
Alice Zhao

 SQL
A Guide to SQL Usage

Pocket Guide

4th Edition

Alice Zhao

SQL Pocket Guide
FOURTH EDITION

978-1-492-09040-3

[LSI]

SQL Pocket Guide
by Alice Zhao

Copyright © 2021 Alice Zhao. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promo‐
tional use. Online editions are also available for most titles (http://oreilly.com).
For more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Andy Kwan
Development Editor: Amelia Blevins and Jeff Bleiel
Production Editor: Caitlin Ghegan
Copyeditor: Piper Editorial Consulting, LLC
Proofreader: James Fraleigh
Indexer: Ellen Troutman-Zaig
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

September 2021: Fourth Edition

Revision History for the Fourth Edition
2021-08-26: First Release

See https://oreil.ly/sqlpocketerrata for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. SQL Pocket
Guide, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.

The views expressed in this work are those of the author, and do not represent
the publisher’s views. While the publisher and the author have used good faith
efforts to ensure that the information and instructions contained in this work
are accurate, the publisher and the author disclaim all responsibility for errors
or omissions, including without limitation responsibility for damages result‐
ing from the use of or reliance on this work. Use of the information and
instructions contained in this work is at your own risk. If any code samples or
other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to
ensure that your use thereof complies with such licenses and/or rights.

http://oreilly.com
https://oreil.ly/sqlpocketerrata

Table of Contents

Preface xi

Chapter 1: SQL Crash Course 1
What Is a Database? 1

SQL 1
NoSQL 2
Database Management Systems (DBMS) 3

A SQL Query 6
The SELECT Statement 7
Order of Execution 9

A Data Model 10

Chapter 2: Where Can I Write SQL Code? 13
RDBMS Software 14

SQLite 15
MySQL 17
Oracle 17
PostgreSQL 18
SQL Server 19

iii

Database Tools 20
Connect a Database Tool to a Database 22

Other Programming Languages 24
Connect Python to a Database 25
Connect R to a Database 31

Chapter 3: The SQL Language 37
Comparison to Other Languages 37
ANSI Standards 39
SQL Terms 41

Keywords and Functions 42
Identifiers and Aliases 43
Statements and Clauses 45
Expressions and Predicates 47
Comments, Quotes, and Whitespace 48

Sublanguages 50

Chapter 4: Querying Basics 53
The SELECT Clause 55

Aliasing Columns 57
Qualifying Columns 59
Selecting Subqueries 61
DISTINCT 63

The FROM Clause 66
From Multiple Tables 66
From Subqueries 69

The WHERE Clause 73
Filtering on Subqueries 75

The GROUP BY Clause 78
The HAVING Clause 83
The ORDER BY Clause 85

iv | Table of Contents

The LIMIT Clause 88

Chapter 5: Creating, Updating, and Deleting 91
Databases 91

Display Names of Existing Databases 93
Display Name of Current Database 94
Switch to Another Database 95
Create a Database 95
Delete a Database 96

Creating Tables 97
Create a Simple Table 98
Display Names of Existing Tables 100
Create a Table That Does Not Already Exist 100
Create a Table with Constraints 101
Create a Table with Primary and Foreign Keys 105
Create a Table with an Automatically Generated Field 108
Insert the Results of a Query into a Table 110
Insert Data from a Text File into a Table 112

Modifying Tables 115
Rename a Table or Column 115
Display, Add, and Delete Columns 117
Display, Add, and Delete Rows 119
Display, Add, Modify, and Delete Constraints 120
Update a Column of Data 124
Update Rows of Data 125
Update Rows of Data with the Results of a Query 126
Delete a Table 128

Indexes 129
Create an Index to Speed Up Queries 131

Views 133
Create a View to Save the Results of a Query 135

Table of Contents | v

Transaction Management 138
Double-Check Changes Before a COMMIT 139
Undo Changes with a ROLLBACK 141

Chapter 6: Data Types 143
How to Choose a Data Type 145
Numeric Data 147

Numeric Values 147
Integer Data Types 148
Decimal Data Types 150
Floating Point Data Types 151

String Data 154
String Values 154
Character Data Types 156
Unicode Data Types 159

Datetime Data 161
Datetime Values 161
Datetime Data Types 165

Other Data 172
Boolean Data 172
External Files (Images, Documents, etc.) 173

Chapter 7: Operators and Functions 179
Operators 180

Logical Operators 181
Comparison Operators 182
Math Operators 189

Aggregate Functions 191
Numeric Functions 193

Apply Math Functions 194
Generate Random Numbers 196

vi | Table of Contents

Round and Truncate Numbers 197
Convert Data to a Numeric Data Type 198

String Functions 199
Find the Length of a String 199
Change the Case of a String 200
Trim Unwanted Characters Around a String 201
Concatenate Strings 203
Search for Text in a String 203
Extract a Portion of a String 206
Replace Text in a String 207
Delete Text from a String 208
Use Regular Expressions 209
Convert Data to a String Data Type 217

Datetime Functions 218
Return the Current Date or Time 218
Add or Subtract a Date or Time Interval 220
Find the Difference Between Two Dates or Times 221
Extract a Part of a Date or Time 226
Determine the Day of the Week of a Date 228
Round a Date to the Nearest Time Unit 229
Convert a String to a Datetime Data Type 230

Null Functions 234
Return an Alternative Value if There Is a Null Value 235

Chapter 8: Advanced Querying Concepts 237
Case Statements 238

Display Values Based on If-Then Logic
for a Single Column 239

Display Values Based on If-Then Logic
for Multiple Columns 240

Grouping and Summarizing 242

Table of Contents | vii

GROUP BY Basics 242
Aggregate Rows into a Single Value or List 245
ROLLUP, CUBE, and GROUPING SETS 247

Window Functions 250
Rank the Rows in a Table 252
Return the First Value in Each Group 255
Return the Second Value in Each Group 256
Return the First Two Values in Each Group 257
Return the Prior Row Value 258
Calculate the Moving Average 259
Calculate the Running Total 261

Pivoting and Unpivoting 263
Break Up the Values of a Column into Multiple

Columns 263
List the Values of Multiple Columns in a Single

Column 265

Chapter 9: Working with Multiple Tables and Queries 269
Joining Tables 270

Join Basics and INNER JOIN 274
LEFT JOIN, RIGHT JOIN, and FULL OUTER JOIN 277
USING and NATURAL JOIN 279
CROSS JOIN and Self Join 281

Union Operators 284
UNION 285
EXCEPT and INTERSECT 289

Common Table Expressions 291
CTEs Versus Subqueries 293
Recursive CTEs 295

viii | Table of Contents

Chapter 10: How Do I…? 303
Find the Rows Containing Duplicate Values 303
Select Rows with the Max Value for Another Column 306
Concatenate Text from Multiple Fields into a Single

Field 308
Find All Tables Containing a Specific Column Name 311
Update a Table Where the ID Matches Another Table 313

Index 317

Table of Contents | ix

Preface

Why SQL?
Since the last edition of SQL Pocket Guide was published, a lot
has changed in the data world. The amount of data generated
and collected has exploded, and a number of tools and jobs
have been created to handle the influx of data. Through all of
the changes, SQL has remained an integral part of the data
landscape.

Over the past 15 years, I have worked as an engineer, consul‐
tant, analyst, and data scientist, and I have used SQL in every
one of my roles. Even if my main responsibilities were focused
on another tool or skill, I had to know SQL in order to access
data at a company.

If there was a programming language award for best
supporting actor, SQL would take home the prize.

As new technologies emerge, SQL is still top of mind when it
comes to working with data. Cloud-based storage solutions like
Amazon Redshift and Google BigQuery require users to write
SQL queries to pull data. Distributed data processing frame‐
works like Hadoop and Spark have sidekicks Hive and Spark
SQL, respectively, which provide SQL-like interfaces for users
to analyze data.

xi

SQL has been around for almost five decades, and it is not
going away anytime soon. It is one of the oldest programming
languages still being used widely today, and I am excited to
share the latest and greatest with you in this book.

Goals of This Book
There are many existing SQL books out there, ranging from
ones that teach beginners how to code in SQL to detailed tech‐
nical specifications for database administrators. This book is
not intended to cover all SQL concepts in depth, but rather to
be a simple reference for when:

• You’ve forgotten some SQL syntax and need to look it up
quickly

• You’ve come across a slightly different set of database tools
at a new job and need to look up the nuanced differences

• You’ve been focusing on another coding language for a
while and need a quick refresher on how SQL works

If SQL plays a large supporting role in your job, then this is the
perfect pocket guide for you.

Updates to the Fourth Edition
The third edition of the SQL Pocket Guide by Jonathan Gennick
was published in 2010, and it was well received by readers. I’ve
made the following updates to the fourth edition:

• The syntax has been updated for Microsoft SQL Server,
MySQL, Oracle Database, and PostgreSQL. IBM’s Db2 has
been removed due to its decrease in popularity, and
SQLite has been added due to its increase in popularity.

• The third edition of this book was organized alphabeti‐
cally. I’ve rearranged the sections in the fourth edition so
that similar concepts are grouped together. There is still an

xii | Preface

index at the end of this book that lists concepts
alphabetically.

• Due to the number of data analysts and data scientists who
are now using SQL in their jobs, I’ve added sections on
how to use SQL with Python and R (popular open source
programming languages), as well as a SQL crash course
for those who need a quick refresher.

Frequently Asked (SQL) Questions
The last chapter of this book is called "How Do I…?" and it
includes frequently asked questions by SQL beginners or those
who haven’t used SQL in a while.

It’s a good place to start if you don’t remember the exact key‐
word or concept that you’re looking for. Example questions
include:

• How do I find the rows containing duplicate values?
• How do I select rows with the max value for another

column?
• How do I concatenate text from multiple fields into a

single field?

Navigating This Book
This book is organized into three sections.

I. Basic Concepts
• Chapters 1 through 3 introduce basic keywords, concepts,

and tools for writing SQL code.
• Chapter 4 breaks down each clause of a SQL query.

Preface | xiii

II. Database Objects, Data Types, and Functions
• Chapter 5 lists common ways to create and modify objects

within a database.
• Chapter 6 lists common data types that are used in SQL.
• Chapter 7 lists common operators and functions in SQL.

III. Advanced Concepts
• Chapters 8 and 9 explain advanced querying concepts

including joins, case statements, window functions, etc.
• Chapter 10 walks through solutions to some of the most

commonly searched for SQL questions.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames,
and file extensions.

Constant width

Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function
names, databases, data types, environment variables, state‐
ments, and keywords.

Constant width bold

Shows commands or other text that should be typed liter‐
ally by the user, or values determined by context.

xiv | Preface

TIP

This element signifies a tip or suggestion.

NOTE

This element signifies a general note.

WARNING

This element indicates a warning or caution.

Using Code Examples
If you have a technical question or a problem using the code
examples, please send email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if
example code is offered with this book, you may use it in your
programs and documentation. You do not need to contact us
for permission unless you’re reproducing a significant portion
of the code. For example, writing a program that uses several
chunks of code from this book does not require permission.
Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book
and quoting example code does not require permission. Incor‐
porating a significant amount of example code from this book
into your product’s documentation does require permission.

We appreciate, but generally do not require, attribution. An
attribution usually includes the title, author, publisher, and
ISBN. For example: “SQL Pocket Guide, 4th ed. by Alice Zhao
(O’Reilly). Copyright 2021 Alice Zhao, 978-1-492-209040-3.”

Preface | xv

mailto:bookquestions@oreilly.com

If you feel your use of code examples falls outside fair use or
the permission given above, feel free to contact us at permis‐
sions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media
has provided technology and business
training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their
knowledge and expertise through books, articles, and our
online learning platform. O’Reilly’s online learning platform
gives you on-demand access to live training courses, in-depth
learning paths, interactive coding environments, and a vast col‐
lection of text and video from O’Reilly and 200+ other publish‐
ers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book
to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, exam‐
ples, and any additional information. You can access this page
at https://oreil.ly/jreAj.

Email bookquestions@oreilly.com to comment or ask technical
questions about this book.

For news and information about our books and courses, visit
http://oreilly.com.

xvi | Preface

mailto:permissions@oreilly.com
mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com
https://oreil.ly/jreAj
mailto:bookquestions@oreilly.com
http://oreilly.com

Find us on Facebook: http://facebook.com/oreilly.

Follow us on Twitter: http://twitter.com/oreillymedia.

Watch us on YouTube: http://youtube.com/oreillymedia.

Acknowledgments
Thank you to Jonathan Gennick for creating this pocket guide
from scratch and writing the first three editions, and to Andy
Kwan for trusting me to continue on with the publication.

I couldn’t have completed this book without the help of my edi‐
tors Amelia Blevins, Jeff Bleiel, and Caitlin Ghegan, and my
technical reviewers Alicia Nevels, Joan Wang, Scott Haines, and
Thomas Nield. I truly appreciate the time you’ve spent reading
each page of this book. Your feedback has been invaluable.

To my parents—thank you for fostering my love for learning
and creating. To my kids Henry and Lily—your excitement for
this book warms my heart. Finally, to my husband, Ali—thank
you for all of your notes on this book, for your encouragement,
and for being my biggest fan.

Preface | xvii

http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://youtube.com/oreillymedia

CHAPTER 1

SQL Crash Course

This short chapter is intended to quickly get you up to speed
on basic SQL terminology and concepts.

What Is a Database?
Let’s start with the basics. A database is a place to store data in
an organized way. There are many ways to organize data, and
as a result, there are many databases to choose from. The two
categories that databases fall into are SQL and NoSQL.

SQL
SQL is short for Structured Query Language. Imagine you have
an app that remembers all of your friend’s birthdays. SQL is the
most popular language you would use to talk to that app.

English: “Hey app. When is my husband’s birthday?”
SQL: SELECT * FROM birthdays
WHERE person = 'husband';

SQL databases are often called relational databases because they
are made up of relations, which are more commonly referred
to as tables. Many tables connected to each other make up a
database. Figure 1-1 shows a picture of a relation in a SQL
database.

1

Figure 1-1. A relation (also known as a table) in a SQL database

The main thing to note about SQL databases is that they
require predefined schemas. You can think of a schema as the
way that data in a database is organized or structured. Let’s say
you’d like to create a table. Before loading any data into the
table, the structure of the table must first be decided on, includ‐
ing things like what columns are in the table, whether those
columns hold integer or decimal values, etc.

There comes a time, though, when data cannot be organized in
such a structured way. Your data may have varying fields or you
may need a more effective way of storing and accessing a large
amount of data. That’s where NoSQL comes in.

NoSQL
NoSQL stands for not only SQL. It will not be covered in detail
in this book, but I wanted to point it out because the term has
grown a lot in popularity since the 2010s and it’s important to
understand there are ways to store data beyond just tables.

NoSQL databases are often referred to as non-relational data‐
bases, and they come in all shapes and sizes. Their main char‐
acteristics are that they have dynamic schemas (meaning the
schema doesn’t have to be locked in up front) and they allow
for horizontal scaling (meaning the data can spread across mul‐
tiple machines).

2 | Chapter 1: SQL Crash Course

The most popular NoSQL database is MongoDB, which is more
specifically a document database. Figure 1-2 shows a picture of
how data is stored in MongoDB. You’ll notice that the data is
no longer in a structured table and the number of fields (simi‐
lar to a column) varies for each document (similar to a row).

Figure 1-2. A collection (a variant of a table) in MongoDB, a NoSQL
database

That all said, the focus of this book is on SQL databases. Even
with the introduction of NoSQL, most companies still store the
majority of their data in tables in relational databases.

Database Management Systems (DBMS)
You may have heard terms like PostgreSQL or SQLite, and be
wondering how they are different from SQL. They are two
types of Database Management Systems (DBMS), which is soft‐
ware used to work with a database.

This includes things like figuring out how to import data and
organize it, as well as things like managing how users or other
programs access the data. A Relational Database Management
System (RDBMS) is software that is specifically for relational
databases, or databases made up of tables.

Each RDBMS has a different implementation of SQL, meaning
that the syntax varies slightly from software to software. For
example, this is how you would output 10 rows of data in 5 dif‐
ferent RDBMSs:

What Is a Database? | 3

MySQL, PostgreSQL, and SQLite
SELECT * FROM birthdays LIMIT 10;

Microsoft SQL Server
SELECT TOP 10 * FROM birthdays;

Oracle Database
SELECT * FROM birthdays WHERE ROWNUM <= 10;

Googling SQL Syntax
When searching for SQL syntax online, always include the
RDBMS you are working with in the search. When I first
learned SQL, I could not for the life of me figure out why my
copy-pasted code from the internet didn’t work and this was the
reason!

Do this.
Search: create table datetime postgresql

→ Result: timestamp

Search: create table datetime microsoft sql server

→ Result: datetime

Not this.
Search: create table datetime

→ Result: syntax could be for any RDBMS

This book covers SQL basics along with the nuances of five
popular database management systems: Microsoft SQL Server,
MySQL, Oracle Database, PostgreSQL and SQLite.

Some are proprietary, meaning they are owned by a company
and cost money to use, and others are open source, meaning
they are free for anyone to use. Table 1-1 details the differences
between the RDBMSs.

