 
open Microsoft.FSharp.Text.Lexing 
 
type Term = 
    | Term  of int * string * int 
    | Const of int 
 
type Polynomial = term list 
type TokenStream = LazyList<token * Position * Position> 
 
let tryToken (src: TokenStream ) = 
    match src with 
    | LazyList.Cons ((tok, startPos, endPos), rest) -> Some(tok, rest) 
    | _ -> None 
 
let parseIndex src = 
    match tryToken src with 
    | Some (HAT, src) -> 
        match tryToken src with 
        | Some (INT num2, src) -> 
            num2, src 
        | _ -> failwith "expected an integer after '^'" 
    | _ -> 1, src 
 
let parseTerm src = 
    match tryToken src with 
    | Some (INT num, src) -> 
        match tryToken src with 
        | Some (ID id, src) -> 
           let idx, src = parseIndex src 
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           Term (num, id, idx), src 
        | _ -> Const num, src 
    | Some (ID id, src) -> 
         let idx, src = parseIndex src 
         Term(1, id, idx), src 
    | _ -> failwith "end of token stream in term" 
 
let rec parsePolynomial src = 
    let t1, src = parseTerm src 
    match tryToken src with 
    | Some (PLUS, src) -> 
        let p2, src = parsePolynomial src 
        (t1 :: p2), src 
    | _ -> [t1], src 
 

The functions here have the following types (using the type aliases you defined): 

val tryToken        : TokenStream  -> (token * TokenStream ) option 
val parseIndex      : TokenStream  -> int * TokenStream  
val parseTerm       : TokenStream  -> Term * TokenStream  
val parsePolynomial : TokenStream  -> Polynomial * TokenStream  

You can turn the fslex-generated lexer for the lexer specification in Listing 16-3 into a TokenStream  
using the following code: 
 
let getTokenStream  inp : TokenStream  = 
    // Generate the token stream as a seq<token> 
    seq { let lexbuf = LexBuffer<_>.FromString inp 
          while not lexbuf.IsPastEndOfStream do 
              match SimpleTokensLex.token lexbuf with 
              | EOF -> yield! [] 
              | token -> yield (token, lexbuf.StartPos, lexbuf.EndPos) } 
 
    // Convert to a lazy list 
    |> LazyList.ofSeq 
 
let parse input = 
    let src = getTokenStream  input 
    let result, src = parsePolynomial src 
    match tryToken src with 
    | Some _ -> failwith "unexpected input at end of token stream!" 
    | None -> result 
 

These functions have the following types: 

val getTokenStream : string -> TokenStream  
val parse: string -> polynomial 
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Note in the previous examples that you can successfully parse either constants or complete terms; 
but after you locate a HAT symbol, a number must follow. This sort of parsing, in which you look only at 
the next token to guide the parsing process, is referred to as LL(1), which stands for left-to-right, leftmost 
derivation parsing; 1 means that only one look-ahead symbol is used. The parser approach you used 
earlier is called recursive-descent. This has various advantages and disadvantages, and we discuss those 
in a bit. To conclude, you can look at the parse function in action: 

> parse "1+3";; 
val it : term list = [Const 1; Const 3] 
 
> parse "2x^2+3x+5";; 
val it : term list = [Term (2,"x",2); Term (3,"x",1); Const 5] 

More on Grammars and Their Notations 

LL parsers  such as the recursive-descent parser in the previous example are based on a subset of the 
context-free grammars (CFGs). These can be defined by giving their corresponding grammar as a set of 
production rules. For context-free languages, each rule has a single nonterminal symbol (the head) on 
the left side, defining a substitution of the nonterminal and/or terminal symbols on the right side. A 
terminal symbol is part of the concrete string that is parsed. A convenient notation for describing 
context-free languages is the Backus-Naur Form (BNF). Here, nonterminals are inside brackets (<>), and 
terminal symbols are either named (such as ID) or quoted. The Extended BNF (EBNF) notation provides 
further convenient operators to express optionality (inside brackets) and repetition (using the +, ?, and * 
symbols with the same meaning as in regular expressions), thus providing a more succinct and 
readable description. 

The recursive-descent parser from this section parses each nonterminal in the following simple grammar 
expressed in EBNF: 

<polynomial> ::= <term> ['+' <polynomial>] 
<idxterm> ::=  ID '^' NUM | ID 
<term> ::=  NUM [ <idxterm> ] | <idxterm> 

Grammars give rise to corresponding derivations; for instance, consider how 2x^3+1 is derived: 

<polynomial> ➤ <term> '+' <polynomial> 
             ➤ NUM <idxterm> '+' <polynomial> 
             ➤ NUM ID '^' NUM '+' <polynomial> 
             ➤ NUM ID '^' NUM '+' <term> 
             ➤ NUM ID '^' NUM '+' NUM 
             ➤ 2x^3 + 1 

You can produce different derivations depending on which nonterminal you expand at each step. In the 
previous derivation, you chose to always expand the leftmost nonterminals, but you can just as easily 
expand from the right or even mix the two strategies. Usually, you stick to either left or rightmost derivation 
using LL or LR parsers, respectively; and if your grammar is written in a well-defined way, you get the 
same parse tree. On the other hand, if, given a particular derivation strategy, you get more than one parse 
tree for a given input, the grammar is said to be ambiguous. 
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As mentioned in the example, recursive-descent parsers are LL(n) parsers; in other words, they perform 
leftmost derivation. Typically, only a single look-ahead symbol is used to drive parsing—these are LL(1) 
parsers—but the example can be extended to LL(n) for some n>1, because inside a given parsing function 
you can retrieve several look-ahead symbols and make the appropriate parsing decisions. This is possible 
because the look-ahead calculation is nondestructive; in other words, there is no global parsing state. 
Instead, you pass around the particular input string (the remaining token stream) instance on which you 
want to base your parsing. 

LR parsers are a special subset of bottom-up parsers; they read their input from left to right and produce a 
rightmost derivation (that is, the rightmost nonterminal is always expanded during parsing). Special 
subsets include Simple LR (SLR) and Look-Ahead LR (LALR; as generated by the yacc family of parser 
generators, including fsyacc, as you see in the coming sections); and extensions include LR(1), (where the 
parse tables are typically larger because of the one symbol look-ahead) and Generalized LR (GLR), which 
can handle nondeterminism and ambiguous grammars. 

Limitations of Recursive-Descent Parsers 
There are various limitations that you can’t handle with recursive-descent parsers. For instance, if you 
translate a left-recursive production into code, you get an infinite recursion, like so: 
 
<polynomial> ::= <polynomial> '+' <term> | <term> 
 
This corresponds to the following: 
 
let rec parsePolynomial src = 
    let poly, src = parsePolynomial src 
    ... 
 

Another common problem with LL(k) parsing for some k>=1 is that the grammar rules for a given 
nonterminal can’t start with the same symbols, or else there is no easy way to decide which rule to apply 
(because each is determined to be applicable upon checking k number of symbols). In such cases, left-
factoring can be applied. For example, you can move the symbols after the common part into another 
production, as shown here: 
 
<polynomial> ::= <term> | <term> '+' <polynomial> 
can be refactored as 
<polynomial> ::= <term> <polymomialTail> 
<polynomialTail> ::= EPSILON  | '+' <polynomial> 
 
Here, EPSILON is the empty symbol, so the function that parses polynomialTail both checks for a plus 
symbol and issues a call to parse a polynomial or exit in the absence of an initial plus symbol, leaving the 
input unchanged. Although this case is relatively simple (you can parse terms until they’re followed by a 
plus sign iteratively), coding such grammar rules in the general case is cumbersome. 

Problems such as these arise because you have to make parsing decisions early on (such as deciding 
which grammar rule you’re pursuing if there are multiple choices for a given nonterminal), because they 
construct the parse tree from the top and proceed downward. LR parsers, on the other hand, postpone 
these decisions as much as possible and construct the parse tree bottom-up, resulting in much more 
flexibility both in terms of how naturally grammar rules can be expressed and how they can be mapped 
into code. 
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Parsing with FsYacc 
The tool fsyacc generates LALR(1) parsers, which are a special subset of LR(1) parsers where the state 
table is compressed by merging similar states. This in practice doesn’t limit the languages that can be 
parsed, but it does result in significant savings over the parse-table size. The generated parser 
automaton performs one of four distinct operations in any state based on the look-ahead token, and 
these are important to understand if you have various grammar conflicts to fix. It can shift the look-
ahead (always a terminal symbol) to its stack, reduce a number of stack entries by a grammar rule leaving 
the head symbol in their place, accept the input as syntactically correct, or reject in the opposite case. 
Parsing proceeds until an accept or a reject state is reached. 

You first see how to develop a parser for a simple programming language. A sample fragment of the 
BASIC-like language you want to parse is shown here: 
 
a := 1; 
b := 0; 
if a then d := 20 + 20; 
if b then d := 40 * 20 + 20; 
print d; 
while d do 
    begin 
        d := d + 1; 
        print d 
    end; 
print d 
 

For simplicity, let’s call this language Kitty. As the previous example shows, Kitty supports naming 
values, printing values, basic arithmetic operators, and a while and conditional construct. The Ast 
module (shown in Listing 16-5) defines the internal representation for Kitty programs. 

Listing 16-5. KittyAst.fs: Defining the AST for Kitty Programs 

module Ast 
 
type expr = 
    | Val   of string 
    | Int   of int 
    | Plus  of expr * expr 
    | Minus of expr * expr 
    | Times of expr * expr 
 
type stmt = 
    | Assign     of string * expr 
    | While      of expr * stmt 
    | Seq        of stmt list 
    | IfThen     of expr * stmt 
    | IfThenElse of expr * stmt * stmt 
    | Print      of expr 
 
type prog = Prog of stmt list 



CHAPTER 16 ■ LEXING AND PARSING 

 

480 

 

The Lexer for Kitty 
Listing 16-6 shows a lexer for the language in the file KittyLexer.fsl. It’s similar to lexers developed 
earlier in this chapter. The one exception is that you use a keyword table. Matching against lexemes to 
identify tokens is a sensible solution only if there are relatively few cases. Tokenizing a large set of 
keywords and operators using explicit rules can lead to large lexers. This situation is often handled using 
tables that contain the possible lexeme matches and the tokens to be returned. Listing 16-6 uses simple 
dictionaries (maps). 

Listing 16-6. KittyLexer.fsl: Lexer for Kitty 

{ 
module KittyLexer 
 
open System 
open KittyParser 
open Microsoft.FSharp.Text.Lexing 
 
let lexeme = LexBuffer<_>.LexemeString 
 
let ids = [ ("while",   WHILE); 
            ("begin",   BEGIN); 
            ("end",     END); 
            ("do",      DO); 
            ("if",      IF); 
            ("then",    THEN); 
            ("else",    ELSE); 
            ("print",   PRINT);] 
 
let idsMap = Map.ofList ids 
 
let ident lexbuf tokenText = 
   if Map.containsKey tokenText idsMap then Map.find tokenText idsMap 
   else ID tokenText 
} 
 
let num        = ['0'-'9']+ 
let alpha      = ['a'-'z' 'A'-'Z'] 
let ident      = alpha+ (alpha | ['_' '$'])* 
let integer    = '-'? num 
let whitespace = ' ' | '\t' 
let newline    = '\n' | '\r' '\n' 
 
rule token = parse 
    | whitespace { token lexbuf } 
    | newline    { lexbuf.EndPos <- lexbuf.EndPos.NextLine; token lexbuf } 
    | "("        { LPAREN } 
    | ")"        { RPAREN } 
    | "+"        { PLUS } 
    | "-"        { MINUS } 
    | "*"        { TIMES } 
    | ";"        { SEMI } 
    | ":="       { ASSIGN } 
    | ident      { ident lexbuf (lexeme lexbuf) } 
    | integer    { INT (Int32.Parse(lexeme lexbuf)) } 
    | eof        { EOF } 
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Note that at compilation time, the lexer depends on the parser defined later in Listing 16-7. This is 
because the lexer must return the type of tokens required by the parser. 

You can generate the lexer by calling fslex: 
 
  fslex KittyLexer.fsl --unicode 
 
This produces KittyLexer.fs, which contains the implementation of the lexer. 

The Parser for Kitty 
Listing 16-7 shows the parser specification for the Kitty language in the file KittyParser.fsy. 

Listing 16-7. KittyParser.fsy: Parser for Kitty 

%{ 
open Ast 
%} 
 
// The start token becomes a parser function in the compiled code. 
%start start 
 
// These are the terminal tokens of the grammar along with the types of 
// the data carried by each token: 
%token <string> ID 
%token <int> INT 
%token PLUS MINUS TIMES LPAREN RPAREN IF THEN ELSE 
%token WHILE DO BEGIN END PRINT SEMI ASSIGN EOF 
 
// Associativity and Precedences - Lowest precedence comes first 
%left PLUS MINUS 
%left TIMES 
 
// This is the type of the data produced by a successful reduction 
// of the 'start' symbol: 
%type <prog> start 
 
%% 
 
start: Prog                   { $1 } 
 
Prog: StmtList                { Prog (List.rev $1) } 
 
Expr: ID                      { Val $1 } 
    | INT                     { Int $1 } 
    | Expr PLUS Expr          { Plus ($1, $3) } 
    | Expr MINUS Expr         { Minus ($1, $3) } 
    | Expr TIMES Expr         { Times ($1, $3) } 
    | LPAREN Expr RPAREN      { $2 } 
 
 
Stmt: ID ASSIGN Expr              { Assign ($1, $3) } 
    | WHILE Expr DO Stmt          { While ($2, $4) } 
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    | BEGIN StmtList END          { Seq (List.rev $2) } 
    | IF Expr THEN Stmt           { IfThen ($2, $4) } 
    | IF Expr THEN Stmt ELSE Stmt { IfThenElse ($2, $4, $6) } 
    | PRINT Expr                  { Print $2 } 
 
StmtList: 
    | Stmt               { [$1] } 
    | StmtList SEMI Stmt { $3 :: $1  } 
 

You can generate the parser by calling fsyacc: 
 
  fsyacc KittyParser.fsy --module KittyParser 
 

This produces KittyParser.fs, which contains the implementations of the parser, along with a 
signature file KittyParser.fsi. The generated parser has one entry point for each %start symbol (here 
there is only one). The type of this entry point is as follows: 

val start : (LexBuffer<'a> -> token) -> LexBuffer<'a> -> Ast.prog 

You see how to use this function a little later in this chapter. In a roundabout way, the type says, “If 
you give me a lexing function that generates tokens and give me a LexBuffer to supply to that lexing 
function, then I’ll generate you an Ast.prog.” The generic type variable indicates that the parser is 
independent of the characters manipulated by the LexBuffer. 

We now cover in more detail the different aspects of fsyacc parsing illustrated by this example. 

The fsyacc Input in More Detail 

The general structure of fsyacc input files is as follows: 

// Preamble – any code you need for the parser, such as opening modules, etc. 
%{ [Code] %} 
 
// Tokens and their types – each line may contain several tokens 
%token <[Type]> [TokenName] ... [TokenName] 
... 
// Associativity and precedences – where tokens associate (left, right, 
// nonassoc) and how strongly they bind (in the order of their declaration) 
%left     [TokenName] 
%right    [TokenName] 
%nonassoc [TokenName] 
... 
 
 
// Start symbols and their types 
%start [StartSymbol] 
%type <[Type]> [StartSymbol] 
%% 
 
// Productions – defining how non-terminals are derived 
[Symbol] : [Symbols_1] { [Code_1] } 
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         | [Symbols_2] { [Code_2] } 

... 

The preamble can contain F# code, typically opening various modules and defining helper functions. You 
define the tokens (terminal symbols) of the grammar with the %token directive, giving the name of the 
token(s) preceded by its type enclosed in <>. The type can be omitted if a token carries no data. There 
must be at least one start symbol defined using the %start; you give its type with the %type directive. The 
resulting parser exposes only those parsing functions that were designated as start symbols. The 
productions for the same nonterminal can be merged into the same rule, separated by an | character. 

Parsing Lists 
In Kitty, statements can be separated by semicolons. This is handled in the StmtList grammar 
production, whose semantic extract is a list of statements. Note that you could have written this rule in a 
head-recursive way: 
 
StmtList: 
    | Stmt               { [$1] } 
    | Stmt SEMI StmtList { $1 @ [ $3 ] } 
 

Unlike in recursive-descent or any other LL parsing technique, the previous rule doesn’t pose a 
problem for fsyacc, and thus no left-factoring is needed. However, it does create a copy of the statement 
list each time a new expression is appended to it. You eliminate this by using the following productions 
 
StmtList: 
    | Stmt               { [$1] } 
    | StmtList SEMI Stmt { $3 :: $1 } 
 
combined with a List.rev where the rule is used. This rule consumes all statements and inserts them, 
one by one, into the singleton list that contains the first statement. As a result, the return list is in reverse 
order, which is why you need to apply List.rev. You may want to define a separate rule to perform this 
operation. Another feature that is often needed is the ability to parse empty or optional lists. This can be 
easily accomplished using an empty (epsilon) symbol, as in the following example: 
 
StmtListOpt: 
               { [] } 
    | StmtList { $1 } 
 
This rule matches an optional list of statements and returns an empty list if no statements can be parsed. 

Resolving Conflicts, Operator Precedence, and Associativity 
As usual with arithmetic operators, division and multiplication should take precedence over addition 
and subtraction: 1+2*3 should be parsed as 1+(2*3). With fsyacc, this can be expressed easily using the 
associativity directives—or, to be more precise, their ordering: 
 
// Associativity and Precedences - Lowest precedence comes first 
%left PLUS MINUS 
%left TIMES 
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By specifying what tokens associate and where (how strongly they bind), you can control how parse 
derivations are performed. For instance, giving left-associativity to the addition operator (PLUS), given an 
input 1+2+3, the parser automatically generates a nonambiguous derivation in the form of (1+2)+3. The 
basic arithmetic operators are left-associative and should be listed from the lowest precedence to the 
highest; in the example, the addition and subtraction operators have lower precedence than 
multiplication—the way it should be. Other associativity specifications include %nonassoc and %right, 
which are used to denote that a given symbol doesn’t associate or associates to the right, respectively. 
The former is useful for relational and equality operators such as <, >, or !=, where the operator isn’t 
applicable if applied multiple times: 1 > 2 > 3 yields a syntax error. 

You can also give precedence to a rule by using %prec at the end of the rule and giving a token whose 
precedence is to be applied. You can list arbitrary tokens in the associativity and precedence 
declarations, even if they haven’t been declared as tokens, and use them in such situations. You can find 
more details about specifying precedence at www.expert-fsharp.com/Topics/FsYacc. 

■ Tip One option for fsyacc.exe is -v, which causes fsyacc to produce a readable extract of the parser’s states. 

This is useful when there are various conflicts to resolve. 

Each state in this extract corresponds to one or more items, which are productions that indicate 
what has been seen while parsing them. This current position with respect to a rule is marked with a 
period (.). Furthermore, to each state belong various actions that are triggered by certain look-ahead 
symbols. For instance, the action in some state as follows 
 
action 'ID' (noprec):   shift 7 
 
indicates that if the ID token, which has no defined precedence, is encountered as look-ahead, the 
parser pushes this token to the parsing stack and shifts to state 7. For reduce actions, the rule that is 
reduced is shown. An error (reject) or accept action is shown for tokens that trigger a syntax error or 
acceptance, respectively. 

The parser state extract also provides useful information about conflicts in your grammar. Conflicts 
arise when your grammar is ambiguous (which translates to having more than one choice for a parser 
action at any time), ultimately meaning more than one derivation can accept a given input. You can do a 
number of things to disambiguate your grammar. You can apply precedence to various tokens or rules, 
or rewrite your rules to be consistent and unambiguous. There are two main sources of grammar 
conflicts: reduce-reduce and shift-reduce conflicts. Reduce-reduce conflicts are considered really bad 
because there are multiple rules to reduce by at a given situation. Although fsyacc applies a 
disambiguation strategy (reducing by the grammar rule that was defined earlier), you should avoid 
reduce-reduce conflicts as much as possible. 

Shift-reduce conflicts arise when the parser has the choice to shift a token or reduce by a rule. 
Unless you fix this conflict, fsyacc favors the shift action and defers the reduction to a later point. In 
some situations (for instance, the dangling-else problem), this yields the expected behavior; but in 
general, any such conflict is also considered a serious problem. 

Putting It Together 
You can generate the parsers and lexers by calling fslex and fsyacc: 
 
fslex KittyLexer.fsl --unicode 
fsyacc KittyParser.fsy –-module KittyParser 
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This produces KittyLexer.fs and KittyParser.fs, which contain the implementations of the parser 
and lexer. You can test these using F# Interactive by loading the files directly using the #load directive. 
The following code creates a LexBuffer called lexbuf. It then calls the KittyParser.start entry point for 
the parser, passing KittyLexer.token as the lexical analysis engine and lexbuf as the LexBuffer. This 
connects the parser and the lexer: 
 
open Ast 
open KittyParser 
open KittyLexer 
 
let parseText text = 
    let lexbuf = Lexing.LexBuffer<_>.FromString text 
    try 
        KittyParser.start KittyLexer.token lexbuf 
    with e -> 
        let pos = lexbuf.EndPos 
        failwithf "Error near line %d, character %d\n" pos.Line pos.Column 
 

You can now test this function interactively: 

> let sample = "counter := 100; accum := 0; \n\ 
                while counter do \n\ 
                begin \n\ 
                    counter := counter - 1; \n\ 
                    accum := accum + counter \n\ 
                end; \n\ 
                print accum";; 
val sample : string = "..." 
 
> parseText sample;; 
val it : Ast.prog 
= Prog 
   [Assign ("counter",Int 100); Assign ("accum",Int 0); 
    While 
     (Val "counter", 
      Seq 
       [Assign ("counter",Minus (Val "counter",Int 1)); 
        Assign ("accum",Plus (Val "accum",Val "counter"))]); Print Val "accum"] 

Writing an evaluator for Kitty is straightforward. Here, you use an environment that maps variable 
names to the integer values they store. As expected, assignments in the source language add a binding 
for a given variable, and evaluating variables reads a value from this environment. Because of the lack of 
other types in Kitty, you use a nonzero value for the Boolean true and zero for false and wire the logic of 
the conditional and looping construct accordingly: 
 
let rec evalE (env: Map<string, int>) = function 
    | Val v          -> if env.ContainsKey v then env.[v] 
                        else failwith ("unbound variable: " + v) 
    | Int i          -> i 
    | Plus  (e1, e2) -> evalE env e1 + evalE env e2 
    | Minus (e1, e2) -> evalE env e1 - evalE env e2 
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    | Times (e1, e2) -> evalE env e1 * evalE env e2 
 
and eval (env: Map<string, int>) = function 
    | Assign (v, e) -> 
         env.Add(v, evalE env e) 
    | While (e, body) -> 
         let rec loop env e body = 
             if evalE env e <> 0 then 
                 loop (eval env body) e body 
             else env 
         loop env e body 
    | Seq stmts -> 
         List.fold eval env stmts 
    | IfThen (e, stmt) -> 
         if evalE env e <> 0 then eval env stmt else env 
    | IfThenElse (e, stmt1, stmt2) -> 
         if evalE env e <> 0 then eval env stmt1 else eval env stmt2 
    | Print e -> 
         printf "%d" (evalE env e); env 
 

With these at hand, continuing the same interactive session, you can now evaluate the sample Kitty 
program: 

> match parseText sample with 
    | Prog stmts -> 
        eval Map.empty (Seq stmts) |> ignore;; 
4950 
val it : unit = () 

Binary Parsing and Pickling Using Combinators 
One final case of parsing is common when working with binary data. That is, say you want to work with a 
format that is conceptually relatively easy to parse and generate (such as a binary format) but where the 
process of actually writing the code to crack and encode the format is somewhat tedious. This section 
covers a useful set of techniques to write readers and writers for binary data quickly and reliably. 

The running example shows a set of pickling (also called marshalling) and unpickling combinators 
to generate and read a binary format of our design. You can easily adapt the combinators to work with 
existing binary formats such as those used for network packets. Picklers and unpicklers for different data 
types are function values that have signatures as follows: 
 
type outstate = System.IO.BinaryWriter 
type instate  = System.IO.BinaryReader 
 
type pickler<'T> = 'T -> outstate -> unit 
type unpickler<'T> = instate -> 'T 
 

Here, instate and outstate are types that record information during the pickling or parsing process. 
In this section, these are just binary readers and writers; but more generally, they can be any type that 
can collect information and help compact the data during the writing process, such as by ensuring that 
repeated strings are given unique identifiers during the pickling process. 
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At the heart of every such library lies a set of primitive leaf functions for the base cases of aggregate 
data structures. For example, when you’re working with binary streams, this is the usual set of primitive 
read/write functions: 
 
let byteP (b: byte) (st: outstate) = st.Write(b) 
let byteU (st: instate) = st.ReadByte() 
 

You can now begin to define additional pickler/unpickler pairs: 
 
let boolP b st = byteP (if b then 1uy else 0uy) st 
let boolU st = let b = byteU st in (b = 1uy) 
 
let int32P i st = 
    byteP (byte (i &&& 0xFF)) st 
    byteP (byte ((i >>> 8) &&& 0xFF)) st 
    byteP (byte ((i >>> 16) &&& 0xFF)) st 
    byteP (byte ((i >>> 24) &&& 0xFF)) st 
 
let int32U st = 
    let b0 = int (byteU st) 
    let b1 = int (byteU st) 
    let b2 = int (byteU st) 
    let b3 = int (byteU st) 
    b0 ||| (b1 <<< 8) ||| (b2 <<< 16) ||| (b3 <<< 24) 
 

These functions have the following types: 

val byteP  : pickler<byte> 
val byteU  : unpickler<byte> 
val boolP  : pickler<bool> 
val boolU  : unpickler<bool> 
val int32P : pickler<int> 
val int32U : unpickler<int> 

So far, so simple. One advantage of this approach comes as you write combinators that put these 
together in useful ways. For example, for tuples 
 
let tup2P p1 p2 (a, b) (st: outstate) = 
    (p1 a st : unit) 
    (p2 b st : unit) 
 
let tup3P p1 p2 p3 (a, b, c) (st: outstate) = 
    (p1 a st : unit) 
    (p2 b st : unit) 
    (p3 c st : unit) 
 
let tup2U p1 p2 (st: instate) = 
    let a = p1 st 
    let b = p2 st 
    (a, b) 
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let tup3U p1 p2 p3 (st: instate) = 
    let a = p1 st 
    let b = p2 st 
    let c = p3 st 
    (a, b, c) 
 
and for lists: 
 
// Outputs a list into the given output stream by pickling each element via f. 
let rec listP f lst st = 
    match lst with 
    | [] ->     byteP 0uy st 
    | h :: t -> byteP 1uy st; f h st; listP f t st 
 
// Reads a list from a given input stream by unpickling each element via f. 
let listU f st = 
    let rec ulist_aux acc = 
        let tag = byteU st 
        match tag with 
        | 0uy -> List.rev acc 
        | 1uy -> let a = f st in ulist_aux (a::acc) 
        | n ->   failwithf "listU: found number %d" n 
    ulist_aux [] 
 

These functions conform to the following types: 

val tup2P : 'a pickler -> 'b pickler -> ('a * 'b) pickler 
val tup3P : 'a pickler -> 'b pickler -> 'c pickler -> ('a * 'b * 'c) pickler 
val tup2U : 'a unpickler -> 'b unpickler -> ('a * 'b) unpickler 
val tup3U : 'a unpickler -> 'b unpickler -> 'c unpickler -> ('a* 'b* 'c) unpickler 
val listP : 'a pickler -> 'a list pickler 
val listU : 'a unpickler -> 'a list unpickler 

It’s now beginning to be easy to pickle and unpickle aggregate data structures using a consistent 
format. For example, imagine that the internal data structure is a list of integers and Booleans: 
 
type format = list<int32 * bool> 
 
let formatP = listP (tup2P int32P boolP) 
let formatU = listU (tup2U int32U boolU) 
 
open System.IO 
 
let writeData file data = 
    use outStream = new BinaryWriter(File.OpenWrite(file)) 
    formatP data outStream 
 
let readData file  = 
    use inStream = new BinaryReader(File.OpenRead(file)) 
    formatU inStream 
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You can now invoke the pickle/unpickle process as follows: 

> writeData "out.bin" [(102, true); (108, false)] ;; 
val it : unit = () 
 
> readData "out.bin";; 
val it : (int * bool) list = [(102, true); (108, false)] 

Combinator-based pickling is a powerful technique and can be taken well beyond what has been 
shown here. For example, it’s possible to do the following: 

• Ensure data is compressed and shared during the pickling process by keeping 
tables in the input and output states. Sometimes this requires two or more phases 
in the pickling and unpickling process. 

• Build in extra-efficient primitives that compress leaf nodes, such as writing out all 
integers using BinaryWriter.Write7BitEncodedInt and 
BinaryReader.Read7BitEncodedInt. 

• Build extra combinators for arrays, sequences, and lazy values and for lists stored 
in other binary formats than the 0/1 tag scheme used here. 

• Build combinators that allow dangling references to be written to the pickled data, 
usually written as a symbolic identifier. When the data is read, the identifiers must 
be resolved and relinked, usually by providing a function parameter that performs 
the resolution. This can be a useful technique when processing independent 
compilation units. 

Combinator-based pickling is used mainly because it allows data formats to be created and read in a 
relatively bug-free manner. It isn’t always possible to build a single pickling library suitable for all 
purposes, and you should be willing to customize and extend code samples such as those listed 
previously in order to build a set of pickling functions suitable for your needs. 

■ Note Combinator-based parsing borders on a set of techniques called parser combinators that we don’t cover 
in this book. The idea is very much the same as the combinators presented here; parsing is described using a 
compositional set of functions. You also can write parser combinators using the workflow notation described in 

Chapter 9. 

Summary 
This chapter covered lexing and parsing, which are tasks that can be tiresome if you don’t use the right 
tools and techniques for the job. You learned about working with simple line-oriented formats, 
including on-demand reading of large data files, and then with the fslex and fsyacc tools, which are 
particularly suited for parsing programming languages and other languages with structured, rather than 
line-oriented, formats. Finally, we covered some combinator-based approaches for generating and 
reading binary data, which is also a form of parsing. The next chapter switches to a different area of 
programming and looks at how to write F# code that interoperates with native code. 
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Interoperating with C and COM 

Software integration and reuse is becoming one of the most relevant activities of software 
development nowadays. This chapter discusses how F# programs can interoperate with the outside 
world, accessing code available in the form of DLLs and COM components. 

Common Language Runtime 
Libraries and binary components provide a common way to reuse software; even the simplest C program 
is linked to the standard C runtime to benefit from core functions such as memory management and I/O. 
Modern programs depend on a large number of libraries that are shipped in binary form, and only some 
of them are written in the same language as the program. Libraries can be linked statically during 
compilation into the executable or can be loaded dynamically during program execution. Dynamic 
linking has become significantly common to help share code (dynamic libraries can be linked by 
different programs and shared among them) and adapt program behavior while executing. 

Interoperability among binaries compiled by different compilers, even of the same language, can 
be a nightmare. One of the goals of the .NET initiative was to ease this issue by introducing the 
Common Language Runtime (CLR), which is targeted by different compilers and different languages to 
help interoperability among software developed in those languages. 

