Artificial Intelligence

Lab 3

Expert Systems

Agenda

Introduction to Expert System.

Structure of Expert System.

Forward Chaining and Backward Chaining.
What is PyKnow?

Milestone 1.

New Course-sitesEnroliment

There is a problem in the configuration of the
current course on CourseSites. Kindly, re-
enroll to this new course-sites link.

Assignment 1 is now available on
coursesites

Due Date: 13 March 2019 11:59PM.

http://www.blackboard.com/coursesites/?sig=MowwREJeBAmlkE8imo8%2BfvhiKLk%3D&courseId=_224705_1×tamp=1551574811&inviteId=BB%3FBB_w7Etf%2BIhAcVJwRxvD1Cvo/fzC/SfCClO%2BfiG3qeSY2stUG%2B4ivX5IA%3D%3D

Delivery of Any Milestone

- Each team has received a mail from “CS Team” :
fcis.cs.team@gmail.com notifying you that you have a shared
folder named with your team number.

CS Team (via Google. 2 Invitation to view - fcis.cs.course@gmail.com has invited you to view the following shared folder:

- Also, You can reach your shared folder from drive.google.com

» @ My Drive

» O Computers
B 0 CSTe

I 22 Shared with me I

@ Recent
Y Starred

mailto:fcis.cs.team@gmail.com

Delivery of Any Milestone

Each Group has an access on a shared folder on google drive named with
"Team Number'.

Don't RENAME that folder.

Make sure to upload all folders with no renaming or change in hierarchy
(complete project) without deleting any file before the deadline (Don’t
delete old delivered milestones).

Don't upload any compressed folders (Compressed folder will not be
evaluated).

Create ONLY ONE Project Named ‘Al-Package’

Delivery of Any Milestone

For each milestone, you will create a new folder inside your project named
with lab name.
For example for first milestone, add a folder named ‘ExpertSystems’.

Make sure all folders and files are synced before deadline, No EXCUSES
for syncing issues will be accepted.

No Manual/Mail delivery for any milestone.
If you face any issues, you have time to ask your TA before the deadline.

Don’t forget to share the folder with your team-mates and don’t remove CS
Team.

Expert Systems

Expert Systems solve problems that are normally solved by human
experts.

An expert system is a computer program that represents and
reasons with knowledge of some specialist subject with a view to
solving problems or giving an advice.

To solve expert-level problems, expert systems will need efficient
access to a substantial domain knowledge base which must be built
as efficiently as possible.

They also need to exploit one or more reasoning mechanisms to
apply their knowledge to the problems they are given.

Knowledge is represented by rules.

Expert Systems

- An expert system is divided into two subsystems:
- The inference engine
- The knowledge base.

- The knowledge base represents facts and rules.

- The inference engine applies the rules to the
known facts to deduce new facts.

Knowledge Representation - Rules

The term rule in Al, which is the most commonly used type of knowledge
representation.

Rules can be defined as an IF-THEN structure.
The given facts or information in the |IF part to some action in Then part.
|F < condition > Then < action >.

A rule can have multiple conditions joined by keyword AND, OR, or

combination of them.

IF < condition1 > AND < condition2 > OR < condition3 > Then < action >.

Basic Structure of Expert Systems

Database

Knowledge Base

Rule: IF-THEN

Inference Engine

Explanation Facilities

0

User Interface

\

10

Basic Structure of Expert Systems

The knowledge base contains the domain
knowledge that is useful for problem solving.

In rule-based expert system, the knowledge is
represented by a set of rules.

Each rule specifies a relation, recommendation,
strategy or heuristic and has the |F (condition)
THEN action structure.

When the condition part of a rule is said to fire
the action part is executed.

11

Basic Structure of Expert Systems

The inference engine is a component of the
system that applies logical rules to the knowledge
base to deduce new information.

The inference engine carries out the reasoning
whereby the expert system reaches the solution.

The explanation facilities enables the user to ask
the expert system how a particular conclusion is
reached and why a specific fact is needed.