4 | Chapter 1: SQL Crash Course

Table 1-1. RDBMS comparison table

RDBMS Owner Highlights

Microsoft SQL
Server

Microsoft - Popular proprietary RDBMS
- Often used alongside other Microsoft
products including Microsoft Azure and
the .NET framework
- Common on the Windows platform
- Also referred to as MSSQL or SQL Server

MySQL Open
Source

- Popular open source RDBMS
- Often used alongside web development
languages like HTML/CSS/Javascript
- Acquired by Oracle, though still open source

Oracle Database Oracle - Popular proprietary RDBMS
- Often used at large corporations given the
amount of features, tools, and support
available
- Also referred to simply as Oracle

PostgreSQL Open
Source

- Quickly growing in popularity
- Often used alongside open source
technologies like Docker and Kubernetes
- Efficient and great for large datasets

SQLite Open
Source

- World’s most used database engine
- Common on iOS and Android platforms
- Lightweight and great for a small database

NOTE

Going forward in this book:

• Microsoft SQL Server will be referred to as SQL
Server.

• Oracle Database will be referred to as Oracle.

What Is a Database? | 5

Installation instructions and code snippets for each RDBMS
can be found in RDBMS Software in Chapter 2.

A SQL Query
A common acronym in the SQL world is CRUD, which stands
for “Create, Read, Update, and Delete.” These are the four
major operations that are available within a database.

SQL Statements
People who have read and write access to a database are able to
perform all four operations. They can create and delete tables,
update data in tables, and read data from tables. In other
words, they have all the power.

They write SQL statements, which is general SQL code that can
be written to perform any of the CRUD operations. These peo‐
ple often have titles like database administrator (DBA) or data‐
base engineer.

SQL Queries
People who have read access to a database are only able to per‐
form the read operation, meaning they can look at data in
tables.

They write SQL queries, which are a more specific type of SQL
statement. Queries are used for finding and displaying data,
otherwise known as “reading” data. This action is sometimes
referred to as querying tables. These people often have titles like
data analyst or data scientist.

The next two sections are a quick-start guide for writing SQL
queries, since it is the most common type of SQL code that
you’ll see. More details on creating and updating tables can be
found in Chapter 5.

6 | Chapter 1: SQL Crash Course

The SELECT Statement
The most basic SQL query (which will work in any SQL soft‐
ware) is:

SELECT * FROM my_table;

which says, show me all of the data within the table named
my_table—all of the columns and all of the rows.

While SQL is case-insensitive (SELECT and select are equiva‐
lent), you’ll notice that some words are in all caps and others
are not.

• The uppercase words in the query are called keywords,
meaning that SQL has reserved them to perform some
sort of operation on the data.

• All other words are lowercase. This includes table names,
column names, etc.

The uppercase and lowercase formats are not enforced, but it is
a good style convention to follow for readability’s sake.

Let’s go back to this query:

SELECT * FROM my_table;

Let’s say that instead of returning all of the data in its current
state, I want to:

• Filter the data
• Sort the data

This is where you would modify the SELECT statement to
include a few more clauses, and the result would look some‐
thing like this:

SELECT *
FROM my_table
WHERE column1 > 100
ORDER BY column2;

A SQL Query | 7

More details on all of the clauses can be found in Chapter 4, but
the main thing to note is this: the clauses must always be listed
in the same order.

Memorize This Order
All SQL queries will contain some combination of these clauses.
If you remember nothing else, remember this order!

SELECT -- columns to display
FROM -- table(s) to pull from
WHERE -- filter rows
GROUP BY -- split rows into groups
HAVING -- filter grouped rows
ORDER BY -- columns to sort

NOTE

The -- is the start of a comment in SQL, meaning the text
after it is just for documentation’s sake and the code will
not be executed.

For the most part, the SELECT and FROM clauses are
required and all other clauses are optional. The exception
is if you are selecting a particular database function, then
only the SELECT is required.

The classic mnemonic to remember the order of the clauses is:

Sweaty feet will give horrible odors.
If you don’t want to think about sweaty feet each time you write
a query, here’s one that I made up:

Start Fridays with grandma’s homemade oatmeal.

8 | Chapter 1: SQL Crash Course

Order of Execution
The order that SQL code is executed is not something typically
taught in a beginner SQL course, but I’m including it here
because it’s a common question I received when I taught SQL
to students coming from a Python coding background.

A sensible assumption would be that the order that you write
the clauses is the same order that the computer executes the
clauses, but that is not the case. After a query is run, this is the
order that the computer works through the data:

1. FROM

2. WHERE

3. GROUP BY

4. HAVING

5. SELECT

6. ORDER BY

Compared to the order that you actually write the clauses,
you’ll notice that the SELECT has been moved to the fifth posi‐
tion. The high-level takeaway here is that SQL works in this
order:

1. Gathers all of the data with the FROM
2. Filters rows of data with the WHERE
3. Groups rows together with the GROUP BY
4. Filters grouped rows with the HAVING
5. Specifies columns to display with the SELECT
6. Rearranges the results with the ORDER BY

A SQL Query | 9

A Data Model
I’d like to spend the final section of the crash course going over
a simple data model and point out some terms that you’ll often
hear in fun SQL conversations around the office.

A data model is a visualization that summarizes how all of the
tables in a database are related to one another, along with some
details about each table. Figure 1-3 is a simple data model of a
student grades database.

Figure 1-3. A data model of student grades

Table 1-2 lists out the technical terms that describe what’s hap‐
pening in the data model.

Table 1-2. Terms used to describe what’s in a data model

Term Definition Example

Database A database is a place to store
data in an organized way.

This data model shows all of the
data in the student grades
database.

Table A table is made up of rows and
columns. In the data model,
they are represented by
rectangles.

There are two tables in the
student grades database:
Students and Grades.

10 | Chapter 1: SQL Crash Course

Term Definition Example

Column A table consists of multiple
columns, which are sometimes
referred to as attributes or
fields. Each column contains a
particular type of data. In the
data model, all of the columns
in a table are listed within each
rectangle.

In the Students table, the
columns are student_id,
student_name, and
date_of_birth.

Primary Key A primary key uniquely
identifies each row of data in a
table. A primary key can be
made up of one or more
columns in a table. In a data
model, it is flagged as pk or
with a key icon.

In the Students table, the
primary key is the
student_id column,
meaning that the
student_id value is different
for each row of data.

Foreign Key A foreign key in a table refers to
a primary key in another table.
The two tables can be linked
together by the common
column. A table can have
multiple foreign keys. In a data
model, it is flagged as fk.

In the Grades table,
student_id is a foreign key,
meaning that the values in that
column match up with values in
the corresponding primary key
column in the Students
table.

Relationship A relationship describes how the
rows in one table map to the
rows in another table. In a data
model, it is represented by a
line with symbols at the end
points. Common types are one-
to-one and one-to-many
relationships.

In this data model, the two
tables have a one-to-many
relationship represented by the
fork. One student can have
many grades, or one row of the
Students table maps to
multiple rows in the Grades
table.

More details on these terms can be found in “Creating Tables”
on page 97 in Chapter 5.

A Data Model | 11

You might be wondering why we’re spending so much time
reading a data model instead of writing SQL code already! The
reason is because you’ll often be writing queries that link up a
number of tables, so it’s a good idea to first get familiar with the
data model to know how they all connect.

Data models can typically be found in a documentation reposi‐
tory at a company. You may want to print out the data models
that you frequently work with—both for easy reference and
easy desk decor.

You can also write queries within an RDBMS to look up infor‐
mation contained in a data model, such as the tables in a data‐
base, the columns of a table, or the constraints of a table.

And That Is Your Crash Course!
The remainder of this book is intended to be a reference book
and does not need to be read in order. Please use it to look up
concepts, keywords, and standards.

12 | Chapter 1: SQL Crash Course

CHAPTER 2

Where Can I Write SQL Code?

This chapter covers three places where you can write SQL code:

RDBMS Software
To write SQL code, you first have to download an RDBMS
like MySQL, Oracle, PostgreSQL, SQL Server, or SQLite.
The nuances of each RDBMS are highlighted in “RDBMS
Software” on page 14.

Database Tools
Once you’ve downloaded an RDBMS, the most basic way
to write SQL code is through a terminal window, which is
a text-only black-and-white screen. Most people prefer to
use a database tool instead, which is a more user-friendly
application that connects to an RDBMS behind the scenes.

A database tool will have a graphical user interface (GUI),
which allows users to visually explore tables and more
easily edit SQL code. “Database Tools” on page 20 goes
through how to connect a database tool to an RDBMS.

Other Programming Languages
SQL can be written within many other programming lan‐
guages. This chapter focuses on two in particular: Python
and R. They are popular open source programming

13

languages used by data scientists and data analysts, who
often need to write SQL code as well.

Instead of switching back and forth between Python/R
and an RDBMS, you can connect Python/R directly to an
RDBMS and write SQL code within Python/R. “Other
Programming Languages” on page 24 walks through how
to do so step by step.

RDBMS Software
This section includes installation instructions and short code
snippets for the five RDBMSs that are covered in this book.

Which RDBMS to Choose?
If you are working at a company that is already using an
RDBMS, you will need to use the same one.

If you are working on a personal project, you will need to
decide which RDBMS to use. You can refer back to Table 1-1 in
Chapter 1 to review the details of some popular ones.

Quick Start with SQLite
Want to start writing SQL code as soon as possible? SQLite is
the fastest RDBMS to set up.

Compared to the other RDBMSs in this book, it’s less secure
and can’t handle multiple users, but it provides basic SQL func‐
tionality in a compact package.

Because of this, I’ve moved SQLite up to the front of each sec‐
tion of this chapter since its setup is generally more straightfor‐
ward than the others.

14 | Chapter 2: Where Can I Write SQL Code?

What Is a Terminal Window?
I’ll often refer to a terminal window in this chapter because
once you’ve downloaded an RDBMS, it’s the most basic way to
interact with the RDBMS.

A terminal window is an application on your computer that
typically has a black background and only allows text inputs.
The application name varies by operating system:

• On Windows, use the Command Prompt application.
• On macOS and Linux, use the Terminal application.

Once you open up a terminal window, you’ll see a command
prompt, which looks like a > followed by a flashing box. This
means that it’s ready to take in text commands from the user.

TIP

The next sections include links to download RDBMS
installers for Windows, macOS, and Linux.
On macOS and Linux, an alternative to downloading an
installer is to use the Homebrew package manager instead.
Once you install Homebrew, you can run simple brew
install commands from the Terminal to do all of the
RDBMS installations.

SQLite
SQLite is free and the most lightweight install, meaning that it
doesn’t take up much space on your computer and is extremely
quick to set up. For Windows and Linux, SQLite Tools can be
downloaded from the SQLite Download Page. macOS comes
with SQLite already installed.

RDBMS Software | 15

https://brew.sh
https://oreil.ly/gNagl

TIP

The simplest way to start using SQLite is to open a termi‐
nal window and type sqlite3. With this approach, how‐
ever, everything is done in memory, meaning that changes
will not be saved once you close SQLite.

> sqlite3

If you want your changes to be saved, you should connect
to a database upon opening with the following syntax:

> sqlite3 my_new_db.db

The command prompt for SQLite looks like this:

sqlite>

Some quick code to test things out:

sqlite> CREATE TABLE test (id int, num int);
sqlite> INSERT INTO test VALUES (1, 100), (2, 200);
sqlite> SELECT * FROM test LIMIT 1;

1|100

To show databases, show tables, and exit:

sqlite> .databases
sqlite> .tables
sqlite> .quit

TIP

If you want to display column names in your output, type:

sqlite> .headers on

To hide them again, type:

sqlite> .headers off

16 | Chapter 2: Where Can I Write SQL Code?

MySQL
MySQL is free, even though it is now owned by Oracle. MySQL
Community Server can be downloaded from the MySQL Com‐
munity Downloads page. On macOS and Linux, alternatively,
you can do the installation with Homebrew by typing brew
install mysql in the Terminal.

The command prompt for MySQL looks like this:

mysql>

Some quick code to test things out:

mysql> CREATE TABLE test (id int, num int);
mysql> INSERT INTO test VALUES (1, 100), (2, 200);
mysql> SELECT * FROM test LIMIT 1;

+------+------+
| id | num |
+------+------+
| 1 | 100 |
+------+------+
1 row in set (0.00 sec)

To show databases, switch databases, show tables, and exit:

mysql> show databases;
mysql> connect another_db;
mysql> show tables;
mysql> quit

Oracle
Oracle is proprietary and works on Windows and Linux
machines. Oracle Database Express Edition, the free edition,
can be downloaded from the Oracle Database XE Downloads
page.

RDBMS Software | 17

https://oreil.ly/Bkv0m
https://oreil.ly/Bkv0m
https://oreil.ly/FGoXw
https://oreil.ly/FGoXw

The command prompt for Oracle looks like this:

SQL>

Some quick code to test things out:

SQL> CREATE TABLE test (id int, num int);
SQL> INSERT INTO test VALUES (1, 100);
SQL> INSERT INTO test VALUES (2, 200);
SQL> SELECT * FROM test WHERE ROWNUM <=1;

 ID NUM
---------- ----------
 1 100

To show databases, show all tables (including system tables),
show user-created tables, and exit:

SQL> SELECT * FROM global_name;
SQL> SELECT table_name FROM all_tables;
SQL> SELECT table_name FROM user_tables;
SQL> quit

PostgreSQL
PostgreSQL is free and often used alongside other open source
technologies. PostgreSQL can be downloaded from the Post‐
greSQL Downloads page. On macOS and Linux, alternatively,
you can do the installation with Homebrew by typing brew
install postgresql in the Terminal.

The command prompt for PostgreSQL looks like this:

postgres=#

Some quick code to test things out:

postgres=# CREATE TABLE test (id int, num int);
postgres=# INSERT INTO test VALUES (1, 100),
 (2, 200);
postgres=# SELECT * FROM test LIMIT 1;

 id | num
----+-----

18 | Chapter 2: Where Can I Write SQL Code?

https://oreil.ly/8MyzC
https://oreil.ly/8MyzC

 1 | 100
(1 row)

To show databases, switch databases, show tables, and exit:

postgres=# \l
postgres=# \c another_db
postgres=# \d
postgres=# \q

TIP

If you ever see postgres-#, that means that you’ve forgot‐
ten a semicolon at the end of a SQL statement. Type ; and
you should see postgres=# again.

If you ever see :, that means you’ve been automatically
switched to the vi text editor, and you can exit by typing q.

SQL Server
SQL Server is proprietary (owned by Microsoft) and works on
Windows and Linux machines. It can also be installed via
Docker. SQL Server Express, the free edition, can be downloa‐
ded from the Microsoft SQL Server Downloads page.

The command prompt for SQL Server looks like this:

1>

Some quick code to test things out:

1> CREATE TABLE test (id int, num int);
2> INSERT INTO test VALUES (1, 100), (2, 200);
3> go
1> SELECT TOP 1 * FROM test;
2> go

RDBMS Software | 19

https://oreil.ly/zAxh9

id num
---------- ----------
 1 100

(1 row affected)

To show databases, switch databases, show tables, and exit:

1> SELECT name FROM master.sys.databases;
2> go
1> USE another_db;
2> go
1> SELECT * FROM information_schema.tables;
2> go
1> quit

NOTE

In SQL Server, SQL code is not executed until you type the
go command on a new line.

Database Tools
Instead of working with an RDBMS directly, most people will
use a database tool to interact with a database. A database tool
comes with a nice graphical user interface that allows you to
point, click, and write SQL code in a user-friendly setting.

Behind the scenes, a database tool uses a database driver, which
is software that helps the database tool talk to a database.
Figure 2-1 shows the visual differences between accessing a
database directly through a terminal window versus indirectly
through a database tool.

20 | Chapter 2: Where Can I Write SQL Code?

Figure 2-1. Accessing an RDBMS through a terminal window versus a
database tool

There are a number of database tools available. Some work
specifically with a single RDBMS, and others work with multi‐
ple RDBMSs. Table 2-1 lists each RDBMS along with one of the
most popular database tools for that particular RDBMS. All of
the database tools in the table are free to download and use,
and there are many other proprietary ones out there as well.

Table 2-1. Database tool comparison table

RDBMS Database Tool Details

SQLite DB Browser for
SQLite

- Different developer than SQLite
- One of many tool options for SQLite

MySQL MySQL Workbench - Same developer as MySQL

Oracle Oracle SQL Developer - Developed by Oracle

PostgreSQL pgAdmin - Different contributors than PostgreSQL
- Included with the PostgreSQL install

Database Tools | 21

RDBMS Database Tool Details

SQL Server SQL Server
Management Studio

- Developed by Microsoft

Multiple DBeaver - One of many tool options for connecting
to a variety of RDBMSs (including any of the
preceding five listed)

Connect a Database Tool to a Database
When opening up a database tool, the first step is to connect to
a database. This can be done in several ways:

Option 1: Create a New Database
You can create a brand-new database by writing a CREATE
statement:

CREATE DATABASE my_new_db;

Afterward, you can create tables to populate the database.
More details can be found in “Creating Tables” on page 97
in Chapter 5.