The CLR is a runtime designed to run programs compiled for the .NET platform. The binary format 
of these programs differs from the traditional one adopted by executables; Microsoft terminology uses 
managed for the first class of programs and unmanaged otherwise (see Figure 17-1). 

 

Figure 17-1. Compilation scheme for managed and unmanaged code 
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A Deeper Look Inside .NET Executables 

Programs for the .NET platform are distributed in a form that is executed by the CLR. Binaries are 
expressed in an intermediate language that is compiled incrementally by the Just-In-Time (JIT) compiler 
during program execution. A .NET assembly, in the form of a .dll or an .exe file, contains the definition of 
a set of types and the definition of the method bodies, and the additional data describing the structure of 
the code in the intermediate language form is known as metadata. The intermediate language is used to 
define method bodies based on a stack-based machine, where operations are performed by loading values 
on a stack of operands and then invoking methods or operators. 

Consider the following simple F# program in the Program.fs source file: 

open System 
let i = 2 
Console.WriteLine("Input a number:") 
let v = Int32.Parse(Console.ReadLine()) 
Console.WriteLine(i * v) 

The F# compiler generates an executable that can be disassembled using the ildasm.exe tool distributed 
with the .NET Framework. The following screenshot shows the structure of the generated assembly. 
Because everything in the CLR is defined in terms of types, the F# compiler must introduce the class 
$Program$Main in the <StartupCode$applicationname> namespace. In this class, the definition of the 
main@ static method is the entry point for the execution of the program. This method contains the 
intermediate language corresponding to the example F# program. The F# compiler generates several 
elements that aren’t defined in the program, whose goal is to preserve the semantics of the F# program in 
the intermediate language. 
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If you open the main@ method, you find the following code, which is annotated here with the corresponding 
F# statements: 

.method public static void  main@() cil managed 
{ 
  .entrypoint 
  // Code size       38 (0x26) 
  .maxstack  4 
 
   // Console.WriteLine("Input a number:") 
  IL_0000:  ldstr      "Input a number:" 
  IL_0005:  call       void [mscorlib]System.Console::WriteLine(string) 
 
  // let v = Int32.Parse(Console.ReadLine()) 
  IL_000a:  call       string [mscorlib]System.Console::ReadLine() 
  IL_000f:  call       int32 [mscorlib]System.Int32::Parse(string) 
  IL_0014:  stsfld     int32 '<StartupCode$ConsoleApplication1>'.$Program::v@4 
 
  // Console.WriteLine(i * v) // Note that i is constant and its value has been inlined 
  IL_0019:  ldc.i4.2 
  IL_001a:  call       int32 Program::get_v() 
  IL_001f:  mul 
  IL_0020:  call       void [mscorlib]System.Console::WriteLine(int32) 
 
// Exits 
  IL_0025:  ret 
} // end of method $Program$Main::main@ 

The ldxxx instructions are used to load values onto the operand stack of the abstract machine, and the 
stxxx instructions store values from that stack in locations (locals, arguments, or class fields). In this 
example, a static field is used for v, and the value of i is inlined using the ldc instruction. For method 
invocations, arguments are loaded on the stack, and a call operation is used to invoke the method. 

The JIT compiler is responsible for generating the binary code that runs on the actual processor. The code 
generated by the JIT interacts with all the elements of the runtime, including external code loaded 
dynamically in the form of DLLs or COM components. 

Because the F# compiler targets the CLR, its output is managed code, allowing compiled programs 
to interact directly with other programming languages targeting the .NET platform. Chapter 10 showed 
how to exploit this form of interoperability, when you saw how to develop a graphic control in F# and 
use it in a C# application. 

Memory Management at Runtime 
Interoperability of F# programs with unmanaged code requires an understanding of the structure of 
the most important elements of a programming language’s runtime. In particular, you must consider 
how program memory is organized at runtime. Memory used by a program is generally classified in 
three classes depending on the way it’s handled: 

• Static memory: Allocated for the entire lifetime of the program 

• Automatic memory: Allocated and freed automatically when functions or 
methods are executed 
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• Dynamic memory: Explicitly allocated by the program, and freed explicitly or by 
an automatic program called the garbage collector 

As a rule of thumb, top-level variables and static fields belong to the first class, function 
arguments and local variables belong to the second class, and memory explicitly allocated using the 
new operator belongs to the last class. The code generated by the JIT compiler uses different data 
structures to manage memory and automatically interacts with the operating system to request and 
release memory during program execution. 

Each execution thread has a stack where local variables and arguments are allocated when a 
function or method is invoked (see Figure 17-2). A stack is used because it naturally follows the 
execution flow of method and function calls. The topmost record contains data about the currently 
executing function; below that is the record of the caller of the function, which sits on top of another 
record of its caller, and so on. These activation records are memory blocks used to hold the memory 
required during the execution of the function and are naturally freed at the end of its execution by 
popping the record off the stack. The stack data structure is used to implement the automatic memory of 
the program; and because different threads execute different functions at the same time, a separate 
stack is assigned to each of them. 

 

Figure 17-2. Memory organization of a running CLR program 

Dynamic memory is allocated in the heap, which is a data structure where data resides for an 
amount of time not directly related to the events of program execution. The memory is explicitly 
allocated by the program, and it’s deallocated either explicitly or automatically depending on the 
strategy adopted by the runtime to manage the heap. In the CLR, the heap is managed by a garbage 
collector, which is a program that tracks memory usage and reclaims memory that is no longer used by 
the program. Data in the heap is always referenced from the stack—or other known areas such as static 
memory—either directly or indirectly. The garbage collector can deduce the memory potentially 
reachable by program execution in the future, and the remaining memory can be collected. During 
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garbage collection, the running program may be suspended because the collector may need to 
manipulate objects needed by its execution. In particular, a garbage collector may adopt a strategy 
called copy collection that can move objects in memory; during this process, the references may be 
inconsistent. To avoid dangling references, the memory model adopted by the CLR requires that 
methods access the heap through object references stored on the stack; objects in the heap are 
forbidden to reference data on the stack. 

Data structures are the essential tool provided by programming languages to group values. A data 
structure is rendered as a contiguous area of memory in which the constituents are available at a given 
offset from the beginning of the memory. The actual layout of an object is determined by the compiler (or 
by the interpreter for interpreted languages) and is usually irrelevant to the program because the 
programming language provides operators to access fields without having to explicitly access the 
memory. System programming, however, often requires explicit manipulation of memory, and 
programming languages such as C let you control the in-memory layout of data structures. The C 
specification, for instance, defines that fields of a structure are laid out sequentially, although the 
compiler is allowed to insert extra space between them. Padding is used to align fields at word 
boundaries of the particular architecture in order to optimize the access to the fields of the structure. Thus, 
the same data structure in a program may lead to different memory layouts depending on the strategy of 
the compiler or the runtime, even in a language such as C where field ordering is well defined. By 
default, the CLR lays out structures in memory without any constraint, which gives you the freedom of 
optimizing memory usage on a particular architecture, although it may introduce interoperability issues 
if a portion of memory must be shared among the runtimes of different languages.1 

Interoperability among different programming languages revolves mostly around memory layouts, 
because the execution of a compiled routine is a jump to a memory address. But routines access memory 
explicitly, expecting that data is organized in a certain way. The rest of this chapter discusses the 
mechanisms used by the CLR to interoperate with external code in the form of DLLs or COM components. 

COM Interoperability 
Component Object Model (COM) is a technology that Microsoft introduced in the 1990s to support 
interoperability among different programs possibly developed by different vendors. The Object Linking 
and Embedding (OLE) technology that lets you embed arbitrary content in a Microsoft Word document, 
for instance, relies on this infrastructure. COM is a binary standard that allows code written in different 
languages to interoperate, assuming that the programming language supports this infrastructure. Most of 
the Windows operating system and its applications are based on COM components. 

The CLR was initially conceived as an essential tool to develop COM components, because COM 
was the key technology at the end of 1990s. It’s no surprise that the Microsoft implementation of CLR 
interoperates easily and efficiently with the COM infrastructure. 

This section briefly reviews the main concepts of the COM infrastructure and its goals in order to 
show you how COM components can be consumed from F# (and vice versa) and how F# components 
can be exposed as COM components. 

A COM component is a binary module with a well-defined interface that can be dynamically 
loaded at runtime by a running program. The COM design was influenced by CORBA and the Interface 
Definition Language (IDL) to describe a component as a set of interfaces. In the case of COM, however, 
components are always loaded inside the process using the dynamic loading of DLLs. Even when a 
component runs in a different process, a stub is loaded as a DLL, and it’s responsible for interprocess 
communication. 

                                                   
1 Languages targeting .NET aren’t affected by these interoperability issues because they share the same CLR 
runtime. 



CHAPTER 17 ■ INTEROPERATING WITH C AND COM 

 

496 

 

When you create an instance of a COM component, you obtain a pointer to an IUnknown interface 
that acts as the entry point to all interfaces implemented by the component. The QueryInterface 
method of this interface allows you to get pointers to additional interfaces. 

Interface pointers in COM are pointers to tables of pointers defining the method’s location. The 
program must know the layout of the table in order to read the desired pointer and invoke the 
corresponding method. This knowledge can be compiled into the program (interfaces must be known 
at compile time) or acquired at runtime by accessing component metadata in the form of an interface 
named IDispatch or a database called type library. 

Because COM components can be compiled by any compiler supporting the generation of memory 
layouts compatible with the standard, it’s necessary for the client to share the same layout for data 
structures that must be passed or returned by the component methods. The standard type system for COM, 
defined in ole.dll, defines a simple and restricted set of types. COM types correspond to the Variant type 
of Visual Basic and provide only basic types and arrays. For structured types, COM requires a custom 
marshaller to be developed, but this has been rarely used in components that are widely available. 

The COM infrastructure provides a memory manager that uses reference counting to 
automatically free components when they aren’t used anymore. Whenever a copy of a pointer to an 
interface is copied, you must invoke the AddRef method of the IUnknown interface (every interface 
inherits from IUnknown); and when the pointer is no longer required, you should call the Release 
method to decrement the counter inside the component. When the counter reaches zero, the 
component is automatically freed. This strategy of memory management, although more automatic 
than the traditional malloc/free handling of the heap, has proven to be error prone, because 
programmers often forget to increment the counter when pointers are copied (risk of dangling 
pointers) or decrement when a pointer is no longer needed (risk of memory wasted in the garbage). 

When Microsoft started developing the runtime that has become the CLR, which was destined to 
replace the COM infrastructure, several design goals addressed common issues of COM development: 

• Memory management: Reference counting has proven to be error prone. A fully 
automated memory manager was needed to address this issue. 

• Pervasive metadata: The COM type system was incomplete, and the custom 
marshaller was too restrictive. A more complete and general type system whose 
description was available at runtime would have eased interoperability. 

• Data and metadata separation: The separation between data and metadata has 
proven to be fragile because components without their description are useless, 
and vice versa. A binary format containing both components and their 
descriptions avoids these issues. 

• Distributed components: DCOM, the distributed COM infrastructure, has proven 
to be inefficient. The CLR was designed with a distributed memory 
management approach to reduce the network overhead required to keep 
remote components alive. 

The need for a better component infrastructure led Microsoft to create the CLR, but the following 
concepts from COM proved so successful that they motivated several aspects of the CLR: 

• Binary interoperability: The ability to interoperate at the binary level gives you 
the freedom to develop components from any language supporting the 
component infrastructure. For instance, Visual Basic developers can benefit 
from C++ components, and vice versa. 

• Dynamic loading: The interactive dynamic loading of components is an essential 
element to allow scripting engines such as Visual Basic for Applications to access 
the component model. 
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• Reflection: The component description available at runtime allows programs to 
deal with unknown components. This is especially important for programs 
featuring scripting environments, as witnessed by the widespread use of 
IDispatch and type libraries in COM. 

COM Metadata and the Windows Registry 

COM components are compiled modules that conform to well-defined protocols designed to allow binary 
interoperability among different languages. An essential trait of component architectures is the ability to 
dynamically create components at runtime. It’s necessary for an infrastructure to locate and inspect 
components in order to find and load them. The Windows registry holds this information, which is why it’s 
such an important structure in the operating system. 

The HKEY_CLASSES_ROOT registry key holds the definition of all the components installed on the local 
computer. It’s helpful to understand the basic layout of the registry in this respect when you’re dealing with 
COM components. The following is a simple script in JScript, executed2 by the Windows Scripting Host, 
which is an interpreter used to execute Visual Basic and JScript scripts on Windows: 

w = WScript.CreateObject("Word.Application"); 
w.Visible = true; 
WScript.Echo("Press OK to close Word"); 
w.Quit(); 

This simple script creates an instance of a Microsoft Word application and shows its window 
programmatically by setting the Visible property to true. Assuming that the script is executed using the 
wscript command (the default), its execution is stopped until the message box displayed by the Echo 
method is closed, and then Word is closed. 

How can the COM infrastructure dynamically locate the Word component and load it without prior 
knowledge about it? The COM infrastructure is accessed through the ubiquitous CreateObject method, 
which accepts as input a string containing the program ID of the COM component to be loaded. This is the 
human-readable name of the component; but the COM infrastructure was conceived as a foundation of a 
potentially large number of components and therefore adopted globally unique identifier (GUID) strings to 
define components. GUIDs are often displayed during software installation and are familiar for their 
mysterious syntax of a sequence of hexadecimal digits enclosed in curly braces. GUIDs are also used to 
identify COM classes; these IDs are known as CLSIDs and are stored in the Windows registry as subkeys 
containing further metadata about the COM object. When CreateObject is invoked, the code infrastructure 
looks for the key: 

HKEY_CLASSES_ROOT\Word.Application\CLSID 

The default value for the key in this example (on one of our computers) is as follows: 

{000209FF-0000-0000-C000-000000000046} 

Now, you can access the registry key defining the COM component and find all the information relative to 
the component. The following screenshot shows the content of the LocalServer32 subkey, which says 

                                                   
2 To execute the script, save the text in a file with .js extension (for instance, StartWord.js) and then double-click 
the Windows Explorer icon.  
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that winword.exe is the container of the Word.Application component. If a COM component should be 
executed in a process different from that of the creator, LocalServer32 contains the location of the 
executable. Components are often loaded in-process in the form of a DLL; in this case, the 
InprocServer32 key indicates the location of the library. 

 

To get a feel for the number of COM components installed on a Windows system, you can use a few lines 
of F# using fsi.exe as a shell: 

> open Microsoft.Win32;; 
> let k = Registry.ClassesRoot.OpenSubKey("CLSID");; 
val k : RegistryKey 
> k.GetSubKeyNames().Length;; 
val it : int = 9237 
> k.Close();; 
val it : unit = () 

The registry is also responsible for storing information (that is, the metadata associated with COM 
components that describes their interfaces) about type libraries. Type libraries are also described using 
registry entries and identified by GUIDs available under the registry key: 

HKEY_CLASSES_ROOT\TypeLib 
 

COM components can be easily consumed from F# programs, and the opposite is also possible by 
exposing .NET objects as COM components. The following example is similar to the one discussed in 
the “COM Metadata and the Windows Registry” sidebar; it’s based on the Windows Scripting Host but 
uses F# and fsi.exe: 
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> open System;; 
> let o = Activator.CreateInstance(Type.GetTypeFromProgID("Word.Application"));; 
val o : obj 
> let t = o.GetType();; 
val t : Type = System.__ComObject 
> t.GetProperty("Visible").SetValue(o, (true :> Object), null);; 
val it : unit  = () 
> let m = t.GetMethod("Quit");; 
val m : Reflection.MethodInfo 
> m.GetParameters().Length;; 
val it : int = 3 
> m.GetParameters();; 
val it : ParameterInfo [] 
       = [|System.Object& SaveChanges 
             {Attributes = In, Optional, HasFieldMarshal; 
              DefaultValue = System.Reflection.Missing; 
              IsIn = true; 
              IsLcid = false; 
              IsOptional = true; 
              IsOut = false; 
              IsRetval = false; 
              Member = 
                Void Quit(System.Object ByRef, 
                            System.Object ByRef, System.Object ByRef); 
              MetadataToken = 134223449; 
              Name = "SaveChanges"; 
              ParameterType = System.Object&; 
              Position = 0; 
              RawDefaultValue = System.Reflection.Missing;}; 
           ... more ... |] 
> m.Invoke(o, [| null; null; null |]);; 
val it : obj = null 

Because F# imposes type inference, you can’t use the simple syntax provided by an interpreter. 
The compiler should know in advance the number and type of arguments of a method and the methods 
exposed by an object. Remember that even though fsi.exe allows you to interactively execute F# 
statements, it’s still subject to the constraints of a compiled language. Because you’re creating an 
instance of a COM component dynamically in this example, the compiler doesn’t know anything about 
this component. Thus, it can be typed as System.Object. To obtain the same behavior as an interpreted 
language, you must resort to .NET runtime’s reflection support. Using the GetType method, you can 
obtain an object describing the type of the object o. Then, you can obtain a PropertyInfo object 
describing the Visible property, and you can invoke the SetValue method on it to show the Word main 
window. The SetValue method is generic; therefore, you have to cast the Boolean value to 
System.Object to comply with the method signature. 

In a similar way, you can obtain an instance of the MethodInfo class describing the Quit method. 
Because a method has a signature, you ask for the parameters; there are three of them, and they’re 
optional. You can invoke the Quit method by calling the Invoke method and passing the object target of 
the invocation and an array of arguments that you set to null because arguments are optional.  
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■ Note Although COM technology is still widely used for obtaining so-called automation, .NET is quietly entering 
the picture, and several COM components are implemented using the CLR. Whenever a reference to mscoree.dll 
appears in the InprocServer32 registry key, the .NET runtime is used to deliver the COM services using the 

specified assembly. Through COM interfaces, native and .NET components can be composed seamlessly, leading 
to very complex interactions between managed and unmanaged worlds. Microsoft Word 2010, for instance, 
returns a .NET object instead than a COM wrapper, which provides access to Word services without the need for 

explicit use of reflection. 

How can the runtime interact with COM components? The basic approach is based on the COM 
callable wrapper (CCW) and the runtime callable wrapper (RCW), as shown in Figure 17-3. The former is 
a chunk of memory dynamically generated with a layout compatible with the one expected from COM 
components, so that external programs—even legacy Visual Basic 6 applications—can access services 
implemented as managed components. The latter is more common and creates a .NET type dealing 
with the COM component, taking care of all the interoperability issues. It’s worth noting that although 
the CCW can always be generated because the .NET runtime has full knowledge about assemblies, the 
opposite isn’t always possible. Without IDispatch or type libraries, there is no description of a COM 
component at runtime. Moreover, if a component uses custom marshalling, it can’t be wrapped by an 
RCW. Fortunately, for the majority of COM components, it’s possible to generate an RCW. 

 

Figure 17-3. The wrappers generated by the CLR to interact with COM components 

Programming patterns based on event-driven programming are widely adopted, and COM 
components have a programming pattern to implement callbacks based on the notion of a sink. The 
programming pattern is based on the delegate event model, and the sink is where a listener can register 
a COM interface that should be invoked by a component to notify an event. The Internet Explorer Web 
Browser COM component (implemented by shdocvw.dll), for instance, provides a number of events to 
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notify its host about various events such as loading a page or clicking a hyperlink. The RCW generated by 
the runtime exposes these events in the form of delegates and takes care of handling all the details 
required to perform the communication between managed and unmanaged code. 

Although COM components can be accessed dynamically using .NET reflection, explicitly relying 
on the ability of the CLR to generate CCW and RCW, it’s desirable to use a less verbose approach to 
COM interoperability. The .NET runtime ships with tools that allow you to generate RCW and CCW 
wrappers offline, which lets you use COM components as .NET classes and vice versa. These tools are 
as follows: 

• tlbimp.exe: This is a tool for generating an RCW of a COM component given its 
type library. 

• aximp.exe: This is similar to tlbimp.exe and supports the generation of ActiveX 
components3 that have graphical interfaces (and that need to be integrated with 
Windows Forms). 

• tlbexp.exe: This generates a COM type library describing a .NET assembly. The 
CLR is loaded as a COM component and generates the appropriate CCW to make 
.NET types accessible as COM components. 

• regasm.exe: This is similar to tlbexp.exe. It also performs the registration of the 
assembly as a COM component. 

To better understand how COM components can be accessed from your F# programs and vice versa, 
let’s consider two examples. In the first, you wrap the widely used Flash Player into a form interactively; 
and in the second, you see how an F# object type can be consumed as if it were a COM component. 

The Flash Player you’re accustomed to using in everyday browsing is an ActiveX control that is 
loaded by Internet Explorer using an OBJECT element in the HTML page (it’s also a plug-in for other 
browsers, but here you’re interested in the COM component). By using a search engine, you can easily 
find that an HTML element similar to the following is used to embed the player in Internet Explorer: 
 
<OBJECT 
      classid ="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000" 
      codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab" 
      width   ="640" height="480" 
      title   ="My movie"> 
   <param name="movie"   value="MyMovie.swf" /> 
   <param name="quality" value="high" /> 
</OBJECT> 
 

From this tag, you know that the CLSID of the Flash Player ActiveX component is the one specified 
with the classid parameter of the OBJECT element. You can now look in the Windows registry under 
HKEY_CLASSES_ROOT\CLSID for the subkey corresponding to the CLSID of the Flash ActiveX control. If you 
look at the subkeys, you notice that the ProgID of the component is ShockwaveFlash.ShockwaveFlash, and 
InprocServer32 indicates that its location is C:\Windows\system32\Macromed\Flash\Flash10d.ocx. You 
can also find the GUID relative to the component type library—which, when investigated, shows that 
the type library is contained in the same OCX file. 

                                                   
3 ActiveX components are COM components implementing a well-defined set of interfaces. They have a graphical 
interface. Internet Explorer is well known for loading these components, but ActiveX can be loaded by any 
application using the COM infrastructure. 
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■ Note With a 64-bit version of Windows and the 32-bit version of the Flash Player, you should look for the key 
CLSID under HKEY_CLASSES_ROOT\Wow6432Node, which is where the 32-bit component’s information is stored. In 
general, all references to the 32-bit code are stored separately from the 64-bit information. The loader tricks old 

32-bit code to see different portions of the registry. In addition, executable files are stored under 
%WinDir%\SysWow64 instead of %WinDir%\system32. Moreover, to wrap 32- or 64-bit components, you need the 

corresponding version of the .NET tool. 

Because Flash Player is an ActiveX control with a GUI, you can rely on aximp.exe rather than just 
tlbimp.exe to generate the RCW for the COM component: 

C:\> aximp c:\Windows\System32\Macromed\Flash\Flash10d.ocx 
Generated Assembly: C:\ShockwaveFlashObjects.dll 
Generated Assembly: C:\AxShockwaveFlashObjects.dll 

If you use ildasm.exe to analyze the structure of the generated assemblies, notice that the 
wrapper of the COM component is contained in ShockwaveFlashObjects.dll and is generated by the 
tlbimp.exe tool. The second assembly contains a Windows Forms host for ActiveX components and is 
configured to host the COM component, exposing the GUI features in terms of the elements of the 
Windows Forms framework. 

You can test the Flash Player embedded in an interactive F# session as follows: 

> #I @"c:\";; 
--> Added 'c:\ ' to library include path 
> #r "AxShockwaveFlashObjects.dll";; 
--> Referenced 'c:\AxShockwaveFlashObjects.dll' 
> open AxShockwaveFlashObjects;; 
> open System.Windows.Forms;; 
> let f = new Form();; 
val f : Form 
> let flash = new AxShockwaveFlash();; 
val flash : AxShockwaveFlash 
Binding session to 'c:\AxShockwaveFlashObjects.dll'... 
> f.Show();; 
val it : unit = () 
> flash.Dock <- DockStyle.Fill;; 
val it : unit = () 
> f.Controls.Add(flash);; 
val it : unit = () 
> flash.LoadMovie(0, "http://laptop.org/img/meshDemo18.swf");; 
val it : unit = () 

You first add to the include path of the fsi.exe directory containing the assemblies generated by 
aximp.exe using the #I directive, and then you reference the AxShockwaveFlashObjects.dll assembly 
using the #r directive. The namespace AxShockwaveFlashObjects containing the AxShockwaveFlash class is 
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opened; this is the managed class wrapping the ActiveX control. You create an instance of the Flash 
Player that is now exposed as a Windows Forms control; then, you set the Dock property to DockStyle.Fill 
to let the control occupy the entire area of the form. Finally, you add the control to the form.  

When you’re typing the commands into F# Interactive, it’s possible to test the content of the form. 
When it first appears, a right-click on the client area is ignored. After the ActiveX control is added to 
the form, the right-click displays the context menu of the Flash Player. You can now programmatically 
control the player by setting the properties and invoking its methods; the generated wrapper takes 
care of all the communications with the ActiveX component. 

The Running Object Table 

Sometimes you need to obtain a reference to an out-of-process COM object that is already running. This is 
useful when you want to automate some task of an already-started application or reuse an object model 
without needing to start a process more than once. The easiest way to achieve this is through the 
GetActiveObject method featured by the Marshal class: 

#r "EnvDTE" 
open System.Runtime.InteropServices 
let appObj =Marshal.GetActiveObject("VisualStudio.DTE") :?> EnvDTE80.DTE2 
printfn "%s" appObj.ActiveDocument.FullName 

In this example, you obtain a reference to one of the most important interfaces of Visual Studio’s COM 
automation model. An interesting experiment is to print the name of the active document open in the editor 
and try to run different instances of Visual Studio, opening different documents. The COM infrastructure 
connects to one instance of the COM server without being able to specify a particular one. 

You can find a specific instance by accessing a system-wide data structure called the Running Object 
Table (ROT), which provides a list of running COM servers. Because the name of a running server must be 
unique within the ROT, many servers mangle the PID with the COM ProgID so it’s possible to connect to a 
given instance; this is the case for Visual Studio. The following F# function connects to a specific Visual 
Studio instance: 

#r "EnvDTE" 
open System.Runtime.InteropServices 
open System.Runtime.InteropServices.ComTypes 
 
[<DllImport("ole32.dll")>] 
extern int internal GetRunningObjectTable(uint32 reserved, IRunningObjectTable& pprot) 
 
[<DllImport("ole32.dll")>] 
extern int internal CreateBindCtx(uint32 reserved, IBindCtx& pctx) 
 
let FetchVSDTE (pid:int) = 
  let mutable (prot:IRunningObjectTable) = null  
  let mutable (pmonkenum:IEnumMoniker) = null 
  let (monikers:IMoniker[]) =  Array.create 1 null 
  let pfeteched = System.IntPtr.Zero 
  let mutable (ret:obj) = null 
  let endpid = sprintf ":%d" pid 
   
  try 
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    if (GetRunningObjectTable(0u, &prot) <> 0) || (prot = null) then  
        failwith "Error opening the ROT" 
    prot.EnumRunning(&pmonkenum) 
    pmonkenum.Reset() 
    while pmonkenum.Next(1, monikers, pfeteched) = 0 do 
      let mutable (insname:string) = null 
      let mutable (pctx:IBindCtx) = null 
      CreateBindCtx(0u, &pctx) |> ignore 
      (monikers.[0]).GetDisplayName(pctx, null, &insname); 
      Marshal.ReleaseComObject(pctx) |> ignore 
      if insname.StartsWith("!VisualStudio.DTE") && insname.EndsWith(endpid) then 
        prot.GetObject(monikers.[0], &ret) |> ignore 
  finally 
    if prot <> null then Marshal.ReleaseComObject(prot) |> ignore 
    if pmonkenum <> null then Marshal.ReleaseComObject(pmonkenum) |> ignore 
  (ret :?> EnvDTE.DTE) 

You use two PInvoke declarations to import functions from the ole.dll COM library where the ROT is 
defined. After you get a reference to the table, you perform an enumeration of its elements, retrieving the 
display name and looking for any Visual Studio DTE with a specific PID at its end. The GetObject method 
is used to finally connect to the desired interface. 

This example shows the flexible control .NET and F# can provide over COM infrastructure. The ability to 
access specific COM object instances is widely used on the server side to implement services made 
available through web pages. 

Next, let’s see an example of exposing an F# object type as a COM component. There are several 
reasons it can be useful to expose a managed class as a COM component, but perhaps the most 
important is interoperability with legacy systems. COM has been around for a decade and has 
permeated every aspect of Windows development. Systems have largely used COM infrastructures, 
and they can be extended using this technology. COM components are heavily used by applications 
based on the Active Scripting architecture, such as ASP and VBA in Microsoft Office. The ability to 
expose F# code to existing applications is useful because it allows you to immediately start using this 
new language and integrate it seamlessly into existing systems. 

■ Note Version 4 of CLR introduced a new set of tools for .NET. You must pay attention to which version you’re 
using. If you compile an assembly targeting a framework older than version 4, use the tools located in the directory 
C:\Program Files (x86)\Microsoft SDKs\Windows\v7.0A\Bin. Otherwise, use the tools in C:\Program 
Files (x86)\Microsoft SDKs\Windows\v7.0A\Bin\NETFX 4.0 Tools. 

Suppose you’re exposing a simple F# object type as a COM component, and you invoke a method of 
this object type from a JScript script. You define the following type in the hwfs.fs file: 
 
namespace HelloWorld 
 
open System 
 
type FSCOMComponent() = 
    member x.HelloWorld() = "Hello world from F#!" 
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The assembly that must be exposed as a COM component should be added to the global assembly 
cache (GAC), which is where shared .NET assemblies are stored. Assemblies present in the GAC must 
be strongly named, which means a public key cryptographic signature must be used to certify the 
assembly. To perform the test, you generate a key pair to be used to sign the assembly using the sn.exe 
command available with the .NET SDK: 

C:> sn -k testkey.snk 
 
Microsoft (R) .NET Framework Strong Name Utility  Version 4.0.30319.1 
Copyright (c) Microsoft Corporation.  All rights reserved. 
 
Key pair written to testkey.snk 

You can compile the program in a DLL called hwfs.dll: 
 
C:\> fsc -a --keyfile:testkey.snk hwfs.fs 
 

Note that you use the --keyfile switch to indicate to the compiler that the output should be signed 
using the specified key pair. Now, you can add the assembly to the GAC (note that under Windows Vista 
and 7, the shell used should run with administrator privileges): 

C:\ > gacutil /i hwfs.dll 
Microsoft (R) .NET Global Assembly Cache Utility.  Version 4.0.30319.1 
Copyright (c) Microsoft Corporation.  All rights reserved. 
 
Assembly successfully added to the cache 

Use the regasm.exe tool to register the hwfs.dll assembly as a COM component: 

C:\ > regasm hwfs.dll 
Microsoft (R) .NET Framework Assembly Registration Utility 4.0.30319.1 
Copyright (C) Microsoft Corporation 1998-2004.  All rights reserved. 
 