12

Forward Chaining & Backward Chaining

The Inference engine compares each
rule stored in knowledge base with facts
contained in the database.

Database
When the IF (condition) part of rule

)
matches a fact, the rule is fired and its

THEN (action) part is executed. Match Fire

The matching of the rule IF parts to the
facts produces inference chains. The
Inference chain indicates how an expert Rule: IF A 15 x THEN B 1s)
system applies the rules to reach
conclusion.

13

Forward Chaining & Backward Chaining

Forward Chaining

Data > Rules > Conclusion
A=1 IFA=1andB=2ThenC =3 D=4
B=2 IFC=3ThenD =4

v

Backward Chaining

<

Rules * Goal
IFA=1landB=2ThenC =3 D=47?
IFC=3ThenD =4

14

Forward Chaining

- It is also known as data driven inference technique.

- Forward chaining matches the set of conditions and infer
results from these conditions.

- Basically, forward chaining starts from a data and aims
for any conclusion.

- It is bottom up reasoning also a breadth first search.

- It continues until no more rules can be applied or some
cycle limit is met.

15

Forward Chaining Cont.

- Each time any rule can be executed only once.

When rule is fired, It adds a new fact in the database.

- The match-fire cycle stops when no further rules can be
fired.

- The forward chaining is a technique for gathering

information and the inferring for it whatever can be
inferred.

16

Forward Chaining Cont.

Example:

Suppose a new pet, Friiz, is delivered in a box along with two facts
about Fritz:

Fritz bites
Fritz eats flies

The goal is to conclude the color of a pet named Fritz, based on a rule
base containing the following four rules:

If X bites and X eats flies - Then X is a frog
If X chirps and X sings - Then X is a canary
If Xis a frog - Then X is green

If X is a canary - Then X is yellow

17

Forward Chalning Cont.

With forward reasoning, an inference engine can derive that Fritz is
green in two steps.

Remember Rule #1: If X bites and X eats flies - Then X is a frog.

1. Since the base facts indicate that "Fritz bites" and "Fritz eats flies",
the condition of rule #1 is satisfied by substituting Fritz for X, and
the inference engine concludes:

Fritz is a frog.
Remember Rule #3:If X is a frog - Then X is green.
2. The condition of rule #3 is then satisfied by substituting
Fritz for X, and the inference engine concludes:

Fritz is green.

18

Backward Chalning

It is also called as goal driven inference technique.

It is a backward search from goal to the conditions used to
get the goal.

Basically it starts from a goal and aims for necessary data.
It is top down reasoning or a depth first search.
It processes operations in a backward direction from end

to start, it will stop when the matching initial condition is
met.

19

Backward Chaining Cont.

Example:
Suppose a new pet, Fritz, is delivered in a box along with two facts
about Fritz:

Fritz bites
Fritz eats flies

The goal is to decide whether Fritz is green?!, based on a rule base
containing the following four rules:

If X bites and X eats flies - Then X is a frog
If X chirps and X sings - Then X is a canary
If X is a frog - Then X is green

If X is a canary - Then X is yellow

20

Backward Chaining Cont.

With backward reasoning, an inference engine can determine whether
Fritz is green in four steps.
1. Fritz is substituted for X in rule #3 to see if its
consequent matches the goal, so rule #3 becomes:
If Fritz is a frog - Then Fritz is green.

Since the consequent matches the goal ("Fritz is green"), the rules
engine now needs to see if the ("Fritz is a frog") can be proved. The
condition therefore becomes the new sub-goal: Fritz is a frog

2. Again substituting Fritz for X, rule #1 becomes:
If Fritz bites and Fritz eats flies - Then Fritz is a frog.

Since the consequent matches the current goal ("Fritz is a frog"), the
inference engine now needs to see if the ("Fritz bites and eats flies")
can be proved. The condition therefore becomes the new sub-goals:
Fritz bites and Fritz eats flies.

Backward Chaining Cont.

3.