Option 2: Open Up a Database File
You may have downloaded or been given a file with a .db
extension:

my_new_db.db

This .db file will already contain a number of tables. You
can simply open it up within a database tool and start
interacting with the database.

Option 3: Connect to an Existing Database
You may want to work with a database that is either on
your computer or on a remote server, meaning that the
data is on a computer located elsewhere. This is extremely
common these days with cloud computing, where people
use servers owned by companies like Amazon, Google, or
Microsoft.

22 | Chapter 2: Where Can I Write SQL Code?

Database Connection Fields
To connect to a database, you’ll need to fill out the following
fields within a database tool:

Host
Where the database is located.

• If the database is on your computer, then this should
be localhost or 127.0.0.1.

• If the database is on a remote server, then this should
be the IP address of that computer example:
123.45.678.90.

Port
How to connect to the RDBMS.

There should already be a default port number in this
field, and you shouldn’t change it. It will be different for
each RDBMS.

• MySQL: 3306
• Oracle: 1521
• PostgreSQL: 5432
• SQL Server: 1433

Database
The name of the database you’d like to connect to.

Username
Your username for the database.

There may already be a default username in this field. If
you don’t remember setting up a username, keep the
default value.

Password
Your password associated with the username.

If you don’t remember setting up a password for your
username, try leaving this field blank.

Database Tools | 23

NOTE

For SQLite, instead of filling out these five database con‐
nection fields, you would enter in the file path of the .db
database file you are trying to connect to.

Once you fill in the database connection fields correctly, you
should have access to the database. You can now use the data‐
base tool to find the tables and fields you are interested in, and
start writing SQL code.

Other Programming Languages
SQL can be written within a number of other programming
languages. This chapter focuses on two popular open source
ones: Python and R.

As a data scientist or data analyst, you likely do your analysis in
Python or R, and also need to write SQL queries to pull data
from a database.

A Basic Data Analysis Workflow
1. Write a SQL query within a database tool.
2. Export the results as a .csv file.
3. Import the .csv file into Python or R.
4. Continue doing analysis in Python or R.

The preceding approach is fine for doing a quick, one-time
export. However, if you need to continuously edit your SQL
query or are working with multiple queries, this can get annoy‐
ing very quickly.

24 | Chapter 2: Where Can I Write SQL Code?

A Better Data Analysis Workflow
1. Connect Python or R to a database.
2. Write SQL queries within Python or R.
3. Continue doing analysis in Python or R.

This second approach allows you to do all of your querying and
analysis within one tool, which is helpful if you need to tweak
your queries as you are doing analysis. The remainder of this
chapter provides code for each step of this second workflow.

Connect Python to a Database
It takes three steps to connect Python to a database:

1. Install a database driver for Python.
2. Set up a database connection in Python.
3. Write SQL code in Python.

Step 1: Install a database driver for Python
A database driver is software that helps Python talk to a data‐
base, and there are many driver options to choose from.
Table 2-2 includes code for how to install a popular driver for
each RDBMS.

This is a one-time installation you’ll need to do via either a pip
install or a conda install. The following code should be run
in a terminal window.

Other Programming Languages | 25

Table 2-2. Install a driver for Python using either pip or conda

RDBMS Option Code

SQLite n/a No install necessary (Python 3 comes with sqlite3)

MySQL pip pip install mysql-connector-python

conda conda install -c conda-forge

mysql-connector-python

Oracle pip pip install cx_Oracle

conda conda install -c conda-forge cx_oracle

PostgreSQL pip pip install psycopg2

conda conda install -c conda-forge psycopg2

SQL Server pip pip install pyodbc

conda conda install -c conda-forge pyodbc

Step 2: Set up a database connection in Python
To set up a database connection, you first need to know the
location and name of the database you are trying to connect to,
as well as your username and password. More details can be
found in “Database Connection Fields” on page 23.

Table 2-3 contains the Python code you need to run each time
you plan on writing SQL code in Python. You can include it at
the top of your Python script.

26 | Chapter 2: Where Can I Write SQL Code?

Table 2-3. Python code to set up a database connection

RDBMS Code

SQLite import sqlite3

conn = sqlite3.connect('my_new_db.db')

MySQL import mysql.connector

conn = mysql.connector.connect(

 host='localhost',

 database='my_new_db',

 user='alice',

 password='password')

Oracle # Connecting to Oracle Express Edition

import cx_Oracle

conn = cx_Oracle.connect(dsn='localhost/XE',

 user='alice',

 password='password')

PostgreSQL import psycopg2

conn = psycopg2.connect(host='localhost',

 database='my_new_db',

 user='alice',

 password='password')

SQL Server # Connecting to SQL Server Express

import pyodbc

conn = pyodbc.connect(driver='{SQL Server}',

 host='localhost\SQLEXPRESS',

 database='my_new_db',

 user='alice',

 password='password')

Other Programming Languages | 27

TIP

Not all arguments are required. If you exclude an argu‐
ment completely, then the default value will be used. For
example, the default host is localhost, which is your com‐
puter. If no username and password were set up, then
those arguments can be left out.

Keeping Your Passwords Safe in Python
The preceding code is fine for testing out a connection to a
database, but in reality, you should not be saving your password
within a script for everyone to see.

There are multiple ways to avoid doing so, including:

• generating an SSH key
• setting environment variables
• creating a configuration file

These options, however, all require additional knowledge of
computers or file formats.

The recommended approach: create a separate Python file.

The most straightforward approach, in my opinion, is to save
your username and password in a separate Python file, and
then call that file within your database connection script. While
this is less secure than the other options, it is the quickest start.

To use this approach, start by creating a db_config.py file with
the following code:

usr = "alice"
pwd = "password"

Import the db_config.py file when setting up your database con‐
nection. The following example modifies the Oracle code from
Table 2-3 to use the db_config.py values instead of hardcoded
user and password values (changes are bolded):

28 | Chapter 2: Where Can I Write SQL Code?

import cx_Oracle

import db_config

conn = cx_Oracle.connect(dsn='localhost/XE',

 user=db_config.usr,
 password=db_config.pwd)

Step 3: Write SQL code in Python
Once the database connection has been established, you can
start writing SQL queries within your Python code.

Write a simple query to test your database connection:

cursor = conn.cursor()
cursor.execute('SELECT * FROM test;')
result = cursor.fetchall()
print(result)

[(1, 100),
 (2, 200)]

WARNING

When using cx_Oracle in Python, remove the semicolon
(;) at the end of all queries to avoid getting an error.

Save the results of a query as a pandas dataframe:

pandas must already be installed
import pandas as pd

df = pd.read_sql('''SELECT * FROM test;''', conn)
print(df)
print(type(df))

 id num
0 1 100
1 2 200
<class 'pandas.core.frame.DataFrame'>

Other Programming Languages | 29

Close the connection when you are done using the database:

cursor.close()
conn.close()

It is always good practice to close the database connection to
save resources.

SQLAlchemy for Python Lovers
Another popular way to connect to a database is using the SQL‐
Alchemy package in Python. It is an object relational mapper
(ORM), which turns database data into Python objects, allow‐
ing you to code in pure Python instead of using SQL syntax.

Imagine you want to see all the table names in a database. (The
following code is PostgreSQL-specific, but SQLAlchemy will
work with any RDBMS.)

Without SQLAlchemy:

pd.read_sql("""SELECT tablename
 FROM pg_catalog.pg_tables
 WHERE schemaname='public'""", conn)

With SQLAlchemy:

conn.table_names()

When using SQLAlchemy, the conn object comes with a
table_names() Python method, which you may find easier to
remember than SQL syntax. While SQLAlchemy provides
cleaner Python code, it does slow down performance due to the
additional time it spends turning data into Python objects.

To use SQLAlchemy in Python:

1. You must already have a database driver (like psycopg2)
installed.

2. In a terminal window, type pip install sqlalchemy or a
conda install -c conda-forge sqlalchemy to install
SQLAlchemy.

3. Run the following code in Python to set up a SQLAlchemy
connection. (The following code is PostgreSQL-specific.)

30 | Chapter 2: Where Can I Write SQL Code?

The SQLAlchemy documentation provides code for other
RDBMSs and drivers:
from sqlalchemy import create_engine
conn = create_engine('postgresql+psycopg2://
 alice:password@localhost:5432/my_new_db')

Connect R to a Database
It takes three steps to connect R to a database:

1. Install a database driver for R
2. Set up a database connection in R
3. Write SQL code in R

Step 1: Install a database driver for R
A database driver is software that helps R talk to a database,
and there are many driver options to choose from. Table 2-4
includes code for how to install a popular driver for each
RDBMS.

This is a one-time installation. The following code should be
run in R.

Table 2-4. Install a driver for R

RDBMS Code

SQLite install.packages("RSQLite")

MySQL install.packages("RMySQL")

Oracle The ROracle package can be downloaded from the Oracle ROracle
Downloads page.

setwd("folder_where_you_downloaded_ROracle")

Update the name of the .zip file based on

the latest version

install.packages("ROracle_1.3-2.zip",

repos=NULL)

Other Programming Languages | 31

https://oreil.ly/QadLc
https://oreil.ly/Hgp6p
https://oreil.ly/Hgp6p

RDBMS Code

PostgreSQL install.packages("RPostgres")

SQL Server On Windows, the odbc (Open Database Connectivity) package is
pre-installed. On macOS and Linux, it can be downloaded from the
Microsoft ODBC page.

install.packages("odbc")

Step 2: Set up a database connection in R
To set up a database connection, you first need to know the
location and name of the database you are trying to connect to,
as well as your username and password. More details can be
found in “Database Connection Fields” on page 23.

Table 2-5 contains the R code you need to run each time you
plan on writing SQL code in R. You can include it at the top of
your R script.

Table 2-5. R code to set up a database connection

RDBMS Code

SQLite library(DBI)

con <- dbConnect(RSQLite::SQLite(),

 "my_new_db.db")

MySQL library(RMySQL)

con <- dbConnect(RMySQL::MySQL(),

 host="localhost",

 dbname="my_new_db",

 user="alice",

 password="password")

Oracle library(ROracle)

drv <- dbDriver("Oracle")

con <- dbConnect(drv, "alice", "password",

 dbname="my_new_db")

32 | Chapter 2: Where Can I Write SQL Code?

https://oreil.ly/xrSP6

RDBMS Code

PostgreSQL library(RPostgres)

con <- dbConnect(RPostgres::Postgres(),

 host="localhost",

 dbname="my_new_db",

 user="alice",

 password="password")

SQL Server library(DBI)

con <- DBI::dbConnect(odbc::odbc(),

 Driver="SQL Server",

 Server="localhost\\SQLEXPRESS",

 Database="my_new_db",

 User="alice",

 Password="password",

 Trusted_Connection="True")

TIP

Not all arguments are required. If you exclude an argu‐
ment completely, then the default value will be used.

• For example, the default host is localhost, which is
your computer.

• If no username and password were set up, then those
arguments can be left out.

Keeping Your Passwords Safe in R
The preceding code is fine for testing out a connection to a
database, but in reality, you should not be saving your password
within a script for everyone to see.

There are multiple ways to avoid doing so, including:

• encrypting credentials with the keyring package

Other Programming Languages | 33

• creating a configuration file with the config package
• setting up environment variables with an .Renviron file
• recording the user and password as a global option in R

with the options command
The recommended approach: prompt the user for a password.

The most straightforward approach, in my opinion, is to have
RStudio prompt you for your password instead.

Instead of this:

con <- dbConnect(...,
 password="password",
 ...)

Do this:

install.packages("rstudioapi")
con <- dbConnect(...,
 password=rstudioapi::askForPassword("Password?"),
 ...)

Step 3: Write SQL code in R
Once the database connection has been established, you can
start writing SQL queries within your R code.

Show all tables in the database:

dbListTables(con)

[1] "test"

TIP

For SQL Server, include the schema name to limit the
number of tables displayed—dbListTables(con,

schema="dbo"). dbo stands for database owner and it is the
default schema in SQL Server.

34 | Chapter 2: Where Can I Write SQL Code?

Take a look at the test table in the database:

dbReadTable(con, "test")

 id num
1 1 100
2 2 200

NOTE

For Oracle, the table name is case-sensitive. Since Oracle
automatically converts table names to uppercase, you’ll
likely need to run the following instead: dbRead

Table(con, "TEST").

Write a simple query and output a dataframe:

df <- dbGetQuery(con, "SELECT * FROM test
 WHERE id = 2")
print(df); class(df)

 id num
1 2 200
[1] "data.frame"

Close the connection when you are done using the database.

dbDisconnect(con)

It is always good practice to close the database connection to
save resources.

Other Programming Languages | 35

CHAPTER 3

The SQL Language

This chapter covers SQL fundamentals including its standards,
key terms, and sublanguages, along with answers to the follow‐
ing questions:

• What is ANSI SQL and how is it different from SQL?
• What is a keyword versus a clause?
• Do capitalization and whitespace matter?
• What is there beyond the SELECT statement?

Comparison to Other Languages
Some people in the technology space don’t consider SQL to be
a real programming language.

While SQL stands for “Structured Query Language,” you can’t
use it in the same way as some other popular programming
languages like Python, Java, or C++. With those languages, you
can write code to specify the exact steps that a computer should
take to get a task done. This is called imperative programming.

In Python, if you want to sum up a list of values, you can tell
the computer exactly how you want to do so. The following

37

example code goes through a list, item by item, and adds each
value to a running total, to finally calculate the total sum:

calories = [90, 240, 165]
total = 0
for c in calories:
 total += c
print(total)

With SQL, instead of telling a computer exactly how you want
to do something, you just describe what you want done, which
in this case is to calculate the sum. Behind the scenes, SQL fig‐
ures out how to optimally execute the code. This is called
declarative programming.

SELECT SUM(calories)
FROM workouts;

The main takeaway here is that SQL is not a general-purpose
programming language like Python, Java, or C++, which can be
used for a variety of applications. Instead, SQL is a special-
purpose programming language, specifically made for managing
data in a relational database.

Extensions for SQL
At its core, SQL is a declarative language, but there are exten‐
sions that allow it to do more:

• Oracle has procedural language SQL (PL/SQL)
• SQL Server has transact SQL (T-SQL)

With these extensions, you can do things like group together
SQL code into procedures and functions, and more. The syntax
doesn’t follow ANSI standards, but it makes SQL much more
powerful.

38 | Chapter 3: The SQL Language

ANSI Standards
The American National Standards Institute (ANSI) is an organi‐
zation based in the United States that documents standards on
everything from drinking water to nuts and bolts.

SQL became an ANSI standard in 1986. In 1989, they pub‐
lished a very detailed document of specifications (think hun‐
dreds of pages) on what a database language should be able to
do and how it should be done. Every few years, the standards
get updated, so that’s why you’ll hear terms like ANSI-89 and
ANSI-92, which were different sets of SQL standards that were
added in 1989 and 1992, respectively. The latest standard is
ANSI SQL2016.

SQL Versus ANSI SQL Versus MySQL Versus …
SQL is the general term for structured query language.

ANSI SQL refers to SQL code that follows the ANSI standards
and will run in any relational database management system
(RDBMS) software.

MySQL is one of many RDBMS options. Within MySQL, you
can write both ANSI code and MySQL-specific SQL code.

Other RDBMS options include Oracle, PostgreSQL, SQL Server,
SQLite, and others.

Even with the standards, no two RDBMSs are exactly the same.
While some aim to be fully ANSI compliant, they are all just
partially ANSI compliant. Each vendor ends up choosing
which standards to implement and which additional features to
build that only work within their software.

ANSI Standards | 39

Should I follow the standards?
Most of the basic SQL code you write adheres to ANSI stand‐
ards. If you find code that does something complex using sim‐
ple yet unfamiliar keywords, then there’s a good chance it’s out‐
side of the standards.

If you work solely within one RDBMS, like Oracle or SQL
Server, it is absolutely fine to not follow the ANSI standards
and take advantage of all of the features of the software.

The issue comes when you have code working in one RDBMS
that you want to use in another RDBMS. Non-ANSI code likely
won’t run in the new RDBMS and would need to be rewritten.

Let’s say you have the following query that works in Oracle. It
does not meet ANSI standards because the DECODE function is
only available within Oracle and not other software. If I copy
the query over to SQL Server, the code will not run:

-- Oracle-specific code
SELECT item, DECODE (flag, 0, 'No', 1, 'Yes')
 AS Yes_or_No
FROM items;

The following query has the same logic, but uses a CASE state‐
ment instead, which is an ANSI standard. Because of this, it
will work in Oracle, SQL Server, and other software:

-- Code that works in any RDBMS
SELECT item, CASE WHEN flag = 0 THEN 'No'
 ELSE 'Yes' END AS Yes_or_No
FROM items;

40 | Chapter 3: The SQL Language

Which Standard Should I Choose?
The following two code blocks perform a join using two differ‐
ent standards. ANSI-89 was the first widely adopted standard,
followed by ANSI-92, which included some major revisions.

-- ANSI-89
SELECT c.id, c.name, o.date
FROM customer c, order o
WHERE c.id = o.id;

-- ANSI-92
SELECT c.id, c.name, o.date
FROM customer c INNER JOIN order o
ON c.id = o.id;

If you’re writing new SQL code, I would recommend either
using the latest standard (which is currently ANSI SQL2016) or
the syntax provided in the documentation of the RDBMS you
are working in.