Types registered successfully 

Next, you must write the script using the JScript language to test the component. The script uses the 
CreateObject method to create an instance of the F# object type, with the CCW generated by the CLR 
taking care of all the interoperability issues. But what is the ProgID of the COM component? You use 
regasm.exe with the /regfile switch to generate a registry file containing the keys corresponding to 
the registration of the COM component instead of performing it. The generated registry file contains 
the following component registration (we’ve included only the most relevant entries): 
 
[HKEY_CLASSES_ROOT\HelloWorld.FSCOMComponent] 
@="HelloWorld.FSCOMComponent" 
[HKEY_CLASSES_ROOT\HelloWorld.FSCOMComponent\CLSID] 
@="{30094EBA-CDCB-3C57-9297-49C724421ACB}" 
[HKEY_CLASSES_ROOT\CLSID\{30094EBA-CDCB-3C57-9297-49C724421ACB}] 
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@="HelloWorld.FSCOMComponent" 
[HKEY_CLASSES_ROOT\CLSID\{30094EBA-CDCB-3C57-9297-49C724421ACB}\InprocServer32] 
@="mscoree.dll" 
"ThreadingModel"="Both" 
"Class"="HelloWorld.FSCOMComponent" 
"Assembly"="hwfs, Version=0.0.0.0, Culture=neutral, PublicKeyToken=d25287aa2b2b0de6" 
"RuntimeVersion"="v4.0.30319" 
 

The InprocServer32 subkey indicates that the COM component is implemented by mscoree.dll, 
which is the CLR. The additional attributes indicate the assembly that should be run by the runtime. 

Note that the ProgID and the class name of the component are HelloWorld.FSCOMComponent. You can 
now write the following script in the hwfs.js file: 
 
o = WScript.CreateObject("HelloWorld.FSCOMComponent"); 
WScript.Echo(o.HelloWorld()); 
 

If you execute the script (here using the command-based host cscript), you obtain the expected 
output: 

C:\ > cscript foo.js 
Microsoft (R) Windows Script Host Version 5.8 
Copyright (C) Microsoft Corporation. All rights reserved. 
 
Hello world from F#! 

Using the fully qualified .NET name to name a COM component isn’t always a good idea. Names are 
important, especially in a component infrastructure, because they’re used for long time. So far, you’ve 
used only the basic features of COM interoperability, but a number of custom attributes can give you finer 
control over the CCW generation. These attributes are defined in the System.Runtime.InteropServices 
namespace; and among these classes you find the ProgIdAttribute class, whose name hints that it’s 
related to the ProgID. You can annotate your F# object type using this attribute: 
 
namespace HelloWorld 
 
open System 
open System.Runtime.InteropServices 
 
[<ProgId("Hwfs.FSComponent")>] 
type FSCOMComponent() = 
    member x.HelloWorld() = "Hello world from F#!" 
 

First, unregister the previous component: 

C:\> regasm hwfs.dll /unregister 
Microsoft (R) .NET Framework Assembly Registration Utility 4.0.30319.1 
Copyright (C) Microsoft Corporation 1998-2004.  All rights reserved. 
 
Types un-registered successfully 
C:\> gacutil /u hwfs 
Microsoft (R) .NET Global Assembly Cache Utility.  Version 4.0.30319.1 
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Copyright (c) Microsoft Corporation.  All rights reserved. 
 
Assembly: hwfs, Version=0.0.0.0, Culture=neutral, 
    PublicKeyToken=8c1f06f522fc70f8, processorArchitecture=MSIL 
Uninstalled: hwfs, Version=0.0.0.0, Culture=neutral, 
    PublicKeyToken=8c1f06f522fc70f8, processorArchitecture=MSIL 
Number of assemblies uninstalled = 1 
Number of failures = 0 

Now you can update the script as follows and register everything again after recompiling the F# file: 
 
o = WScript.CreateObject("Hwfs.FSComponent"); 
WScript.Echo(o.HelloWorld()); 
 

Using other attributes, it’s possible to specify the GUIDs to be used and several other aspects that 
are important in some situations. When a system expects a component implementing a given COM 
interface, the COM component is expected to return the pointer to the interface with the appropriate 
GUID. In this case, the ability to explicitly indicate a GUID is essential to defining a .NET interface that 
should be marshalled as the intended COM interface. 

Complex COM components can be tricky to wrap using these tools, and official wrappers are 
maintained by component developers. Microsoft provides the managed version of the Office 
components, the managed DirectX library, and the Web Browser control to spare programmers from 
having to build their own wrappers. 

In conclusion, it’s possible to use COM components from F# and vice versa. You can expose F# 
libraries as COM components, which allows you to extend existing systems using F# or use legacy code 
in F# programs. 

Platform Invoke 
COM interoperability is an important area in F#, but it’s limited to Windows and to the Microsoft 
implementation of the ECMA and ISO standards of the Common Language Infrastructure (CLI). The CLI 
standard, however, devises a standard mechanism for interoperability that is called Platform Invoke 
(PInvoke to friends); it’s a core feature of the standard available on all CLI implementations, including 
Mono. 

The basic model underlying PInvoke is based on loading DLLs into the program, which allows 
managed code to invoke exported functions. DLLs don’t provide information other than the entry 
point location of a function; this isn’t enough to perform the invocation unless additional information 
is made available to the runtime. 

The invocation of a function requires the following: 

• The address of the code in memory 

• The calling convention, which is how parameters, return values, and other 
information are passed through the stack to the function 

• Marshalling of values and pointers so that the different runtime support can 
operate consistently on the same values 

You obtain the address of the entry point using a system call that returns the pointer to the 
function given a string. You must provide the remaining information to instruct the CLR about how the 
function pointer should be used. 
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Calling Conventions 

Function and method calls (a method call is similar to a function call but with an additional pointer referring 
to the object passed to the method) are performed by using a shared stack between the caller and the 
callee. An activation record is pushed onto the stack when the function is called, and memory is allocated 
for arguments, the return value, and local variables. Additional information is also stored in the activation 
record, such as information about exception handling and the return address when the execution of the 
function terminates. 

The physical structure of the activation record is established by the compiler (or by the JIT in the case of 
the CLR), and this knowledge must be shared between the caller and the called function. When the binary 
code is generated by a compiler, this isn’t an issue; but when code generated by different compilers must 
interact, it may become a significant issue. Although each compiler may adopt a different convention, the 
need to perform system calls requires that the calling convention adopted by the operating system is 
implemented, and it’s often used to interact with different runtimes. Another popular approach is to 
support the calling convention adopted by C compilers, because it’s widely used and has become a fairly 
universal language for interoperability. Note that although many operating systems are implemented in C, 
the libraries providing system calls may adopt different calling conventions. This is the case with Microsoft 
Windows: the operating system adopts the stdcall calling convention rather than cdecl, which is the C 
calling convention. 

A significant dimension in the arena of possible calling conventions is the responsibility for removing the 
activation record from the thread stack. At first glance, it may seem obvious that before returning, the 
called function resets the stack pointer to the previous state. This isn’t the case for programming 
languages such as C that allow functions with a variable number of arguments, such as printf. When 
variable arguments are allowed, the caller knows the exact size of the activation record; therefore, it’s the 
caller’s responsibility to free the stack at the end of the function call. Apart from being consistent with the 
chosen convention, there may seem to be little difference between the two choices; but if the caller is 
responsible for cleaning the stack, each function invocation requires more instructions, which leads to 
larger executables. For this reason, Windows uses the stdcall calling convention instead of the C calling 
convention. It’s important to notice that the CLR uses an array of objects to pass a variable number of 
arguments, which is very different from the variable arguments of C: the method receives a single pointer 
to the array that resides in the heap. 

It’s important to note that if the memory layout of the activation record is compatible, as it is in Windows, 
using the cdecl convention instead of the stdcall convention leads to a subtle memory leak. If the runtime 
assumes the stdcall convention (which is the default), and the callee assumes the cdecl convention, the 
arguments pushed on the stack aren’t freed, and at each invocation the height of the stack grows until a 
stack overflow happens. 

The CLR supports a number of calling conventions. The two most important are stdcall and cdecl. Other 
implementations of the runtime may provide additional conventions to the user. In the PInvoke design, 
nothing restricts the supported conventions to these two (and in fact the runtime uses the fcall convention 
to invoke services provided by the runtime from managed code). 

The additional information required to perform the function call is provided by custom attributes 
that are used to decorate a function prototype and inform the runtime about the signature of the 
exported function. 
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Getting Started with PInvoke 
This section starts with a simple example of a DLL developed using C++, to which you add code during 
your experiments using PInvoke. The CInteropDLL.h header file declares a macro defining the 
decorations associated with each exported function: 
 
#define CINTEROPDLL_API __declspec(dllexport) 
extern "C" { 
void CINTEROPDLL_API HelloWorld(); 
} 
 

The __declspec directive is specific to the Microsoft Visual C++ compiler. Other compilers may 
provide different ways to indicate the functions that must be exported when compiling a DLL. 

The first function is HelloWorld; its definition is as expected: 
 
void CINTEROPDLL_API HelloWorld() 
{ 
    printf("Hello C world invoked by F#!\n"); 
} 
 

Say you now want to invoke the HelloWorld function from an F# program. You have to define the 
prototype of the function and inform the runtime how to access the DLL and the other information 
needed to perform the invocation. The program performing the invocation is the following: 
 
open System.Runtime.InteropServices 
 
module CInterop = 
    [<DllImport("CInteropDLL", CallingConvention=CallingConvention.Cdecl)>] 
    extern void HelloWorld() 
 
CInterop.HelloWorld() 
 

The extern keyword informs the compiler that the function definition is external to the program 
and must be accessed through the PInvoke interface. A C-style prototype definition follows the 
keyword, and the whole declaration is annotated with a custom attribute defined in the 
System.Runtime.InteropServices namespace. The F# compiler adopts C-style syntax for extern 
prototypes, including argument types (as you see later), because C headers and prototypes are widely 
used; this choice helps in the PInvoke definition. The DllImport custom attribute provides the 
information needed to perform the invocation. The first argument is the name of the DLL containing 
the function; the remaining option specifies the calling convention chosen to make the call. Because 
you don’t specify otherwise, the runtime assumes that the name of the F# function is the same as the 
name of the entry point in the DLL. It’s possible to override this behavior using the EntryPoint 
parameter in the DllImport attribute. 

It’s important to note the declarative approach of the PInvoke interface. No code is involved in 
accessing external functions. The runtime interprets metadata in order to automatically interoperate 
with native code contained in a DLL. This is a different approach from the one adopted by different 
virtual machines, such as the Java virtual machine. The Java Native Interface (JNI) requires that you 
define a layer of code using types of the virtual machine and invoke the native code. 

PInvoke requires high privileges in order to execute native code, because the activation record of 
the native function is allocated on the same stack containing the activation records of managed 
functions and methods. Moreover, as discussed shortly, it’s also possible to have the native code 
invoking a delegate marshalled as a function pointer, allowing stacks with native and managed 
activation records to be interleaved. 
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The HelloWorld function is a simple case because the function doesn’t have input arguments and 
doesn’t return any value. Consider this function with input arguments and a return value: 
 
int CINTEROPDLL_API Sum(int i, int j) 
{ 
    return i + j; 
} 
 

Invoking the Sum function requires integer values to be marshalled to the native code and the 
value returned to managed code. Simple types such as integers are easy to marshal because they’re 
usually passed by value and use types of the underlying architecture. The F# program using the Sum 
function is as follows: 
 
module CInterop = 
    [<DllImport("CInteropDLL", CallingConvention=CallingConvention.Cdecl)>] 
    extern int Sum(int i, int j) 
 
printf "Sum(1, 1) = %d\n" (CInterop.Sum(1, 1)); 
 

Parameter passing assumes the same semantics of the CLR, and parameters are passed by value 
for value types and by the value of the reference for reference types. Again, you use the custom 
attribute to specify the calling convention for the invocation. 

Data Structures 
Let’s first cover what happens when structured data is marshalled by the CLR in the case of nontrivial 
argument types. Here you see the SumC function responsible for adding two complex numbers defined 
by the Complex C data structure: 
 
typedef struct _Complex { 
    double re; 
    double im; 
} Complex; 
 
Complex CINTEROPDLL_API SumC(Complex c1, Complex c2) 
{ 
    Complex ret; 
    ret.re = c1.re + c2.re; 
    ret.im = c1.im + c2.im; 
    return ret; 
} 
 

To invoke this function from F#, you must define a data structure in F# corresponding to the 
Complex C structure. If the memory layout of an instance of the F# structure is the same as that of the 
corresponding C structure, then values can be shared between the two languages. But how can you 
control the memory layout of a managed data structure? Fortunately, the PInvoke specification helps 
with custom attributes that let you specify the memory layout of data structures. The StructLayout 
custom attribute indicates the strategy adopted by the runtime to lay out fields of the data structure. By 
default, the runtime adopts its own strategy in an attempt to optimize the size of the structure, keeping 
fields aligned to the machine world in order to ensure fast access to the structure’s fields. The C 
standard ensures that fields are laid out in memory sequentially in the order they appear in the 
structure definition; other languages may use different strategies. Using an appropriate argument, 
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you can indicate that a C-like sequential layout strategy should be adopted. It’s also possible to provide 
an explicit layout for the structure, indicating the offset in memory for each field of the structure. This 
example uses the sequential layout for the Complex value type: 
 
module CInterop = 
    [<Struct; StructLayout(LayoutKind.Sequential)>] 
    type Complex = 
        val mutable re:double 
        val mutable im:double 
 
        new(r,i) = { re = r; im = i; } 
 
    [<DllImport("CInteropDLL")>] 
    extern Complex SumC(Complex c1, Complex c2) 
 
let c1 = CInterop.Complex(1.0, 0.0) 
let c2 = CInterop.Complex(0.0, 1.0) 
 
let mutable c3 = CInterop.SumC(c1, c2) 
printf "c3 = SumC(c1, c2) = %f + %fi\n" c3.re c3.im; 
 

The SumC prototype refers to the F# Complex value type. But because the layout of the structure in 
memory is the same as the corresponding C structure, the runtime passes the bits that are consistent 
with those expected by the C code. 

Marshalling Parameters 

A critical aspect of dealing with PInvoke is ensuring that values are marshalled correctly between managed 
and native code and vice versa. A structure’s memory layout doesn’t depend only on the order of the fields. 
Compilers often introduce padding to align fields to memory addresses so that access to fields requires 
fewer memory operations, because CPUs load data into registers with the same strategy. Padding may 
speed up access to the data structure, but it introduces inefficiencies in memory usage: there may be gaps 
in the structures, leading to allocated but unused memory. 

Consider, for instance, the following C structure: 

struct Foo { 
    int i; 
    char c; 
    short s; 
}; 

Depending on the compiler decision, it may occupy from 8 to 12 bytes on a 32-bit architecture. The most 
compact version of the structure uses the first 4 bytes for i, a single byte for c, and 2 more bytes for s. If 
the compiler aligns fields to addresses that are multiples of 4, then the integer i occupies the first slot, 4 
more bytes are allocated for c (although only one is used), and the same happens for s. 

Padding is a common practice in C programs; because it may affect performance and memory usage, 
directives instruct the compiler about padding. It’s possible to have data structures with different padding 
strategies running within the same program. 
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The first step you face when using PInvoke to access native code is finding the definition of data 
structures, including information about padding. Then, you can annotate F# structures to have the same 
layout as the native ones, and the CLR can automate the marshalling of data. Note that you can pass 
parameters by reference; thus, the C code may access the memory managed by the runtime, and errors in 
memory layout may result in corrupted memory. For this reason, you should keep PInvoke code to a 
minimum and verify it accurately to ensure that the execution state of the virtual machine is preserved. 
The declarative nature of the interface is a great help in this respect because you must check declarations 
and not interop code. 

Not all the values are marshalled as is to native code; some values may require additional work from the 
runtime. Strings, for instance, have different memory representations between native and managed code. 
C strings are arrays of bytes that are null terminated, whereas runtime strings are .NET objects with a 
different layout. Also, function pointers are mediated by the runtime: the calling convention adopted by the 
CLR isn’t compatible with external conventions, so code stubs are generated that can be called by native 
code from managed code and vice versa. 

In the SumC example, arguments are passed by value, but native code often requires data structures 
to be passed by reference to avoid the cost of copying the entire structure and passing only a pointer to 
the native data. The ZeroC function resets a complex number whose pointer is passed as an argument: 
 
void CINTEROPDLL_API ZeroC(Complex* c) 
{ 
    c->re = 0; 
    c->im = 0; 
} 
 

The F# declaration for the function is the same as the C prototype: 
 
[<DllImport("CInteropDLL")>] 
extern void ZeroC(Complex* c) 
 

Now you need a way to obtain a pointer given a value of type Complex in F#. You can use the && 
operator to indicate a pass by reference; this results in passing the pointer to the structure expected by 
the C function: 
 
let mutable c4 = CInterop.SumC(c1, c2) 
printf "c4 = SumC(c1, c2) = %f + %fi\n" c4.re c4.im 
 
CInterop.ZeroC(&&c4) 
printf "c4 = %f + %fi\n" c4.re c4.im 
 

In C and C++, the notion of objects (or struct instances) and the classes of memory are orthogonal: 
an object can be allocated on the stack or on the heap and share the same declaration. In .NET, this 
isn’t the case; objects are instances of classes and are allocated on the heap, and value types are stored 
in the stack or wrapped into objects in the heap. 

Is it possible to pass objects to native functions through PInvoke? The main issue with objects is 
that the heap is managed by the garbage collector, and one possible strategy for garbage collection is 
copy collection (a technique that moves objects in the heap when a collection occurs). Thus, the base 
address in memory of an object may change over time, which can be a serious problem if the pointer to 
the object has been marshalled to a native function through a PInvoke invocation. The CLR provides 
an operation called pinning that prevents an object from moving during garbage collection. Pinned 
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pointers are assigned to local variables, and pinning is released when the function performing the 
pinning exits. It’s important to understand the scope of pinning: if the native code stores the pointer 
somewhere before returning, the pointer may become invalid but still usable from native code. 

Now, let’s define an object type for Complex and marshal F# objects to a C function. The goal is to 
marshal the F# object to the ZeroC function. In this case, you can’t use the pass-by-reference operator, 
and you must define everything so that the type checker is happy. You can define another function that 
refers to ZeroC but with a different signature involving ObjComplex, which is an object type similar to 
the Complex value type. The EntryPoint parameter maps the F# function onto the same ZeroC C function, 
although in this case the argument is of type ObjComplex rather than Complex: 
 
module CInterop = 
    [<StructLayout(LayoutKind.Sequential)>] 
    type ObjComplex = 
        val mutable re:double 
        val mutable im:double 
 
        new() as x = { re = 0.0; im = 0.0 } 
        new(r:double, i:double) as x = { re = r; im = i } 
 
     [<DllImport("CInteropDLL", EntryPoint="ZeroC")>] 
    extern void ObjZeroC(ObjComplex c) 
 
let oc = CInterop.ObjComplex(2.0, 1.0) 
printf "oc = %f + %fi\n" oc.re oc.im 
CInterop.ObjZeroC(oc) 
printf "oc = %f + %fi\n" oc.re oc.im 
 

In this case, the object reference is marshalled as a pointer to the C code, and you don’t need the && 
operator in order to call the function. The object is pinned to ensure that it doesn’t move during the 
function call. 

Marshalling Strings 
PInvoke defines the default behavior for mapping common types used by the Win32 API. Table 17-1 
shows the default conversions. Most of the mappings are natural, but note that there are several 
entries for strings. This is because strings are represented in different ways in programming 
language runtimes. 

Table 17-1. Default Mapping for Types of the Win32 API Listed in Wtypes.h 

Unmanaged Type 
in Wtypes.h 

Unmanaged  
C Type 

Managed Class Description 

HANDLE void* System.IntPtr 32 bits on 32-bit Windows 
operating systems, 64 bits on 64-
bit Windows operating systems 

BYTE unsigned char System.Byte 8 bits 

SHORT short System.Int16 16 bits 
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Unmanaged Type 
in Wtypes.h 

Unmanaged  
C Type 

Managed Class Description 

WORD unsigned short System.UInt16 16 bits 

INT int System.Int32 32 bits 

UINT unsigned int System.UInt32 32 bits 

LONG long System.Int32 32 bits 

BOOL long System.Int32 32 bits 

DWORD unsigned long System.UInt32 32 bits 

ULONG unsigned long System.UInt32 32 bits 

CHAR char System.Char Decorate with ANSI 

LPSTR char* System.String or 
System.Text.StringBuilder 

Decorate with ANSI 

LPCSTR const char* System.String or 
System.Text.StringBuilder 

Decorate with ANSI 

LPWSTR wchar_t* System.String or 
System.Text.StringBuilder 

Decorate with Unicode 

LPCWSTR const wchar_t* System.String or 
System.Text.StringBuilder 

Decorate with Unicode 

FLOAT Float System.Single 32 bits 

DOUBLE Double System.Double 64 bits 

To see how strings are marshalled, start with a simple C function that echoes a string on the 
console: 
 
void CINTEROPDLL_API echo(char* str) 
{ 
    puts(str); 
} 
 

The corresponding F# PInvoke prototype is as follows: 
 
[<DllImport("CInteropDLL", CallingConvention=CallingConvention.Cdecl)>] 
extern void echo(string s); 
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What happens when the F# function echo is invoked? The managed string is represented by an 
array of Unicode characters described by an object in the heap; the C function expects a pointer to an 
array of single-byte ANSI characters that are null terminated. The runtime is responsible for 
performing the conversion between the two formats, and it’s performed by default when mapping a 
.NET string to an ANSI C string. 

It’s common to pass strings that are modified by C functions, yet .NET strings are immutable. For 
this reason, it’s also possible to use a System.Text.StringBuilder object instead of a string. Instances of 
this class represent mutable strings and have an associated buffer containing the characters of the 
string. You can write a C function in the DLL that fills a string buffer given the size of the buffer: 
 
void CINTEROPDLL_API sayhello(char* str, int sz) 
{ 
    static char* data = "Hello from C code!"; 
    int len = min(sz, strlen(data)); 
    strncpy(str, data, len); 
    str[len] = 0; 
} 
 

Because the function writes into the string buffer passed as an argument, you must take care and 
use a StringBuilder rather than a string to ensure that the buffer has the appropriate room for the 
function to write. You can use the following F# PInvoke prototype: 
 
[<DllImport("CInteropDLL", CallingConvention=CallingConvention.Cdecl)>] 
extern void sayhello(StringBuilder sb, int sz); 
 

Because you have to indicate the size of the buffer, you can use a constructor of the StringBuilder 
class that allows you to do so: 
 
let sb = new StringBuilder(50) 
 
CInterop.sayhello(sb, 50) 
printf "%s\n" (sb.ToString()) 
 

You’ve used ANSI C strings so far, but this isn’t the only type of string. Wide-character strings are 
becoming widely adopted and use 2 bytes to represent a single character; following the C tradition, the 
string is terminated by a null character. Consider a wide-character version of the sayhello function: 
 
void CINTEROPDLL_API sayhellow(wchar_t* str, int sz) 
{ 
    static wchar_t* data = L"Hello from C code Wide!"; 
    int len = min(sz, wcslen(data)); 
    wcsncpy(str, data, len); 
    str[len] = 0; 
} 
 

How can you instruct the runtime that the StringBuilder should be marshalled as a wide-character 
string rather than an ANSI string? The declarative nature of PInvoke helps by providing a custom 
attribute to annotate function parameters of the prototype and to inform the CLR about the 
marshalling strategy to be adopted. The sayhellow function is declared in F# as follows: 
 
[<DllImport("CInteropDLL", CallingConvention=CallingConvention.Cdecl)>] 
extern void sayhellow([<MarshalAs(UnmanagedType.LPWStr)>]StringBuilder sb, int sz); 
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In this case, the MarshalAs attribute indicates that the string should be marshalled as LPWSTR rather 
than LPSTR. 

Function Pointers 
Another important data type that often should be passed to native code is a function pointer. Function 
pointers are widely used to implement callbacks and provide a simple form of functional 
programming; think for instance of a sort function that receives as input the pointer to the comparison 
function. Graphical toolkits have widely used this data type to implement event-driven programming, 
and they often have to pass a function that is invoked by another one. 

PInvoke can marshal delegates as function pointers; again, the runtime is responsible for 
generating a suitable function pointer callable from native code. When the marshalled function 
pointer is invoked, a stub is called, and the activation record on the stack is rearranged to be 
compatible with the calling convention of the runtime. Then, the delegate function is invoked. 

Although in principle the generated stub is responsible for implementing the calling convention 
adopted by the native code receiving the function pointer, the CLR supports only the stdcall calling 
convention for marshalling function pointers. Thus, the native code should adopt this calling 
convention when invoking the pointer; this restriction may cause problems, but in general on the 
Windows platform the stdcall calling convention is widely used. 

The following C function uses a function pointer to apply a function to an array of integers: 
 
typedef int (CALLBACK *TRANSFORM_CALLBACK)(int); 
 
void CINTEROPDLL_API transformArray(int* data, int count, TRANSFORM_CALLBACK fn) 
{ 
    int i; 
    for (i = 0; i < count; i++) 
        data[i] = fn(data[i]); 
} 
 

The TRANSFORM_CALLBACK type definition defines the prototype of the function pointer you’re 
interested in here: a function taking an integer as the input argument and returning an integer as a 
result. The CALLBACK macro is specific to the Microsoft Visual C++ compiler and expands to __stdcall in 
order to indicate that the function pointer, when invoked, should adopt the stdcall calling convention 
instead of the cdecl calling convention. 

The transformArray function takes as input an array of integers with its length and the function to 
apply to its elements. You now have to define the F# prototype for this function by introducing a 
delegate type with the same signature as TRANSFORM_CALLBACK: 
 
type Callback = delegate of int -> int 
 
[<DllImport("CInteropDLL", CallingConvention=CallingConvention.Cdecl)>] 
extern void transformArray(int[] data, int count, Callback transform); 
 

Now, you can increment all the elements of an array by using the C function: 
 
let data = [| 1; 2; 3 |] 
printf "%s\n" (string.Join("; ", (Array.map any_to_string data))) 
 
CInterop.transformArray(data, data.Length, new CInterop.Callback(fun x -> x + 1)) 
printf "%s\n" (string.Join("; ", (Array.map any_to_string data))) 
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PInvoke declarations are concise, but you must pay attention to the fact that for data types such as 
function pointers, parameter passing can be expensive. In general, libraries assume that crossing the 
language boundary causes a loss of efficiency and callbacks are invoked at a price different from 
ordinary functions. In this respect, the example represents a situation where the overhead of PInvoke 
is significant: a single call to transformArray causes a number of callbacks without performing any real 
computation into the native code. 

PInvoke Memory Mapping 
As a more complicated example of PInvoke usage, this section shows you how to benefit from memory 
mapping into F# programs. Memory mapping is a popular technique that allows a program to see a file 
(or a portion of a file) as if it was in memory. This provides an efficient way to access files, because the 
operating system uses the machinery of virtual memory to access files and significantly speed up data 
access on files. After proper initialization, which is covered in a moment, the program obtains a 
pointer into the memory, and access to that portion of memory appears the same as accessing data 
stored into the file.  

You can use memory mapping to both read and write files. Every access performed to memory is 
reflected in the corresponding position in the file. 

This is a typical sequence of system calls in order to map a file into memory: 

1. A call to the CreateFile system call to open the file and obtain a handle to 
the file. 

2. A call to the CreateFileMapping system call to create a mapped file object. 

3. One or more calls to MapViewOfFile and UnmapViewOfFile to map and release 
portions of a file into memory. In a typical usage, the whole file is mapped at 
once in memory. 

4. A call to CloseHandle to release the file. 

The PInvoke interface to the required functions involves simple type mappings as is usual for 
Win32 API functions. All the functions are in kernel32.dll, and the signature can be found in the 
Windows SDK. Listing 17-1 contains the definition of the F# wrapper for memory mapping. 

The SetLastError parameter informs the runtime that the called function uses the Windows 
mechanism for error reporting and that the GetLastError function can be read in case of error; 
otherwise, the CLR ignores such a value. The CharSet parameter indicates the character set assumed, 
and it’s used to distinguish between ANSI and Unicode characters; with Auto, you delegate the runtime 
to decide the appropriate version. 

You can define the generic class MemMap that uses the functions to map a given file into memory. 
The goal of the class is to provide access to memory mapping in a system where memory isn’t directly 
accessible because the runtime is responsible for its management. A natural programming abstraction 
to expose the memory to F# code is to provide an array-like interface where the memory is seen as a 
homogeneous array of values. 

Listing 17-1. Exposing Memory Mapping in F# 

module MMap = 
 
    open System 
    open System.IO 
    open System.Runtime.InteropServices 
    open Microsoft.FSharp.NativeInterop 
    open Printf 
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    type HANDLE = nativeint 
    type ADDR   = nativeint 
 
    [<DllImport("kernel32", SetLastError=true)>] 
    extern bool CloseHandle(HANDLE handler) 
 
    [<DllImport("kernel32", SetLastError=true, CharSet=CharSet.Auto)>] 
    extern HANDLE CreateFile(string lpFileName, 
                             int dwDesiredAccess, 
                             int dwShareMode, 
                             HANDLE lpSecurityAttributes, 
                             int dwCreationDisposition, 
                             int dwFlagsAndAttributes, 
                             HANDLE hTemplateFile) 
 
    [<DllImport("kernel32", SetLastError=true, CharSet=CharSet.Auto)>] 
    extern HANDLE CreateFileMapping(HANDLE hFile, 
                                    HANDLE lpAttributes, 
                                    int flProtect, 
                                    int dwMaximumSizeLow, 
                                    int dwMaximumSizeHigh, 
                                    string lpName) 
 
    [<DllImport("kernel32", SetLastError=true)>] 
    extern ADDR MapViewOfFile(HANDLE hFileMappingObject, 
                              int dwDesiredAccess, 
                              int dwFileOffsetHigh, 
                              int dwFileOffsetLow, 
                              int dwNumBytesToMap) 
 
    [<DllImport("kernel32", SetLastError=true, CharSet=CharSet.Auto)>] 
    extern HANDLE OpenFileMapping(int dwDesiredAccess, 
                                  bool bInheritHandle, 
                                  string lpName) 
 
    [<DllImport("kernel32", SetLastError=true)>] 
    extern bool UnmapViewOfFile(ADDR lpBaseAddress) 
 
    let INVALID_HANDLE = new IntPtr(-1) 
    let MAP_READ    = 0x0004 
    let GENERIC_READ = 0x80000000 
    let NULL_HANDLE = IntPtr.Zero 
    let FILE_SHARE_NONE = 0x0000 
    let FILE_SHARE_READ = 0x0001 
    let FILE_SHARE_WRITE = 0x0002 
    let FILE_SHARE_READ_WRITE = 0x0003 
    let CREATE_ALWAYS  = 0x0002 
    let OPEN_EXISTING   = 0x0003 
    let OPEN_ALWAYS  = 0x0004 
    let READONLY = 0x00000002 
 
    type MemMap<'a> (fileName) = 
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        let ok = 
            match typeof<'a>) with 
            | ty when ty = typeof<int>)     -> true 
            | ty when ty = typeof<int32>)   -> true 
            | ty when ty = typeof<byte>)    -> true 
            | ty when ty = typeof<sbyte>)   -> true 
            | ty when ty = typeof<int16>)   -> true 
            | ty when ty = typeof<uint16>)  -> true 
            | ty when ty = typeof<int64>)   -> true 
            | ty when ty = typeof<uint64>)  -> true 
            | _ -> false 
 
        do if not ok then failwithf  
           "the type %s is not a basic blittable type" ((typeof<'a>).ToString()) 
        let hFile = 
           CreateFile (fileName, 
                         GENERIC_READ, 
                         FILE_SHARE_READ_WRITE, 
                         IntPtr.Zero, OPEN_EXISTING, 0, IntPtr.Zero  ) 
        do if ( hFile.Equals(INVALID_HANDLE) ) then 
            Marshal.ThrowExceptionForHR(Marshal.GetHRForLastWin32Error()); 
        let hMap = CreateFileMapping (hFile, IntPtr.Zero, READONLY, 0,0, null ) 
        do CloseHandle(hFile) |> ignore 
        do if hMap.Equals(NULL_HANDLE) then 
            Marshal.ThrowExceptionForHR(Marshal.GetHRForLastWin32Error()); 
 
        let start = MapViewOfFile (hMap, MAP_READ,0,0,0) 
 
        do  if ( start.Equals(IntPtr.Zero) ) then 
             Marshal.ThrowExceptionForHR( 
                  Marshal.GetHRForLastWin32Error()) 
 
 
        member m.AddressOf(i: int) : 'a nativeptr  = 
             NativePtr.of_nativeint(start + (nativeint i)) 
 
        member m.GetBaseAddress (i:int) : int -> 'a = 
            NativePtr.get (m.AddressOf(i)) 
 
        member m.Item 
            with get(i : int) : 'a = m.GetBaseAddress 0 i 
 
        member m.Close() = 
           UnmapViewOfFile(start) |> ignore; 
           CloseHandle(hMap) |> ignore 
 
        interface IDisposable with 
          member m.Dispose() = 
             m.Close() 
 

The class exposes two properties: Item and Element. The former returns a function that allows 
access to data in the mapped file at a given offset using a function; the latter allows access to the 
mapped file at a given offset from the origin. 
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The following example uses the MemMap class to read the first byte of a file: 
 
let mm = new MMap.MemMap<byte>("somefile.txt") 
 
printf "%A\n" (mm.[0]) 
 
mm.Close() 
 

Memory mapping provides good examples of how easy it can be to expose native functionalities into 
the .NET runtime and how F# can be effective in this task. It’s also a good example of the right way to use 
PInvoke to avoid calling PInvoked functions directly and build wrappers that encapsulate them. 
Verifiable code is one of the greatest benefits provided by virtual machines, and PInvoke signatures 
often lead to nonverifiable code that requires high execution privileges and risks corrupting the 
runtime’s memory. 