Since this goal is a conjunction of two statements, the inference
engine breaks it into two sub-goals, both of which must be proved:

Fritz bites
Fritz eats flies

To prove both of these sub-goals, the inference engine sees that
both of these sub-goals were given as initial facts. Therefore, the
conjunction is true: Fritz bites and Fritz eats flies

therefore the antecedent of rule #1 is true and the consequent must
be true: Fritz is a frog

therefore the antecedent of rule #3 is true and the consequent must
be true: Fritz is green

22

PyKnow==1.7.0

PyKnow is a Python library for building expert systems
Matcher based on the forward chaining (

You can find the documentation

To install PyKnow, run this command in your terminal:

- pip install pyknow

The basics:
-Facts
-DefFacts
-Rules
-Knowledge Engine

23

http://www.balasubramanyamlanka.com/rete-algorithm/
https://media.readthedocs.org/pdf/pyknow/stable/pyknow.pdf

Facts

Facts are the basic unit of information of PyKnow.
They are used by the system to reason about the problem.

Let’s enumerate some facts about Facts, so. . . metafacts ;)
1. The class Fact is a subclass of dict.

>>> f = Fact(a=1, b=2)
>>> f['a’]
1

2. In contrast to dict, you can create a Fact without keys (only values), and
Fact will create a numeric index for your values.
>>>f = Fact('x', 'y, 'z")
>>> f[0]

X

24

Facts Cont.

You can subclass Fact to express different kinds of data or
extend it with your custom functionality.

from pyknow import Fact
class Alert (Fact) :

"""The alert. """

pass
class Status (Fact):

"""The system status. """

pass
factl = Alert (message = 'This is an alert')
fact?2 = Status(state = 'critical')

print (factl['message']) #This is an alert
print (fact2['state']) #Critical

25

Rules

Rules have two components, LHS (left-hand-side) and RHS (right-
hand-side).

The LHS describes the conditions on which the rule should be
executed (or fired).

The RHS is the set of actions to perform when the rule is fired.

They are written inside Knowledge Engine Class.

class MyFact(Fact):
pass

@Rule(MyFact()) # This is the LHS
def match_with _every myfact():
"""This rule will match with every instance of "MyFact .

This is the RHS
pass

26

Rules Cont.

class MyFact (Fact) :

pass

dRule (MyFact (type =
def match with cats():

"nn Match with every Fact which:
'animal'

* ['type'] =
* f['family "]
print("Meow!")

'animal', family='felinae'))

'felll’lae VYIrarw

27

Rule Conditional Elements

Conditional Elements: creates a composed conditions containing all Facts
passed as arguments.

AND :
@Rule (AND (Fact (1), Fact (2)))
def ():
pass
OR
@QRule (OR (Fact (1), Fact(2)))
def ():
pass
NOT :
@QRule (NOT (Fact (1))
def ():
pass

28

Rules Cont.

You can use logic operators to express complex LHS conditions

QRule (

AND (

OR (User ('admin') ,User ('root')),
NOT (Fact ('drop-privileges'))

)

)

def the user has power():

rmrrn

The user 1s a privileged one and we are not dropplng

privileges.

rmrrn

enable superpowers ()

29

Rules Field Constraints: FC for sort

L (Literal Field Constraint): This element performs an exact match with
the given value. The matching is done using the equality operator ==.

This is the default FC used when no FC is given as a pattern value
@Rule (Fact (L(3)))

def ():
pass

W (Wildcard Field Constraint): This element matches with any value (Not NULL).

QRule (Fact (mykey=W()))
def ():

pass

30

Composing FCs

All FC can be composed together using the composition operators.
ANDFC() a.k.a. &
ORFC() a.k.a |
NOTFC() a.k.a ~

QRule (Fact (name=~L ('Charlie')))
def ():
pass

QRule (Fact (name=L ('Alice') | L('Bob')))
def ():
pass

31

MATCH object

The MATCH objects helps generating more readable name bindings.