However, it’s important to be aware of the earlier standards
because you will likely come across older code if your company
has been around for a few decades.

SQL Terms
Here is a block of SQL code that shows the number of sales
each employee closed in 2021. We’ll be using this code block to
highlight a number of SQL terms.

-- Sales closed in 2021
SELECT e.name, COUNT(s.sale_id) AS num_sales
FROM employee e
 LEFT JOIN sales s ON e.emp_id = s.emp_id
WHERE YEAR(s.sale_date) = 2021
 AND s.closed IS NOT NULL
GROUP BY e.name;

SQL Terms | 41

Keywords and Functions
Keywords and functions are terms built into SQL.

Keywords
A keyword is text that already has some meaning in SQL. All
the keywords in the code block are bolded here:

SELECT e.name, COUNT(s.sale_id) AS num_sales
FROM employee e
 LEFT JOIN sales s ON e.emp_id = s.emp_id
WHERE YEAR(s.sale_date) = 2021
 AND s.closed IS NOT NULL
GROUP BY e.name;

SQL Is Case-Insensitive
Keywords are typically capitalized for readability. However,
SQL is case-insensitive, meaning that an uppercase WHERE and a
lowercase where mean the same thing when the code is run.

Functions
A function is a special type of keyword. It takes in zero or more
inputs, does something to the inputs, and returns an output. In
SQL, a function is usually followed by parentheses, but not
always. The two functions in the code block are bolded here:

SELECT e.name, COUNT(s.sale_id) AS num_sales
FROM employee e
 LEFT JOIN sales s ON e.emp_id = s.emp_id
WHERE YEAR(s.sale_date) = 2021
 AND s.closed IS NOT NULL
GROUP BY e.name;

42 | Chapter 3: The SQL Language

There are four categories of functions: numeric, string, date‐
time, and other:

• COUNT() is a numeric function. It takes in a column and
returns the number of non-null rows (rows that have a
value).

• YEAR() is a date function. It takes in a column of a date or
datetime data type, extracts the years, and returns the val‐
ues as a new column.

A list of common functions can be found in Table 7-2.

Identifiers and Aliases
Identifiers and aliases are terms that the user defines.

Identifiers
An identifier is the name of a database object, such as a table or
a column. All identifiers in the code block are bolded here:

SELECT e.name, COUNT(s.sale_id) AS num_sales
FROM employee e
 LEFT JOIN sales s ON e.emp_id = s.emp_id
WHERE YEAR(s.sale_date) = 2021
 AND s.closed IS NOT NULL
GROUP BY e.name;

Identifiers should start with a letter (a-z or A-Z), followed by
any combination of letters, numbers, and underscores (_).
Some software will allow additional characters such as @, #,
and $.

For readability’s sake, identifiers are typically lowercase while
keywords are uppercase, although the code will run regardless
of case.

SQL Terms | 43

TIP

As a best practice, identifiers should not be given the same
name as an existing keyword. For example, you wouldn’t
want to name a column COUNT because that is already a
keyword in SQL.
If you still choose to do so, you can avoid confusion by
enclosing the identifier in double quotes. So instead of
naming a column COUNT, you can name it "COUNT", but it is
best to use a completely different name altogether like
num_sales.
MySQL uses backticks (``) to enclose identifiers instead of
double quotes ("").

Aliases
An alias renames a column or a table temporarily, only for the
duration of the query. In other words, the new alias names will
be displayed in the results of the query, but the original column
names will remain unchanged in the tables you are querying
from. All the aliases in the code block are bolded here:

SELECT e.name, COUNT(s.sale_id) AS num_sales
FROM employee e
 LEFT JOIN sales s ON e.emp_id = s.emp_id
WHERE YEAR(s.sale_date) = 2021
 AND s.closed IS NOT NULL
GROUP BY e.name;

The standard is to use AS when renaming columns (AS
num_sales) and no additional text when renaming tables (e).
Technically, though, either syntax works for both columns and
tables.

In addition to columns and tables, aliases are also useful if
you’d like to temporarily name a subquery.

44 | Chapter 3: The SQL Language

Statements and Clauses
These are ways to refer to subsets of SQL code.

Statements
A statement starts with a keyword and ends with a semicolon.
This entire code block is called a SELECT statement because it
starts with the keyword SELECT.

SELECT e.name, COUNT(s.sale_id) AS num_sales
FROM employee e
 LEFT JOIN sales s ON e.emp_id = s.emp_id
WHERE YEAR(s.sale_date) = 2021
 AND s.closed IS NOT NULL
GROUP BY e.name;

TIP

Many database tools that provide a graphical user interface
do not require a semicolon (;) at the end of a statement.

The SELECT statement is the most popular type of SQL state‐
ment, and is often called a query instead because it finds data in
a database. Other types of statements are covered in “Sublan‐
guages” on page 50.

Clauses
A clause is a way to refer to a particular section of a statement.
Here is our original SELECT statement:

SELECT e.name, COUNT(s.sale_id) AS num_sales
FROM employee e
 LEFT JOIN sales s ON e.emp_id = s.emp_id
WHERE YEAR(s.sale_date) = 2021
 AND s.closed IS NOT NULL
GROUP BY e.name;

SQL Terms | 45

This statement contains four main clauses:

• SELECT clause
SELECT e.name, COUNT(s.sale_id) AS num_sales

• FROM clause
FROM employee e
 LEFT JOIN sales s ON e.emp_id = s.emp_id

• WHERE clause
WHERE YEAR(s.sale_date) = 2021
 AND s.closed IS NOT NULL

• GROUP BY clause
GROUP BY e.name;

In conversation, you’ll often hear people refer to a section of a
statement like “take a look at the tables in the FROM clause.” It’s a
helpful way to zoom in on a particular section of the code.

NOTE

This statement actually has more clauses than the four lis‐
ted. In grammar, a clause is a part of a sentence that con‐
tains a subject and a verb. So you could refer to the
following:

LEFT JOIN sales s ON e.emp_id = s.emp_id

as the LEFT JOIN clause if you want to get even more spe‐
cific about the section of the code that you are referring to.

The six most popular clauses start with SELECT, FROM, WHERE,
GROUP BY, HAVING, and ORDER BY and are covered in detail in
Chapter 4.

46 | Chapter 3: The SQL Language

Expressions and Predicates
These are combinations of functions, identifiers, and more.

Expressions
An expression can be thought of as a formula that results in a
value. An expression in the code block was:

COUNT(s.sale_id)

This expression includes a function (COUNT) and an identifier
(s.sale_id). Together, they make an expression that says to
count the number of sales.

Other examples of expressions are:

• s.sale_id + 10 is a numeric expression that incorporates
basic math operations.

• CURRENT_DATE is a datetime expression, simply a single
function, that returns the current date.

Predicates
A predicate is a logical comparison that results in one of three
values: TRUE/FALSE/UNKNOWN. They are sometimes called condi‐
tional statements. The three predicates in the code block are
bolded here:

SELECT e.name, COUNT(s.sale_id) AS num_sales
FROM employee e
 LEFT JOIN sales s ON e.emp_id = s.emp_id
WHERE YEAR(s.sale_date) = 2021
 AND s.closed IS NOT NULL
GROUP BY e.name;

Some things you’ll notice from these examples are:

• The equal sign (=) is the most popular operator to com‐
pare values.

SQL Terms | 47

• The NULL stands for no value. When checking to see if a
field has no value, instead of writing = NULL, you would
write IS NULL.

Comments, Quotes, and Whitespace
These are punctuation marks with meaning in SQL.

Comments
A comment is text that is ignored when the code is run, like the
following.

-- Sales closed in 2021

It is useful to include comments in your code so that other
reviewers of your code (including your future self!) can quickly
understand the intent of the code without reading all of it.

To comment out:

• A single line of text:

-- These are my comments

• Multiple lines of text:

/* These are
my comments */

Quotes
There are two types of quotes you can use in SQL, the single
quote and the double quote.

SELECT "This column"
FROM my_table
WHERE name = 'Bob';

48 | Chapter 3: The SQL Language

Single Quotes: Strings
Take a look at 'Bob'. Single quotes are used when referring
to a string value. You will see far more single quotes in
practice compared to double quotes.

Double Quotes: Identifiers
Take a look at "This column". Double quotes are used
when referring to an identifier. In this case, because there
is a space in between This and column, the double quotes
are necessary for This column to be interpreted as a col‐
umn name. Without the double quotes, SQL would throw
an error due to the space. That said, it is best practice to
use _ instead of spaces when naming columns to avoid
using the double quotes.

NOTE

MySQL uses backticks (``) to enclose identifiers instead of
double quotes ("").

Whitespace
SQL does not care about the number of spaces between terms.
Whether it’s one space, a tab, or a new line, SQL will execute
the query from the first keyword all the way to the semicolon at
the end of the statement. The following two queries are
equivalent.

SELECT * FROM my_table;

SELECT *
 FROM my_table;

SQL Terms | 49

NOTE

For simple SQL queries, you may see code all written on
one line. For longer queries that have dozens or even hun‐
dreds of lines, you’ll see new lines for new clauses, tabs
when listing many columns or tables, etc.
The end goal is to have readable code, so you’ll need to
decide how you want to space out your code (or follow
your company’s guidelines) so that it looks clean and can
be quickly skimmed.

Sublanguages
There are many types of statements that can be written within
SQL. They all fall under one of five sublanguages, which are
detailed in Table 3-1.

Table 3-1. SQL sublanguages

Sublanguage Description Common
Commands

Reference
Sections

Data Query
Language (DQL)

This is the language that
most people are familiar
with. These statements
are used to retrieve
information from a
database object, such as a
table, and are often
referred to as SQL queries.

SELECT The majority of
this book is
dedicated to
DQL

Data Definition
Language (DDL)

This is the language used
to define or create a
database object, such as a
table or an index.

CREATE

ALTER

DROP

Creating,
Updating, and
Deleting

Data Manipulation
Language (DML)

This is the language used
to manipulate or modify
data in a database.

INSERT

UPDATE

DELETE

Creating,
Updating, and
Deleting

50 | Chapter 3: The SQL Language

Sublanguage Description Common
Commands

Reference
Sections

Data Control
Language (DCL)

This is the language used
to control access to data
in a database, which are
sometimes referred to as
permissions or privileges.

GRANT

REVOKE

Not covered

Transaction
Control Language
(TCL)

This is the language used
to manage transactions in
a database, or apply
permanent changes to a
database.

COMMIT

ROLLBACK

Transaction
Management

While most data analysts and data scientists will write DQL
SELECT statements to query tables, it is important to know that
database administrators and data engineers will also write code
in these other sublanguages to maintain a database.

The SQL Language Summary
• ANSI SQL is standardized SQL code that works across all

database software. Many RDBMSs have extensions that
don’t meet the standards but add functionality to their
software.

• Keywords are terms that are reserved in SQL and have a
special meaning.

• Clauses refer to particular sections of a statement. Com‐
mon clauses are SELECT, FROM, WHERE, GROUP BY, HAVING,
and ORDER BY.

• Capitalization and whitespace do not matter in SQL for
execution, but there are best practices for readability.

• In addition to SELECT statements, there are commands for
defining objects, manipulating data, and more.

Sublanguages | 51

CHAPTER 4

Querying Basics

A query is a nickname for a SELECT statement, which consists of
six main clauses. Each section of this chapter covers a clause in
detail:

1. SELECT

2. FROM

3. WHERE

4. GROUP BY

5. HAVING

6. ORDER BY

The last section of this chapter covers the LIMIT clause, which
is supported by MySQL, PostgreSQL, and SQLite.

The code examples in this chapter reference four tables:

waterfall

waterfalls in Michigan’s Upper Peninsula

owner

owners of the waterfalls

53

county

counties where the waterfalls are located

tour

tours that consist of multiple waterfall stops

Here is a sample query that uses the six main clauses. It is
followed by the query results, which are also known as the
result set.

-- Tours with 2 or more public waterfalls
SELECT t.name AS tour_name,
 COUNT(*) AS num_waterfalls
FROM tour t LEFT JOIN waterfall w
 ON t.stop = w.id
WHERE w.open_to_public = 'y'
GROUP BY t.name
HAVING COUNT(*) >= 2
ORDER BY tour_name;

tour_name num_waterfalls
---------- ---------------
M-28 6
Munising 6
US-2 4

To query a database means to retrieve data from a database,
typically from a table or multiple tables.

NOTE

It is also possible to query a view instead of a table. Views
look like tables and are derived from tables, but they them‐
selves do not hold any data. More on views can be found in
“Views” on page 133 in Chapter 5.

54 | Chapter 4: Querying Basics

The SELECT Clause
The SELECT clause specifies the columns that you want a state‐
ment to return.

In the SELECT clause, the SELECT keyword is followed by a list of
column names and/or expressions that are separated by com‐
mas. Each column name and/or expression then becomes a
column in the results.

Selecting Columns
The simplest SELECT clause lists one or more column names
from the tables in the FROM clause:

SELECT id, name
FROM owner;

id name
----- ----------------
 1 Pictured Rocks
 2 Michigan Nature
 3 AF LLC
 4 MI DNR
 5 Horseshoe Falls

Selecting All Columns
To return all columns from a table, you can use a single asterisk
rather than write out each column name:

SELECT *
FROM owner;

id name phone type
----- ---------------- ------------- --------
 1 Pictured Rocks 906.387.2607 public
 2 Michigan Nature 517.655.5655 private
 3 AF LLC private
 4 MI DNR 906.228.6561 public
 5 Horseshoe Falls 906.387.2635 private

The SELECT Clause | 55

WARNING

The asterisk is a helpful shortcut when testing out queries
because it can save you quite a bit of typing. However, it is
risky to use the asterisk in production code because the
columns in a table may change over time, causing your
code to fail when there are fewer or more columns than
expected.

Selecting Expressions
In addition to simply listing columns, you can also list more
complex expressions within the SELECT clause to return as col‐
umns in the results.

The following statement includes an expression to calculate a
10% drop in population, rounded to zero decimal places:

SELECT name, ROUND(population * 0.9, 0)
FROM county;

name ROUND(population * 0.9, 0)
---------- ---------------------------
Alger 8876
Baraga 7871
Ontonagon 7036
...

Selecting Functions
Expressions in the SELECT list typically refer to columns in the
tables that you are pulling from, but there are exceptions. For
example, a common function that doesn’t refer to any tables is
the one to return the current date:

SELECT CURRENT_DATE;

CURRENT_DATE

2021-12-01

56 | Chapter 4: Querying Basics

The preceding code works in MySQL, PostgreSQL, and SQLite.
Equivalent code that works in other RDBMSs can be found in
“Datetime Functions” on page 218 in Chapter 7.

NOTE

The majority of queries include both a SELECT and a FROM
clause, but only the SELECT clause is required when using
particular database functions, such as CURRENT_DATE.

It is also possible to include expressions within the SELECT
clause that are subqueries (a query nested inside another
query). More details can be found in “Selecting Subqueries” on
page 61.

Aliasing Columns
The purpose of a column alias is to give a temporary name to
any column or expression listed in the SELECT clause. That tem‐
porary name, or column alias, is then displayed as a column
name in the results.

Note that this is not a permanent name change because the col‐
umn names in the original tables remain unchanged. The alias
only exists within the query.

This code displays three columns.

SELECT id, name,
 ROUND(population * 0.9, 0)
FROM county;

id name ROUND(population * 0.9, 0)
----- ---------- ---------------------------
 2 Alger 8876
 6 Baraga 7871
 7 Ontonagon 7036
...

The SELECT Clause | 57

Let’s say we want to rename the column names in the results. id
is too ambigious and we’d like to give it a more descriptive
name. ROUND(population * 0.9, 0) is too long and we’d like to
give it a simpler name.

To create a column alias, you follow a column name or expres‐
sion with either (1) an alias name or (2) the AS keyword and an
alias name.

-- alias_name
SELECT id county_id, name,
 ROUND(population * 0.9, 0) estimated_pop
FROM county;

or:

-- AS alias_name
SELECT id AS county_id, name,
 ROUND(population * 0.90, 0) AS estimated_pop
FROM county;

county_id name estimated_pop
---------- ---------- --------------
 2 Alger 8876
 6 Baraga 7871
 7 Ontonagon 7036
...

Both options are used in practice when creating aliases. Within
the SELECT clause, the second option is more popular because
the AS keyword makes it visually easier to differentiate column
names and aliases among a long list of column names.

NOTE

Older versions of PostgreSQL require the use of AS when
creating a column alias.

58 | Chapter 4: Querying Basics

Although column aliases are not required, they are highly rec‐
ommended when working with expressions to give sensible
names to the columns in the results.

Aliases with case sensitivity and punctuation

As can be seen with the column aliases county_id and
estimated_pop, the convention is to use lowercase letters with
underscores in place of spaces when naming column aliases.

You can also create aliases containing uppercase letters, spaces,
and punctuation using the double quote syntax, as shown in
this example:

SELECT id AS "Waterfall #",
 name AS "Waterfall Name"
FROM waterfall;

Waterfall # Waterfall Name
------------ ---------------
 1 Munising Falls
 2 Tannery Falls
 3 Alger Falls
...