A good approach to reduce the amount of potentially unsafe code is to define assemblies that are 
responsible for accessing native code with PInvoke and that expose functionalities in a .NET verifiable 
approach. This way, the code that should be trusted by the user is smaller, and programs can have all 
the benefits provided by verified code. 

Wrapper Generation and Limits of PInvoke 
PInvoke is a flexible and customizable interface, and it’s expressive enough to define prototypes for 
most libraries available. However, in some situations it can be difficult to map directly the native 
interface into the corresponding signature. A significant example is function pointers embedded into 
structures, which are typical C programming patterns that approximate object-oriented programming. 
Here, the structure contains a number of pointers to functions that can be used as methods; but you 
must take care to pass the pointer to the structure as the first argument to simulate the this parameter. 
Oracle’s Berkeley Database (BDB) is a popular database library that adopts this programming pattern. 
The core structure describing an open database is as follows: 
 
struct __db { 
        /* ... */ 
        DB_ENV *dbenv;              /* Backing environment. */ 
        DBTYPE type;               /* DB access method type. */ 
        /* ... */ 
        int  (*close) __P((DB *, u_int32_t)); 
        int  (*cursor) __P((DB *, DB_TXN *, DBC **, u_int32_t)); 
        int  (*del) __P((DB *, DB_TXN *, DBT *, u_int32_t)); 
        // ... 
} 
 

This was impossible to access directly from the PInvoke interface until .NET 2.0, because function 
pointers in managed structures were impossible to describe. With version 2 of the runtime, the 
System.Runtime.InteropServices.Marshal class features the GetFunctionPointerForDelegate for obtaining 
a pointer to a function that invokes a given delegate. The caller of the function must guarantee that the 
delegate object will remain alive for the lifetime of the structure, because stubs generated by the runtime 
aren’t moved by the garbage collector but can still be collected. Furthermore, callbacks must adopt the 
stdcall calling convention: if this isn’t the case, the PInvoke interface can’t interact with the library. 

When PInvoke’s expressivity isn’t enough for wrapping a function call, you can still write an 
adapter library in a native language such as C. This is the approach followed by the BDB# library, 
where an intermediate layer of code has been developed to make the interface to the library 
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compatible with PInvoke. The trick has been, in this case, to define a function for each database 
function, taking as input the pointer to the structure and performing the appropriate call: 
 
DB *db; 
// BDB call 
db->close(db, 0); 
// Wrapper call 
db_close(db, 0); 
 

The problem with wrappers is that they must be maintained manually when the signatures of the 
original library change. The intermediate adapter makes it more difficult to maintain the code’s 
overall interoperability. 

Many libraries have a linear interface that can be easily wrapped using PInvoke, and of course 
wrapper generators have been developed. At the moment, there are no wrapper generators for F#, but 
the C-like syntax for PInvoke declarations makes it easy to translate C# wrappers into F# code. An 
example of such a tool is SWIG, which is a multilanguage wrapper generator that reads C header files 
and generates interop code for a large number of programming languages such as C#. 

Summary 
In this chapter, you saw how F# can interoperate with native code in the form of COM components and 
the standard Platform Invoke interface defined by the ECMA and ISO standards. Neither mechanism is 
dependent on F#, but the language exposes the appropriate abstractions built into the runtime. You 
studied how to consume COM components from F# programs and vice versa, and how to access DLLs 
through PInvoke. 
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Debugging and Testing F# 
Programs 

Anecdotal evidence indicates that functional programming frequently leads to a substantially reduced 
bug rate for good programmers. This is primarily because programs built using functional techniques 
tend to be highly compositional, building correct programs out of correct building blocks. The 
functional programming style avoids or substantially reduces the use of side effects in the program, one 
property that makes programs more compositional. However, debugging and testing are still essential 
activities to ensure that a program is as close as possible to its specifications. Bugs and misbehaviors are 
facts of life, and F# programmers must learn techniques to find and remove them. 

As a result, software testing is an important activity when you’re developing large systems. Tests 
are initially carried out by writing small programs and interactively running them, but a larger 
infrastructure quickly becomes necessary as a system grows and as new functionalities must preserve 
the existing ones. This chapter discusses how you can perform testing with F# using F# Interactive, 
using the debugging facilities provided by Visual Studio and the .NET infrastructure, and using the 
NUnit framework for unit testing. 

A widely adopted debugging technique is the “do-it-yourself-by-augmenting-your-program-with-
printf”  approach. However, this technique suffers from several problems; although it’s useful, it 
shouldn’t be the only technique you’re prepared to apply to the complexities associated with program 
testing and debugging. 

You can use several strategies to test programs and ensure that they behave as expected. The testing 
theory developed by software engineering has introduced several techniques used every day in software 
development. This chapter focuses on three aspects of program debugging and testing with F#: 

• Using the Visual Studio debugger and the .NET debugging framework 

• Using F# Interactive for testing and debugging 

• Doing unit testing using NUnit, a freely available framework for unit testing 

Alternative tools for debugging and unit testing are available, such as the .NET debugger that ships 
with the .NET Framework and the testing framework included in some Visual Studio flavors. The 
concepts behind these tools are similar to those presented here, and the techniques discussed in this 
chapter can be easily adapted when using them. All these techniques and tools are very helpful, but it’s 
important to remember that these are just tools and you must use them in the appropriate way. 
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■ Note Visual Studio 2008 Team System introduced support for unit testing integrated in the UI for programming 
languages shipping with the IDE (C#, VB.NET, and C++). Visual Studio 2010 doesn’t provide support for unit 
testing in F#, even though the language ships with the environment. Nevertheless, you can develop unit tests for 

F# programs using one of the available languages. 

Debugging F# Programs 
Programming systems such as .NET support debugging as a primary activity through tools to help you 
inspect programs for possible errors. The debugger is one of the most important of these tools, and it 
allows you to inspect the program state during execution. You can execute the program stepwise and 
analyze its state during execution. 

Debuggable Programs 

The debugger requires support from debugged programs in order to work properly. For interpreted 
languages, the interpreter supervises program execution, and the debugger must interact with it. Compiled 
languages, on the other hand, must include this support during compilation so that the debugger can 
properly interact with the running program. 

The CLR provides support for program debugging, and compiled programs provide information to the 
debugger via a file with a .pdb file extension, which is the program debugging database. Because the 
compilation process maps high-level programming constructs into equivalent ones in a less expressive 
language (in this case, the intermediate language), some information gets lost during this process even if 
the semantics of the program are preserved. For example, in the intermediate language, the names of local 
variables are referred to as indexes into an array rather than names. A database is used to preserve the 
information about the correspondence between the program instructions and the intermediate language 
instructions. The debugging infrastructure uses it to create the illusion that the program is interpreted at 
the language level, showing the current line of execution in the source code rather than the one in the 
compiled—and actually running—program. The database retains correspondence among intermediate 
language instructions (and those that have been used to generate them) and other important information, 
such as local variable names, that is lost during compilation. The program database is language 
independent so the debugger tool can be shared among programming languages and you can analyze the 
program execution even when a program has been developed with different languages. It’s also possible to 
step through unmanaged code from managed code and vice versa. 

Debugging without the .pdb file is possible, although the debugger is incapable of showing the source 
code; instead, the intermediate code or the machine code is shown to the user. 

Let’s start with the following simple function, which is in principle meant to return true if the input 
string is a palindrome and false otherwise: 
 
let isPalindrome (str:string) = 
    let rec check(s:int, e:int) = 
        if s = e then true 
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        elif str.[s] <> str.[e] then false 
        else check(s + 1, e - 1) 
 
    check(0, str.Length - 1) 
 

The function appears correct at first sight. However, it works only for strings with an odd number of 
characters and strings with an even length that aren’t palindromes. In particular, the program raises an 
exception with the "abba" string as input. 

Let’s see how to use the Visual Studio debugger to figure out the problem with this simple function. 
The algorithm recursively tests the characters of the string pair-wise at the beginning and at the end of 
the string, because a string is a palindrome if the first and last characters are equal and the substring 
obtained by removing them is a palindrome too. The s and e variables define the boundaries of the 
string to be tested and initially refer to the first and last characters of the input string. Recursion 
terminates when the outermost characters of the string to be tested differ or when you’ve tested the 
whole string and the indexes collide. 

Figure 18-1 shows the debugging session of the simple program. You set a breakpoint at the 
instruction that prints the result of the isPalindrome function for the "abba" string by clicking where the red 
circle is shown, which indicates the location of the breakpoint. When you start the program in debug mode, 
its execution stops at the breakpoint, and you can step through the statements. The current instruction is 
indicated by the yellow arrow, and the current statement is highlighted, as shown in Figure 18-1. 

 

Figure 18-1. The Visual Studio debugger 
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You can access the state of the program through a number of windows that show different aspects of 
the running program and that are usually docked at the bottom of the debugging window. For instance, 
you can inspect the state of the local variables of the current method (the Locals window shows the local 
variables and arguments, e and s in this example) or the state of the call stack to see the sequence of 
method calls (the Call Stack window). The Watch view lets you write variable names and simple 
expressions and watch them change during execution. You can also evaluate expressions in the 
Immediate window and invoke methods, as shown in Figure 18-1, where the simple expressions e and s 
are used. More views are available through the Debug menu, including the state of executing threads 
and the memory. 

This simple example examines why isPalindrome misbehaves for an input string of even length. As 
shown in Figure 18-1, the Watch window is used to monitor the s and e variables intended to define the 
bounds of the substring that has yet to be checked; in this case, the two indexes cross without ever 
becoming equal, which is the criterion used to successfully stop the recursion. This happens when s has 
value 2 and e has value 1 in the example. The symptom of the function misbehavior is that an exception 
is thrown; this is frequently where debugging starts. In this example, the exception is thrown a few steps 
forward when e gets value -1, which is an invalid index for accessing a character in a string. If you used 
str[e] as the watch expression or in the Immediate window, the problem would be evident. In more 
complicated situations, the ability to inspect the application state when the exception is raised makes it 
possible to determine what conditions to break on and where to set breakpoints before a bug occurs. 
Now that you’ve found the bug, you can fix it by extending the test from s = e to s >= e to ensure that 
even if the end index becomes smaller than the starting index, you deal with the situation appropriately. 

■ Note In Visual Studio and other Microsoft .NET debugging tools, debugger expressions follow the C# syntax, 
and arrays don’t require the dot before the square braces. The most noticeable differences between C# and F# 

expression syntax are that access to arrays uses [] rather than .[] and the equality operator is == rather than =. 

Using Advanced Features of the Visual Studio Debugger 
This section focuses on relevant aspects of the debugging facilities that the CLR provides to managed 
applications and via tools such as the Visual Studio debugger. 

Consider the notion of a breakpoint—an essential tool to mark a statement in a program where you 
want to suspend execution and inspect the program state. Often, a bug appears only under very specific 
conditions. Trivial bugs such as the one discussed earlier are the easiest to track and the first to be fixed 
in a program. It can be difficult or even impossible to selectively suspend program execution at a 
statement only when certain conditions are met. Many programmers introduce an if statement with a 
dummy statement for the body and set the breakpoint to the statement to suspend the program under 
the defined condition; this requires a recompilation of the program and a change to the source code, 
which may lead to further problems, particularly when several points of the program must be kept under 
control. A more effective strategy is to use conditional breakpoints, a powerful tool offered by the 
debugger. When you right-click a breakpoint in the editor window or in the Breakpoints window 
(accessible through the Debug menu), a number of additional options become available. 

For each breakpoint you can indicate the following: 

• A condition: An expression that must be satisfied by the program state in order to 
suspend program execution 

• A hit count: The number of times the breakpoint should be hit before suspending 
execution 
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• A filter: A mechanism to filter the machine, process, and thread to select the set of 
threads that will be suspended when the breakpoint is hit 

• An action: Something to be executed when the breakpoint is hit 

Breakpoint conditions and hit counts are the most frequently used options. A hit count is useful 
when a bug appears only after a significant period of execution. For instance, when you’re debugging a 
search engine, a bug may occur only after indexing gigabytes of data; the number of hits of the 
breakpoint can be determined.1 Conditional expressions are more useful when it’s difficult to reproduce 
the exact circumstances that trigger a bug, and when the number of times the breakpoint is hit is 
variable. For expressions entered in the Immediate window, conditional expressions are expressed as in 
C#; this is true for all languages, because the debugger infrastructure within the CLR is designed to deal 
with compiled programs and ignores the source language. 

Sometimes you need to debug a running program that has been started without the debugger; a 
typical situation is when you’re debugging a service started through the Service snap-in of the 
Management Console or debugging a web application live that is executed by IIS rather than by the web 
server used for development by Visual Studio. In these situations, you can attach the debugger to a 
running process by selecting Tools ➤  Attach to Process and selecting the process to debug. There are 
standard processes that are generally known to programmers: w3p.exe is used by IIS to run application 
pools where ASP.NET applications run, and the svchost.exe process generally hosts Windows services. 
However, sometimes it can be difficult to find out which process is running the code to debug, because 
several of these generic process hosts run applications. 

Debugging a program significantly slows down its execution speed because the debugger 
infrastructure injects code to monitor program execution. Conditional breakpoints tend to worsen the 
situation because every time the breakpoint is hit, the condition must be tested before standard 
execution resumes. 

The CLR debugging infrastructure operates at the level of compiled assemblies; this has several 
implications. The objects and types that are visible to the debugger are those generated by the compiler 
and aren’t always explicitly defined by you in the source code. The program database information tends 
to preserve the mapping between the source and the compiled program, but sometimes the underlying 
structure surfaces to the user. On the other hand, you can debug programs written in different 
programming languages, even when managed and unmanaged code must interoperate. 

■ Note One tricky problem with F# programs is debugging tail calls. (Chapter 8 described tail calls.) In particular, 
when a tail call is executed, the calling stack frame is removed prior to the call. This means the calls shown in the 

Visual Studio call stack window may not be complete. Entries may be missing that should, logically speaking, be 
present, according to the strict call sequence that caused a program to arrive at a particular point. Likewise, the 
debugger commands step-into and step-out can behave a little unusually when stepping into a tail call. This 

behavior may be absent for programs compiled for debugging because many optimizations are disabled, but it 

appears when you’re debugging a program compiled for release. 

                                                   
1 One of the authors became a fan of this approach when a program he was writing crashed only after crunching 
2GB of input data. The ability to stop the program immediately before the crash made it possible to find a particular 
input sequence that was unexpected. It would have been very difficult to find this bug by printing the state of the 
application. 
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Figure 18-2 shows a debugging session for the program discussed in Chapter 17; you’ve stepped into 
the HelloWorld method, which is a C function accessed through the PInvoke interface as witnessed by 
the Call Stack window. To enable cross-language debugging, you indicate in the project options’ Debug 
section that the debugging scope is the whole program rather than the current project. 

 

Figure 18-2. Cross-language debugging with the Visual Studio debugger 

Instrumenting Your Program with the System.Diagnostics 
Namespace 
A managed application can programmatically access the debugging services of the CLR through the 
types contained in the System.Diagnostics namespace. Several types in the namespace encompass 
aspects of the runtime, including stack tracing, communicating with the debugger, accessing 
performance counters to read statistics about the computer state (memory and CPU usage are typically 
available using them), and handling operating system processes. 

This section focuses on the classes related to debugging and the debugger. You can interact with the 
debugging infrastructure in three primary ways: 

• The Debug class programmatically asserts conditions in the program and outputs 
debugging and tracing information to debuggers and other listeners. 
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• The Debugger class interacts with the debugger, checks whether it’s attached, and 
triggers breaks explicitly from the program. 

• The debugging attributes are a set of custom attributes that you can use to 
annotate the program to control its behavior (see Chapters 9 and 10 for more 
information about custom attributes). 

The Debug class provides a way to output diagnostic messages without assuming that the program has 
been compiled as a console application; the debug output is collected by one or more listeners that receive 
the output notifications and do something with them. Each listener is an instance of a class inherited from 
the TraceListener class and typically sends the output to the console or to a file, or notifies the user with a 
dialog box (you can find more information about how to write a listener in the class library 
documentation). The following example instruments the isPalindrome function with tracing statements: 
 
let isPalindrome (str:string) = 
    let rec check(s:int, e:int) = 
        Debug.WriteLine("check call") 
        Debug.WriteLineIf((s = 0), "check: First call") 
        Debug.Assert((s >= 0 || s < str.Length), sprintf "s is out of bounds: %d" s) 
        Debug.Assert((e >= 0 || e < str.Length), sprintf "e is out of bounds: %d" e) 
        if s = e || s = e + 1 then true 
        else if str.[s] <> str.[e] then false 
        else check(s + 1, e - 1) 
  check(0, str.Length - 1) 
 

The WriteXXX methods of the Debug class output data of a running program and are a sophisticated 
version of the printf debugging approach, where the program is enriched with print statements that 
output useful information about its current state. In this case, however, you can redirect all the messages 
to different media rather than just print them to the console. You can also conditionally output messages 
to reduce the number of messages sent to the debug output. The example outputs a message each time 
the check method is invoked and uses the conditional output to mark the first invocation. 

■ Note By default, the diagnostic output isn’t sent to the console on Windows. When a program is executed in 
debugging mode in Visual Studio, the output is sent to the Output window. Otherwise, you need a tool such as 
DebugView, available on Microsoft TechNet. F# Interactive doesn’t output any debug assertions being compiled 

for release. 

Assertions are a well-known mechanism to assert conditions about the state of a running program, 
ensuring that at a given point in the program, certain preconditions must hold. For instance, assertions 
are often used to ensure that the content of an option-valued variable isn’t None at some point in the 
program. During testing, you should ensure that if this precondition isn’t satisfied, program execution is 
suspended as soon as possible. This avoids tracing back from the point where the undefined value of the 
variable would lead to an exception. The Assert method lets you specify a Boolean condition that must 
hold; otherwise, the given message is displayed, prompting the user with the failed assertion. 

Both debug output and assertions are statements that typically are useful during program 
development; but when a release is made, these calls introduce unnecessary overhead. Often, the program 
compiled with these extra checks is called the checked version of the program. The .NET Framework 
designers devised a general mechanism to strip out the calls to methods under a particular condition with 
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the help of the compiler. The ConditionalAttribute custom attribute is used to label methods whose calls 
are included in the program only if a given compilation symbol is defined; for the methods in the Debug 
type, it’s the DEBUG symbol. The F# compiler supports this mechanism, making it possible to use these tools 
to instrument the F# program in a way that is supported by the .NET infrastructure. 

The Debugger type lets you check whether the program is attached to a debugger and to trigger a 
break if required. You can also programmatically launch the debugger using this type and send log 
messages to it. This type is used less often than the Debug type, but it may be useful if a bug arises only 
when there is no attached debugger. In this case, you can programmatically start the debugging process 
when needed. 

Another mechanism that lets you control the interaction between a program and the debugger is 
based on a set of custom attributes in the System.Diagnostics namespace. Table 18-1 shows the 
attributes that control in part the behavior of the debugger. 

Table 18-1. Attributes Controlling Program Behavior Under Debug 

Attribute Description 

DebuggerBrowsableAttribute Determines whether and how a member is displayed in the 
Debug window. 

DebuggerDisplayAttribute Indicates how a type or field should be displayed in the Debug 
window. 

DebuggerHiddenAttribute The debugger may interpret this attribute and forbid 
interaction with the member annotated by it. 

DebuggerNonUserCodeAttribute Marks code that isn’t user written (for instance, designer-
generated code) and that can be skipped to avoid complicating 
the debugging experience. 

DebuggerStepperBoundaryAttribute Locally overrides the use of DebuggerNonUserCodeAttribute. 

DebuggerStepThroughAttribute The debugger may interpret this attribute and disallow 
stepping into the target method. 

DebuggerTypeProxyAttribute Indicates a type that is responsible for defining how a type is 
displayed in the Debug window. It may affect debugging 
performance and should be used only when it’s really necessary 
to radically change how a type is displayed. 

DebuggerVisualizerAttribute Indicates for a type the type that defines how to render it while 
debugging. 

These attributes allow you to control two aspects of debugging: how data is visualized by the 
debugger and how the debugger should behave with respect to the visibility of members. 

The ability to control how types are displayed by the debugger can help you produce customized 
views of data that may significantly help you inspect the program state in an aggregate view. The easiest 
way is to use DebuggerDisplayAttribute, which supports customizing the text associated with a value in 
the Debug window; an object of that type can still be inspected in every field. Consider the following 
simple example: 
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 [<DebuggerDisplay("{re}+{im}i")>] 
type MyComplex= 
    { re : double 
      im : double } 
let c = { re = 0.0; im = 0.0 } 
Console.WriteLine("{0}+{1}i", c.re, c.im) 
 

Here, you introduce a record named MyComplex with the classic definition of a complex number. The 
DebuggerDisplayAttribute attribute is used to annotate the type so that the debugger displays its 
instances using the mathematical notation rather than just displaying the type name. The syntax 
allowed assumes that curly braces are used to indicate the name of a property whose value should be 
inserted in the format string. Figure 18-3 shows the result in the Visual Studio debugger: on the left is 
how the debugger window appears when MyComplex is without the DebuggerDisplay annotation; on the 
right, the custom string appears, with the properties in the string in curly braces. As you can see, the 
difference is in the value field, and the structure can still be inspected. You can use a custom visualizer to 
fully customize the appearance of the data in the debugger, but it may affect debugging performance. 

 

Figure 18-3. The MyComplex type shown by the debugger without and with DebuggerDisplay 

Figure 18-3 is also interesting because it shows how the debugger displays information from the 
compiled program. In this case, the association between the name c and the runtime local variable has 
been lost, and the record appears because it has been compiled by the compiler as a pair of fields and 
public properties. 

The rest of the namespace contains classes to interact with the runtime: the event-logging 
infrastructure, process and thread management, and the representation of a thread’s stack. Stack 
manipulation can be useful if you need to know the call sequence that leads to executing a particular 
method. The StackTrace type exposes a list of StackFrame objects that provide information about each 
method call on the stack. 

Debugging Concurrent and Graphical Applications 
Although a debugger is a fundamental tool for inspecting applications, it isn’t the Holy Grail, and it must 
be used carefully: be aware that the process interferes with an application’s normal execution. The most 
relevant impact of the debugging process on a running program is the influence on execution timing; 
and graphical and concurrent programs are much more prevalent these days. Sometimes, a bug 
disappears while the debugger is being used, due to these changes in execution timing. 

Debugging and testing concurrent applications can be particularly difficult because using a 
debugger is guaranteed to alter execution timing. There is no general rule for debugging concurrent 
applications, but this section briefly discusses how you can use the debugger in these cases. Consider 
this simple example of a multithreaded application: 
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open System 
open System.Threading 
 
 
let t1 = Thread(fun () -> 
    while true do 
      printf "Thread 1\n" 
) 
let t2 = Thread(fun () -> 
    while true do 
      printf "Thread 2\n" 
) 
t1.Start() 
t2.Start() 

■ Note If you run this example in F# Interactive, you must abort the thread explicitly by calling the Abort method, 
right-clicking the F# Interactive window, and choosing Cancel Evaluation. If it doesn’t resume, you may have to kill 

the fsi.exe process that is using the CPU most. This is a common solution when a computation gets out of 

control during interactive sessions. 

Threads t1 and t2 access the console, which is a shared resource; when you run the program 
without a debugger attached, the string printed by the two threads appears interleaved on the console. If 
you set a breakpoint on the two printf statements and start a debugging session, stepping automatically 
moves from one thread to the other; the output of the program is completely different from that 
obtained without debugging. This is true also if you disable the breakpoints. The output is even more 
unbalanced if you set the breakpoint in only one of the two threads. 

Chapter 13 discussed shared-memory multithreaded applications. In such applications, shared 
objects accessed by different threads are critical resources that may be viewed in the debugger. If the 
debug of a single thread fails, setting breakpoints in different threads may help you study the dynamic of 
the application, even if the full interaction of the threads can’t be fully simulated. If this approach fails, it 
may be useful to introduce tests inside the application and use the Debugger type only when a given 
condition occurs. Channel-based message-passing applications are generally easier to debug than those 
that rely on shared memory, because you can monitor the communication end points using breakpoints 
or logging messages. Although careful use of the debugger may help when you’re debugging concurrent 
applications, sometimes external observation is enough to influence a running program. In these cases, 
tracing through debug output becomes a viable alternative; large systems have different levels of traces 
to monitor program execution. 

Graphical applications also present issues when you’re debugging. As discussed in Chapter 11, a 
GUI application’s event loop is handled by a single thread; if this is blocked, the application’s GUI ceases 
working while it’s suspended in the debugger. Consider the following simple application: 
 
open System 
open System.Windows.Forms 
 
let f = new Form(Text="Hello world") 
let b = new Button(Text="Click me!", Dock=DockStyle.Fill) 
b.Click.Add(fun _ -> 
    b.Text <- "Click me again" 
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    MessageBox.Show("Hello world") |> ignore 
) 
f.Controls.Add(b) 
 
f.Show() 
 
Application.Run(f) 
 

If you set a breakpoint at the MessageBox statement and debug the application, then when the 
button is clicked, the debugger suspends execution, and the form stops responding. The text of the 
button doesn’t change until execution resumes, because the thread suspended by the debugger is 
responsible for handling GUI events, including the paint event that refreshes the button’s content and 
updates the button label. 

More specifically, event handlers can affect the appearance of a form in two ways: by setting 
properties of graphical controls and by explicitly drawing using a Graphics object. In the first case, the 
change isn’t noticed until execution resumes; the property change usually asks for a refresh of the 
control’s appearance, which eventually results in a paint event that must be processed by the thread 
that is suspended in the debugger. In the second case, updates are immediately visible when a statement 
involving drawing primitives is executed (unless double buffering has been enabled on the window). 

For example, consider the following program, which displays a window with a number of vertical lines: 
 
open System 
open System.Windows.Forms 
open System.Drawing 
 
let f = new Form(Text="Hello world") 
f.Paint.Add(fun args -> 
    let g = args.Graphics 
 
    for i = 0 to f.Width / 10 do 
        g.DrawLine(Pens.Black, i*10, 0, i*10, f.Height) 
 
) 
f.Show() 
Application.Run(f) 
 

Set a breakpoint at the DrawLine statement and start debugging the application, moving the 
debugger window in order to make the application form visible. If you continue the execution one 
statement at a time, you can see the lines appear on the form. In this case, the interaction with the 
graphical system doesn’t trigger an event but interacts directly with the Graphics object by emitting 
graphic primitives that are rendered immediately. 

This discussion of debugging graphical applications uses examples based on Windows Forms. The 
same considerations apply to all event systems where a thread is responsible for event notification. For 
graphical systems such as WPF, based on the retention of graphic primitives, things work slightly 
differently, but there are analogous considerations. 

Debugging and Testing with F# Interactive 
Functional programming languages have traditionally addressed many debugging and testing issues 
through the ability to interactively evaluate program statements and print the values of variables, 
inspecting the program state interactively. F# Interactive allows you to execute code fragments and 
quickly test them; you can also inspect the state of the fsi script by querying values from the top level. 
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Development and testing using F# Interactive can effectively reduce development time, because 
you can evaluate code fragments more than once without having to recompile the entire system. The 
Visual Studio project system for F# makes this process even more productive because code is edited in 
the development environment with type checking and IntelliSense; you can send code to F# Interactive 
by selecting it and pressing the Alt+Enter shortcut. In this scenario, the isPalindrome function from the 
previous section could have been developed incrementally and tested by invoking it with a test input 
argument. After you found and fixed the issue, you could them evaluate the function definition again 
and test it for further bugs. 

During software development, it’s common practice to write simple programs to test specific 
features (the “Unit Testing” section discuses this topic more extensively). With F# Interactive, you can 
define tests as functions stored in a file and selectively evaluate them in Visual Studio. This approach can 
be useful in developing and defining new tests, but you can use more specific tools to run tests in a more 
organic way. 

Controlling F# Interactive 
As you saw in Chapter 9, programs run in F# Interactive have access to an object called fsi that lets you 
control some aspects of the interactive execution. It’s contained in the assembly 
FSharp.Interactive.Settings.dll, which is automatically referenced in files ending with .fsx and in F# 
Interactive sessions. 

Table 18-2 shows some of the methods supported by this object. 