@Rule (Fact (MATCH.myvalue))
def (myvalue):

pass

dRule (Fact ("myvalue" << W()))
def (myvalue):
pass

32

AS Object

The AS object like the MATCH object/

generating bind-able variables.
o O
@Rule(AS.myfac€<«:EactﬂNU))
def (myfact):

Myfact is an Object
of myFact(Fact)

pass

QRule ("myfact" << Fact (W()))
def (myfact):
pass

33

DefFacts

Most of the time expert systems needs a set of facts to be present
for the system to work. This is the purpose of the DefFacts

decorator.

All DefFacts inside a KnowledgeEngine will be called every time the
reset method is called.

The decorated method MUST be generators.

@DefFacts ()

def needed data():
yield Fact (best color="red")
yield Fact (best body="medium")
yield Fact (best sweetness="dry")

34

Declare

- Adds a new fact to the fact list (the list of
facts known by the engine).

engine = KnowledgeEngine ()
engine.reset ()
engine.declare (Fact (score=5))
print (engine.facts)

<f-0> InitialFact ()
<f-1> Fact (score=bh)

35

Difference between DefFacts and declare Facts

Both are used to declare facts on the engine instance, but:
- declare adds the facts directly to the working memory.

- Generators declared with DefFacts are called by the
reset method, and all the yielded facts they are added
to the working memory using declare.

36

Knowledge Engine

This is the place where all the magic happens.

The first step is to make a subclass of it and use Rule to
decorate its methods.

After that, you can instantiate it, populate it with facts,
and finally run it.

37

Engine execution procedure

This Is the usual process to execute a KnowledgeEngine.
The class must be instantiated.

The reset method must be called:

This declares the special fact InitialFact. Necessary for
some rules to work properly.

Declare all facts yielded by the methods decorated with
@DefFacts.

The run method must be called. This starts the cycle of
execution.
]

38

class Greetings (KnowledgeEngine) :
@DefFacts ()
def 1initial action(self):
yield Fact (action="greet"
@Rule (Fact (action="'greet0),
NOT (Fact (name=W ())) O
def ask_name(islf): O
self.declare (Fact (name=input ("What's your name? ")))
@Rule (Fact (action='greet'), G
NOT (Fact (Location=W{())),
def ask location(self):
self.declare (Fact (locatid

Declare New fact with
name
equals user input value

Matches Rule location with
@Rule(Fact(action=‘greqi;)<) - any value for location
Fact (name=MATCEH.name),
Fact(location=MATCHold;btlon))

def greet(self, name, location):

o

print ("Hi %s! How is the weather in %s?" % (name, location))4_
engine = Greetings () s
engine.reset () # Prepare the engine for the execution. <
engine.run () # Run 1t <

What's your name? Roberto
Where are you? Madrid
Hi Roberto! How is the weather in Madrid?

39

Install Pyknow offline

1. Extract Pyknow.rar
2. Open CMD and redirect to the path of
PyKnow folder

- For example:
CD/d C:\user\desktop\Pyknow

3. Execute that command:
python setup.py install

40

Hands On

Write an expert system that helps a Robot
crosses the street based on the light.
If the color of light is red, it won’t walk.

If the color of light is green, it will walk.

If the color of light is yellow or blinking-
yellow, then it will be cautious.

41

Solution

Milestone 1

Expert Systems milestone deadline: 16 march 2019.
It will be published on course-sites.

General instructions:
Regarding your Al-Package:
Initially create a new project named ‘Al-Package’.
Add a new folder named ‘ExpertSystems’.
Add only one new ‘.PY’ file for writing your code.
For documentation of PyKnow check this

Regarding your submission file:
Submit only running code that you have tested before.

Your assignment should be written in ONE “.py” file, this file should include the solution of
ALL the problems and a main function that calls them.

Compressed files (.zip/.rar) are not allowed.
The Submission of team work package is only through your shared folder on google drive.
Don't delete any previous milestones.

43

https://pyknow.readthedocs.io/en/stable/thebasics.html

Questions?