Qualifying Columns
Let’s say you write a query that pulls data from two tables and
they both contain a column called name. If you were to just
include name in the SELECT clause, the code wouldn’t know
which table you were referring to.

To solve this problem, you can qualify a column name by its
table name. In other words, you can give a column a prefix to
specify which table it belongs to using dot notation, as in
table_name.column_name.

The following example queries a single table, so while it isn’t
necessary to qualify the columns here, this is shown for
demonstration’s sake. This is how you would qualify a column
by its table name:

The SELECT Clause | 59

SELECT owner.id, owner.name
FROM owner;

TIP

If you get an error in SQL referencing an ambiguous col‐
umn name, it means that multiple tables in your query
have a column of the same name and you haven’t specified
which table/column combination you are referring to. You
can resolve the error by qualifying the column name.

Qualifying tables
If you qualify a column name by its table name, you can also
qualify that table name by its database or schema name. The
following query retrieves data specifically from the owner table
within the sqlbook schema:

SELECT sqlbook.owner.id, sqlbook.owner.name
FROM sqlbook.owner;

The preceding code is lengthy since sqlbook.owner is repeated
multiple times. To save on typing, you can provide a table alias.
The following example gives the alias o to the table owner:

SELECT o.id, o.name
FROM sqlbook.owner o;

or:

SELECT o.id, o.name
FROM owner o;

Column Aliases Versus Table Aliases
Column aliases are defined within the SELECT clause to rename
a column in the results. It is common to include AS, although
not required.

60 | Chapter 4: Querying Basics

-- Column alias

SELECT num AS new_col
FROM my_table;

Table aliases are defined within the FROM clause to create a tem‐
porary nickname for a table. It is common to exclude AS,
although including AS also works.

-- Table alias
SELECT *

FROM my_table mt;

Selecting Subqueries
A subquery is a query that is nested inside another query. Sub‐
queries can be located within various clauses, including the
SELECT clause.

In the following example, in addition to the id, name, and popu
lation, let’s say we also want to see the average population of
all the counties. By including a subquery, we are creating a new
column in the results for the average population.

SELECT id, name, population,
 (SELECT AVG(population) FROM county)
 AS average_pop
FROM county;

id name population average_pop
----- ---------- ----------- ------------
 2 Alger 9862 18298
 6 Baraga 8746 18298
 7 Ontonagon 7818 18298
...

A few things to note here:

• A subquery must be surrounded by parentheses.
• When writing a subquery within the SELECT clause, it is

highly recommended that you specify a column alias,

The SELECT Clause | 61

which in this case was average_pop. That way, the column
has a simple name in the results.

• There is only one value in the average_pop column that is
repeated across all rows. When including a subquery
within the SELECT clause, the result of the subquery must
return a single column and either zero or one row, as
shown in the following subquery to calculate the average
population.

SELECT AVG(population) FROM county;

AVG(population)

 18298

• If the subquery returned zero rows, then the new column
would be filled with NULL values.

Noncorrelated Versus Correlated Subqueries
The preceding example is a noncorrelated subquery, meaning
that the subquery does not refer to the outer query. The sub‐
query can be run on its own independent of the outer query.

The other type of subquery is called a correlated subquery,
which is one that does refer to values in the outer query. This
often significantly slows down processing time, so it’s best to
rewrite the query using a JOIN instead. What follows is an
example of a correlated subquery along with more efficient
code.

Performance issues with correlated subqueries
The following query returns the number of waterfalls for each
owner. Note the o.id = w.owner_id step in the subquery refer‐
ences the owner table in the outer query, making it a correlated
subquery.

62 | Chapter 4: Querying Basics

SELECT o.id, o.name,
 (SELECT COUNT(*) FROM waterfall w
 WHERE o.id = w.owner_id) AS num_waterfalls
FROM owner o;

id name num_waterfalls
----- ---------------- ---------------
 1 Pictured Rocks 3
 2 Michigan Nature 3
 3 AF LLC 1
 4 MI DNR 1
 5 Horseshoe Falls 0

A better approach would be to rewrite the query with a JOIN.
That way, the tables are first joined together and then the rest
of the query is run, which is much faster than rerunning a sub‐
query for each row of data. More on joins can be found in
“Joining Tables” on page 270 in Chapter 9.

SELECT o.id, o.name,
 COUNT(w.id) AS num_waterfalls
FROM owner o LEFT JOIN waterfalls w
 ON o.id = w.owner_id
GROUP BY o.id, o.name

id name num_waterfalls
----- ---------------- ---------------
 1 Pictured Rocks 3
 2 Michigan Nature 3
 3 AF LLC 1
 4 MI DNR 1
 5 Horseshoe Falls 0

DISTINCT
When a column is listed in the SELECT clause, by default, all of
the rows are returned. To be more explicit, you can include the
ALL keyword, but it is purely optional. The following queries
return each type/open_to_public combination.

The SELECT Clause | 63

SELECT o.type, w.open_to_public
FROM owner o
JOIN waterfall w ON o.id = w.owner_id;

or:

SELECT ALL o.type, w.open_to_public
FROM owner o
JOIN waterfall w ON o.id = w.owner_id;

type open_to_public
-------- ---------------
public y
public y
public y
private y
private y
private y
private y
public y

If you want to remove duplicate rows from the results, you can
use the DISTINCT keyword. The following query returns a list of
unique type/open_to_public combinations.

SELECT DISTINCT o.type, w.open_to_public
FROM owner o
JOIN waterfall w ON o.id = w.owner_id;

type open_to_public
-------- ---------------
public y
private y

COUNT and DISTINCT
To count the number of unique values within a single column,
you can combine the COUNT and DISTINCT keywords within the
SELECT clause. The following query returns the number of
unique type values.

64 | Chapter 4: Querying Basics

SELECT COUNT(DISTINCT type) AS unique
FROM owner;

unique

 2

To count the number of unique combinations of multiple col‐
umns, you can wrap a DISTINCT query up as a subquery, and
then do a COUNT on the subquery. The following query returns
the number of unique type/open_to_public combinations.

SELECT COUNT(*) AS num_unique
FROM (SELECT DISTINCT o.type, w.open_to_public
 FROM owner o JOIN waterfall w
 ON o.id = w.owner_id) my_subquery;

num_unique

 2

MySQL and PostgreSQL support the use of the COUNT(DISTINCT)
syntax on multiple columns. The following two queries are
equivalent to the preceding query, without needing a subquery:

-- MySQL equivalent
SELECT COUNT(DISTINCT o.type, w.open_to_public)
 AS num_unique
 FROM owner o JOIN waterfall w
 ON o.id = w.owner_id;

-- PostgreSQL equivalent
SELECT COUNT(DISTINCT (o.type, w.open_to_public))
 AS num_unique
 FROM owner o JOIN waterfall w
 ON o.id = w.owner_id;

num_unique

 2

The SELECT Clause | 65

The FROM Clause
The FROM clause is used to specify the source of the data you
want to retrieve. The simplest case is to name a single table or
view in the FROM clause of query.

SELECT name
FROM waterfall;

You can qualify a table or view with either a database or schema
name using the dot notation. The following query retrieves
data specifically from the waterfall table within the sqlbook
schema:

SELECT name
FROM sqlbook.waterfall;

From Multiple Tables
Instead of retrieving data from one table, you’ll often want to
pull together data from multiple tables. The most common way
to do this is using a JOIN clause within the FROM clause. The fol‐
lowing query retrieves data from both the waterfall and tour
tables and displays a single results table.

SELECT *
FROM waterfall w JOIN tour t
 ON w.id = t.stop;

id name ... name stop ...
----- --------------- --------- -----
 1 Munising Falls M-28 1
 1 Munising Falls Munising 1
 2 Tannery Falls Munising 2
 3 Alger Falls M-28 3
 3 Alger Falls Munising 3
...

Let’s break down each part of the code block.

66 | Chapter 4: Querying Basics

Table aliases

waterfall w JOIN tour t

The waterfall and tour tables are given table aliases w and t,
which are temporary names for the tables within the query.
Table aliases are not required in a JOIN clause, but they are very
helpful for shortening table names that need to be referenced
within the ON and SELECT clauses.

JOIN … ON …

waterfall w JOIN tour t
ON w.id = t.stop

These two tables are pulled together with the JOIN keyword. A
JOIN clause is always followed by an ON clause, which specifies
how the tables should be linked together. In this case, the id of
the waterfall in the waterfall table must match the stop with
the waterfall in the tour table.

NOTE

You may see the FROM, JOIN, and ON clauses on different
lines or indented. This is not required, but helpful for read‐
ability’s sake, especially when you are joining many tables
together.

Results table

A query always results in a single table. The waterfall table has
12 columns and the tour table has 3 columns. After joining
these tables together, the results table has 15 columns.

The FROM Clause | 67

id name ... name stop ...
----- --------------- --------- -----
 1 Munising Falls M-28 1
 1 Munising Falls Munising 1
 2 Tannery Falls Munising 2
 3 Alger Falls M-28 3
 3 Alger Falls Munising 3
...

You’ll notice that there are two columns called name in the
results table. The first is from the waterfall table, and the
second is from the tour table. To refer to them in the SELECT
clause, you would need to qualify the column names.

SELECT w.name, t.name
FROM waterfall w JOIN tour t
 ON w.id = t.stop;

name name
--------------- ---------
Munising Falls M-28
Munising Falls Munising
Tannery Falls Munising
...

To differentiate the two columns, you would also want to alias
the column names.

SELECT w.name AS waterfall_name,
 t.name AS tour_name
FROM waterfall w JOIN tour t
 ON w.id = t.stop;

waterfall_name tour_name
--------------- ----------
Munising Falls M-28
Munising Falls Munising
Tannery Falls Munising
Alger Falls M-28
Alger Falls Munising
...

68 | Chapter 4: Querying Basics

JOIN variations
In the preceding example, if a waterfall isn’t listed in any tour,
then it would not appear in the results table. If you wanted to
see all waterfalls in the results, you would need to use a differ‐
ent type of join.

JOIN Defaults to INNER JOIN
This example uses a simple JOIN keyword to pull together data
from two tables, although it is best practice to explicity state the
type of join you are using. JOIN on its own defaults to an INNER
JOIN, meaning that only records that are in both tables are
returned in the results.

There are a variety of join types used in SQL, which are cov‐
ered in more detail in “Joining Tables” on page 270 in Chap‐
ter 9.

From Subqueries
A subquery is a query that is nested inside another query. Sub‐
queries within the FROM clause should be standalone SELECT
statements, meaning that they do not reference the outer query
at all and can be run on their own.

NOTE

A subquery within the FROM clause is also known as a
derived table because the subquery ends up essentially act‐
ing like a table for the duration of the query.

The following query lists all publicly owned waterfalls, with the
subquery portion bolded.

The FROM Clause | 69

SELECT w.name AS waterfall_name,
 o.name AS owner_name
FROM (SELECT * FROM owner WHERE type = 'public') o
 JOIN waterfall w
 ON o.id = w.owner_id;

waterfall_name owner_name
--------------- ---------------
Little Miners Pictured Rocks
Miners Falls Pictured Rocks
Munising Falls Pictured Rocks
Wagner Falls MI DNR

It is important to understand the order in which the query is
executed.

Step 1: Execute the subquery
The contents of the subquery are first executed. You can see
that this results in a table of only public owners:

SELECT * FROM owner WHERE type = 'public';

id name phone type
----- --------------- ------------- -------
 1 Pictured Rocks 906.387.2607 public
 4 MI DNR 906.228.6561 public

Going back to the original query, you’ll notice that the sub‐
query is immediately followed by the letter o. This is the tem‐
porary name, or alias, that we are assigning to the results of the
subquery.

NOTE

Aliases are required for subqueries within the FROM clause
in MySQL, PostgreSQL, and SQL Server, but not in Oracle
and SQLite.

70 | Chapter 4: Querying Basics

Step 2: Execute the entire query

Next, you can think of the letter o taking the place of the sub‐
query. The query is now executed as usual.

SELECT w.name AS waterfall_name,
 o.name AS owner_name
FROM o JOIN waterfall w
 ON o.id = w.owner_id;

waterfall_name owner_name
--------------- ---------------
Little Miners Pictured Rocks
Miners Falls Pictured Rocks
Munising Falls Pictured Rocks
Wagner Falls MI DNR

Subqueries Versus the WITH Clause
An alternative to writing a subquery is to write a common table
expression (CTE) using a WITH clause instead. The advantage of
the WITH clause is that the subquery is named up front, which
makes for cleaner code and also the ability to reference the sub‐
query multiple times.

WITH o AS (SELECT * FROM owner
 WHERE type = 'public')

SELECT w.name AS waterfall_name,
 o.name AS owner_name
FROM o JOIN waterfall w
 ON o.id = w.owner_id;

The WITH clause is supported by MySQL 8.0+ (2018 and later),
PostgreSQL, Oracle, SQL Server, and SQLite. “Common Table
Expressions” on page 291 in Chapter 9 includes more examples
of this technique.

The FROM Clause | 71

Why Use a Subquery in the FROM Clause?
The main advantage of using subqueries is that you can turn a
large problem into smaller ones. Here are two examples:

Example 1: Multiple steps to get to results
Let’s say you want to find the average number of stops on a
tour. First, you’d have to find the number of stops on each
tour, and then average the results.

The following query finds the number of stops on each
tour:

SELECT name, MAX(stop) as num_stops
FROM tour
GROUP BY name;

name num_stops
--------- ----------
M-28 11
Munising 6
US-2 14

You could then turn the query into a subquery and write
another query around it to find the average:

SELECT AVG(num_stops) FROM
(SELECT name, MAX(stop) as num_stops
FROM tour
GROUP BY name) tour_stops;

AVG(num_stops)

10.3333333333333

Example 2: Table in FROM clause is too large
The original goal was to list all publicly owned waterfalls.
This can actually be done without a subquery and with a
JOIN instead:

SELECT w.name AS waterfall_name,
 o.name AS owner_name
FROM owner o
 JOIN waterfall w ON o.id = w.owner_id
WHERE o.type = 'public';

72 | Chapter 4: Querying Basics

waterfall_name owner_name
--------------- ---------------
Little Miners Pictured Rocks
Miners Falls Pictured Rocks
Munising Falls Pictured Rocks
Wagner Falls MI DNR

Let’s say that the query takes a really long time to run. This
can happen when you join massive tables together (think
tens of millions of rows). There are multiple ways you
could rewrite the query to speed it up, and one of them is
to use a subquery.

Since we are only interested in public owners, we can first
write a subquery that filters out all of the private owners.
The smaller owner table would then be joined with the
waterfall table, which would take less time and produce
the same results.

SELECT w.name AS waterfall_name,
 o.name AS owner_name
FROM (SELECT * FROM owner
 WHERE type = 'public') o
 JOIN waterfall w ON o.id = w.owner_id;

waterfall_name owner_name
--------------- ---------------
Little Miners Pictured Rocks
Miners Falls Pictured Rocks
Munising Falls Pictured Rocks
Wagner Falls MI DNR

These are just two of the many examples of how subqueries can
be used to break down a larger query into smaller steps.

The WHERE Clause
The WHERE clause is used to restrict query results to only rows of
interest, or simply put, it is the place to filter data. Rarely will
you want to display all rows from a table, but rather rows that
match specific criteria.

The WHERE Clause | 73

TIP

When exploring a table with millions of rows, you never
want to do a SELECT * FROM my_table; because it will
take an unnecessarily long time to run.
Instead, it’s a good idea to filter down the data. Two com‐
mon ways to do this are:

Filter by a column within the WHERE clause
Better yet, filter by a column that is already indexed
to make the retrieval even faster.

SELECT *
FROM my_table
WHERE year_id = 2021;

Show the top few rows of data with the LIMIT clause (or
WHERE ROWNUM <= 10 in Oracle or SELECT TOP 10 * in
SQL Server)

SELECT *
FROM my_table
LIMIT 10;

The following query finds all waterfalls that do not contain
Falls in the name. More on the LIKE keyword can be found in
Chapter 7.

SELECT id, name
FROM waterfall
WHERE name NOT LIKE '%Falls%';

id name
----- ----------------
 7 Little Miners
 14 Rapid River Fls

74 | Chapter 4: Querying Basics

The bolded section is often referred to as a conditional state‐
ment or a predicate. The predicate makes a logical comparison
for each row of data that results in TRUE/FALSE/UNKNOWN.

The waterfall table has 16 rows. For each row, it checks if
the waterfall name contains Falls or not. If it doesn’t contain
Falls, then the name NOT LIKE '%Falls%' predicate is TRUE, and
the row is returned in the results, which was the case for the
two preceding rows.

Multiple Predicates
It is also possible to combine multiple predicates with operators
like AND or OR. The following example shows waterfalls without
Falls in its name and that also don’t have an owner:

SELECT id, name
FROM waterfall
WHERE name NOT LIKE '%Falls%'
 AND owner_id IS NULL;

id name
----- ----------------
 14 Rapid River Fls

More details on operators can be found in Operators in Chap‐
ter 7.