Table 18-2. Members of the fsi Object 

Member Type Description 

fsi.FloatingPointFormat string Gets or sets the format used for floating-point 
numbers, based on .NET Formatting specifications 

fsi.FormatProvider System.IFormat 
Provider 

Gets or sets the cultural format used for numbers, 
based on .NET Formatting specifications 

fsi.PrintWidth int Gets or sets the print width used for formatted text 
output 

fsi.PrintDepth int Gets or sets the depth of output for tree-structured 
data 

fsi.PrintLength int Gets or sets the length of output for lists and other 
linear data structures 

fsi.ShowProperties bool Gets or sets a flag indicating whether properties 
should be printed for displayed values 

fsi.ShowDeclarationValues bool Gets or sets a flag indicating whether declaration 
values should be printed 

fsi.ShowIEnumerable bool Gets or sets a flag indicating whether sequences 
should be printed in the output of the interactive 
session 
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Member Type Description 

fsi.AddPrinter ('a -> string) 
-> unit 

Adds a printer for values compatible with the 
specific type 'a 

fsi.AddPrintTransformer ('a -> obj) -> 
unit 

Adds a printer that shows any values compatible 
with the specific type 'a as if they were values 
returned by the given function 

fsi.CommandLineArgs string[] Gets the command-line arguments after ignoring 
the arguments relevant to the interactive 
environment and replacing the first argument with 
the name of the last script file 

Some Common F# Interactive Directives 
Table 18-3 shows several common directives accepted by F# Interactive, some of which correspond to 
options for the F# command-line compiler. 

Table 18-3. Some Commonly Used F# Interactive Directives 

Directive Description 

#r path References a DLL. The DLL is loaded dynamically when first required. 

#I path Adds the given search path to that used to resolve referenced DLLs. 

#load file ... file Loads the given file(s) as if it had been compiled by the F# command-line 
compiler. 

#time Toggles timing information on/off. 

#quit Exits F# Interactive. 

Understanding How F# Interactive Compiles Code 
Although F# Interactive is reminiscent of the read-eval-print loops of interpreted languages, it’s 
substantially different because it compiles code rather than interprets it. Whenever a code fragment is 
typed at the top level, it’s compiled on the fly as part of a dynamic assembly and evaluated for side 
effects. This is particularly important for types because you can create new ones at the top level and their 
dependencies may be tricky to understand fully.  

Let’s start with an example of a nontrivial use of F# Interactive that shows these intricacies. You 
define the class APoint, which represents points using an angle and a radius: 
 
type APoint(angle,radius) = 
    member x.Angle = angle 
    member x.Radius = radius 
    new() = APoint(angle=0.0, radius=0.0) 
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If you create an instance of the class using F# Interactive, you can inspect the actual type by using 
the GetType method. The output is as follows: 

> let p = APoint();; 
val p : APoint 
 
> p.GetType();; 
val it : System.Type 
= FSI_0002+APoint 
    {Assembly = FSI-ASSEMBLY, Version=0.0.0.0, Culture=neutral, PublicKeyToken=null; 
     AssemblyQualifiedName = "FSI_0002+APoint, FSI-ASSEMBLY, Version=0.0.0.0, ... } 

Now, suppose you want to extend the APoint class with an additional member that stretches the 
point radius a given amount; it’s natural to type the new definition of the class into the top level and 
evaluate it. F# Interactive doesn’t complain about the redefinition of the type: 
 
type APoint(angle,radius) = 
    member x.Angle = angle 
    member x.Radius = radius 
    member x.Stretch (k:double) = APoint(angle=x.Angle, radius=x.Radius + k) 
    new() = APoint(angle=0.0, radius=0.0) 
 

Because you’ve redefined the structure of APoint, you may be tempted to invoke the stretch 
method on it, but doing so results in an error: 

> p.Stretch(22.0);; 
  p.Stretch(22.0);; 
  --^^^^^^^^ 
 
stdin(2,2): error: FS0039: The field, constructor or member 'Stretch' is not defined. 

To understand what’s happening, create a new instance p2 of the class APoint and ask for the type: 

> let p2 = APoint();; 
val p2 : APoint 
 
> p2.GetType();; 
val it : System.Type 
= FSI_0005+APoint 
    {Assembly = FSI-ASSEMBLY, Version=0.0.0.0, Culture=neutral, PublicKeyToken=null; 
     AssemblyQualifiedName = "FSI_0005+APoint, FSI-ASSEMBLY, Version=0.0.0.0, ... } 

As you can see, the name of p2’s type is FSI_0005+APoint, whereas p’s type is FSI_0002+APoint. Under 
the hood, F# Interactive compiles types into different modules to ensure that types can be redefined; it 
also ensures that the most recent definition of a type is used. The older definitions are still available, and 
their instances aren’t affected by the type redefinition. 
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Understanding the inner mechanisms of F# Interactive is useful when you use it to test F# programs, 
because interactive evaluation isn’t always equivalent to running code compiled using the command-
line compiler. On the other hand, the compiled nature of the system guarantees that the code executed 
by F# Interactive performs as well as compiled code. 

F# Interactive and Visual Studio 
The relation between Visual Studio and F# Interactive is different from typical Visual Studio add-ins. It’s 
useful to understand because the state of an F# Interactive session is separate from the Visual Studio 
state and can affect the process of testing and debugging in many subtle ways. You can also manage 
external resources through .NET and COM interfaces, including automating Visual Studio tasks, but 
accessing its interfaces is less easy than it may appear at first. 

F# Interactive is a Visual Studio tool window2 that lets you interact with an fsi.exe process like a 
standard console. You communicate with the fsi.exe process using standard streams. This design 
choice ensures that a code mistake that causes the F# Interactive to hang doesn’t affect the Visual Studio 
editor that contains the data. You can restart F# Interactive from the tool window and obtain a fresh new 
instance without having to restart Visual Studio. 

Restarting F# Interactive during testing and debugging ensures a clean environment. Consider, for 
example, a class whose instances open the same file. During a test, the file may be locked by an instance 
and become inaccessible due to variable redefinition; at some point, the garbage collector runs the 
finalizer and may close the file, slowing the iterative process of testing with F# Interactive. Sometimes, 
redefinition causes problems too: a class definition may be evaluated before you make additional 
changes, and the interface may then behave differently than the one in the program editor; you may 
continue to evaluate code that refers to the older version. In these cases, restarting F# Interactive is an 
option and returns you to a clean state. 

Using Visual Studio automation, you can use F# Interactive to access objects exposing functionalities 
of the programming environment. The DTE and the DTE2 interfaces are the entry points to the entire Visual 
Studio object model. For instance, you can print the full path of the active document window: 
 
#r @"EnvDTE.dll" 
#r @"EnvDTE80.dll" 
open System.Runtime.InteropServices 
let appObj =Marshal.GetActiveObject("VisualStudio.DTE") :?> EnvDTE80.DTE2 
printfn "%s" (appObj.ActiveDocument.FullName) 
 

You use the GetActiveObject method to obtain a reference to the Visual Studio object model, and 
then you use the .NET assembly containing the interface generated from the COM types to access the 
object model. In this example, you connect to a running instance of Visual Studio (usually the first one 
started), not necessarily the same one associated with the F# Interactive executing the code. To attach to 
a specific instance of Visual Studio, you need to access the COM Running Object Table and associate 
with the desired instance. 

Using Visual Studio automation, you can automate several tasks during testing and debugging, 
including building temporary configurations within Visual Studio for testing purposes. Manipulation 
of Visual Studio elements isn’t restricted to F# projects, but it can affect any area also affected by the 
macro system. 

                                                   
2 Tool windows in Visual Studio are dockable, like the Solution Explorer window. 
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VSLab 

VSLab is an open source project developed at the University of Pisa under contract by Microsoft. Its aim is 
to permit F# Interactive to interactively define and control Visual Studio tool windows. The project is 
available on CodePlex (http://vslab.codeplex.com). It defines an environment similar to MatLab and 
Mathematica, in which data can be interactively manipulated by using F# Interactive capabilities and 
displayed using tool windows containing graphics. 

The system is a sophisticated example of Visual Studio interoperability and object-oriented programming 
with F#. Tool windows (viewlets, in VSLab terminology) are created by an add-in communicating with the 
running instance of F# Interactive. A viewlet is a special kind of Windows Forms control that draws its 
content into an associated tool window even if it belongs to a different process. 

Chapter 11 discussed how you can achieve similar results by opening Forms from F# Interactive. But 
viewlets are tool windows, so they fully integrate with the Visual Studio windowing system and support the 
docking and effective management that are necessary to orchestrate many different data views. 

Unit Testing 
Software testing is an important task in software development; its goal is to ensure that a program or a 
library behaves according to the system specifications. It’s a significant area of software-engineering 
research, and tools have been developed to support increasing efforts in software verification. Among a 
large number of testing strategies, unit testing has rapidly become popular because of the software tools 
used to support this strategy. The core idea behind this approach involves writing small programs to test 
single features of a system during development. When bugs are found, new unit tests are added to 
ensure that a particular bug doesn’t occur again. Recently, it’s been proposed that testing should drive 
software development, because tests can be used to check new code and later to conduct regression 
tests, ensuring that new features don’t affect existing ones. 

This section discusses how you can develop unit tests in F# using the freely available NUnit tool 
(www.nunit.com). The tool was inspired by JUnit, a unit-testing suite for the Java programming language, 
but the programming interface has been redesigned to take advantage of the extensible metadata that 
the CLR provides by means of custom attributes. 

Let’s start with an example and develop a very simple test suite for the isPalindrome function. The 
first choice you face is whether tests should be embedded in the application. If you create tests as a 
separated application, you can invoke only the public interface of your software; features internal to the 
software can’t be tested directly. On the other hand, if you embed unit tests in the program, you 
introduce a dependency from the nunit.framework.dll assembly, and the unit tests are available at 
runtime even where they aren’t needed. Because the NUnit approach is based on custom attributes, 
performance isn’t affected in either case. If you use tests during program development, it’s more 
convenient to define them inside the program; in this case, conditional compilation may help to include 
them only in checked builds. 

Listing 18-1 shows a test fixture for the isPalindrome function—that is, a set of unit tests. Test 
fixtures are represented by a class annotated with the TestFixture custom attribute; tests are instance 
methods with the signature unit -> unit and annotated with the Test custom attribute. Inside a test 
case, you use methods of the Assert class to test conditions that must be satisfied during the test. If one 
of these fails, the entire test is considered a failure, and it’s reported to the user by the tool that 
coordinates test execution. 
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Listing 18-1. A Test Fixture for the isPalindrome Function 

open System 
open NUnit.Framework 
open IsPalindrome 
 
[<TestFixture>] 
type Test() = 
 
    let posTests(strings) = 
        for s in strings do 
            Assert.That(isPalindrome s, Is.True, 
                          sprintf "isPalindrome(\"%s\") must return true" s) 
 
    let negTests(strings) = 
        for s in strings do 
            Assert.That(isPalindrome s, Is.False, 
                           sprintf "isPalindrome(\"%s\") must return false" s) 
 
    [<Test>] 
    member x.EmptyString () = 
        Assert.That(isPalindrome(""), Is.True, 
                      "isPalindrome must return true on an empty string") 
 
    [<Test>] 
    member x.SingleChar () = posTests ["a"] 
 
    [<Test>] 
    member x.EvenPalindrome () = posTests [ "aa"; "abba"; "abaaba" ] 
 
    [<Test>] 
    member x.OddPalindrome () = posTests [ "aba"; "abbba"; "abababa" ] 
 
    [<Test>] 
    member x.WrongString () = negTests [ "as"; "F# is wonderful"; "Nice" ] 
 

Test units are methods that invoke objects of the program and test return values to be sure their 
behavior conforms to the specification. This example also introduces the posTests and negTests 
functions used in several tests.  

Developing unit tests is a matter of defining types containing the tests. Although you can write a 
single test for a program, it’s a good idea to have many small tests that check various features and 
different inputs. In this case, you introduce five tests: one for each significant input to the function. You 
could develop a single test containing all the code used for the individual tests; but as you see shortly, 
doing so would reduce the test suite’s ability to spot problems in the program. In general, the choice of 
the test suite’s granularity for a program is up to you; it’s a matter of finding a reasonable tradeoff 
between having a large number of unit tests checking very specific conditions and having a small 
number of unit tests checking broader areas of the program. 

To compile the project, you must reference the nunit.framework.dll assembly. After the program 
has been compiled, you can start NUnit and open the executable. 

As shown in Figure 18-4, the assembly containing the unit tests is inspected using the CLR’s 
reflection capabilities, classes annotated with the TestFixture attribute are identified by NUnit, and 
searched-for methods are annotated with the Test attribute. Initially, all the fixtures and the tests are 
marked with gray dots. When you run tests, the dot is colored green or red depending on the outcome of 
the particular test. 
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Figure 18-4. Test unit of isPalindrome executed in NUnit 

If you reintroduce the original bug in the isPalindrome function and run NUnit again, EmptyString 
and EvenPalindrome fail, the corresponding dots are marked red, and the Errors and Failures tabs 
contain details about the test failure. This is the main benefit of having a large number of small unit 
tests: tools can run them automatically to identify problems in a program as well as the area potentially 
involved in the problem. Even in this simple example, a single test for the entire function would indicate 
the problem with the function, although it would fail to spot the kind of input responsible for the issue. 

Like every other piece of software, unit tests must be maintained, documented, and updated to 
follow the evolution of the software for which they’re designed. The number of test cases, organized in 
fixtures, tends to grow with the system during development, and a large system may have thousands of 
these tests. Tools such as NUnit have features to control tests and allow you to run subsets of the entire 
set of test cases for a system. Test fixtures are a form of grouping: a test suite may contain different test 
fixtures that may group test cases for different aspects to be tested. 

NUnit features a number of additional attributes to support the documentation and classification of 
test cases and test fixtures. The Description attribute lets you associate a description with annotated test 
fixtures and test cases. You can use the Category and Culture attributes to associate a category and a 
culture string with test fixtures and test cases; in addition, to provide more information about tests, 
NUnit lets you filter tests to be run using the content of the attributes. The ability to select the tests that 
must be run is important, because running all tests for a system may require a significant amount of 
time. Other mechanisms to control the execution of tests are offered by the Ignore and Explicit 
attributes; you can use the former to disable a test fixture for a period without having to remove all the 
annotations, and the latter indicates that a test case or a fixture should only be run explicitly. 

Another important aspect of testing nontrivial software is the test fixture’s life cycle. Test cases are 
instance methods of a class; and with a simple experiment, you can easily find that NUnit creates an 
instance of the class and runs all the tests it contains. To verify this, it’s enough to define a counter field 
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in the class annotated as a fixture and update its value every time a test is run; the value of the counter is 
incremented for each test in the suite. Although you may rely on the standard life cycle of the class, 
NUnit provides additional annotations to indicate the code that must be run to set up a fixture and the 
corresponding code to free the resources at the end of the test; you can also define a pair of methods that 
are run before and after each test case. The TestFixtureSetUp and TestFixtureTearDown attributes 
annotate methods to set up and free a fixture; SetUp and TearDown are the attributes for the 
corresponding test cases. 

Listing 18-2 shows a test fixture for the isPalindrome function that includes most of the attributes 
discussed and one test case.3 You mark the category of this test case as a “Special case.” You also include 
a description for each test case and the methods invoked before and after the fixture and single test cases 
are run. NUnit’s graphical interface includes a tab that reports the output sent to the console; when tests 
run, the output shows the invocation sequence of the setup and teardown methods. 

Listing 18-2. A Refined Test Fixture for the isPalindrome Function 

open System 
open NUnit.Framework 
 
[<TestFixture; 
  Description("Test fixture for the isPalindrome function")>] 
type Test() = 
    [<TestFixtureSetUp>] 
    member x.InitTestFixture () = 
        printfn "Before running Fixture" 
 
    [<TestFixtureTearDown>] 
    member x.DoneTestFixture () = 
        printfn "After running Fixture" 
 
    [<SetUp>] 
    member x.InitTest () = 
        printfn "Before running test" 
 
    [<TearDown>] 
    member x.DoneTest () = 
        Console.WriteLine("After running test") 
 
    [<Test; 
      Category("Special case"); 
      Description("An empty string is palindrome")>] 
    member x.EmptyString () = 
        Assert.That(isPalindrome(""), Is.True, 
                      "isPalindrome must return true on an empty string") 
 

The ability to set up resources for test cases may introduce problems during unit testing; in 
particular, you must treat the setup and teardown methods of test fixtures carefully, because the state 
shared by different test cases may affect the way they execute. Suppose, for instance, that a file is open 
during the setup of a fixture. This may save time because the file is opened only once and not for each 
test case. If a test case fails and the file is closed, subsequent tests may fail because they assume the file 

                                                   
3 To run the example, you must include the definition of the isPalindrome function. 
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has been opened during the fixture’s setup. Nevertheless, in some situations, preloading resources only 
once for a fixture may save significant time. 

NUnit comes with two versions of the tool: one displaying the graphical interface shown in Figure 
18-4, and a console version that prints results to the console. Both versions are useful; the windowed 
application is handy to produce reports about tests and interactively control test processing, and the 
console version can be used to include the test process in a chain of commands invoked via scripts. Also, 
other programs can read the tool’s output to automate tasks after unit tests. A large number of 
command-line arguments are available in the console version to specify all the options available, 
including test filtering based on categories. 

When a unit test fails, you must set up a debugging session to check the application state and the 
reason for the failure. You can debug tests with the Visual Studio debugger by configuring the Debug tab 
in the project properties in a similar way, as shown in Figure 18-5. After it’s configured, you can set 
breakpoints in the code and start the debugging session as usual. This is important when code 
development is driven by tests, because new features can be implemented alongside test cases. It’s a 
good way to capitalize on the small test programs that developers frequently write: these small programs 
become test cases and can be collected without having to develop a new test program each time. 

The example shown in Figure 18-5 passes a single argument to nunit-console.exe, the assembly 
containing the tests to be executed. You can also specify an additional argument to filter the tests that 
must be run. In this example, if you set a breakpoint in one of the test cases annotated explicitly, the 
debugger doesn’t stop, because by default these tests are skipped. 

 

Figure 18-5. Configuring an F# project for debugging NUnit test fixtures 
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■ Note This section shows how you can use NUnit to define test cases using F#. However, NUnit isn’t the only 

tool for unit testing that’s available for .NET. For example, Visual Studio includes powerful unit-testing tools.  

Summary 
This chapter introduced techniques and tools you can use to debug F# programs and automate the 
execution of unit tests. Because testing and debugging activities relate to the execution of programs, 
these tools tend to work on the compiled version of a program, relying on additional information such as 
metadata exposed through the reflection API or program debug database information files generated by 
compilers. Programming languages such as F# that feature programming abstractions don’t map 
directly to the CLR intermediate language and type system; as a result, compilation details may surface 
when you use tools that operate on compiled assemblies. Nevertheless, these are valuable tools for 
developing large systems. 

The next chapter covers another set of software engineering issues for F# code: library design in the 
context of F# and .NET. 
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Designing F# Libraries 

This book deals with F#, a language situated in the context of .NET-based software construction and 
engineering. As an expert F# programmer, you need more than knowledge of the F# language; you also 
need to use a range of software-engineering tools and methodologies wisely to build software that is 
truly valuable for the situation where it’s deployed. The previous chapter touched on some important 
tools. This final chapter looks at some of the methodological issues related to F# library design: 

• Designing vanilla .NET libraries that minimize the use of F#-specific constructs, 
according to existing .NET design conventions 

• Elements of functional programming design methodology, which offers important 
and deep insights into programming but doesn’t address several important 
aspects of the library or component design problems 

• Specific suggestions for designing .NET and F# libraries, including naming 
conventions, how to design types and modules, and guidelines for using 
exceptions 

F# is often seen as a functional language; but as this book emphasizes, it’s really a multiparadigm 
language. The OO, functional, imperative, and language-manipulation paradigms are all well 
supported. That is, F# is a function-oriented language—many of the defaults are set up to encourage 
functional programming, but programming in the other paradigms is effective and efficient, and a 
combination is often best of all. Nonetheless, a multiparadigm language brings challenges for library 
designs and coding conventions.  

It’s a common misconception that the functional and OO programming methodologies compete; in 
fact, they’re largely orthogonal. However, it’s important to note that functional programming doesn’t 
directly solve many of the practical and prosaic issues associated with library design—for solutions to 
these problems, you must look elsewhere. In the context of .NET programming, this means turning first 
to the .NET Library Design Guidelines, published online by Microsoft and as a book by Addison-Wesley.  

In the official documents, the .NET library design is described in terms of conventions and 
guidelines for the use of the following constructs in public framework libraries: 

• Assemblies, namespaces, and types (see Chapters 6 and 7 in this book) 

• Classes and objects, containing properties, methods, and events (see Chapter 6) 

• Interfaces (in other words, object interface types; see Chapter 6) 

• .NET delegate types (mentioned briefly in Chapters 5 and 6) 

• Enumerations (that is, enums from languages such as C#; mentioned briefly in 
Chapter 6) 
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• Constants (that is, constant literals from languages such as C#) 

• Type parameters (that is, generic parameters; see Chapter 5) 

From the perspective of F# programming, you must also consider the following constructs: 

• Discriminated union types and their tags (Chapters 3 and 9) 

• Record types and their fields (Chapter 3) 

• Type abbreviations (Chapter 3) 

• Values and functions declared using let and let rec (Chapter 3) 

• Modules (Chapter 6) 

• Named arguments (Chapter 6) 

• Optional arguments (Chapter 6) 

Framework library design is always nontrivial and often underestimated. F# framework and 
library design methodology is inevitably strongly rooted in the context of .NET OO programming. This 
chapter gives our opinions about how you can approach library design in the context of F# 
programming. These opinions are neither proscriptive nor official. More official guidelines may be 
developed by the F# team and community at some future point, although ultimately the final choices lie 
with F# programmers and software architects. 

■ Note Some F# programmers choose to use library and coding conventions much more closely associated with 
OCaml, Python, or a particular application domain such as hardware verification. For example, OCaml coding uses 
underscores in names extensively, a practice avoided by the .NET Framework guidelines but used in places by the 

F# library. Some also choose to adjust coding conventions to their personal or team tastes. 

Designing Vanilla .NET Libraries 
One way to approach library design with F# is to design libraries according to the .NET Library Design 
Guidelines. This implicitly can mean avoiding or minimizing the use of F#-specific or F#-related 
constructs in the public API. We call these libraries vanilla .NET libraries, as opposed to libraries that 
use F# constructs without restriction and are mostly intended for use by F# applications.  

Designing vanilla .NET libraries means adopting the following rules: 

• Apply the .NET Library Design Guidelines to the public API of your code. Your 
internal implementation can use any techniques you want. 

• Restrict the constructs you use in your public APIs to those that are most easily 
used and recognized by .NET programmers. This means avoiding the use of some 
F# idioms in the public API. 

• Use the Microsoft FxCop quality-assurance tool to check the public interface of your 
assembly for compliance. Use FxCop exemptions where you deem necessary. 

At the time of writing, here are some specific recommendations from the authors of this book: 

• Avoid using F# list types 'T list in vanilla .NET APIs. Use seq<'T> or arrays 
instead of lists. 
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• Avoid using F# function types in vanilla .NET APIs. F# function values tend to be 
a little difficult to create from other .NET languages. Instead, consider using .NET 
delegate types such as the overloaded System.Func<...> types available from 
.NET 3.5 onward. 

• Avoid using F#-specific language constructs such as discriminated unions and 
optional arguments in vanilla .NET APIs. 

For example, consider the code in Listing 19-1, which shows some F# code that you intend to adjust 
to be suitable for use as part of a .NET API. 

Listing 19-1. An F# Type Prior to Adjustment for Use as Part of a Vanilla .NET API 

namespace global 
open System 
type APoint(angle,radius) =  
    member x.Angle = angle 
    member x.Radius = radius 
    member x.Stretch(l) = APoint(angle=x.Angle, radius=x.Radius * l) 
    member x.Warp(f) = APoint(angle=f(x.Angle), radius=x.Radius) 
    static member Circle(n) =  
        [ for i in 1..n -> APoint(angle=2.0*Math.PI/float(n), radius=1.0) ] 
    new() = APoint(angle=0.0, radius=0.0) 
 

The inferred F# type of this class is as follows: 

type APoint =  
     new : unit -> APoint 
     new : angle:double * radius:double -> APoint 
     static member Circle : n:int -> APoint list 
     member Stretch : l:double -> APoint 
     member Warp : f:(double -> double) -> APoint 
     member Angle : double 
     member Radius : double 

Let’s look at how this F# type appears to a programmer using C# or another .NET library. The 
approximate C# signature is as follows: 

// C# signature for the unadjusted APoint class of Listing 19-1 
 
public class APoint { 
     public APoint(); 
     public APoint(double angle, double radius); 
     public static Microsoft.FSharp.Collections.List<APoint> Circle(int count); 
     public APoint Stretch(double factor); 
     public APoint Warp(Microsoft.FSharp.Core.FastFunc<double,double> transform); 
     public double Angle { get; } 
     public double Radius  { get; } 
} 
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There are some important points to notice about how F# has chosen to represent constructs here. 
For example: 

• Metadata such as argument names has been preserved. 

• F# methods that take tupled arguments become C# methods that take multiple 
arguments.  

• Functions and lists become references to corresponding types in the F# library. 

The full rules for how F# types, modules, and members are represented in the.NET Common 
Intermediary Language are explained in the F# language reference on the F# web site. 

To make a .NET component, you place it in a file component.fs and compile this code into a strong-
name signed DLL using the techniques from Chapter 7: 

C:\fsharp> sn -k component.snk 
C:\fsharp> fsc --target:library --keyfile:component.snk  component.fs   

Figure 19-1 shows the results of applying the Microsoft FxCop tool to check this assembly for 
compliance with the .NET Framework Design Guidelines. This reveals a number of problems with the 
assembly. For example, the .NET Framework Design Guidelines require the following: 

• Types must be placed in namespaces. 

• Public identifiers must be spelled correctly. 

• Additional attributes must be added to assemblies related to .NET Security and 
Common Language Specification (CLS) compliance. 

 

Figure 19-1. Running FxCop on the code from Listing 19-1 
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Listing 19-2 shows how to adjust this code to take these things into account. 

Listing 19-2. An F# Type After Adjustment for Use As Part of a Vanilla.NET API 

namespace ExpertFSharp.Types 
 
open System 
 
module AssemblyAttributes =  
    [<assembly: System.Runtime.InteropServices.ComVisible(false); 
      assembly: System.CLSCompliant(true)>] 
    do() 
 
type RadialPoint(angle,radius) =  
    member x.Angle = angle 
    member x.Radius = radius 
    member x.Stretch(factor) = RadialPoint(angle=x.Angle, radius=x.Radius * factor) 
    member x.Warp(transform:Converter<_,_>) =  
        RadialPoint(angle=transform.Invoke(x.Angle), radius=x.Radius) 
    static member Circle(count) =  
        seq { for i in 1..count -> 
                  RadialPoint(angle=2.0*Math.PI/float(count), radius=1.0) } 
    new() = RadialPoint(angle=0.0, radius=0.0) 
 

The inferred F# type of the code in Listing 19-2 is as follows: 

type RadialPoint =  
     new : unit -> RadialPoint 
     new : angle:double * radius:double -> RadialPoint 
     static member Circle : count:int -> seq<RadialPoint> 
     member Stretch : factor:double -> RadialPoint 
     member Warp : transform:System.Converter<double,double> -> RadialPoint 
     member Angle : double 
     member Radius : double 

The C# signature is now as follows: 

// C# signature for the unadjusted RadialPoint class of Listing 19-2 
 
public class RadialPoint { 
   public RadialPoint(); 
   public RadialPoint(double angle, double radius); 
   public static System.Collections.Generic.IEnumerable<RadialPoint> Circle(int count); 
   public RadialPoint Stretch(double factor); 
   public RadialPoint Warp(System.Converter<double,double> transform); 
   public double Angle { get; } 
   public double Radius  { get; } 
} 
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The fixes you make to prepare this type for use as part of a vanilla .NET library are as follows: 

• You add several attributes as directed by the FxCop tool. You can find the 
meaning of these attributes in the MSDN documentation referenced by the 
FxCop warning messages. 

• You adjust several names: APoint , n, l, and f became RadialPoint, count, factor, 
and transform, respectively. 

• You use a return type of seq<RadialPoint> instead of RadialPoint list by 
changing a list construction using [ ... ] to a sequence construction using  
seq { ... }. An alternative option would be to use an explicit upcast ([ ... ] :> 
seq<_>). 

• You use the .NET delegate type System.Converter instead of an F# function type.  

After applying these, the last remaining FxCop warning tells you that namespaces with two to 
three types aren’t recommended. 

The last two previous points aren’t essential, but, as mentioned, delegate types and sequence 
types tend to be easier for C# programmers to use than F# function and list types (F# function types 
aren’t compiled to .NET delegate types, partly for performance reasons). Note that you can use FxCop 
exemptions to opt out of any of the FxCop rules, either by adding an exemption entry to FxCop itself or 
by attaching attributes to your source code.  

■ Tip If you’re designing libraries for use from any .NET language, then there’s no substitute for actually doing 
some experimental C# and Visual Basic programming to ensure that uses of your libraries look good from these 
languages. You can also use tools such as .NET Reflector and the Visual Studio Object Browser to ensure that 

libraries and their documentation appear as expected to developers. If necessary, enroll the help of a C# 

programmer and ask them what they think.  

Understanding Functional Design Methodology 
So far, this chapter has looked at how to do vanilla .NET library design with F#. However, frequently F# 
programmers design libraries that are free to make more sophisticated use of F# and more or less assume 
that client users are using F# as well. To make the best use of F# in this situation, it’s helpful to use 
functional programming design techniques as part of the library design process. For this reason, this 
section covers what functional programming brings to the table with regard to design methodology.  

Understanding Where Functional Programming Comes From 

Let’s recap the origins of the major programming paradigms from a design perspective: 

• Procedural programming arises from the fundamentally imperative nature of 
processing devices: microprocessors are state machines that manipulate data 
using side effects.  

• Object-oriented programming arises from the need to encapsulate and reuse 
large objects and associated behaviors such as those used for GUI applications.  
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• Functional programming differs in that it arises from one view of the 
mathematics of computation. That is, functional programming, in its purest form, 
is a way of describing computations using constructs that have useful 
mathematical properties, independent of their implementations.  

For example, the functional programming design methodology places great importance on 
constructs that are compositional. For example, in F#, you can map a function over a list of lists as 
follows: 
 
let map2 f inp = List.map (List.map f) inp 
 

This is a simple example of the inherent compositionality of generic functions: the expression 
List.map f produces a new function that can in turn be used as the argument to List.map. 
Understanding compositionality is the key to understanding much of what goes by the name of 
functional programming. For example, functional programmers aren’t interested in a lack of side 
effects just for the sake of it—instead, they like programs that don’t use side effects because such 
program tend to be more compositional than those that do.  

Functional programming often goes further by emphasizing transformations that preserve 
behavior. For example, you expect to be able to make the following refactorings to your code regardless 
of the function f or of the values inp, x, or rest: 
 
List.hd (x :: rest) ➤  x  
 
List.concat (List.map (List.filter f) inp)  ➤  List.filter f (List.concat inp)  
 

Equations like these can be a source of useful documentation and test cases, and in some 
situations they can even be used to specify entire programs. Furthermore, good programmers 
routinely manipulate and optimize programs in ways that effectively assume these transformations 
are valid. If these transformations are not valid, then it’s easy to accidentally insert bugs when you’re 
working with code. That said, many important transformation equations aren’t guaranteed to always 
be valid—they typically hold only if additional assumptions are made—for example, in the first 
example, the expression rest shouldn’t have side effects.  

Transformational reasoning works well for some kinds of code and badly for others. Table 19-1 
lists some of the F# and .NET constructs that are highly compositional and for which transformational 
reasoning tends to work well in practice. 