Filtering on Subqueries
A subquery is a query nested inside another query, and the
WHERE clause is a common place to find one. The following
example retrieves publicly accessible waterfalls located in Alger
County:

SELECT w.name
FROM waterfall w
WHERE w.open_to_public = 'y'
 AND w.county_id IN (
 SELECT c.id FROM county c
 WHERE c.name = 'Alger');

The WHERE Clause | 75

name

Munising Falls
Tannery Falls
Alger Falls
...

NOTE

Unlike subqueries within the SELECT clause or the FROM
clause, subqueries in the WHERE clause do not require an
alias. In fact, you will get an error if you include an alias.

Why use a subquery in the WHERE clause?
The original goal was to retrieve publicly accessible waterfalls
located in Alger County. If you were to write this query from
scratch, you would likely start with the following:

SELECT w.name
FROM waterfall w
WHERE w.open_to_public = 'y';

At this point, you have all waterfalls that are publicly accessible.
The final touch is to find ones that are specifically in Alger
County. You know that the waterfall table doesn’t have a
county name column, but the county table does.

You have two options to pull the county name into the results.
You can either (1) write a subquery within the WHERE clause that
specifically pulls the Alger County information or (2) join
together the waterfall and county tables:

-- Subquery in WHERE clause
SELECT w.name
FROM waterfall w
WHERE w.open_to_public = 'y'
 AND w.county_id IN (

76 | Chapter 4: Querying Basics

 SELECT c.id FROM county c
 WHERE c.name = 'Alger');

or:

-- JOIN clause
SELECT w.name
FROM waterfall w INNER JOIN county c
 ON w.county_id = c.id
WHERE w.open_to_public = 'y'
 AND c.name = 'Alger';

name

Munising Falls
Tannery Falls
Alger Falls
...

The two queries produce the same results. The advantage of the
first approach is that subqueries are often easier to understand
than joins. The advantage of the second approach is that joins
typically execute faster than subqueries.

Working > Optimizing
When writing SQL code, there are often multiple ways to do the
same thing.

Your top priority should be to write working code. If it takes a
long time to run or it’s ugly, it doesn’t matter…it works!

The next step, if you have time, is to optimize the code by
improving the performance by perhaps rewriting it with a JOIN,
making it more readable with indentations and capitalizations,
etc.

Don’t stress about writing the most optimized code up front,
but rather writing code that works. Writing elegant code comes
with experience.

The WHERE Clause | 77

Other Ways to Filter Data

The WHERE clause is not the only place within a SELECT state‐
ment to filter rows of data.

• FROM clause: When joining together tables, the ON clause
specifies how they should be linked together. This is where
you can include conditions to restrict rows of data
returned by the query. See Joining Tables in Chapter 9 for
more details.

• HAVING clause: If there are aggregations within the SELECT
statement, the HAVING clause is where you specify how the
aggregations should be filtered. See “The HAVING
Clause” on page 83 for more details.

• LIMIT clause: To display a specific number of rows, you
can use the LIMIT clause. In Oracle, this is done with
WHERE ROWNUM and in SQL Server, this is done with SELECT
TOP. See “The LIMIT Clause” on page 88 in this chapter for
more details.

The GROUP BY Clause
The purpose of the GROUP BY clause is to collect rows into
groups and summarize the rows within the groups in some
way, ultimately returning just one row per group. This is some‐
times referred to as “slicing” the rows into groups and “rolling
up” the rows in each group.

The following query counts the number of waterfalls along
each of the tours:

SELECT t.name AS tour_name,
 COUNT(*) AS num_waterfalls
FROM waterfall w INNER JOIN tour t
 ON w.id = t.stop
GROUP BY t.name;

tour_name num_waterfalls

78 | Chapter 4: Querying Basics

---------- ---------------
M-28 6
Munising 6
US-2 4

There are two parts to focus on here:

• The collecting of rows, which is specified within the GROUP
BY clause

• The summarizing of rows within groups, which is specified
within the SELECT clause

Step 1: The collecting of rows

In the GROUP BY clause:

GROUP BY t.name

we state that we would like to look at all of the rows of data and
put the M-28 tour waterfalls into a group, all of the Munising
tour waterfalls into a group, and so on. Behind the scenes, the
data is being grouped like this:

tour_name waterfall_name
---------- ----------------
M-28 Munising Falls
M-28 Alger Falls
M-28 Scott Falls
M-28 Canyon Falls
M-28 Agate Falls
M-28 Bond Falls

Munising Munising Falls
Munising Tannery Falls
Munising Alger Falls
Munising Wagner Falls
Munising Horseshoe Falls
Munising Miners Falls

The GROUP BY Clause | 79

US-2 Bond Falls
US-2 Fumee Falls
US-2 Kakabika Falls
US-2 Rapid River Fls

Step 2: The summarizing of rows

In the SELECT clause,

SELECT t.name AS tour_name,
 COUNT(*) AS num_waterfalls

we state that for each group, or each tour, we want to count the
number of rows of data in the group. Because each row repre‐
sents a waterfall, this would result in the total number of water‐
falls along each tour.

The COUNT() function here is more formally known as an aggre‐
gate function, or a function that summarizes many rows of data
into a single value. More aggregate functions can be found in
“Aggregate Functions” on page 191 in Chapter 7.

WARNING

In this example, COUNT(*) returns the number of waterfalls
along each tour. However, this is only because each row of
data in the waterfall and tour tables represent a single
waterfall.

If a single waterfall was listed on multiple rows, COUNT(*)
would result in a larger value than expected. In this case,
you could potentially use COUNT(DISTINCT water

fall_name) instead to find the unique waterfalls. More
details can be found in COUNT and DISTINCT.
The key takeaway is that it is important to manually
double-check the results of the aggregate function to make
sure it is summarizing the data in the way that you
intended.

80 | Chapter 4: Querying Basics

Now that the groups have been created with the GROUP BY

clause, the aggregate function will be applied once to each
group:

tour_name COUNT(*)
---------- ---------
M-28 6
M-28
M-28
M-28
M-28
M-28

Munising 6
Munising
Munising
Munising
Munising
Munising

US-2 4
US-2
US-2
US-2

Any columns to which an aggregate function has not been
applied, which in this case is the tour_name column, are now
collapsed into one value:

tour_name COUNT(*)
---------- ---------
M-28 6
Munising 6
US-2 4

The GROUP BY Clause | 81

NOTE

This collapsing of many detail rows into one aggregate row
means that when using a GROUP BY clause, the SELECT
clause should only contain:

• All columns listed in the GROUP BY clause: t.name

• Aggregations: COUNT(*)

SELECT t.name AS tour_name,
 COUNT(*) AS num_waterfalls
...
GROUP BY t.name;

Not doing so could either result in an error message or
return inaccurate values.

GROUP BY In Practice
These are the steps you should take when using a GROUP BY:

1. Figure out what column(s) you want to use to separate
out, or group, your data (i.e., tour name).

2. Figure out how you’d like to summarize the data within
each group (i.e. count the waterfalls within each tour).

When you’ve decided on those:

1. In the SELECT clause, list the column(s) you want to group
by (i.e., tour name) and the aggregation(s) you want to
calculate within each group (i.e., count of waterfalls).

2. In the GROUP BY clause, list all columns that are not aggre‐
gations (i.e., tour name).

For more complex grouping situations including ROLLUP, CUBE,
and GROUPING SETS, go to “Grouping and Summarizing” on
page 242 in Chapter 8.

82 | Chapter 4: Querying Basics

The HAVING Clause
The HAVING clause places restrictions on the rows returned
from a GROUP BY query. In other words, it allows you to filter on
the results after a GROUP BY has been applied.

NOTE

A HAVING clause always immediately follows a GROUP BY
clause. Without a GROUP BY clause, there can be no HAVING
clause.

This is a query that lists the number of waterfalls on each tour
using a GROUP BY clause:

SELECT t.name AS tour_name,
 COUNT(*) AS num_waterfalls
FROM waterfall w INNER JOIN tour t
 ON w.id = t.stop
GROUP BY t.name;

tour_name num_waterfalls
---------- ---------------
M-28 6
Munising 6
US-2 4

Let’s say we only want to list the tours that have exactly six
stops. To do so, you would add a HAVING clause after the GROUP
BY clause:

SELECT t.name AS tour_name,
 COUNT(*) AS num_waterfalls
FROM waterfall w INNER JOIN tour t
 ON w.id = t.stop
GROUP BY t.name
HAVING COUNT(*) = 6;

The HAVING Clause | 83

tour_name num_waterfalls
---------- ---------------
M-28 6
Munising 6

WHERE Versus HAVING
The purpose of both clauses is to filter data. If you are trying to:

• Filter on particular columns, write your conditions within
the WHERE clause

• Filter on aggregations, write your conditions within the
HAVING clause

The contents of a WHERE and HAVING clause cannot be swapped:

• Never put a condition with an aggregation in the WHERE
clause. You will get an error.

• Never put a condition in the HAVING clause that does not
involve an aggregation. Those conditions are evaluated
much more efficiently in the WHERE clause.

You’ll notice that the HAVING clause refers to the aggregation
COUNT(*),

SELECT COUNT(*) AS num_waterfalls
...
HAVING COUNT(*) = 6;

and not the alias,

code will not run
SELECT COUNT(*) AS num_waterfalls
...
HAVING num_waterfalls = 6;

The reason for this is because of the order of execution of the
clauses. The SELECT clause is written before the HAVING clause.
However, the SELECT clause is actually executed after the HAVING
clause.

84 | Chapter 4: Querying Basics

That means that the alias num_waterfalls in the SELECT clause
does not exist at the time the HAVING clause is being executed.
The HAVING clause must refer to the raw aggregation COUNT(*)
instead.

NOTE

MySQL and SQLite are exceptions, and allow aliases
(num_waterfalls) in the HAVING clause.

The ORDER BY Clause
The ORDER BY clause is used to specify how you want the results
of a query to be sorted.

The following query returns a list of owners and waterfalls,
without any sorting:

SELECT COALESCE(o.name, 'Unknown') AS owner,
 w.name AS waterfall_name
FROM waterfall w
 LEFT JOIN owner o ON w.owner_id = o.id;

owner waterfall_name
---------------- ---------------
Pictured Rocks Munising Falls
Michigan Nature Tannery Falls
AF LLC Alger Falls
MI DNR Wagner Falls
Unknown Horseshoe Falls
...

The ORDER BY Clause | 85

The COALESCE Function
The COALESCE function replaces all NULL values in a column
with a different value. In this case, it turned the NULL values in
the o.name column into the text Unknown.

If the COALESCE function were not used here, all waterfalls
without owners would have been left out of the results. Instead,
they are now marked as having an Unknown owner, and can be
sorted on and included in the results.

More details can be found in Chapter 7.

The following query returns the same list, but first sorted
alphabetically by owner, and then by waterfall:

SELECT COALESCE(o.name, 'Unknown') AS owner,
 w.name AS waterfall_name
FROM waterfall w
 LEFT JOIN owner o ON w.owner_id = o.id
ORDER BY owner, waterfall_name;

owner waterfall_name
---------------- ---------------
AF LLC Alger Falls
MI DNR Wagner Falls
Michigan Nature Tannery Falls
Michigan Nature Twin Falls #1
Michigan Nature Twin Falls #2
...

The default sort is in ascending order, meaning text will go
from A to Z and numbers will go from lowest to highest. You
can use the keywords ASCENDING and DESCENDING (which can be
abbreviated as ASC and DESC) to control the sort on each
column.

86 | Chapter 4: Querying Basics

The following is a modification of the previous sort, but this
time, it sorts owner names in reverse order:

SELECT COALESCE(o.name, 'Unknown') AS owner,
 w.name AS waterfall_name
...
ORDER BY owner DESC, waterfall_name ASC;

owner waterfall_name
---------------- ---------------
Unknown Agate Falls
Unknown Bond Falls
Unknown Canyon Falls
...

You can sort by columns and expressions that are not in your
SELECT list:

SELECT COALESCE(o.name, 'Unknown') AS owner,
 w.name AS waterfall_name
FROM waterfall w
 LEFT JOIN owner o ON w.owner_id = o.id
ORDER BY o.id DESC, w.id;

owner waterfall_name
---------------- ---------------
MI DNR Wagner Falls
AF LLC Alger Falls
Michigan Nature Tannery Falls
...

You can also sort by numeric column position:

SELECT COALESCE(o.name, 'Unknown') AS owner,
 w.name AS waterfall_name
...
ORDER BY 1 DESC, 2 ASC;

owner waterfall_name
---------------- ---------------
Unknown Agate Falls
Unknown Bond Falls

The ORDER BY Clause | 87

Unknown Canyon Falls
...

Because the rows of a SQL table are unordered, if you don’t
include an ORDER BY clause in a query, each time you execute
the query, the results could be displayed in a different order.

ORDER BY Cannot Be Used in a Subquery
Of the six main clauses, only the ORDER BY clause cannot be
used in a subquery. Unfortunately, you can’t force the rows of a
subquery to be ordered.

To avoid this issue, you would need to rewrite your query with
different logic to avoid using an ORDER BY clause within the
subquery, and only include an ORDER BY clause in the outer
query.

The LIMIT Clause
When quickly viewing a table, it is best practice to return a
limited number of rows instead of the entire table.

MySQL, PostgreSQL, and SQLite support the LIMIT clause. Ora‐
cle and SQL Server use different syntax with the same
functionality:

-- MySQL, PostgreSQL, and SQLite
SELECT *
FROM owner
LIMIT 3;

-- Oracle
SELECT *
FROM owner
WHERE ROWNUM <= 3;

-- SQL Server
SELECT TOP 3 *
FROM owner;

88 | Chapter 4: Querying Basics

id name phone type
--- ---------------- ------------- --------
 1 Pictured Rocks 906.387.2607 public
 2 Michigan Nature 517.655.5655 private
 3 AF LLC private

Another way to limit the number of rows returned is to filter
on a column within the WHERE clause. The filtering will execute
even faster if the column is indexed.

The LIMIT Clause | 89

CHAPTER 5

Creating, Updating, and Deleting

The majority of this book covers how to read data from a data‐
base with SQL queries. Reading is one of the four basic data‐
base operations out of create, read, update, and delete (CRUD).

This chapter focuses on the remaining three operations for
Databases, Tables, Indexes, and Views. In addition, the Trans‐
action Management section covers how to execute multiple
commands as a single unit.

Databases
A database is a place to store data in an organized way.

Within a database, you can create database objects, which are
things that store or reference data. Common database objects
include tables, constraints, indexes, and views.

A data model or a schema describes how database objects are
organized within a database.

Figure 5-1 shows a database that contains many tables. The
specifics around how the tables are defined (i.e., the Sales table
contains five columns) and how they connect with one another
(i.e., the customer_id column in the Sales table matches the

91

customer_id column in the Customer table) are all a part of the
schema of the database.

Figure 5-1. A database containing a star schema

The tables in Figure 5-1 are arranged in a star schema, which
is a basic way of organizing tables in a database. The star
schema includes a fact table in the center and is surrounded by
dimension tables (also known as lookup tables). The fact table
records transactions made (sales in this case) along with IDs of
additional information, which are fully detailed out in the
dimension tables.

92 | Chapter 5: Creating, Updating, and Deleting

Data Model Versus Schema
When designing a database, you would first come up with a
data model, which is how you want your database organized at
a high level. It could look like Figure 5-1 and include table
names, how they are connected to one another, etc.

When you are ready to take action, you would create a schema,
which is the implementation of the data model in a database.
Within the software you are working in, you would specify the
tables, constraints, primary and foreign keys, etc.

NOTE

The definition of a schema varies for some RDBMSs.
In MySQL, a schema is the same thing as a database and
the two terms can be used interchangeably.
In Oracle, a schema consists of the database objects owned
by a particular user, so the terms schema and user are used
interchangeably.

Display Names of Existing Databases
All database objects reside in databases, so a good first step is to
see what databases currently exist. Table 5-1 shows the code to
display the names of all existing databases in each RDBMS.

Table 5-1. Code to display names of existing databases

RDBMS Code

MySQL SHOW databases;

Oracle SELECT * FROM global_name;

PostgreSQL \l

SQL Server SELECT name FROM master.sys.databases;

SQLite .database (or look in the file browser for .db files)

Databases | 93

NOTE

SQLite: For most RDBMS software, databases are located
within the RDBMS. However, for SQLite, databases are
stored outside of SQLite as .db files. To use a database, you
would specify a .db file name when launching SQLite:

> sqlite3 existing_db.db

Display Name of Current Database
You may want to confirm the database you are currently in
before writing any queries. Table 5-2 shows the code to display
the name of the database you are currently in for each RDBMS.

Table 5-2. Code to display name of current database

RDBMS Code

MySQL SELECT database();

Oracle SELECT * FROM global_name;

PostgreSQL SELECT current_database();

SQL Server SELECT db_name();

SQLite .database

NOTE

You may have noticed that the current database code is the
same as the existing database code for Oracle and SQLite.
An instance of Oracle can only connect to a single database
at a time, and you typically don’t switch databases.
With SQLite, you can only open up and work with a single
database file at a time.

94 | Chapter 5: Creating, Updating, and Deleting

Switch to Another Database
You may want to use data in another database or switch to a
newly created database. Table 5-3 shows the code to switch to
another database in each RDBMS.

Table 5-3. Code to switch to another database

RDBMS Code

MySQL,
SQL Server

USE another_db;

Oracle You typically don’t switch databases (see earlier note), but to switch
users, you would type: connect another_user

PostgreSQL \c another_db

SQLite .open another_db

Create a Database
If you have CREATE privileges, you can create a new database.
If not, you may only be able to work within an existing data‐
base. Table 5-4 shows the code to create a database in each
RDBMS.

Table 5-4. Code to create a database

RDBMS Code

MySQL,
Oracle,
PostgreSQL,
SQL Server

CREATE DATABASE my_new_db;

SQLite > sqlite3 my_new_db.db

Databases | 95

NOTE

Oracle: There are some additional steps (regarding instan‐
ces, environment variables, etc.) surrounding the CREATE
DATABASE statement in Oracle, which can be found in the
Oracle documentation.

SQLite: The > symbol is not a character that you actually
type. It just signifies that this is command line code, not
SQL code.

Delete a Database
If you have DELETE privileges, you can delete a database.
Table 5-5 shows the code to delete a database in each RDBMS.

WARNING

If you delete a database, you will lose all of the data in the
database. There is no undo, unless a backup has been cre‐
ated. I recommend not running this command unless you
are 100% sure you don’t need the database.

Table 5-5. Table 5-5. Code to delete a database

RDBMS Code

MySQL,
Oracle,
PostgreSQL,
SQL Server

DROP DATABASE my_new_db;

SQLite Delete the .db file in the file browser

96 | Chapter 5: Creating, Updating, and Deleting

https://oreil.ly/lXKOF

NOTE

Oracle: There are some additional steps (regarding mount‐
ing, etc.) surrounding the DROP DATABASE statement in
Oracle, which can be found in the Oracle documentation.

In some RDBMSs, you can’t drop a database you are currently
in. You would have to first switch to another database, such as
the default one, before dropping the database:

• In PostgreSQL, the default database is postgres:

\c postgres
DROP DATABASE my_new_db;

• In SQL Server, the default database is master:

USE master;
go
DROP DATABASE my_new_db;
go

Creating Tables
Tables consist of rows and columns, and store all of the data in
a database. In SQL, there are a few additional requirements for
tables:

• Each row of a table should be unique
• All data in a column must be of the same data type (inte‐

ger, text, etc.)

Creating Tables | 97

https://oreil.ly/v0Tjd

NOTE

In SQLite, the data in a column does not have to all be of
the same data type. SQLite is more flexible in that each
value has a data type associated with it, rather than an
entire column.
To be compatible with other RDBMSs, SQLite does sup‐
port columns having data type assignments. These type
affinities are recommended data types for the columns, and
are not required.

Create a Simple Table
It takes two steps to create a table in SQL. You must first define
the structure of a table before loading data into it:

1. Create a table.
The following code creates an empty table called my_sim
ple_table with three columns: id, country, and name. All
values in the first column (id) must be integers, and the
other two columns (country, name) can contain up to 2
and up to 15 characters:

CREATE TABLE my_simple_table (
 id INTEGER,
 country VARCHAR(2),
 name VARCHAR(15)
);

More data types in addition to INTEGER and VARCHAR are
listed in Chapter 6.

2. Insert rows.
a. Insert a single row of data.

The following code inserts one row of data into col‐
umns id, country, and name:

INSERT INTO my_simple_table (id, country, name)
VALUES (1, 'US', 'Sam');

b. Insert multiple rows of data.

98 | Chapter 5: Creating, Updating, and Deleting

Table 5-6 shows how to insert multiple rows of data
into a table in each RDBMS, instead of one row at a
time.

Table 5-6. Code to insert multiple rows of data

RDBMS Code

MySQL,
PostgreSQL,
SQL Server,
SQLite

INSERT INTO my_simple_table

 (id, country, name)

VALUES (2, 'US', 'Selena'),

 (3, 'CA', 'Shawn'),

 (4, 'US', 'Sutton');

Oracle INSERT ALL

 INTO my_simple_table (id, country, name)

 VALUES (2, 'US', 'Selena')

 INTO my_simple_table (id, country, name)

 VALUES (3, 'CA', 'Shawn')

 INTO my_simple_table (id, country, name)

 VALUES (4, 'US', 'Sutton')

SELECT * FROM dual;

After inserting the data, the table would look like this:

SELECT * FROM my_simple_table;

id country name
--- -------- -------
 1 US Sam
 2 US Selena
 3 CA Shawn
 4 US Sutton

When inserting rows of data, the order of the values must
match the order of the column names exactly.

Values in any columns omitted from the column list will take
on their default value of NULL, unless another default value is
specified.

Creating Tables | 99

NOTE

You need CREATE privileges to create a table. If you get an
error when running the preceding code, you do not have
the permission to do so and need to talk to your database
administrator.

Display Names of Existing Tables
Before creating a table, you may want to see if the table name
already exists. Table 5-7 shows the code to display the names of
existing tables in the database for each RDBMS.

Table 5-7. Code to display names of existing tables

RDBMS Code

MySQL SHOW tables;

Oracle -- All tables, including system tables

SELECT table_name FROM all_tables;

-- All user created tables

SELECT table_name FROM user_tables;

PostgreSQL \dt

SQL Server SELECT table_name

FROM information_schema.tables;

SQLite .tables

Create a Table That Does Not Already Exist
In MySQL, PostgreSQL, and SQLite, you can check for existing
tables using the IF NOT EXISTS keywords when creating a table:

CREATE TABLE IF NOT EXISTS my_simple_table (
 id INTEGER,
 country VARCHAR(2),
 name VARCHAR(15)
);

100 | Chapter 5: Creating, Updating, and Deleting

If the table name does not exist, a new table will get created. If
the table name already exists, without the IF NOT EXISTS, you
would get an error message. With the IF NOT EXISTS, no new
table gets created and you would avoid an error message.

If you want to replace an existing table, there are two
approaches to doing so:

• You could use DROP TABLE to completely delete the existing
table, and then create a new one.

• You could truncate the existing table, meaning you keep
the schema (aka structure) of the table, but clear out the
data inside of it. This can be done by using DELETE FROM to
delete data from the table.

Create a Table with Constraints
A constraint is a rule that specifies what data can be inserted
into a table. The following code creates two tables and multiple
constraints (bolded):

CREATE TABLE another_table (
 country VARCHAR(2) NOT NULL,
 name VARCHAR(15) NOT NULL,
 description VARCHAR(50),
 CONSTRAINT pk_another_table
 PRIMARY KEY (country, name)
);

CREATE TABLE my_table (
 id INTEGER NOT NULL,
 country VARCHAR(2) DEFAULT 'CA'
 CONSTRAINT chk_country
 CHECK (country IN ('CA','US')),
 name VARCHAR(15),
 cap_name VARCHAR(15),
 CONSTRAINT pk
 PRIMARY KEY (id),
 CONSTRAINT fk1

Creating Tables | 101

 FOREIGN KEY (country, name)
 REFERENCES another_table (country, name),
 CONSTRAINT unq_country_name
 UNIQUE (country, name),
 CONSTRAINT chk_upper_name
 CHECK (cap_name = UPPER(name))
);

The CONSTRAINT keyword names the constraint for future refer‐
ence and is optional. You should avoid using the same name for
both a column and a constraint.

For quick access to the constraint sections: NOT NULL, DEFAULT,
CHECK, UNIQUE, PRIMARY KEY, FOREIGN KEY.

Constraint: Not allowing NULL values in a column with NOT NULL
In a SQL table, cells without a value are replaced with the term
NULL. For each column, you can specify whether NULL values are
allowed or not:

CREATE TABLE my_table (
 id INTEGER NOT NULL,
 country VARCHAR(2) NULL,
 name VARCHAR(15)
);

The NOT NULL constraint on the id column means that the col‐
umn will not allow NULL values. In other words, there can be no
missing values inserted into the column, or else you will get an
error message.

The NULL constraint on the country column means that the col‐
umn will allow NULL values. If you are inserting data into the
table and exclude the country column, then no value will be
inserted, and the cell will be replaced with a NULL value.

By not specifying NULL or NOT NULL, the name column defaults to
NULL, meaning it will allow NULL values.

102 | Chapter 5: Creating, Updating, and Deleting

Constraint: Setting default values in a column with DEFAULT
When inserting data into a table, missing values get replaced
with the term NULL. To replace missing values with another
value, you can use the DEFAULT constraint. The following code
turns any missing country value into CA:

CREATE TABLE my_table (
 id INTEGER,
 country VARCHAR(2) DEFAULT 'CA',
 name VARCHAR(15)
);

Constraint: Restricting values in a column with CHECK
You can restrict the values allowed in a column by using the
CHECK constraint. The following code only allows values of CA
and US in the country column.

You can place the CHECK keyword immediately after the column
name and data type:

CREATE TABLE my_table (
 id INTEGER,
 country VARCHAR(2) CHECK
 (country IN ('CA', 'US')),
 name VARCHAR(15)
);

Or you can place the CHECK keyword after all the column names
and data types:

CREATE TABLE my_table (
 id INTEGER,
 country VARCHAR(2),
 name VARCHAR(15),
 CHECK (country IN ('CA','US'))
);

You can also include logic that checks multiple columns:

CREATE TABLE my_table (
 id INTEGER,
 country VARCHAR(2),

Creating Tables | 103

 name VARCHAR(15),
 CONSTRAINT chk_id_country
 CHECK (id > 100 AND country IN ('CA','US'))
);

Constraint: Requiring unique values in a column with UNIQUE
You can require the values of a column to be unique by using
the UNIQUE constraint.

You can place the UNIQUE keyword immediately after the col‐
umn name and data type:

CREATE TABLE my_table (
 id INTEGER UNIQUE,
 country VARCHAR(2),
 name VARCHAR(15)
);

Or you can place the UNIQUE keyword after all the column
names and data types:

CREATE TABLE my_table (
 id INTEGER,
 country VARCHAR(2),
 name VARCHAR(15),
 UNIQUE (id)
);

You can also include logic that forces the combination of multi‐
ple columns to be unique. The following code requires unique
country/name combinations, meaning that one row can include
CA/Emma and another can include US/Emma:

CREATE TABLE my_table (
 id INTEGER,
 country VARCHAR(2),
 name VARCHAR(15),
 CONSTRAINT unq_country_name
 UNIQUE (country, name)
);

104 | Chapter 5: Creating, Updating, and Deleting

Create a Table with Primary and Foreign Keys
Primary keys and foreign keys are special types of constraints
that uniquely identify rows of data.

Specify a primary key
A primary key uniquely identifies each row of data in a table. A
primary key can be made up of one or more columns in a table.
Every table should have a primary key.

You can place the PRIMARY KEY keywords immediately after the
column name and data type:

CREATE TABLE my_table (
 id INTEGER PRIMARY KEY,
 country VARCHAR(2),
 name VARCHAR(15)
);

Or you can place the PRIMARY KEY keywords after all the col‐
umn names and data types:

CREATE TABLE my_table (
 id INTEGER,
 country VARCHAR(2),
 name VARCHAR(15),
 PRIMARY KEY (id)
);

To specify a primary key consisting of multiple columns (also
known as a composite key):

CREATE TABLE my_table (
 id INTEGER NOT NULL,
 country VARCHAR(2),
 name VARCHAR(15) NOT NULL,
 CONSTRAINT pk_id_name
 PRIMARY KEY (id, name)
);

Creating Tables | 105

By creating a PRIMARY KEY, the constraints that you are putting
on the column(s) are that they cannot include NULL values (NOT
NULL) and the values must be unique (UNIQUE).

Primary Key Best Practices
Every table should have a primary key. This ensures that every
row can be uniquely identified.

It is recommended that primary keys consist of ID columns, like
(country_id, name_id) instead of (country, name). Techni‐
cally, multiple rows could have the same country and name
combination. By adding columns that contain unique IDs (101,
102, etc.), the combination of country_id and name_id is guar‐
anteed to be unique.

Primary keys should be immutable, meaning that they can’t be
changed. This allows for a particular row in a table to always be
identified by the same primary key.

Specify a foreign key
A foreign key in a table refers to a primary key in another table.
The two tables can be linked together by the common column.
A table can have zero or more foreign keys.

Figure 5-2 shows a data model of two tables: the customers
table, which has a primary key of id, and the orders table,
which has a primary key of o_id. From the viewpoint of custom
ers, its order_id column matches with values of the o_id col‐
umn, making order_id a foreign key because it refers to a pri‐
mary key in another table.

106 | Chapter 5: Creating, Updating, and Deleting

Figure 5-2. Two tables with primary keys and a foreign key

To specify a foreign key, use the following steps:

1. Locate the table you plan to reference and identify the
primary key.
In this case, we will be referencing orders, specifically the
o_id column:

CREATE TABLE orders (
 o_id INTEGER PRIMARY KEY,
 o_location VARCHAR(20),
 o_price DECIMAL(6,2)
);

2. Create a table with a foreign key that references the pri‐
mary key in the other table.
In this case, we are creating the customers table where the
order_id column references the o_id primary key in the
orders table:

 CREATE TABLE customers (
 id INTEGER PRIMARY KEY,
 order_id INTEGER,
 name VARCHAR(15),
 location VARCHAR(20),
 FOREIGN KEY (order_id)
 REFERENCES orders (o_id)
);

Creating Tables | 107

To specify a foreign key consisting of multiple columns, the
primary key must consist of multiple columns as well:

CREATE TABLE orders (
 o_id INTEGER,
 o_location VARCHAR(20),
 o_price DECIMAL(6,2),
 PRIMARY KEY (o_id, o_location)
);

CREATE TABLE customers (
 id INTEGER PRIMARY KEY,
 order_id INTEGER,
 name VARCHAR(15),
 location VARCHAR(20),
 CONSTRAINT fk_id_name
 FOREIGN KEY (order_id, location)
 REFERENCES orders (o_id, o_location)
);

NOTE

The foreign key (order_id) and primary key it references
(o_id) must both be the same data type.

Create a Table with an Automatically
Generated Field
If you plan to load a dataset without a unique ID column, you
may want to create a column that automatically generates a
unique ID. The code in Table 5-8 automatically generates
sequential numbers (1, 2, 3, etc.) in the u_id column, in each
RDBMS.

108 | Chapter 5: Creating, Updating, and Deleting

Table 5-8. Code to automatically generate a unique ID

RDBMS Code

MySQL CREATE TABLE my_table (
 u_id INTEGER PRIMARY KEY AUTO_INCREMENT,
 country VARCHAR(2),
 name VARCHAR(15)
);

Oracle CREATE TABLE my_table (
 u_id INTEGER GENERATED BY DEFAULT
 ON NULL AS IDENTITY,
 country VARCHAR2(2),
 name VARCHAR2(15)
);

PostgreSQL CREATE TABLE my_table (
 u_id SERIAL,
 country VARCHAR(2),
 name VARCHAR(15)
);

SQL Server -- u_id to begin at 1 and increment by 1
CREATE TABLE my_table (
 u_id INTEGER IDENTITY(1,1),
 country VARCHAR(2),
 name VARCHAR(15)
);

SQLite CREATE TABLE my_table (
 u_id INTEGER PRIMARY KEY AUTOINCREMENT,
 country VARCHAR(2),
 name VARCHAR(15)
);

Creating Tables | 109

NOTE

In Oracle, VARCHAR2 is typically used instead of VARCHAR.
They are identical in terms of functionality, but VARCHAR
may one day be modified, so it’s safer to use VARCHAR2.

SQLite recommends against using AUTOINCREMENT unless
absolutely necessary because it uses additional computing
resources. The code will still run without error.

Insert the Results of a Query into a Table
Instead of manually typing values to insert into a new table,
you may want to load a new table with data from existing
table(s).

Here is a table:

SELECT * FROM my_simple_table;

id country name
--- -------- -------
 1 US Sam
 2 US Selena
 3 CA Shawn
 4 US Sutton

Create a new table with two columns:

CREATE TABLE new_table_two_columns (
 id INTEGER,
 name VARCHAR(15)
);

Insert the results from a query into the new table:

INSERT INTO new_table_two_columns
 (id, name)
SELECT id, name
FROM my_simple_table
WHERE id < 3;

110 | Chapter 5: Creating, Updating, and Deleting

The new table would then look like:

SELECT * FROM new_table_two_columns;

id name
--- -------
 1 Sam
 2 Selena

You can also insert values from an existing table and either add
or modify other values along the way.