Table 19-1. Some Compositional F# Library Constructs Amenable to Equational Reasoning 

Constructs Examples Explanation 

Base types int, float Code using immutable basic types is often 
relatively easy to reason about. There are some 
exceptions to the rule: the presence of NaN values 
and approximations in floating-point operations 
can make it difficult to reason about floating-point 
code. 

Collections Set<'T>, Map<'Key,'Value> Immutable collection types are highly amenable to 
equational reasoning. For example, you expect 
equations such as Set.union Set.empty x = x  
to hold. 
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Constructs Examples Explanation 

Control types Lazy<'T>, Async<'T> Control constructs are often highly compositional 
and have operators that allow you to combine them 
in interesting ways. For example, you expect 
equations such as (lazy x).Force() = x to hold. 

Data abstractions seq<'T> F# sequences aren’t pure values, because they may 
access data stores using major side effects such as 
network I/O. However, in practice, uses of sequences 
tend to be very amenable to equational reasoning. 
This assumes that the side effects for each iteration 
of the sequence are isolated and independent. 

Understanding Functional Design Methodology 

Functional design methodology is rooted in compositionality and reasoning. In practice, it’s largely 
about the following steps: 

1. Deciding what values you’re interested in representing. These values may 
range from simple integers to more sophisticated objects such as expression 
trees from Chapter 9 or the asynchronous tasks from Chapter 13. 

2. Deciding what operations are required to build these values, extracting 
information from them, and combining them and transforming them. 

3. Deciding what equations and other algebraic properties should hold between 
these values, and assessing whether these properties hold the 
implementation. 

Steps 1 and 2 explain why functional programmers often prefer to define operations separately 
from types. As a result, functional programmers often find OO programming strange because it 
emphasizes operations on single values, whereas functional programming emphasizes operations that 
combine values. This carries over to library implementation in functional programming, where you 
often see types defined first and then modules containing operations on those types.  

Because of this, one pattern that is common in the F# library is the following: 

• The type is defined first. 

• Then, a module defines the functions to work over the type. 

• Finally, a with augmentation adds the most common functions as members. 
Chapter 6 describes augmentations. 

One simple example of functional programming methodology in this book appears in Chapter 12, 
where you saw how a representation for propositional logic is defined using a type: 
 
type Var =  string 
type Prop =  
    | And of Prop * Prop 
    | Var of Var 
    | Not of Prop 
    | Exists of Var * Prop 
    | False  
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Operations were then defined to combine and analyze values of type Prop. It wouldn’t make sense 
to define all of these operations as intrinsic to the Prop type, an approach often taken in OO design. In 
that same chapter, you saw another representation of propositional logic formulae where two logically 
identical formulae were normalized to the same representations. This is an example of step 3 of the 
functional design methodology: the process of designing a type involves specifying the equations that 
should hold for values of that type. 

You’ve seen many examples in this book of how OO programming and functional programming 
can work very well together. For example, F# objects are often immutable but use OO features to group 
together some functionality working on the same data. Also, F# object interface types are often used as 
a convenient notation for collections of functions. 

However, some tensions exist between functional programming and OO design methodology. For 
example, when you define operations independently of data (that is, the functional style), it’s simple to 
add a new operation, but modifying the type is more difficult. In OO programming using abstract and 
virtual methods, it’s easy to add a new inherited type, but adding new operations (that is, new virtual 
methods) is difficult.  

Similarly, functional programming emphasizes simple but compositional types: for example, 
functions and tuples. OO programming tends to involve creating many (often large and complex) 
types with considerable amounts of additional metadata. These are often less compositional but 
sometimes more self-documenting. 

Finally, although functional programming doesn’t provide a complete software design 
methodology, it’s beautiful and powerful when it works, creating constructs that can be wielded with 
amazing expressivity and a very low bug rate. However, not all constructs in software design are 
amenable to compositional descriptions and implementations, and an over-reliance on pure 
programming can leave you bewildered and abandoned when the paradigm doesn’t offer useful 
solutions that scale in practice. This is the primary reason why F# is a multiparadigm language: to 
ensure that functional techniques can be combined with other techniques where appropriate.  

■ Note Some functional languages such as Haskell place strong emphasis on equational reasoning principles. In 
F#, equational reasoning is slightly less important; however, it still forms an essential part of understanding what 

functional programming brings to the arena of design methodology.  

Applying the .NET Library Design Guidelines to F# 
This section presents some additional recommendations for applying the .NET Library Design 
Guidelines to F# programming. We do this by making a series of recommendations that can be read as 
extensions to these guidelines. 

Recommendation: Use the .NET Naming and Capitalization Conventions Where Possible  

Table 19-2 summarizes the .NET guidelines for naming and capitalization in code. We’ve added our 
own recommendations for how these should be adjusted for some F# constructs. This table refers to the 
following categories of names: 

• PascalCase: LeftButton and TopRight, for example 

• camelCase: leftButton and topRight, for example 

• Verb: A verb or verb phrase; performAction or SetValue, for example 
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• Noun: A noun or noun phrase; cost or ValueAfterDepreciation, for example 

• Adjective: An adjective or adjectival phrase; Comparable or Disposable, for 
example 

In general, the .NET guidelines strongly discourage the use of abbreviations (for example, “use 
OnButtonClick rather than OnBtnClick”). Common abbreviations such as Async for Asynchronous are 
tolerated. This guideline has historically been broken by functional programming; for example, 
List.iter uses an abbreviation for iterate. For this reason, using abbreviations tends to be tolerated 
to a greater degree in F# programming, although we discourage using additional abbreviations 
beyond those found in existing F# libraries.  

Acronyms such as XML aren’t abbreviations and are widely used in .NET libraries, although in 
uncapitalized form (Xml). Only well-known, widely recognized acronyms should be used. 

The .NET guidelines say that casing can’t be used to avoid name collisions and that you must 
assume that some client languages are case insensitive. For example, Visual Basic is case insensitive. 

Table 19-2. Conventions Associated with Public Constructs in .NET Frameworks and Author-
Recommended Extensions for F# Constructs 

Construct Case Part Examples Notes 

Concrete 
types 

PascalCase Noun/ 
adjective 

List, DoubleComplex Concrete types are structs, classes, 
enumerations, delegates, records, and 
unions. Type names are traditionally 
lowercase in OCaml, and F# code has 
generally followed this pattern. 
However, as F# matures as a language, 
it’s moving much more to follow 
standardized .NET idioms. 

DLLs PascalCase  Microsoft.FSharp. 
Core.dll<Company>. 
<Component>.dll 

 

Union tags PascalCase Noun Some, Add, Success Don’t use a prefix in public APIs. 
Optionally use a prefix when internal, 
such as type Teams = TAlpha | TBeta | 
TDelta. 

Event PascalCase Verb ValueChanged  

Exceptions PascalCase  WebException  

Field PascalCase Noun CurrentName  

Interface 
types 

PascalCase Noun/ 
adjective 

IDisposable  

Method PascalCase Verb ToString  
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Construct Case Part Examples Notes 

Namespace PascalCase  Microsoft.FSharp. 
Core 

Generally use 
<Organization>.<Technology>[.<Subnam
espace>], but drop the organization if 
the technology is independent of 
organization. 

Parameters camelCase Noun typeName, transform, 
range 

 

let values 
(internal) 

camelCase Noun/ 
verb 

getValue, myTable  

let values 
(external) 

camelCase 
or 
PascalCase 

Noun List.map, Dates. 
Today 

let-bound values are often public when 
following traditional functional design 
patterns. However, generally use 
PascalCase when the identifier can be 
used from other .NET languages. 

Property PascalCase Noun/ 
adjective 

IsEndOfFile, 
BackColor 

Boolean properties generally use Is 
and Can and should be affirmative, as in 
IsEndOfFile, not IsNotEndOfFile. 

Type 
parameters 

Any Noun/ 
adjective 

'T, 't, 'Key, 'Value  

We generally recommend using lowercase for variable names, unless you’re designing a library: 
 
� let x = 1 
� let now = System.DateTime.Now 
 

We recommend using lowercase for all variable names bound in pattern matches, function 
definitions, and anonymous inner functions. Functions may also use uppercase: 
 
� let add I J = I+J 
� let add i j = i + j 
 

Use uppercase when the natural convention is to do so, as in the case of matrices, proper nouns, 
and common abbreviations such as I for the identity function: 
 
� let f (A:matrix) (B:matrix) = A+B 
� let Monday = 1 
� let I x = x 
 

We recommend using camelCase for other values, including the following: 

• Ad hoc functions in scripts  

• Values making up the internal implementation of a module 

• Locally bound values in functions 
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� let emailMyBossTheLatestResults = ... 
� let doSomething () =  
       let firstResult = ...  
       let secondResult = ...  

Recommendation: Avoid Using Underscores in Names  

In some older F# code, you see the frequent use of underscores to qualify some names. For example: 

• Suffixes such as _left and _right 

• Prefix verbs such as add_, remove_, try_, and is_, do_ 

• Prefix connectives such as to_, of_, from_, and for_ 

We recommend avoiding this style because it clashes with .NET naming conventions.  

■ Note No rules are hard and fast. Some F# programmers ignore this advice and use underscores heavily, partly 
because functional programmers often dislike extensive capitalization. Furthermore, OCaml code uses underscores 
everywhere. But be aware that the style is often disliked by others who have a choice about whether to use it. It 

has the advantage that abbreviations can be used in identifiers without them being run together. 

Recommendation: Follow the .NET Guidelines for Exceptions 

The .NET Framework Design Guidelines give good advice about the use of exceptions in the context of 
all .NET programming. Some of these guidelines are as follows: 

• Don’t return error codes. Exceptions are the main way of reporting errors in 
frameworks. 

• Don’t use exceptions for normal flow of control. Although this technique is often 
used in languages such as OCaml, it’s bug-prone and slow on .NET. Instead, 
consider returning a None option value to indicate failure. 

• Document all exceptions thrown by your code when a function is used 
incorrectly. 

• Where possible, throw existing exceptions in the System namespaces. 

• Use invalidOp and invalidArg to throw exceptions where possible 

■ Note Other exception-related topics covered by the .NET guidelines include advice on designing custom 
exceptions, wrapping exceptions, choosing exception messages, and special exceptions to avoid throwing 
(OutOfMemoryException, ExecutionEngineException, COMException, SEHException, 
StackOverflowException, NullReferenceException, AccessViolationException, and 

InvalidCastException). 
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Recommendation: Consider Using Option Values for Return Types Instead of Raising 
Exceptions 

The .NET approach to exceptions is that they should be exceptional: that is, they should occur relatively 
infrequently. However, some operations (for example, searching a table) may fail frequently. F# 
option values are an excellent way to represent the return types of these operations. 

Recommendation: Follow the .NET Guidelines for Value Types 

The .NET guidelines give good guidance about when to use .NET value types (that is, structs, introduced 
in Chapter 6). In particular, they recommend using a struct in a public API only when the following are 
all true: 

• A type logically represents a single value similar to a primitive type. 

• It has an instance size smaller than 16 bytes. 

• It’s immutable. 

• It won’t have to be boxed frequently (that is, converted to/from the type 
System.Object). 

Some programmers are much stricter and almost never use structs in public APIs.  

Recommendation: Consider Using Explicit Signature Files for Your Framework 

Chapter 7 describes explicit signature files. Using explicit signatures files for framework code ensures 
that you know the full public surface of your API and can cleanly separate public documentation from 
internal implementation details. 

Recommendation: Consider Avoiding the Use of Implementation Inheritance for 
Extensibility 

Chapter 6 describes implementation inheritance. In general, the .NET guidelines are agnostic with 
regard to the use of implementation inheritance. In F#, implementation inheritance is used more 
rarely than in other .NET languages. The main rationale for this is given in Chapter 6, which also 
presents many alternative techniques for designing and implementing OO types using F#. However, 
implementation inheritance is used heavily in GUI frameworks. 

■ Note Other OO extensibility topics discussed in the .NET guidelines include events and callbacks, virtual 

members, abstract types and inheritance, and limiting extensibility by sealing classes. 
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Recommendation: Use Properties and Methods for Attributes and Operations Essential to 
a Type  

Here’s an example: 
 
� type HardwareDevice with  
      ... 
      member ID: string 
      member SupportedProtocols: seq<Protocol> 
 

Consider using methods for the intrinsic operations essential to a type: 
 
� type HashTable<'Key,'Value> with 
      ... 
      member Add           : 'Key * 'Value -> unit 
      member ContainsKey   : 'Key -> bool 
      member ContainsValue : 'Value -> bool 
 

Consider using static methods to hold a Create function instead of revealing object constructors:  
 
� type HashTable<'Key,'Value> with 
       static member Create : IHashProvider<'Key> -> HashTable<'Key,'Value>  

Recommendation: Avoid Revealing Concrete Data Representations Such as Records  

Where possible, avoid revealing concrete representations such as records, fields, and implementation 
inheritance hierarchies in framework APIs.  

The rationale is that one of the overriding aims of library design is to avoid revealing concrete 
representations of objects, for the obvious reason that you may want to change the implementation 
later.  For example, the concrete representation of System.DateTime values isn’t revealed by the 
external, public API of the .NET library design. At runtime, the Common Language Runtime knows the 
committed implementation that will be used throughout execution. However, compiled code doesn’t 
pick up dependencies on the concrete representation.  

Recommendation: Use Active Patterns to Hide the Implementations of Discriminated 
Unions 

Where possible, avoid using large discriminated unions in framework APIs, especially if you expect 
there is a chance that the representation of information in the discriminated union will undergo 
revision and change. For frameworks, you should typically hide the type or use active patterns to 
reveal the ability to pattern-match over language constructs. Chapter 9 describes active patterns. 

This doesn’t apply to the use of discriminated unions internal to an assembly or to an application. 
Likewise, it doesn’t apply if the only likely future change is the addition of further cases, and you’re 
willing to require that client code be revised for these cases. Finally, active patterns can incur a 
performance overhead, and this should be measured and tested, although their benefits frequently 
outweigh this cost. 
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■ Note Using large, volatile discriminated unions freely in APIs encourages people to use pattern-matching 
against these discriminated union values. This is appropriate for unions that don’t change. However, if you reveal 

discriminated unions indiscriminately, you may find it very hard to version your library without breaking user code. 

Recommendation: Use Object Interface Types Instead of Tuples or Records of Functions 

In Chapter 5, you saw various ways to represent a dictionary of operations explicitly, such as using tuples 
of functions or records of functions. In general, we recommend that you use object interface types for this 
purpose, because the syntax associated with implementing them is generally more convenient. 

Recommendation: Understand When Currying Is Useful in Functional Programming APIs 

Currying is the name used when functions take arguments in the iterated form—that is, when the 
functions can be partially applied. For example, the following function is curried: 
 
let f x y z = x + y + z 
 

This isn’t: 
 
let f (x,y,z) = x + y + z 
 

Here are some of our guidelines for when to use currying and when not to use it: 

• Use currying freely for rapid prototyping and scripting. Saving keystrokes can 
be very useful in these situations. 

• Use currying when partial application of the function is highly likely to give a 
useful residual function (see Chapter 3). 

• Use currying when partial application of the function is necessary to permit 
useful precomputation (see Chapter 8).  

• Avoid using currying in vanilla .NET APIs or APIs to be used from other .NET 
languages. 

When using currying, place arguments in order from the least varying to the most varying. Doing 
so makes partial application of the function more useful and leads to more compact code. For example, 
List.map is curried with the function argument first because a typical program usually applies List.map 
to a handful of known function values but many different concrete list values. Likewise, you saw in 
Chapters 8 and 9 how recursive functions can be used to traverse tree structures. These traversals 
often carry an environment. The environment changes relatively rarely—only when you traverse the 
subtrees of structures that bind variables. For this reason, the environment is the first argument.  

When you use currying, consider the importance of the pipelining operator; for example, place 
function arguments first and object arguments last. 

F# also uses currying for let-bound binary operators and combinators: 
 
� let divmod n m = ... 
� let map f x = ... 
� let fold f z x = ... 
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However, see Chapters 6 and 8 for how to define operators as static members in types, which 
aren’t curried. 

Recommendation: Use Tuples for Return Values, Arguments, and Intermediate Values  

Here is an example of using a tuple in a return type: 
 

� val divmod : int -> int -> int * int 

Some Recommended Coding Idioms 
This section looks at a small number of recommendations for writing implementation code, as 
opposed to library designs. We don’t give many recommendations on formatting, because formatting 
code is relatively simple for #light indentation-aware code. We do make a couple of formatting 
recommendations that early readers of this book asked about. 

Recommendation: Use the Standard Operators 

The following operators are defined in the F# standard library and should be used wherever possible 
instead of defining equivalents. Using these operators tends to make code much easier to read, so we 
strongly recommend it. This is spelled out explicitly because other languages similar to F# don't 
support all of these operators, and thus some F# programmers aren’t aware that these operators exist:  
 
f >> g   -- forward composition 
g << f   -- reverse composition 
x |> f   -- forward pipeline  
f <| x   -- reverse pipeline  
 
x |> ignore   -- throwing away a value 
 
x + y    -- overloaded addition (including string concatenation)  
x - y    -- overloaded subtraction  
x * y    -- overloaded multiplication  
x / y    -- overloaded division  
x % y    -- overloaded modulus  
 
x <<< y  -- bitwise left shift  
x >>> y  -- bitwise right shift  
x ||| y  -- bitwise left shift, also for working with enumeration flags  
x &&& y  -- bitwise right shift, also for working with enumeration flags 
x ^^^ y  -- bitwise left shift, also for working with enumeration flags 
 
x && y   -- lazy/short-circuit and 
x || y   -- lazy/short-circuit or  
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Recommendation: Place the Pipeline Operator |> at the Start of a Line 

People often ask how to format pipelines. We recommend this style: 
 
let methods =  
    System.AppDomain.CurrentDomain.GetAssemblies 
    |> List.ofArray  
    |> List.map (fun assem -> assem.GetTypes())  
    |> Array.concat 

Recommendation: Format Object Expressions Using the member Syntax 

People often ask how to format object expressions. We recommend this style: 
 
let thePlayers =  
       { new Organization() with 
             member x.Chief = "Peter Quince"  
             member x.Underlings =  
                 [ "Francis Flute"; "Robin Starveling";  
                   "Tom Snout"; "Snug"; "Nick Bottom"]  
         interface IDisposable with 
             member x.Dispose() = ()  } 

■ Note The discussion of F# design and engineering issues in Chapters 18 and 19 is necessarily limited. In 
particular, we haven’t covered topics such as aspect-oriented programming, design and modeling methodologies, 

software quality assurance, or software metrics, all of which are outside the scope of this book.  

Summary 
This chapter covered some of the rules you may apply to library design in F#, particularly taking into 
account the idioms and traditions of .NET. It also considered some of the elements of the functional 
programming design methodology, which offers many important and deep insights. Finally, we gave 
some specific suggestions for use when you’re designing .NET and F# libraries.  

That concludes our tour of F#. We hope you enjoy a long and productive career coding in the 
language. 
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F# Brief Language Guide 

This appendix describes the essential constructs of the F# language in a compact form. You can find a 
full guide to the F# language in the F# Language Specification on the F# website. 

Comments and Attributes 
Comments (Chapter 2) 

 
// comment 
 
(* comment *) 
 
/// XML doc comment 
let x = 1 

Attaching Attributes (Chapter 9) 
 
[<Obsolete("Deprecated at 1.2")>] 
type Type = 
    ...  
[<Conditional("DEBUG")>] 
let Function(x) =  
 
[<assembly: Note("argument")>] 
do () 

Basic Types and Literals 
Basic Types and Literals (Chapter 3)  

 
sbyte      = System.SByte     76y  
byte       = System.Byte      76uy  
int16      = System.Int16     76s  
uint16     = System.UInt16    76us  
int32      = System.Int32     76  
uint32     = System.UInt32    76u  
int64      = System.Int64     76L  
uint64     = System.UInt64    76UL  
string     = System.String    "abc", @"c:\etc"  
single     = System.Single    3.14f  
double     = System.Double    3.14, 3.2e5  
char       = System.Char      '7'  
nativeint  = System.IntPtr     76n  
unativeint = System.UIntPtr     76un  
bool       = System.Boolean     true, false  
unit       = Microsoft.FSharp.Core.Unit  () 

 

Basic Type Abbreviations  
 
int8    = sbyte  
uint8   = byte  
int     = int32  
float32 = single  
float   = double 
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Types 
Types (Chapter 3 and 5) 

 
ident                    Named type 
ident<type,...,type>     Type instantiation 
type * ... * type        Tuple type 
type[]                   Array type 
#type                    Flexible type (accepts any subtype) 
'ident                   Variable type 
type -> type             Function type 
  

Type instantiations can be postfix:int list 

Patterns and Matching 
 Matching (Chapter 3) 

 
match expr with 
| pat -> expr   
...  
| pat -> expr   
  
Note: Rules of a match may use  
| pat when expr -> expr 
 

  

                    Patterns (Chapter 3 and 9) 
 
_  
literal 
ident 
(pat, ..., pat) 
[ pat; ...; pat ] 
[| pat; ...; pat |] 
{ id=pat; ...; id=pat } 
id(pat, ..., pat) 
id expr ... expr (pat, ..., pat) 
pat | pat 
pat & pat 
pat as id 
:? type 
:? type as id 
null 

 
 
Wildcard pattern 
Constant pattern 
Variable pattern 
Tuple pattern  
List pattern  
Array pattern  
Record pattern  
Union case pattern 
Active pattern 
“Or” pattern  
“Both” pattern  
Named pattern 
Type test pattern  
Type cast pattern  
Null pattern 

 Active Patterns (Chapter 9) 
 
let (|Tag1|Tag2|)   inp = ...  
let (|Tag1|_|)      inp = ...  
let (|Tag1|)        inp = ...  

Functions, Composition, and Pipelining 
Function values (Chapter 3) 

  
fun pat ... pat -> expr   Function  
  
function                  Match 
function 
| pat -> expr 
... 
| pat -> expr 
 

 Application and Pipelining (Chapter 3)  
 
f x             Application  
x |> g      Forward pipe  
f >> g      Function composition  
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Binding and Control Flow 
 Binding and Scoping (Chapter 3) 

 
let pat = expr          Value binding 
expr  
 
let id args = expr      Function binding 
expr  
  
let rec id args = expr  Recursive binding 
expr  
  
use pat = expr          Auto dispose binding 
expr 

  

Control Flow (Chapter 3 and 4) 
 
expr                       Sequencing  
expr  
 
do expr                    Sequencing  
expr  
 
for id = expr to expr do   Simple loop  
    expr 
 
for pat in expr do         Sequence loop 
    expr 
 
while expr do               While loop  
    expr   

  

Syntax Forms Without Indentation 
 
let pat = expr in expr   
while expr do expr done   
for pat in expr do expr done   
expr ; expr   
do expr in expr 

Exceptions 
 Some Exceptions (Chapter 4) 

  
Microsoft.FSharp.Core.FailureException  
System.MatchFailureException  
System.InvalidArgumentException  
System.StackOverflowException 
 

  

Exception Handling 
 
try                     Handling 
    expr  
with  
    | pat -> expr 
    | pat -> expr 
  
try                      Compensation 
    expr  
finally  
    expr  
  
use id = expr            Automatic Dispose  

 Raising Exceptions (Common Forms) 
 
raise expr        Throw exception  
failwith expr      Throw FailureException 

 
Catch and Rethrow 

 
try expr  
with   
  | :? ThreadAbortException ->   
    printfn "thrown!"  
    rethrow () 
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Tuples, Arrays, Lists, and Collections 
Tuples (Chapter 3) 

  
(expr, ..., expr)       Tuple   
fst expr                First of pair  
snd expr                Second of pair  
 

 

  

 F# Lists (Chapter 3) 
 
[ expr; ...; expr ]       List   
[ expr..expr ]            Range list  
[ comp-expr ]             Generated list  
expr :: expr              List cons  
expr @ expr               List append 
  

 

Arrays (Chapter 4) 
  
[| expr; ...; expr |]      Array literal  
[| expr..expr |]           Range array  
[| comp-expr |]            Generated array  
Array.create size expr     Array creation  
Array.init size expr       Array init  
arr.[expr]                 Lookup  
arr.[expr] <- expr         Assignment  
arr.[expr..expr]           Slice  
arr.[expr..]               Right slice  
arr.[..expr]               Left slice  

  
See Chapter 4 for multi-dimensional operators. 

   
F# Options (Chapter 3) 

 
None                      No value   
Some(expr)                With value  
 

 

  

Some Other Collection Types 
 
System.Collections.Generic.Dictionary  
System.Collections.Generic.List  
System.Collections.Generic.SortedList  
System.Collections.Generic.SortedDictionary  
System.Collections.Generic.Stack  
System.Collections.Generic.Queue  
Microsoft.FSharp.Collections.Set  
Microsoft.FSharp.Collections.Map 
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Operators 
Overloaded Arithmetic (Chapter 3) 

 
x + y   Addition   
x - y  Subtraction   
x * y  Multiplication   
x / y  Division   
x % y  Remainder/modulus   
-x     Unary negation 

 

  

Overloaded Bitwise Operators (Chapter 3) 
 
x >>> y Shift right 
x <<< y  Shift left 
x &&& y  Bitwise logical and 
x ||| y  Bitwise logical or  
x ^^^ y  Bitwise exclusive or  
~~~ x    Bitwise logical not 

  Overloaded Math Operators 
 

abs, acos, atan, atan2,   
ceil, cos, cosh, exp,   
floor, log, log10, pow,  
pown, sqrt, sin, sinh,   
tan, tanh 

 

  

Overloaded Conversion Operators 
   

byte, sbyte, int16, uint16, 
int, int32, uint32, int64, 
uint64, float32, float, single, 
double, nativeint, 
unativeint 

 

Generic Comparison and Hashing 
 
hash x           Generic hashing  
x = y            Generic equality  
x <> y           Generic inequality  
compare x y      Generic comparison  
x >= y, x <= y, 
x > y, x < y, 
min x y, max x y 
  
Note: Records, tuples, arrays and unions 
automatically implement structural equality 
and hashing (see Chapters 5 and 8). 

   

Mutable Locals (Chapter 4) 
  

let mutable var = expr   Declare  
var                                             Read  
var <- expr                           Update 

 

 Indexed Lookup (Chapter 4) 
  

expr.[idx]           Lookup  
expr.[idx] <- expr   Assignment  
expr.[idx..idx]      Slice  
expr.[idx..]         Right slice  
expr.[..idx]         Left slice  
 
See Chapter 4 for multidimensional operators 

Mutable Reference Cells (Chapter 4) 
  

ref expr      Allocate 
!expr         Read 
expr.Value    Read 
expr := expr  Assign 

  

  

Booleans  
 
not expr         Boolean negation  
expr && expr     Boolean “and”  
expr || expr     Boolean “or” 

 
Object-Related Operators and Types  

 
type obj = System.Object  
box(x)          Convert to type obj  
unbox<type>(x)  Extract from type obj  
typeof<type>    Extract Sytem.Type  
x :> type       Static cast to supertype  
x :?> type      Dynamic cast to subtype 
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Type Definitions and Objects 
Union Types: Chapters 3 and 6  

 
type UnionType =   
  | TagA of type * ... * type  
  | TagB of type * ... * type 

Record Types: Chapters 3 and 6  
 
type Record =   
  { Field1: type  
    Field2: type } 

Constructed Class Types: Chapter 6 
  
type ObjectType(args) =   
  let internalValue = expr  
  let internalFunction args = expr  
  let mutable internalState = expr  
  member x.Prop1 = expr  
  member x.Meth2 args = expr

Object Interface Types: Chapter 6 
  
type IObject =   
  interface ISimpleObject  
  abstract Prop1 : type  
  abstract Meth2 : type -> type 

Object Expressions: Chapter 6 
  
{ new IObject with   
    member x.Prop1 = expr  
    member x.Meth1 args = expr }  
 
{ new Object() with   
    member x.Prop1 = expr  
    interface IObject with  
      member x.Meth1 args = expr  
    interface IWidget with  
      member x.Meth1 args = expr } 

 

Implementation Inheritance 
  

type ObjectType(args) as x =   
  inherit BaseType(expr) as base 

Some Special Members 
  

member x.Prop            setter property  
  with get() = expr  
  and  set v = expr  
  
member x.Item            indexer property  
  with get idx = expr  
  and  set idx v = expr  
  
static member (+) (x,y) = expr operator 

Named and Optional Arguments for Members 
  

member obj.Method(?optArgA)             Declaring optional arg  
  
new Object(x=expr, y=expr)              Call with named args  
obj.Method(optArgA=expr, PropB=expr)    Call with optional args and properties 
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Namespaces and Modules  
Namespaces: Chapter 7 

  
namespace Org.Product.Feature  
  
type TypeOne =   
    ...  
  
module ModuleTwo =   
    ... 

 Files As Modules: Chapter 7 
  

module Org.Product.Feature.Module  
  
type TypeOne =   
    ...  
  
module ModuleTwo =   
    ... 
 

Sequence Expressions and Workflows  
Sequence Expressions and Workflows: See Chapters 3, 9, and 13 

 
[ comp-expr ] 
[| comp-expr |] 
seq { comp-expr } 
async { comp-expr } 
ident { comp-expr } 

Generated list 
Generated array 
Generated sequence 
Asynchronous workflow 
Arbitrary workflow 

  

Syntax for Workflows 
 

let! pat = expr  
comp-expr  
  
let pat = expr  
comp-expr  
  
do! expr  
comp-expr  
  
do expr  
comp-expr  
 
if expr then comp-expr else comp-expr  
if expr then comp-expr  
while expr do comp-expr  
for pat in expr do comp-expr  
try comp-expr with pat -> expr  
try comp-expr finally expr  
use pat = expr in comp-expr  
return expr  
return! expr  
yield expr  
yield! expr  

Execute and bind computation 
 
 
Execute and bind expression 
 
 
Execute computation   
 
 
Execute expression 
 
 
Conditional workflow 
Conditional workflow 
Repeated workflow 
Enumeration loop 
Workflow with catch 
Workflow with compensation 
Workflow with auto dispose 
Return expression 
Return computation 
Yield expression (for sequences only) 
Yield sequence (for sequences only) 
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■ ■ ■ 

■ Symbols 
- subtraction operator, 26, 105 
^ operator, 33 
^^^ operator, 342 
_ underscore, 50 

naming conventions and, 556 
ungeneralized type variables and, 119 

; semicolon, 18 
? question mark, for optional arguments, 

132 
? operator, 243 
?<- operator, 243 
:? type-test pattern construct, 83, 112 
:?> downcast operator, 112 
:: operator, lists and, 33, 34 
:> upcast operator, 111 
.. .. operator, 54 
.. operator, 54 
.[ ] operator, 31, 33 
( ) parentheses, 323 
{ } curly brackets, 260 
* * asterisks, 9 
* multiplication operator, 26 
// two slashes, 9 
/// three slashes, 9 
&& conditional operator, 38 
&&& bitwise operator, 28 
&&& operator, 342 
< comparison operator, 29 
<- operator, 69 
<@ . . . @> symbols, 244, 247 
<<< bitwise operator, 28 
<> comparison operator, 29 
<= comparison operator, 29 
<=> operator, 342 

> comparison operator, 29 
-> indicating a function, 10, 50 
>> forward composition operator, 44 
>>> bitwise operator, 28 
>= comparison operator, 29 
ˆˆˆ bitwise operator, 28 
+ addition operator, 26, 32 
= comparison operator, 29 
==> operator, 342 
=== operator, 342 
| pipe operator, 50 
|> forward pipe operator, 43, 44, 561 
|| conditional operator, 38 
||| bitwise operator, 28 
||| operator, 342 
~~~ bitwise operator, 28 
~~~ operator, 342 

■ Numbers 
2-bit carry ripple adder circuits, 344–348 
64-character encoding, binary data and, 262 

■ A  
Abort() method, 365, 386 
abs operator, 30 
abstract keyword, 138 
abstract object types, generic algorithms 

and, 106 
abstract syntax implementations, hiding via 

active patterns, 223 
abstract syntax representations, 213–219, 

352 
abstract syntax trees (ASTs), 210, 213–218 

caching properties in, 217 
converting XML and, 210 
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abstract syntax trees (ASTs) (continued) 
decomposing via pattern matching,  

220–225 
lazy computations and, 215 
lexing/parsing and, 463, 479 
memoizing tree nodes and, 218 

abstractions, modeled from function  
values, 47 

accessibility annotations, for code 
encapsulation, 156–158 

accumulating folding operators and, 437 
accumulating functions, modeled from 

function values, 47 
accumulating parameters, 196, 202 

eager traversals and, 214 
unbalanced trees and, 199 

acos operator, 30 
actions, modeled from function values, 47 
activation records, 494 
active patterns, 220–225 

converting data to different  
views, 220 

hiding abstract syntax implementations 
via, 223 

language-oriented programming  
and, 207 

.NET Library Design Guidelines  
and, 558 

.NET object types and, 222 
parameterized, 223 
partial, 223 
Regex1 and, 393 
regular expressions and, 259 

addition (+) operator, 26, 32 
add-ons, 169 
AddRef method, 496 
ADO.NET, 442, 447–450 
AdventureWorks (sample) database,  

408–412 
aggregate operators 

computing with, 42 
database queries and, 435 
iterating with, 48 
sequences and, 55 

Ajax rich-client applications, 422–430 
“Hello, World!” button and, 424 
server-side functionality and, 424 

algebraic expressions, 325–332 
modeling, 322 
parsing, 327 
simplifying, 329 
symbolic differentiation of, 331 

algorithms, generic, 104–109 
aliasing, avoiding for mutable data 

structures, 72 
allFiles function, 57, 59 
analyzer for duplicate words (sample 

program), 7–19 
anchoring controls, 276 
and keyword, for multiple types defined 

simultaneously, 66 
anonymous functions, 41 
Application class, 272 
application extensions, 169 
applications, 169 

asynchronous. See asynchronous 
programming 

checked version of, 529 
compute bound/I/O bound, 370 
concurrent. See concurrent 

programming 
creating, 7–19 
data resources/settings and, 170 
deadlocking/livelocking and, 356 
debugging/testing, 523–543 
delegation and, 292 
disconnected mode and, 447 
execution, supervising/isolating and, 

265 
graphical. See GUIs 
packaging, 169–173 
parallel . See parallel programming 
reactive. See reactive programming 
reuse and, 273 
sample. See samples 
service-oriented architectures and, 430 
terminology and, 356 
types of built with F#, 169 
watching forms grow interactively  

and, 276 
web. See web applications 

arithmetic expressions, error estimation  
for, 245 

arithmetic operators, 26, 108 
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arithmetic, 25 
Array module, 75 
Array2D module, 77 
arrays, 74–78 

range expressions and, 60 
resizable, 78 
sequence expressions and, 60, 76, 78 
slicing, 76 
two-dimensional, 77 

ASCII character encoding, string 
conversions and, 261 

.ascx files, 397, 420 
asin operator, 30 
ASP.NET, 412–422 

ASP.NET event model and, 416 
code-behind files and, 404 
database query results, displaying,  

408–412 
debugging/tracing web applications 

and, 415 
directives and, 412 
dynamic web content served via,  

395–405 
file types and, 397 
input controls and, 405–408 
ObjectDataSource control and, 411 
page life cycle and, 417 
providers and, 419 
server controls and, 413, 420, 425 
serving pages locally, 403 
view state and, 417, 418 
web application development, 

languages used, 397 
ASP.NET page markup (ASPX), 397 
aspnet_regsql.exe, 420 
ASPX (ASP.NET page markup), 397 
.aspx files (web forms), 397, 399, 412 
assemblies, 161–163 

creating, 161 
size and, 163 

assertions, 529 
association tables, relational databases  

and, 441 
associativity directives, fsyacc parser 

generator and, 483 
asterisks (* *), for comments, 9 
ASTs. See abstract syntax trees 

Async.Parallel function, 372, 373 
CPU parallelism and, 376 
implementing, 375 

asynchronous programming, 355–359,  
365–377 

asynchronous applications, terminology 
and, 356 

asynchronous computations and, 367, 
368, 374, 379 

asynchronous workflows and,  
365–375, 433 

cancellation and, 376 
exceptions and, 376 
file processing and, 370–373 
I/O operations and, 374 
message passing/processing and, 377–385 
thread hopping and, 367 
web crawler sample and, 383 

asynchronous tasks, web servers and, 393 
asynchronous workflows, 365–375, 433 
atan operator, 30 
atan2 operator, 30 
attribute types, 110, 241, 242 
automatic generalization, 49, 98 

type inference and, 11 
value restriction and, 119 

automatic memory, 493 
AutoOpen attribute, modules and, 150 
AutoPostBack property, 417 
aximp.exe, 501, 502 

■ B 
background processing, 357–365 

IterativeBackgroundWorker case study 
and, 359–365 

raising additional events and, 362 
backgrounds, painting, 280 
BackgroundWorker class, 357–365 
backslash (\), verbatim strings and, 31 
Backus-Naur Form (BNF), 477 
BAML (Binary XAML), 313 
BDB (Berkeley Database), 520 
BDDs (binary decision diagrams), 219, 340 

representing propositional formulae via, 
348–352 

verifying circuits via, 352 
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Berkeley Database (BDB), 520 
bigint type, 26 
bignum type, 26 
binary data 

encoding/decoding, 262 
parsing, 486–489 

binary decision diagrams (BDDs), 219, 340 
representing propositional formulae via, 

348–352 
verifying circuits via, 352 

binary interoperability, COM and, 496 
binary serialization, 102 
Binary XAML (BAML), 313 
BinaryReader, 87 
BinaryWriter, 86 
BitmapImage class, 319 
bitmaps, Windows Presentation Foundation 

and, 318 
bitwise operators, 27, 110 
BNF (Backus-Naur Form), 477 
bool type, 25 
Boolean operations, conditional operators 

and, 38 
box function, 101, 102, 110 
boxing/unboxing, 101, 110 
braces ({ }), formatting and, 260 
breakpoints, 526, 532 
brushes, 279, 315 
Brushes class, 279 
builder, for workflows, 225, 230, 235 
button control, 282 
byte operator, 29 
byte type, 25 
bytes, literal byte arrays and, 30, 31 

■ C 
C programming language, interoperability 

and, 491 
function pointers and, 520 
memory management at runtime and, 495 
Platform Invoke and, 507–516 

C5 collection library, 263 
caching 

lazy values and, 185 
memoization and, 183–186 
properties, in abstract syntax trees, 217 

callbacks 
events and, 202, 205 
modeled from function values, 47 

calling conventions, 507 
calling functions, forms and, 21 
CancelAsync method, 358, 361 
cancellation, asynchronous programming 

and, 376 
CancellationPending property, 358 
carry select adders, 352 
Cascading Style Sheets (CSS), ASP.NET and, 

397, 398 
case sensitivity, 553 

regular expressions and, 258 
type abbreviations and, 60 
type variables and, 98 

casting types, 111–114 
catching exceptions, 83 
CCWs (COM callable wrappers), 500,  

505, 506 
cdecl calling convention, 508 
ceil operator, 30 
CFGs (context-free grammars), 477 
change events, 417 
characters 

I/O communications and, 86 
lexing, 466 

checked version, of applications, 529 
CIL (Common Intermediary Language), 548 
circuit verifier (sample application),  

340–354 
checking simple circuit properties via, 

347 
circuit-verification process, 352 
propositional formulae and, 348–352 
types of circuits and, 344 

circuits 
hardware design and, 340 
relational modeling and, 345 
types of, 344 

classes, 126–129 
delimiting via class/end, 150 
partially implemented, 144 

CLI (Common Language Infrastructure), 
507 

client-side applications, Ajax rich-client 
web applications and, 422–430 
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cloning records, 63 
Close operation, 87 
closure, 47 
CLR (Common Language Runtime) 

application execution and, 265 
COM and, 495 
debugging support and, 524 
interoperability and, 491–496, 499–517 
Visual Studio debugger and, 526 

CLRProfiler tool, 189 
code 

code indentation and, 12 
commenting. See comments 
common F# coding techniques and, 

175–205 
conditional compilation and, 163 
F# Interactive code compiling process 

and, 535 
implementation code and, 560 
making more generic, 104–109 
managed/unmanaged, 491 
organizing, modules vs. types, 148 
organizing/packaging. See packaging 

code 
samples used in this book, downloading 

code for, 5 
scripts, mixing with compiled code, 163 
signature types/signature files and, 167 

code behind, XAML and, 313 
code-behind files, 404 
CodeDOM code generator, 401, 432 
coercion (:>) operator, 111 
collections 

C5 collection library and, 263 
equality/comparison and, 179 
hashing and, 101, 179 
Microsoft.FSharp.Collections 

namespace and, 262 
PowerCollections library and, 263 
System.Collections.Generic namespace 

and, 262 
COM (Component Object Model), 495 
COM callable wrappers (CCWs), 500, 505, 

506 
COM components, 495–507 

Flash Player, interactive wrapping and 
(sample), 501 

object types exposed as (sample), 501, 
504–506 

program ID and, 497 
programming patterns and, 500 
registry and, 497 
runtime interaction and, 500 

combinator-based pickling, 486–489 
command arguments, 171 
command-line arguments, for scripts, 163 
command-line compiler.  

See F# command-line compiler 
command-line options, for F#  

Interactive, 163 
comments, 9 

fslex and, 469, 473 
generating documentation from, 164 

Common Intermediary Language (CIL), 548 
Common Language Infrastructure  

(CLI), 507 
Common Language Runtime. See CLR 
comparison, 175–180 
comparison functions, modeled from 

function values, 47 
comparison operators, 29, 99, 131, 175 
COMPILED conditional compilation 

symbol, 163 
complex numbers, 220 
Component Object Model (COM), 495 
composite formatting, 260 
composite primary keys, relational 

databases and, 440 
compositional constructs, 551 
compound keys, dictionaries and, 80 
computation expressions. See workflows 
computations 

aborting, 365 
asynchronous, 367, 368, 374, 379 
delayed, 95, 233 
lazy/on-demand. See entries at lazy 
memoization and, 183–186 
precomputation and, 180–186, 242 
reducing side effects via functional 

programming, 93 
compute bound applications, 370 
computing with functions, 44 
concrete language formats, XML and,  

208–212 
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concrete representations, .NET Library 
Design Guidelines and, 558 

concrete types, 123, 125, 140. See also types 
concurrency objects, resources cleanup 

and, 187 
concurrent programming, 355, 357–365 

asynchronous message 
passing/processing and, 377–385 

background processing and, 357–365 
concurrent applications, terminology 

and, 356 
debugging/testing concurrent 

applications and, 531 
raising additional events and, 362 
shared-memory concurrency and,  

385–389 
two-faced objects and, 358 

conditional breakpoints, 526 
conditional compilation, 163 
conditional operators, 38 
ConditionalAttribute custom attribute, 530 
configuration settings, 171 
connection strings, databases and, 443, 444 
Console, 88 
constrained operations, 175 
constraints, 175 

constraining values to be  
nongeneric, 120 

flexible type constraints and, 114 
floating, 122 
type constraint propagation and, 117 

construction sequences, 128 
constructors, 21, 128, 136 
constructs, compositional, 551 
context-free grammars (CFGs), 477 
context-free languages, 477 
continuation passing, 198, 200 

avoiding stack overflows via, 199 
tips for, 202 

control 
abstracting, 48 
exceptions and, 81–85 
option values and, 38 
recursive functions and, 39 
setTextOfControl function and, 113 

Control class, 273 
control events, 416, 417 

controls, for GUIs, 271, 273–278.  
See also server controls 

anatomy of, 285 
button control and, 282 
control events and, 416, 417 
custom controls and, 282–286 
customization and, 284, 287 
docking/anchoring, 276 
GraphControl sample control, 286–298 
“Hello, World!” button and, 271, 424 
input controls and, 405–408 
Model-View-Controller design pattern 

and, 285 
overriding methods and, 292 
watching forms grow interactively  

and, 276 
Windows Presentation Foundation and, 

315–318 
conversion operators, 28, 121 
copy collection, garbage collection and,  

494, 512 
cos operator, 30 
cosh operator, 30 
CPU, CPU parallelism and, 376 
CreateObject method, COM and, 497 
CreateText function, streams and, 86 
cross-language debugging, 528 
cross-page posting, 418 
CSLA framework, 268 
CSS (Cascading Style Sheets), ASP.NET and, 

397, 398 
curly brackets ({ }),formatting and, 260 
currying, 559 
Curves (sample) graphical application,  

278–282 
custom attributes, 241, 242 
CustomComparison attribute, 177 
CustomEquality attribute, 177 

■ D 
data, converting to different views, 220 
data access, 435–461 

databases and, 439–455 
via LinqToSql queries, 455–457 

data adapters, ADO.NET and, 447 
data binding, Windows Presentation 

Foundation and, 318 
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Data Definition Language (DDL), 441 
data grids, 452 
Data Manipulation Language (DML), 441 
data parallel applications, 356 
data resources, applications and, 170 
data structures, 14, 262 

hashing and, 101 
hiding mutable data and, 72 
immutability and, 36 71 
in-memory, querying, 435–439 
memory management at runtime  

and, 495 
mutable. See mutable data structures 
Platform Invoke and, 510–513 

database viewer (sample) web  
application, 410 

databases, 439–455 
advantages of, 439 
closing connections and, 447 
connecting to, 442–445 
creating, 443, 452 
database engine and, 441, 442 
displaying database query results and, 

408–412 
providers and, 419 
relational. See relational databases 
Visual Studio and, 452 
XML and, 458–461 

DataContext class, 456 
DataContract serialization, 104 
DataSource.fs file, 409 
dates, formatting for, 254 
DateTime type (System namespace), 253 
DayOfWeek type (System namespace), 253 
DCOM (Distributed Component Object 

Model), 496 
DDL (Data Definition Language), 441 
deadlocking, 356 
Debug class, 528, 529 
Debugger class, 529 
debugging, 523 

applications, 523–543 
cross-language, 528 
debug output and, 529 
debugging attributes and, 529, 530 
via F# Interactive, 533–538 
GUIs, 532 

type inference, 117–122 
via Visual Studio debugger, 525–528 
web applications, 415 

DebugView tool, 529 
decimal type, 26 
Decimal type (System namespace), 253 
decoding 

binary data, 262 
Unicode strings, 261 

default keyword, 146 
defaultArg functions, optional arguments 

and, 133 
--define compiler command-line  

option, 164 
definitions, resolving, 247 
delayed computations, 47, 95, 233 
delegate types, 110 
delegates, 151, 267 
delegation, 144 

IterativeBackgroundWorker case study 
and, 362 

Mandelbrot sample viewer and, 298 
vs. overriding, 292 
partially implemented types and, 145 

dependency, Windows Presentation 
Foundation and, 317 

device context, 278 
Diagnostics namespace, 528–531 
dictionaries, 79–81 
directives 

ASP.NET, 412 
F# Interactive and, 535 

disconnected mode, 447 
discriminated unions, 63–65 

function definitions and, 325 
members added to, 125 
.NET Library Design Guidelines and, 558 
as records, 65 

discriminators, 63 
Dispose operation, 87 
Distributed Component Object Model 

(DCOM), 496 
DivideByZeroException, 27 
dll file types, web applications, 398 
DllImport custom attribute, 509 
DLLs, 249, 492 

bundling with applications, 166 
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DLLs (continued) 
compiling, 161 
creating, 161 
data resources, including with, 172 
PInvoke and, 507–520 
shared libraries and, 165 

DML (Data Manipulation Language), 441 
--doc compiler command-line option, 164 
docking controls, 276 
Document Object Model (DOM), XML DOM 

and, 458 
documenting code. See comments 
DOM (Document Object Model), XML DOM 

and, 458 
dot notation, 15 

other notational conveniences and, 130 
records and, 62 

double buffering, 297 
double semicolons (;;), 12, 19 
double type, 26 
downcast (:?>) operator, 112 
downloads 

code samples used in this book, 5 
F#, 7 
WebSharper, 423 

DoWork event, 358 
Drawing namespace, 210, 213 
drawing, GUIs and, 278–282, 311, 312–315 
dummy arguments, adding to generic 

functions, 120 
Dynamic Link Libraries. See DLLs 
dynamic loading, COM and, 496 
dynamic lookups, 243 
dynamic memory, 493, 494 
dynamic web content, 395–405  

■ E 
eager traversals, 214 
EBNF (Extended BNF), 477 
encapsulating code, 153–158 
encapsulation 

application types and, 169 
signature types and, 168 

encapsulation boundaries, 153, 155 
encoding/decoding 

binary data, 262 
Unicode strings, 261 

enum types, 110 
enums, 151 
environmental variables, 171 
equality, 175–180 
equational reasoning, 551, 553 
Erlang, mailbox processing and, 378 
error estimation, via quotations, 245 
escape characters 

regular expressions and, 257 
for strings/characters, 30 

Euclid’s algorithm 
abstract object types for, 107 
generic implementation of, 104 

event arguments, 202 
event handling 

explicit event loops and, 273 
overriding/delegation and, 292 

event loop, 272 
Windows Forms and, 272, 273 
Windows Presentation Foundation  

and, 310 
Event module, 203 
events, 157, 202–205, 272 

ASP.NET event model and, 416 
callbacks and, 202, 205 
creating/publishing, 204 
as first-class values, 203, 205 

exception continuation, asynchronous 
computations and, 368 

exceptions 
asynchronous programming and,  

369, 376 
catching, 83 
controlling, 81–85 
defining new exception types, 84 
exception types and, 110 
.NET Library Design Guidelines and, 556 

--exec command-line option, 163 
EXEs, 161, 492 
exhaustive matches, pattern matching  

and, 52 
exp operator, 30 
explicit constructors, 129 
explicit factoring, 107 
explicit type arguments, value restriction 

and, 121 
expression rendering, 332–338 
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expression simplification, 324 
Extended BNF (EBNF), 477 
Extensible Markup Language. See XML 
extern keyword, 509 
Extreme Optimization library, 268 

■ F 
F# 

background of, 1 
common coding techniques used with, 

175–205 
debugging/testing, 523–543 
downloading/installing, 7 
file types and, 397 
interoperability and, 491–521 
syntax and, 12 
types of applications built with, 169 
web site for, 5 

F# CodeDOM code generator, 401, 432 
F# command-line compiler (fsc.exe), 161–164 

conditional compilation and, 163 
directives and, 535 
DLL static linking and, 167 
DLLs/EXEs and, 161 
optimization settings and, 164 
signature types/signature files and, 167 

F# Interactive (fsi.exe), 7 
code compiling process and, 535 
code indentation and, 12, 13 
double semicolons and (;;), 12, 19 
command-line options for, 163 
conditional compilation and, 163 
debugging/testing applications via,  

533–538 
scripts and, 163 
starting/running, 7 
Visual Studio and, 537 
watching forms grow interactively  

and, 276 
web browser sample and, 273–278 
web services and, 432 
Windows Presentation Foundation  

and, 310 
F# libraries, 249–269 

data structures and, 262 
design compliance checks and, 548 

designing, 545–561 
functional programming design 

techniques for, 550–553 
namespaces and, 252 
.NET Library Design Guidelines and, 

545, 548, 553–560 
reflection and, 266 
vanilla .NET libraries and, 546–550 

F# Power Pack, 115 
FLinq and, 455 
FsHtmlDoc tool and, 164 
fslex lexer generator and, 466 
fsyacc parser generator and, 466 
Microsoft.FSharp.Math namespace  

and, 263 
Parallel LINQ and, 439 

F# to JavaScript compiler, 423 
factoring by hierarchy, 107 
failwith function, 82 
Fibonacci numbers, computing, 357, 361 
FIFO (first-in/first-out), Queue and, 81 
file handles 

cleanup and, 189 
resources cleanup and, 186 

files 
file types, web applications and, 397 
on-demand reading of, 465 
processing via asynchronous workflows, 

370–373 
reading/writing, 85–91 
used as modules, 160 

Firebird database engine, 441 
first-class functions, .NET methods as, 49 
first-class values, events as, 203, 205 
first-in/first-out (FIFO), Queue and, 81 
Flash Player, interactive wrapping  

(sample), 501 
flexible type constraints, 114 
flickering, 297 
FLinq, 455 
float operator, 29, 108 
float type, 26 
float32 operator, 29 
float32 type, 26 
floating constraints, 122 
floor operator, 30 
flowlets, 422, 429 
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fold function, 437 
foldBack function, 437 
for... in... construct, 59 
for... in... do... construct, 55 
for keyword, sequence expressions and, 58 
for loops, 68 
foreign keys, relational databases and,  

440, 453 
Form class, 281 
Format static method, 260 
formlets, 422, 424–428, 429 
forms, 21 
forward composition operator (>>), 44 
forward pipe (|>) operator, 43, 44, 561 
fractal viewer (sample). See Mandelbrot 

(sample) viewer 
framework extensions, 170 
frameworks, 169 
from aggregate operator, 436 
.fs files, 397 
fsc.exe. See F# command-line compiler 
FsHtmlDoc tool, 164 
.fsi file extension, 167 
fsi.exe. See F# Interactive 
fslex (lexer generator), 463, 466–474 

calling, 484 
visual symbolic differentiation sample 

application and, 327 
fst function, 17 
.fsx file extension, 163 
fsyacc (parser generator), 463, 478–486 

calling, 484 
developing parsers and, 479–482 
fsyacc input files, structure of, 482 
resolving conflicts and, 483 
visual symbolic differentiation sample 

application and, 327 
full adder circuits, 344–348 
fun keyword, 42 
function calls, calling conventions and, 507 
function parameters, partial object interface 

type implementation and, 143 
function pointers, 512, 515, 520 
function values, 36, 40–50 

abstracting control and, 48 
anonymous, 41 
modeling abstractions and, 47 

functional construction, of XML, 459 
functional data structures, 36, 71 
functional programming, 25–66 

arithmetic and, 25 
combining with imperative 

programming, 92 
conditional operators and, 38 
continuation passing and, 198, 200 
currying and, 559 
database queries and, 435 
debugging/testing and, 523, 533 
F# library design techniques and,  

550–553 
folding operators, caution with, 438 
function values and, 40–50 
vs. imperative programming, 67 
lists and, 33–36 
multiparadigm languages and, 545 
options and, 37 
pattern matching and, 50–53 
polymorphism and, 140 
recursive functions and, 39, 57 
sequence expressions and, 58–60 
sequences and, 53–60 
side effects and, reducing, 92–96 
strings and, 30–33 
subtyping and, 111 
type definitions and, 60–66 

functions 
anonymous, 41 
calling, 11, 21 
currying, 559 
function composition and, 44 
generic, 99–104, 247 
local, 46 
vs. members, 126 
recursive, 39, 57 

FxCop, 546–550 

■ G 
-g command-line flag, 162 
GAC (global assembly cache), shared 

libraries and, 165 
garbage collection, 187, 494, 512 
general types, .NET Framework and, 266 
Generalized LR (GLR parsers), 478 
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generic algorithms, 104–109 
generic binary serialization, 102 
generic boxing/unboxing, 101 
generic comparison, 99 
generic functions, 99–104, 247 

dummy arguments, adding to, 120 
explicit arguments for, 120 

generic hashing, 100 
generic overloaded operators, type 

inference debugging and, 121 
generic pretty-printing, 101 
generics, 97–122 
GenericZero function, 109 
GetActiveObject method, 503, 537 
GetFunctionPointerForDelegate method, 520 
global assembly cache (GAC), 165 
global unique identifiers (GUIDs), COM 

components and, 497, 507 
GLR parsers (Generalized LR), 478 
grammars, parsing and, 477 
GraphControl (sample) graphic control,  

286–298 
Model-View-Controller design pattern 

and, 288–297 
using it, 297 

graphic primitives, 278 
brushes/pens and, 279 
double buffering and, 297 
graphics-primitive retention and, 311 
Windows Presentation Foundation  

and, 312 
graphical applications. See GUIs 
graphical system, 278 
graphical user interfaces. See GUIs 
graphics objects, resources cleanup  

and, 186 
graphics-primitive retention, 311 
GTK# library, 268 
GUI resources, 170 
Guid type (System namespace), 253 
GUIDs (global unique identifiers), COM 

components and, 497, 507 
GUIs (graphical user interfaces), 271–320 

anatomy of, 272 
building, 273–278 
connecting to, IterativeBackgroundWorker 

case study and, 363 

debugging, 532 
double buffering and, 297 
drawing and, 278–282 
GraphControl sample control and,  

286–298 
GUI threads and, 363 
Mandelbrot sample viewer and, 298–309 
reactive programming and, 355 
visual designers for, 276 
watching forms grow interactively, 276 

 

■ H 
half adder circuits, 344–348 
hardware circuit verifier (sample) 

application, 340–354 
hardware design, 340 
hash function, 100 
hash-consing, 218 
hashing, 175–180 
HashSet, 81 
Haskell monads, 226, 227 
Haskell programming language, 2 
HatchBrush class, 279 
HCF (highest common factor), 104 
heap, 494 
heap allocated memory, resources cleanup 

and, 186 
Hello World (sample) function, 508 
“Hello, World!” (sample) button, 271, 424 
--help command-line option, 163 
hiding mutable data, 72 
hierarchical factoring, 107 
hierarchies, caution for, 142 
highest common factor (HCF), 104 
hit counts, 526 
HOL88 system, 341 
holder design pattern, 385 
HSV (Hue Saturation Value), 300 
HTML 

ASP.NET and, 397 
HTML documentation and, 164 
server controls and, 413 
web authoring and, 399 

Hue Saturation Value (HSV), 300 
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■ I 
-I command-line flag, 162 
--i command-line option, 167 
#I directive, 163 
I/O bound applications, 370 
I/O communications, 85–91 

asynchronous workflows and, 374 
cleanup and, 90 
Console and, 88 

IComparable interface, 142 
identity records, mutation and, 73 
IDisposable interface, 87, 90, 141 

resource cleanup and, 189–192 
resources and, 187 

IEnumerable interface, 141, 190 
IEnumerator interface, 141 
IEvent interface, 142 
if... then... else... construct, automatic 

upcasts and, 113 
if… then… elif… else… construct, 38 
IIS (Microsoft), development web server 

and, 403 
ildasm.exe, 492, 502 
images, Windows Presentation Foundation 

and, 318 
image-transformation (sample) application, 

370–373 
immutability 

data structures and, 36, 71 
values and, 9, 32 

imperative programming, 67–96 
arrays and, 74–78 
combining with functional 

programming, 92 
delayed computations and, 95 
dictionaries and, 79–81 
exceptions and, 81–85 
vs. functional programming, 67 
I/O communications and, 85–91 
imperative .NET collections and, 77–81 
loops and, 68, 93 
mutable data structures and, 69–74,  

81, 93 
null values and, 91 
side effects and, reducing via functional 

programming, 92–96 

implementation code, 560 
implementation inheritance, 362 

delegation and, 144 
.NET Library Design Guidelines and,  

557, 558 
partially implemented types and, 145 

implicit constructors, 128 
implicit factoring, 107 
indexer properties, 22, 130, 136 
inferred types, 124, 127 
infix operators, 256, 342 
inherit keyword, 142 
in-memory data structures, querying,  

435–439 
input controls, ASP.NET and, 405–408 
input lists, 40 
input/output. See I/O communications 
installation location, 171 
installer generators, shared libraries  

and, 166 
instance members, 15, 23 
instrumenting programs, 528–531 
int operator, 29, 108 
int type, 26 
int16 operator, 29 
int16 type, 26 
int32 operator, 29 
int32 type, 26 
int64 operator, 29 
int64 type, 26 
integers 

for loops and, 68 
pattern matching and, 50 
range expressions and, 54 

INTERACTIVE conditional compilation 
symbol, 163 

interface inheritance, 142 
interface pointers, 495 
interfaces, 137.  

See also object interface types 
internal accessibility annotation, 156, 158 
interoperability, 491–521 

CLR and, 491–496, 499–517 
COM components and, 495–507 
memory management at runtime  

and, 493 
Platform Invoke and, 507–521 
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InteropServices namespace, 506, 509 
Irrlicht engine, 268 
isolated storage, 171, 173 
IsPostBack property, 401, 418 
Item property, 130, 136 
IterativeBackgroundWorker (case study), 

359–365 
connecting to GUI and, 363 
raising additional events for, 362 

IUnknown interface, 496 

■ J 
JavaScript 

F# to JavaScript compiler and, 423 
JavaScript stubs, WebSharper and, 428 

JIT (Just-In-Time) compiler, 492 
JpegBitmapDecoder class, 318 
JpegBitmapEncoder class, 318 
Just-In-Time (JIT) compiler, 492 

■ K 
--keyfile command-line option, 165 
keyword tables, 479 
keywords, 9 
Kitty (sample) programming language,  

479–486 

■ L 
LALR parsers (Look-Ahead LR), 478 
lambda expressions, F# quotations  

and, 244 
Language Integrated Query. See entries at 

Linq 
language-oriented programming, 207–248 

abstract syntax representations and, 
213–219 

abstract syntax trees and, 213–218 
active patterns and, 220–225 
quantified Boolean formulae and, 341 
quotations and, 244–247 
reflection and, 239–244 
symbolic programming and, 321–354 
workflows and, 225–238 
XML and, 208–212 

languages 
ASP.NET and, 397 
relational databases and, 441 

last-in/first-out (LIFO), Stack and, 81 
Lazy class, 217 
lazy computations, 95, 215 
lazy keyword, 185, 217 
lazy lists, 475 
lazy sequences, 54, 57, 446 
lazy values, 185 
left-factoring, 478 
Left-to-right, Leftmost derivation (LL 

parsers), 477 
Left-to-right, Rightmost derivation (LR 

parsers), 477, 478 
let bindings 

accessibility annotations and, 158 
encapsulation and, 136 
local definitions and, 154 
resolving definitions for, 247 
workflows and, 229 

let keyword, 9, 12, 59 
let! primitive, asynchronous workflows  

and, 369 
LexBuffer type, 468, 472 
lexers 

fslex. See fslex 
for Kitty sample programming  

language, 479 
language-oriented programming  

and, 207 
for visual symbolic differentiation 

sample application, 327 
lexical actions, 469 
lexical analysis, 463, 464 

via fslex, 466–474 
lexical actions, 469 
rules/functions and, 469 

lexing, 463–474 
connecting parsers and lexers, 485 
generating lexers and, 484 
processing line-based input and, 464 

libraries. See F# libraries; .NET libraries 
library sharing, 165 
lifetimes, 187, 189 
LIFO (last-in/first-out), Stack and, 81 
LinearGradientBrush class, 279 
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line-based input, processing, 464 
--linkresource command-line option, 165 
LINQ (Language Integrated Query), 268 

in-memory queries and, 439 
LinqToSql queries and, 455 

LinqToSql queries, 455–457 
LinqToXml, 459 
List module, 34 
listeners, debugging and, 529 
lists, 33–36 

function values and, 40–50 
List module and, 34 
parsing, 483 
range expressions and, 60 
sequence expressions and, 60 
SortedList and, 81 
tail recursion and, 195 

literal byte arrays, 30, 31 
literals, 25 
livelocking, 356 
LL parsers (Left-to-right, Leftmost 

derivation), 477 
#load directive, 163 
local definitions, for code  

encapsulation, 154 
local functions, 46, 324 
local variables, mutable, 73, 93 
locks 

mutable data structures and, 386 
race conditions and, 387 
ReaderWriterLock and, 388 

log operator, 30 
log10 operator, 30 
logical tree, Windows Presentation 

Foundation and, 316 
Look-Ahead LR (LALR parsers), 478 
lookaside tables, 183 
loops, 68, 93 
LR parsers (Left-to-right, Rightmost 

derivation), 477, 478 

■ M 
mailbox processing, 378–385 

scanning for messages and, 382 
web crawler sample and, 383 

managed asynchronous computation, 368 

managed code, 491 
Mandelbrot (sample) viewer, 298–309 

colors for, 300 
refresh operations for, 304 

many-to-many relationships, databases 
and, 441 

mapping  
memory, PInvoke and, 516–520 
mapping types and, 513 

Marshal class, 503, 520 
marshalling 

data structures, 511 
strings, 513 

marshalling (pickling) combinators,  
486–489 

.master files, 398 
match... with construct, 50 
match keyword, 50 
MatchFailureException, 52 
matching patterns. See pattern matching 
math. See also entries at arithmetic 

algebraic expressions and, 325–332 
Mandelbrot sample viewer and, 299 
Microsoft.FSharp.Math namespace  

and, 263 
math operators, 29 
matrices, 263 
max comparison operator, 29 
.mdf files, 398, 420 
Measure attribute, 115 
members, 15, 123–126 

added to types, 123 
vs. functions, 126 

memoization, 183–186 
BDDs and, 348 
tree nodes and, 218 

memory 
classifications of according to use, 493 
garbage collection and, 187 
memory mapping, Platform Invoke and, 

516–520 
memory stickiness and, 189 
.NET memory model and, 386 
shared-memory concurrency and,  

385–389 
memory management 

COM and, 496 
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interface pointers and, 496 
at runtime, 493 

message passing/processing, 377–385 
scanning for messages and, 382 
state machines and, 379 

message-passing (sample) applications, 
377–385 

message-passing concurrency, 377 
message queues, 272 
metadata, 492 

COM and, 496 
registry and, 497, 498 

method calls, calling conventions and, 507 
method members, 125 
methods 

overloading, 134 
named/optional arguments and, 132 
.NET Library Design Guidelines and, 558 
vs. properties, 22 
vs. values, 22 

Microsoft 
FxCop, 546–550 
IIS, as development web server, 403 
TerraService web service, 430 

Microsoft Expression Blend, XAML  
and, 313 

Microsoft Robotics Studio, 268 
Microsoft XNA, 269 
Microsoft.FSharp.Collections  

namespace, 262 
Microsoft.FSharp.Math namespace, 263 
Microsoft.FSharp.Reflection  

namespace, 267 
Mimer SQL, 441 
min comparison operator, 29 
Model-View-Controller design pattern 

controls and, 285 
GraphControl sample and, 288–297 

modules, 147–150 
accessing via open keyword, 20 
extending, 148, 149 
organizing code and, 148 
packaging code and, 159, 160 

monads, 226, 227 
monoids, 227 
mouse events 

controls and, 284 

GraphControl sample and, 292 
Mandelbrot viewer sample and, 305 

multiparadigm languages, 545, 553 
multiplication (*) operator, 26 
mutable data structures, 69–74, 81 

locks and, 386 
ReaderWriterLock and, 388 
separating, 93 

mutable state, 135 
mutation, identity and, 73 
MySQL, 441 

■ N 
\n escape character, 31 
named arguments, 132 
namespaces 

.NET framework and, 250 
accessing via open keyword, 20 
packaging code and, 159 

naming conventions, 556 
interfaces and, 137 
object interface types and, 141 
per .NET Library Design Guidelines, 553 

NaN (Not a Number) values, 29 
nativeint type, 26 
negation normal forms (NNFs), 224 
.NET assemblies, 492 
.NET Framework 

imperative collections and, 77–81 
namespaces and, 250 
.NET types and, 109 

.NET libraries, 19–24, 249–269 
asynchronous operations and, 374 
binary serialization via, 102 
data structures and, 262 
delegate and, 267 
events and, 203 
help for, 24 
object interface types from, 141 
reflection and, 266 
RegularExpressions namespace and, 255 
vanilla, 546–550 

.NET Library Design Guidelines, 545 
applying to F# programming, 553–560 
checking for compliance with, 548 

.NET memory model, 386 
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.NET methods 
as first-class functions, 49 
out parameters and, 79 

.NET thread pool, 368, 372 
network connections, resources cleanup 

and, 186 
new keyword, 21 
NNFs (negation normal forms), 224 
NoComparison attribute, 177, 179 
NoEquality attribute, 177, 179 
nondeterministic applications, 356 
non-numeric types, 25 
nooptimizationdata compiler  

command-line option, 164 
Northwnd.mdf sample database, 455 
Not a Number (NaN) values, 29 
notational conveniences, 130–135 
null keyword, 91 
null values, 91 
Nullable type (System namespace), 253 
numeric types, 25 

converting, 28 
range expressions and, 54 
units of measure for, 115 

NUnit, 538–543 
test fixtures and, 539 
versions of, 542 

■ O 
-o command-line flag, 162 
O/R (object/relational) mapping, 455 
object expressions 

for object interface type 
implementation, 139 

partial object interface type 
implementation and, 143 

recommendation for formatting, 561 
object interface types, 106, 137–147 

defining, 137, 138 
from .NET libraries, 141 
hierarchies of, 142 
implementing, 139–141 
.NET Framework Design Guidelines 

and, 559 
partial implementations for, 143–147 

object types, exposed as COM components, 
501, 504–506 

object/relational (O/R) mapping, 455 
ObjectDataSource control, 411 
object-oriented (OO) programming 

basic constructs of in F#, 123–152 
functional programming and, 545 
library design and, 550, 552 
.NET Library Design Guidelines and, 557 
polymorphism and, 140 
tail recursion and, 197 

objects, 123–147 
delimiting via interface/end, 150 
mutable state for, 135 
notational conveniences and, 130–135 
object interface types and. See object 

interface types 
precomputation and, 182 
two-faced, 358 
vs. values, 18 

OCaml programming language, 2 
^ operator and, 33 
library design and, 546 
underscore (_) and, 556 

on-demand. See entries at lazy 
one-to-many relationships, databases and, 

440, 454 
one-to-one relationships, databases and, 

440, 454 
OnPaint method, 284, 293 
OnPaintBackground method, 280 
OO. See object-oriented programming 
open keyword, 20 
OpenText function, streams and, 87 
operator overloading, 27, 130 

matrices and, 265 
vectors and, 265 

operator precedence, 323, 483 
operators 

aggregate, 42, 48, 435 
arithmetic, 26 
bitwise, 27 
comparison, 29, 131 
conditional, 38 
conversion, 28 
infix, 256, 342 
for lists, 33 
math, 29 
overloading, 121, 130 
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recommendations for using, 560 
Operators module, 99 
--optimize compiler command-line  

option, 164 
Option module, 37 
option values, .NET Library Design 

Guidelines and, 557 
optional arguments, 132 
optional property settings, 133 
options, Option module and, 37 
Oracle 

Berkeley Database, 520 
Oracle database engine, 441 

out parameters, .NET methods and, 79 
output lists, 40 
outscoping value, 13 
OverflowException, arithmetic operators 

and, 27 
overloaded operators, type inference 

debugging and, 121 
overloading 

matrices, 265 
methods, 134 
operators, 130 
vectors, 265 

override keyword, 146 
overriding, vs. delegation, 292 

■ P 
packaging code, 153–173 

assemblies and, 161 
distinct meanings of, 153 
encapsulation and, 153–158 
modules and, 159, 160 
namespaces and, 159 
packaging applications and, 169–173 
signature types/signature files and, 167 
type abbreviations and, 159 

padding, 495, 511 
page events, 416, 417 
page-based web development, 396 
pagelets, 422, 423, 429 
paint messages, 278, 280, 290 
Parallel LINQ, 439 
parallel programming, 355, 365–377 

background processing and, 357–365 
parallel applications, terminology and, 356 

parameterized active patterns, 223 
parentheses ( ), operator precedence and, 

323 
parser combinators, 489 
parsers 

fsyacc. See fsyacc 
for Kitty sample programming language, 

481 
language-oriented programming and, 

207 
for visual symbolic differentiation 

sample application, 327 
parsing, 463–489 

binary data, 486–489 
connecting parsers and lexers, 485 
developing parsers and, 479–482 
via fsyacc parser generator, 478–486 
generating parsers and, 484 
lists, 483 
recursive-descent parsing and,  

474–478 
resolving conflicts and, 483 

partial active patterns, 223 
partial application, for building functions, 

45, 47 
PathGradientBrush class, 279 
pattern matching, 51, 50–53 

active patterns and, 220–225 
conditional operators and, 38 
discriminators and, 63 
exhaustive/non-exhaustive matches 

and, 52 
lists and, 34 
for.NET object types, 222 
options and, 37, 38 
type tests and, 112 

.pdb file extension, 524 
pens, 279, 315 
Pens class, 279 
persistent data structures, 36, 71 
pervasive metadata, 496 
Pickering, Robert, 208 
pickling/unpickling combinators,  

486–489 
pinning, 512 
PInvoke. See Platform Invoke 
pipe (|) operator, 50 
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pipeline operations, 43, 44, 561 
Platform Invoke (PInvoke), 507–521 

data structures and, 510–513 
DLLs and, 507–520 
limitations of, 520 
marshalling and, 511, 513 
memory mapping and, 516–520 

plug-ins, 169 
Polar active pattern, 220 
polar coordinates, 220 
polymorphism, 140 
postbacks, 401, 418 

AutoPostBack property and, 417 
view state and, 418 

PostgreSQL, 441 
Power Pack, 115 
PowerCollections library, 263 
precomputation, 180–186, 242 
PreviousPage property, 418 
primary constructors, 128, 136 
primary keys, relational databases and,  

440, 453 
primitive propositions, 342 
printf, 18, 88 

printf debugging approach and, 523, 529 
Printf module and, 88 

printing, generic pretty-printing and, 101 
private accessibility annotation, 156 
probabilistic workflows, 233–238 
procedural programming, library design 

and, 550 
processes, terminology and, 356 
profiling web applications, 415 
ProgIdAttribute class, 506 
program ID, COM components and, 497 
programming 

asynchronous, 355–359, 365–377 
concurrent, 355 
functional, 25–66 
imperative, 67–96 
language-oriented, 207–248 
parallel, 355, 365–377 
reactive, 355 
symbolic, 321–354 

programming languages, Kitty sample 
language and, 479–486 

programming patterns, COM components 
and, 500 

programs. See applications  
ProgressChanged event, 358, 361, 363 
Prop formulae, 342 
Prop representations, 351 
properties, 15 

caching in abstract syntax trees, 217 
indexer properties and, 22, 130 
vs. methods, 22 
.NET Library Design Guidelines and, 558 
optional property settings and, 133 
setting, 21 
vs. values, 22 

PropertyGrid control, 298 
propositional logic, 340–354 

evaluating naively, 342 
propositional formulae and, 348–352 
propositional logic terms and, 218 
representation of, 341 

protecting internal table using accessibility 
annotations, 157 

providers, 419 
proxies 

web services and, 430 
WebSharper and, 428 

public accessibility annotation, 156,  
157, 158 

■ Q 
QBF (quantified Boolean formulae), 341 
qualified names, 159 
quantified Boolean formulae (QBF), 341 
querying 

in-memory data structures, 435–439 
LinqToSql queries and, 455–457 
XML data, 460 

question mark (?),for optional  
arguments, 132 

Queue, 81 
quotations, 244–247 

example of, 245 
language-oriented programming  

and, 207 
LINQ and, 457 
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partial/parameterized active patterns, 
223 

rationale for using, 245 

■ R 
-r command-line flag, 162 
#r directive, 163 
\r escape character, 31 
race conditions, 386 

avoiding via locks, 387 
Mandelbrot sample viewer and, 303 

range expressions, 54 
RCWs (runtime callable wrappers), 500 
reactive programming, 355 

graphical user interfaces and, 355 
reactive applications, terminology  

and, 356 
ReadAllLines function, 85 
ReadAllText function, 86 
ReaderWriterLock, 388 
readValue function, 103 
records, 61–65 

cloning, 63 
defining, 61 
discriminated unions used as, 65 
mutable, 69–73 
.NET Library Design Guidelines and, 558 
relational databases and, 440, 445 

Rect active pattern, 220 
rectangular coordinates, 220 
recursion, 39 

alternatives to, 40 
tail recursion and, 40, 194–202 
well-founded, 40 

recursive-descent parsing, 474–478 
recursive functions, 39, 57 

tail-recursive, 195 
using instead of mutable  

locals/loops, 93 
recursive workflow expressions, 238 
Red Green Blue (RGB), 300 
reduce function, 437 
reference cells (ref cells), 70 

aliasing and, 72 
identity and, 73 

reference types, 76, 109 

ReferenceEquals function, 73 
reflection, 239–244 

.NET/F# libraries and, 266 
COM and, 496 
types and, 239–243 

Reflection library, 243 
regasm.exe, 501, 505 
Regex.Matches function, 69 
Regex1 active pattern, 393 
registry, COM components and, 497 
registry settings, 171 
regular expressions, 255–260, 465 
relational databases, 440 

languages and, 441 
object/relational (O/R) mapping and, 455 
stored procedures and, 451 
visual data modeling and, 453 

Release method, 496 
rendering expressions, 332–338 
RepeatText.ascx (sample) user control, 420 
ReportProgress method, 358 
resgen.exe tool, 171 
resizable arrays, 78. See also lists 
ResizeArray module, 78 
--resource command-line option, 172 
resources, 186 

cleaning up, 186–194 
combining with workflows, 238 
lifetimes and, 187, 189 
reclaiming/recycling, 187 

resources for further reading 
composite formatting, 261 
JavaScript stubs, 429 
.NET memory model, 387 
.NET proxies, 429 
operator precedence, 484 
shared-memory concurrency, 386 
theorem proving, 341 
units of measure, 117 

Resume() method, 386 
.resx files, 171, 398 
RGB (Red Green Blue), 300 
RIAs (Rich Internet Applications), 

WebSharper and, 423 
rich-client web applications, 422–430 
Robotics Studio (Microsoft), 268 
ROT (Running Object Table), 503 
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Run method (Application class), 272 
Running Object Table (ROT), 503 
runtime, COM component interaction  

and, 500 
runtime callable wrappers (RCWs), 500 
runtime types, 111 
RunWorkerAsync method, 358, 361 
RunWorkerCompleted event, 358, 361, 363 

■ S 
samples 

AdventureWorks sample database and, 
408–412 

analyzer for duplicate words, 7–19 
Curves graphical application, 278–282 
database viewer web application, 410 
error estimation, quotations and, 245 
Flash Player, COM components and, 501 
GraphControl graphic control, 286–298 
hardware circuit verifier, 340–354 
Hello World function, 508 
“Hello, World!” button, 271, 424 
image-transformation application,  

370–373 
IterativeBackgroundWorker case study, 

359–365 
Kitty programming language, 479–486 
Mandelbrot viewer, 298–309 
message-passing applications, 377–385 
Northwnd.mdf sample database  

and, 455 
object types exposed as COM 

components, 501, 504–506 
showWordCount function, 8, 17 
splitAtSpaces function, 8, 19 
StreamReader, 19–23 
in this book, downloading code for, 5 
user control, 420 
visual symbolic differentiation 

application, 322–340 
web application, 399–404 
web browser, 273–278 
web crawler, 383 
wordCount function, 8–18 
workflows, 227, 233–238 

sbyte operator, 29 

sbyte type, 25 
schemas, compiling via type reflection,  

239, 266 
scope, 13 
scripts, 163, 169 
select aggregate operator, 436 
semantic analysis, 464 
semicolons 

double semicolons (;;), 12, 19 
semicolon (;), 18 

Seq module, 55 
Seq.sum function, 438 
Seq.sumBy function, 438 
Seq.truncate function, 437 
sequence expressions, 58–60 

abstract syntax representations and, 214 
cleaning up, 192 
lifetimes and, 189 
workflows and, 225 
XML and, 212 

sequence loops, 69 
sequences, 53–60, 439 

aggregate operators and, 55 
construction sequences and, 128 
iterating, 55 
sequence expressions and, 58–60,  

438, 446 
sequence loops and, 69 
type compatibility and, 56 

serialization, 102, 104 
server controls, 413, 420, 425 
server-side applications, 391–405, 424 
service-oriented architectures, 430 
services, providers for, 419 
Set.ofList function, 14, 15 
SetStyle method (UserControl class), 297 
setTextOfControl function, 113 
shared libraries, 165 
shared-memory concurrency and, 377,  

385–389 
showWordCount (sample function), 8, 17 
side effects, 67 

lazy computations and, 95 
reducing via functional programming, 

92–96 
weak vs. strong, 94 
workflows and, 232 
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signature types/signature files, 167, 557 
Silverlight, 309 
Simple LR (SLR parsers), 478 
Simple Object Access Protocol (SOAP), 430 
sin operator, 30 
single thread apartment model, 273 
single type, 26 
sinh operator, 30 
sinks, 47, 500 
.sitemap files, 398 
slash (/), for comments, 9 
slicing arrays, 76 
SLR parsers (Simple LR), 478 
snd function, 17 
SOAP (Simple Object Access Protocol), 430 
sockets, web servers and, 393 
software. See applications 
SolidBrush class, 279 
SortedDictionary, 81 
SortedList, 81 
source code, downloading samples used in 

this book, 5 
source directory, 171 
splitAtSpaces (sample function), 8, 19 
SplitContainer control, 297 
sprintf function, 88 
SQL (Structured Query Language), 441 
SQL Express database, 419 
.sql files, 398 
SQL Server, 441, 452 
SQL Server Express, 441 
SQL via LINQ, language-oriented 

programming and, 207 
SQLite, 441 
SqlMetal, 455 
Stack, 81 

resources cleanup and, 186 
stack overflows and, 194 
tail recursion and, 194–202 

stack overflows, avoiding via  
continuations, 199 

StackOverflowException, 194 
--standalone compiler command-line 

option, 167 
state 

encapsulation and, 154 
mutable, for objects, 135 

state machines, 378, 379 
stateful lexing, 463, 468 
static application data, 170 
static bindings, classes and, 129 
static functions, .NET types and, 255 
static linking, for DLLs, 166 
static members, 15, 23, 147 
static memory, 493 
static web content, 391–395 
--static-link compiler command-line 

option, 167 
stdcall calling convention, 508, 516, 520 
stored procedures, 451 
Stream, 88 
StreamReader (sample reader), 19–23 
streams 

cleanup and, 91 
I/O communications and, 86 

StreamWriter, 86 
StringBuilder, 81 

marshalling strings and, 514 
StringWriter and, 86 

StringReader, 87 
strings, 30–33 

building, 32 
formatting, 255, 260 
I/O communications and, 86 
lexing, 466–474 
marshalling, 513 
parsing, 465 
pattern matching and, 50 
printfn function and, 88 
regular expressions and, 255 
sprintf function and, 88 
Unicode encoding/decoding and, 261 

StringWriter, 86 
strong name-shared libraries, 165 
strongly typed data, 170 
StructLayout custom attribute, 510 
structs, 151, 557 
structural comparison, 99 
structural formatting, 90 
StructuralComparison attribute, 176 
StructuralEquality attribute, 176 
Structured Query Language (SQL), 441 
structured values, pattern matching on, 51 
subarrays, 76 
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submodules, 147 
subtraction (-) operator, 26, 105 
subtyping, 109, 111–115 

runtime types and, 111 
type tests and, 112 

success continuation, asynchronous 
computations and, 368 

Sum function, 510 
Suspend() method, 386 
SWIG wrapper generator, 521 
Sybase iAnywhere, 441 
symbolic differentiation, 322–340 
symbolic programming, 321–354 
synchronization contexts, of threads, 363 
syntactic analysis, 463, 464 
syntax member, object expressions and, 561 
syntax trees, 201 
System namespace, 250 

application execution and, 265 
core types from, 253 

System.Collections.Generic namespace, 262 
System.Net library, 19, 22 
System.Reflection namespace, 239, 267 
System.Text.RegularExpressions 

namespace, 255–260 
System.Windows.Forms library, 19 
System.Windows.Forms.Form, 21 
SystemColors class, 284 

■ T 
tables, relational databases and, 440,  

445, 453 
tail calls, 195, 199, 527 
tail recursion, 40, 194–202 

unbalanced syntax trees and, 201 
unbalanced trees and, 198 

tail-recursive functions, 195 
tan operator, 30 
tanh operator, 30 
TCP/IP, web servers and, 393 
TerraService web service (Microsoft), 430 
test fixtures, 538–542 
testing, 523, 533–538 

runtime-type tests and, 111 
type tests and, 112 
unit testing and, 523, 538–543 

text 
formatting, 255 
reading/writing, 85–91 

Text label, 21 
TextReader, 87 
TextureBrush class, 279 
TextWriter, 88 
threads 

creating explicitly, 386 
GUIs and, 272 
locks and, 387 
Mandelbrot sample viewer and, 303 
memory model and, 386 
race conditions and, 386 
resources cleanup and, 186 
single thread apartment model and, 273 
synchronization context of, 363 
terminology and, 356 
thread hopping and, 367 
thread pool and, 368, 372 

TimeSpan type (System namespace), 253 
tlbexp.exe, 501 
tlbimp.exe, 501, 502 
tokenizing. See lexical analysis 
tokens, 464 

constructing, 469 
generating token streams and, 470 
tracking position information for, 472 

tools 
CLR and, 504 
for debugging, 523 
for generating wrappers, 501 
for unit testing, 523, 538–543 
for XML, 210 

top-level members, resolving definitions  
for, 247 

TopMost label, 21 
TraceListener class, 529 
tracing web applications, 415 
Transact-SQL (T-SQL), 441 
transformations, 215, 551 
transformers, modeled from function 

values, 47 
traversals, 214, 215 
trees 

syntax trees and, 201 
tail recursion and, 198 
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troubleshooting. See debugging, 
truncate operator, 30 
truncating, Seq.truncate function and, 437 
truth tables, 342 
try… finally construct, 83, 377 
try... with... language construct, 83 
TryGetValue method, 79 
T-SQL (Transact-SQL), 441 
tuples, 16 

hashing and, 101 
.NET Library Design Guidelines and, 560 

two-faced objects, 358 
type abbreviations, 60, 159 
type annotations, type inference debugging 

and, 117 
Type class, 222 
type classes, 107 
type constraints 

flexible type constraints and, 114 
type constraint propagation and, 117 

type constructors, 10 
type definitions, 60–66 

contained in namespaces, 159 
for discriminated unions, 63–65 
inferred types and, 124 
multiple types defined simultaneously 

and, 66 
for records, 61–65 

type functions, 121 
type inference, 10, 11 

automatic generalization and, 49 
explicit factoring and, 107 
forward pipe (|>) operator and, 44 
understanding/debugging, 117–122 

type parameters, 41 
type tests, 83, 112 
type variables, 49, 97 

flexible type constraints and, 114 
ungeneralized, 119 

typed datasets, 449 
typeof operator, 239 
types, 10, 97–122 

core, from System namespace, 253 
delegate, 267 
extending, 148 
general, .NET Framework and, 266 
language-oriented programming and, 207 

mapping, 513 
members, adding to, 123 
.NET Library Design Guidelines and, 558 
.NET types and, 109 
new, hashing and, 101 
notational conveniences for, 130–135 
organizing code and, 148 
partially implemented, 144–147 
pattern matching for, 222 
reflection and, 239–243 
sequences and, 56 
subtyping and, 109, 111–115 
units of measure and, 115 
vanilla .NET libraries and, 546–550 

■ U 
UI (user interface), for visual symbolic 

differentiation sample application, 
338. See also GUIs 

uint16 operator, 29 
uint16 type, 26 
uint32 operator, 29 
uint32type, 26 
uint64 operator, 29 
uint64 type, 26 
unativeint type, 26 
unbox function, 102, 110 
unboxing function, 101 
underscore (_), 50 

naming conventions and, 556 
ungeneralized type variables and, 119 

ungeneralized type variables, 119 
Unicode strings, encoding/decoding, 261 
unique keys, relational databases and, 440 
unit testing, 523, 538–543 
unit type, 26 
units of measure, 115 
\uNNNN escape character, 31 
\UNNNNNNNN escape character, 31 
untyped datasets, 447 
upcast (:>) operator, 111 
Uri type (System namespace), 253 
URLs, Uri type and, 253 
use bindings 

cleaning up resources and, 187, 192 
vs. using function, 194 
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use construct, 90 
#use directive, 163 
user controls, 420 
user directories, 171 
user input, lexing/parsing and, 463 
user interface (UI), for visual symbolic 

differentiation sample application, 
338. See also GUIs 

UserControl class, 283 
GraphControl sample and, 290 
SetStyle method and, 297 

using function, cleaning up resources  
and, 194 

using operator, 90 
utilities. See tools 

■ V 
val keyword, 8, 10 
validation 

formlets and, 426 
validation controls and, 413 

value restriction, 119–122 
value types, 76, 109, 557 
values 

constraining values to be  
nongeneric, 120 

immutable, 9, 32 
vs. methods, 22 
null values and, 91 
vs. objects, 18 
outscoping, 13 
vs. properties, 22 
scope and, 13 
TryGetValue method and, 79 
vs. variables, 9 

vanilla .NET libraries, 546–550 
var function, primitive propositions and, 342 
variables 

type variables and, 49, 97 
vs. values, 9 

vectors, 263 
verbatim strings, 30, 31, 256 
versioning, shared libraries and, 165, 166 
view state, 417, 418 
viewlets, 538 
Visible label, 21 

visual data modeling, 453 
visual designers, 276 
Visual Studio 

consuming web services and, 430 
databases and, 452 
debugging/tracing web applications 

and, 415 
development web server and, 403 
F# Interactive and, 7, 9, 537 
help for XML and, 24 
IDisposable interface and, 189 
Running Object Table and, 503 
stored procedures and, 451 
type inference and, 

understanding/debugging, 117 
unit testing and, 524 
user controls and, 420 
validation controls and, 413 
visual data modeling and, 453 
visual designer and, 276 
Visual Studio debugger and, 525–528 
WebSharper and, 423 
XAML and, 309, 313 

visual symbolic differentiation (sample) 
application, 322–340 

algebraic expressions and, 322–332 
recap of, 340 
rendering expressions and, 332–338 
rendering options for, 332 
user interface for, 338 

visual tree, Windows Presentation 
Foundation and, 312–318 

VisualExpr values, converting expressions 
to, 332, 334 

VSLab, 538 

■ W 
WCF (Windows Communication 

Foundation), 269 
WeatherForecast web service, 430 
web applications, 391–434 

Ajax rich-client applications and,  
422–430 

cross-page posting and, 418 
database query results, displaying,  

408–412 
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debugging/tracing, 415 
deploying/running, 402 
dynamic web content and, 395–405 
events and, 416 
examples of, 399–404, 410 
file types and, 397 
static content and, 391–395 
web services and, 430–434 
web site structure and, 399 
WebSharper and, 422–430 

web browser (sample), 273–278 
web crawler (sample), 383 
web forms (.aspx files), 397, 399 
web pages, fetching, 22, 39, 365 
web root directory, 399 
web server controls, 413, 420 
web servers, 391–395 

asynchronous tasks and, 393 
development, serving ASP.NET pages 

locally and, 403 
web services, 430–434 

calling asynchronously, 433 
consuming, 430 

Web Services Description Language 
(WSDL), 430 

web.config file, 398, 399 
database viewer sample web application 

and, 411 
deploying/running web applications 

and, 402 
development web servers and, 403 
provider database configuration  

and, 420 
referencing F# compiler, 400 

WebException, 82 
WebSharper, 422–430 

automated resource tracking/handling 
and, 429 

downloading, 423 
where aggregate operator, 436 
while loops, 68 
whitespace, regular expression and, 256 
wildcard patterns, pattern matching and, 

50, 53 
Windows Communication Foundation 

(WCF), 269 

 
 

Windows Forms, 271 
brushes/pens and, 279 
conditional compilation symbols and, 163 
custom controls and, 282–286 
data grids and, 452 
drawing and, 278–282 
“Hello, World!” button and, 271 
layout of controls and, 276 
single thread apartment model and, 273 
viewlets and, 538 
vs. Windows Presentation  

Foundation, 309 
Windows Presentation Foundation.  

See WPF 
Windows Registry, 171, 497 
windows, graphical system and, 278 
Windows-related resources, 171 
WiX, shared libraries and, 166 
wordCount (sample function), 8–18 
workflows (computation expressions), 58, 

225–238 
asynchronous, 365–375 
builder for, 225, 230, 235 
combining with resources, 238 
examples of, 227, 233–238 
how they work, 225–227 
key uses of, 225 
language-oriented programming  

and, 207 
probabilistic, 233–238 
recursive workflow expressions and, 238 
resources cleanup and, 238 
side effects and, 232 
success/failure and, 227 
terminology and, 227 

WPF (Windows Presentation Foundation), 
269, 309–320 

brushes/pens and, 315 
controls and, 315–318 
drawing and, 312–315 
vs. Windows Forms, 309 

wrapper generation, 500–503, 505, 520 
WriteLine functions, 260 
writeValue function, 103 
WriteXXX methods (Debug class), 529 
wsdl.exe, 431, 432 



■ INDEX 

 
 

596 

 

■ X-Y-Z 
XAML, Windows Presentation Foundation 

and, 309, 312–315 
XLinq, 210 
XML 

abstract syntax and, 210 
ASP.NET and, 397 
as a concrete language format, 208–212 
databases and, 458–461 
language-oriented programming and, 

207 
LinqToXml and, 459 
tools for, 210 
Visual Studio help and, 24 
XML documentation and, 164 
XML DOM and, 458 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Xml namespace, 208 
XML Schema Definition Tool (xsd.exe), 210 
XmlAttribute type, 210 
XMLDocs, 210 
XmlNode type, 209 
XmlReader type, 210 
XmlWriter type, 210 
XNA (Microsoft), 269 
XPath, 212, 460 
xsd.exe, typed datasets and, 449 
 
yield! keyword, 59 
 
zero 

GenericZero function and, 109 
zeroCreate function, null values and, 92 
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