Create a new table with four columns:

CREATE TABLE new_table_four_columns (
 id INTEGER,
 name VARCHAR(15),
 new_num_column INTEGER,
 new_text_column VARCHAR(30)
);

Insert the results from a query into the new table and fill in val‐
ues for the new columns:

INSERT INTO new_table_four_columns
 (id, name, new_num_column, new_text_column)
SELECT id, name, 2017, 'stargazing'
FROM my_simple_table
WHERE id = 2;

Insert the results from a query into the new table and change a
value in the row (id in this case):

INSERT INTO new_table_four_columns
 (id, name, new_num_column, new_text_column)
SELECT 3, name, 2017, 'wolves'
FROM my_simple_table
WHERE id = 2;

Creating Tables | 111

The new table would then look like:

SELECT * FROM new_table_four_columns;

id name new_num_column new_text_column
--- ------- --------------- ----------------
 2 Selena 2017 stargazing
 3 Selena 2017 wolves

Insert Data from a Text File into a Table
You may want to load data from a text file (data stored in plain
text without special formatting) into a table. A common type of
text file is a .csv file (comma separated values). Text files can be
opened up in applications outside of an RDBMS including
Excel, Notepad, TextEdit, etc.

The following code shows how to load the my_data.csv file into
a table.

Contents of the my_data.csv file:

unique_id,canada_us,artist_name
5,"CA","Celine"
6,"CA","Michael"
7,"US","Stefani"
8,,"Olivia"
...

Create a table:

CREATE TABLE new_table (
 id INTEGER,
 country VARCHAR(2),
 name VARCHAR(15)
);

The code in Table 5-9 loads the my_data.csv file into the
new_table table for each RDBMS. When loading data, you can
specify additional details about the data, such as:

• The data is separated by commas (,)

112 | Chapter 5: Creating, Updating, and Deleting

• Text values are enclosed in double quotes ("")
• Each new row is on a new line (\n)
• The first row of the text file (which contains the header)

should be ignored

Table 5-9. Code to insert data from a .csv file

RDBMS Code

MySQL LOAD DATA LOCAL

INFILE '<file_path>/my_data.csv'

INTO TABLE new_table

FIELDS TERMINATED BY ','

ENCLOSED BY '"'

LINES TERMINATED BY '\n'

IGNORE 1 ROWS;

Oracle While this can be done at the command line using sqlldr, the
better approach is to load data through a graphical user interface
like SQL*Loader or SQL Developer instead.

PostgreSQL \copy new_table

 FROM '<file_path>/my_data.csv'

 DELIMITER ',' CSV HEADER

SQL Server BULK INSERT new_table

FROM '<file_path>/my_data.csv'

WITH

(

 FORMAT = 'CSV',

 FIELDTERMINATOR = ',',

 FIELDQUOTE = '"',

 ROWTERMINATOR = '\n',

 FIRSTROW = 2,

 TABLOCK

);

SQLite .mode csv

.import <file_path>/my_data.csv

 new_table --skip 1

Creating Tables | 113

After inserting the data, the table would look like this:

SELECT * FROM new_table;

id country name
--- -------- --------
 5 CA Celine
 6 CA Michael
 7 US Stefani
 8 NULL Olivia
...

Example Filepath to Desktop
If my_data.csv is on your Desktop, this is what the file path
would look like for each operating system:

• Linux: /home/my_username/Desktop/my_data.csv
• MacOS: /Users/my_username/Desktop/my_data.csv
• Windows: C:\Users\my_username\Desktop\my_data.csv

NOTE

If MySQL gives you an error that says that loading local
data is disabled, you can enable it by updating the global
variable local_infile, quitting and restarting MySQL:

SET GLOBAL local_infile=1;
quit

Missing Data and NULL Values
Each RDBMS interprets missing data from a .csv file in a differ‐
ent way. When the following line in a .csv file:

8,,"Olivia"

114 | Chapter 5: Creating, Updating, and Deleting

is inserted into a SQL table, the missing value between 8 and
Olivia would get replaced with:

• A NULL value in PostgreSQL and SQL Server
• An empty string ('') in MySQL and SQLite

In MySQL and SQLite, you can use \N in a .csv file to represent a
NULL value in a SQL table. When the following line in a .csv file,

8,\N,"Olivia"

is inserted into a MySQL table, the \N would get replaced with a
NULL value in the table.

When it is inserted into a SQLite table, the \N would be hardco‐
ded into the table. You could then run the code,

UPDATE new_table
SET country = NULL
WHERE country = '\N';

to replace the \N placeholders with NULL values in the table.

Modifying Tables
This section covers how to change the table name, columns,
constraints, and data in a table.

NOTE

You need ALTER privileges to modify a table. If you get an
error when running the code in this section, you do not
have the permission to do so and need to talk to your data‐
base administrator.

Rename a Table or Column
After you’ve created a table, you can still rename the table and
the columns of the table.

Modifying Tables | 115

WARNING

If you modify a table, the table will be permanently
changed. There is no undo, unless there has been a backup
created. Double-check your statements before executing
them.

Rename a table
The code in Table 5-10 shows how to rename a table in each
RDBMS.

Table 5-10. Code to rename a table

RDBMS Code

MySQL, Oracle, PostgreSQL,
SQLite

ALTER TABLE old_table_name

RENAME TO new_table_name;

SQL Server EXEC sp_rename

'old_table_name',

'new_table_name';

Rename a column
The code in Table 5-11 shows how to rename a column in each
RDBMS.

Table 5-11. Code to rename a column

RDBMS Code

MySQL,
Oracle,
PostgreSQL,
SQLite

ALTER TABLE my_table

 RENAME COLUMN old_column_name

 TO new_column_name;

SQL Server EXEC sp_rename 'my_table.old_column_name',

 'new_column_name', 'COLUMN';

116 | Chapter 5: Creating, Updating, and Deleting

Display, Add, and Delete Columns
After you’ve created a table, you can view, add, and delete col‐
umns from the table.

Display the columns of a table
The code in Table 5-12 shows how to display the columns of a
table in each RDBMS.

Table 5-12. Code to display the columns of a table

RDBMS Code

MySQL,
Oracle

DESCRIBE my_table;

PostgreSQL \d my_table

SQL Server SELECT column_name

FROM information_schema.columns

WHERE table_name = 'my_table';

SQLite pragma table_info(my_table);

Add a column to a table
The code in Table 5-13 shows how to add a column to a table in
each RDBMS.

Table 5-13. Code to add a column to a table

RDBMS Code

MySQL,
PostgreSQL

ALTER TABLE my_table

 ADD new_num_column INTEGER,

 ADD new_text_column VARCHAR(30);

Oracle ALTER TABLE my_table ADD (

 new_num_column INTEGER,

 new_text_column VARCHAR(30));

SQL Server ALTER TABLE my_table

 ADD new_num_column INTEGER,

 new_text_column VARCHAR(30);

Modifying Tables | 117

RDBMS Code

SQLite ALTER TABLE my_table

 ADD new_num_column INTEGER;

ALTER TABLE my_table

 ADD new_text_column VARCHAR(30);

Delete a column from a table
The code in Table 5-14 shows how to delete a column from a
table in each RDBMS.

NOTE

If a column has any constraints, you must first delete the
constraints before deleting the column.

Table 5-14. Code to delete a column from a table

RDBMS Code

MySQL,
PostgreSQL

ALTER TABLE my_table

 DROP COLUMN new_num_column,

 DROP COLUMN new_text_column;

Oracle ALTER TABLE my_table

 DROP COLUMN new_num_column;

ALTER TABLE my_table

 DROP COLUMN new_text_column;

SQL Server ALTER TABLE my_table

 DROP COLUMN new_num_column,

 new_text_column;

SQLite Refer to the manual modifications steps for SQLite

118 | Chapter 5: Creating, Updating, and Deleting

Manual Modifications in SQLite
SQLite does not support some table modifications, such as
deleting columns or adding/modifying/deleting constraints.

As a workaround, you can either use a graphical user interface
to generate code to modify a table, or you can manually create a
new table and copy over data (see following steps).

1. Create a new table with the columns and constraints you
want.

CREATE TABLE my_table_2 (
 id INTEGER NOT NULL,
 country VARCHAR(2),
 name VARCHAR(30)
);

2. Copy data from the old table to the new table.
INSERT INTO my_table_2
SELECT id, country, name
FROM my_table;

3. Confirm that the data is in the new table.
SELECT * FROM my_table_2;

4. Delete the old table.
DROP TABLE my_table;

5. Rename the new table.
ALTER TABLE my_table_2 RENAME TO my_table;

Display, Add, and Delete Rows
After you’ve created a table, you can view, add, and delete rows
from the table.

Display rows of a table

To display the rows of a table, simply write a SELECT statement:

SELECT * FROM my_table;

Modifying Tables | 119

Add rows to a table

Use INSERT INTO to add rows of data to a table:

INSERT INTO my_table
 (id, country, name)
VALUES (9, 'US', 'Charlie');

Delete rows from a table

Use DELETE FROM to delete rows of data from a table:

DELETE FROM my_table
WHERE id = 9;

Omit the WHERE clause to remove all rows from a table:

DELETE FROM my_table;

Deleting rows from a table is also known as truncating, which
removes all of the data in a table without changing the table
definition. So while the column names and constraints of the
table still exist, it is now empty.

To get rid of a table completely, you can drop the table.

Display, Add, Modify, and Delete Constraints
A constraint is a rule that specifies what data can be inserted
into a table. More on the various types of constraints can be
found earlier in this chapter in the Create a Table with Con‐
straints section.

Display the constraints of a table
The code in Table 5-15 shows how to display the constraints of
a table in each RDBMS.

120 | Chapter 5: Creating, Updating, and Deleting

Table 5-15. Code to display the constraints of a table

RDBMS Code

MySQL SHOW CREATE TABLE my_table;

Oracle SELECT *

FROM user_cons_columns

WHERE table_name = 'MY_TABLE';

PostgreSQL \d my_table

SQL Server -- List constraints (except default ones)

SELECT table_name,

 constraint_name,

 constraint_type

FROM information_schema.table_constraints

WHERE table_name = 'my_table';

-- List all default constraints

SELECT OBJECT_NAME(parent_object_id),

 COL_NAME(parent_object_id,

 parent_column_id),

 definition

FROM sys.default_constraints

WHERE OBJECT_NAME(parent_object_id) =

 'my_table';

SQLite .schema my_table

NOTE

Oracle stores table names and column names in all caps,
unless you surround the column name with double quotes.
When referring to a table name or a column name in a
SQL statement, you must write the name in all caps
(MY_TABLE).

Modifying Tables | 121

Add a constraint

Let’s start with the following CREATE TABLE statement:

CREATE TABLE my_table (
 id INTEGER NOT NULL,
 country VARCHAR(2) DEFAULT 'CA',
 name VARCHAR(15),
 lower_name VARCHAR(15)
);

The code in Table 5-16 adds a constraint that makes sure that
the lower_name column is a lowercase version of the name col‐
umn in each RDBMS.

Table 5-16. Code to add a constraint

RDBMS Code

MySQL,
PostgreSQL,
SQL Server

ALTER TABLE my_table

 ADD CONSTRAINT chk_lower_name

 CHECK (lower_name = LOWER(name));

Oracle ALTER TABLE my_table ADD (

 CONSTRAINT chk_lower_name

 CHECK (lower_name = LOWER(name)));

SQLite Refer to the manual modifications steps for SQLite

Modify a constraint

Let’s start with the following CREATE TABLE statement:

CREATE TABLE my_table (
 id INTEGER NOT NULL,
 country VARCHAR(2) DEFAULT 'CA',
 name VARCHAR(15),
 lower_name VARCHAR(15)
);

122 | Chapter 5: Creating, Updating, and Deleting

The code in Table 5-17 modifies the following constraints:

• Changes the country column from defaulting to CA to
defaulting to NULL

• Changes the name column from allowing 15 characters to
allowing 30 characters

Table 5-17. Code to modify constraints in a table

RDBMS Code

MySQL ALTER TABLE my_table

 MODIFY country VARCHAR(2) NULL,

 MODIFY name VARCHAR(30);

Oracle ALTER TABLE my_table MODIFY (

 country DEFAULT NULL,

 name VARCHAR2(30)

);

PostgreSQL ALTER TABLE my_table

 ALTER country DROP DEFAULT,

 ALTER name TYPE VARCHAR(30);

SQL Server ALTER TABLE my_table

 ALTER COLUMN country

 VARCHAR(2) NULL;

ALTER TABLE my_table

 ALTER COLUMN name

 VARCHAR(30) NULL;

SQLite Refer to the manual modifications steps for SQLite

Delete a constraint
The code in Table 5-18 shows how to delete a constraint from a
table in each RDBMS.

Modifying Tables | 123

Table 5-18. Code to delete a constraint from a table

RDBMS Code

MySQL ALTER TABLE my_table

 DROP CHECK chk_lower_name;

Oracle,
PostgreSQL,
SQL Server

ALTER TABLE my_table

 DROP CONSTRAINT chk_lower_name;

SQLite Refer to the manual modifications steps for SQLite

NOTE

In MySQL, CHECK can be replaced with DEFAULT, INDEX (for
UNIQUE constraints), PRIMARY KEY, and FOREIGN KEY. To
delete a NOT NULL constraint, you would MODIFY the con‐
straint instead.

Update a Column of Data
Use UPDATE .. SET .. to update the values in a column of data.

Here is a table:

SELECT *
FROM my_table;

id country name awards
--- -------- -------- -------
 2 CA Celine 5
 3 CA Michael 4
 4 US Stefani 9

Preview the change you’d like to make:

SELECT LOWER(name)
FROM my_table;

LOWER(name)

124 | Chapter 5: Creating, Updating, and Deleting

celine
michael
stefani

Update the values in a column of data:

UPDATE my_table
SET name = LOWER(name);

SELECT * FROM my_table;

id country name awards
--- -------- -------- -------
 2 CA celine 5
 3 CA michael 4
 4 US stefani 9

Update Rows of Data
Use UPDATE .. SET .. WHERE .. to update values in a row or
multiple rows of data.

Here is a table:

SELECT *
FROM my_table;

id country name awards
--- -------- -------- -------
 2 CA Celine 5
 3 CA Michael 4
 4 US Stefani 9

Preview the change you’d like to make:

SELECT awards + 1
FROM my_table
WHERE country = 'CA';

awards + 1

Modifying Tables | 125

 6
 5

Update the values in multiple rows of data:

UPDATE my_table
SET awards = awards + 1
WHERE country = 'CA';

SELECT * FROM my_table;

id country name awards
--- -------- -------- -------
 2 CA Celine 6
 3 CA Michael 5
 4 US Stefani 9

WARNING

It is very important to include a WHERE clause along with
the SET clause when you are updating specific rows of data.
Without the WHERE clause, the entire table would be
updated.

Update Rows of Data with the Results of a Query
Instead of manually typing values to update a table, you can set
a new value based on the results of a query.

Here is a table:

SELECT * FROM my_table;

id country name awards
--- -------- -------- -------
 2 CA Celine 5
 3 CA Michael 4
 4 US Stefani 9

126 | Chapter 5: Creating, Updating, and Deleting

Preview the change you’d like to make:

SELECT MIN(awards) FROM my_table;

MIN(awards)

 4

Update values based on a query:

UPDATE my_table
SET awards = (SELECT MIN(awards) FROM my_table)
WHERE country = 'CA';

SELECT * FROM my_table;

id country name awards
--- -------- -------- -------
 2 CA Celine 4
 3 CA Michael 4
 4 US Stefani 9

NOTE

MySQL does not allow you to update a table with a query
on the same table. In the preceding example, you cannot
have UPDATE my_table and FROM my_table. The state‐
ment will run if you query FROM another_table.

The results of the query must always return one column and
either zero or one row. If zero rows are returned, then the value
is set to NULL.

Modifying Tables | 127

Delete a Table
When you no longer need a table, you can delete it using a DROP
TABLE statement:

DROP TABLE my_table;

In MySQL, PostgreSQL, SQL Server, and SQLite, you can also
add IF EXISTS to avoid an error message if the table doesn’t
exist:

DROP TABLE IF EXISTS my_table;

WARNING

If you drop a table, you will lose all of the data in the table.
There is no undo, unless there has been a backup created. I
recommend not running this command unless you are
100% sure you don’t need the table.

Delete a table with foreign key references
If other tables have foreign keys that reference the table you are
dropping, you will need to delete the foreign key constraints in
the other tables along with the table you are dropping.

The code in Table 5-19 shows how to delete a table with foreign
key references in each RDBMS.

Table 5-19. Code to delete a table with foreign key references

RDBMS Code

Oracle DROP TABLE my_table CASCADE CONSTRAINTS;

PostgreSQL DROP TABLE my_table CASCADE;

MySQL,
SQL Server,
SQLite

There is no CASCADE keyword, so you must manually delete any
foreign key constraints that reference the table before dropping the
table.

128 | Chapter 5: Creating, Updating, and Deleting

WARNING

It is dangerous to use CASCADE without knowing exactly
what you are deleting. Please proceed with caution. I rec‐
ommend not running this command unless you are 100%
sure you don’t need the constraints.”

Indexes
Imagine you have a table with 10 million rows. You write a
query on the table to return values that were logged on
2021-01-01:

SELECT *
FROM my_table
WHERE log_date = '2021-01-01';

This query would take a long time to run. The reason is
because behind the scenes, every single row is checked to see if
the log_date matches 2021-01-01 or not. That is 10 million
checks.

To speed this up, you could create an index on the log_date
column. This is something you would do one time, and all
future queries could benefit from it.

Book Index Versus SQL Index Comparison
To better understand how a SQL index works, it’s helpful to use
an analogy. Table 5-20 compares the index at the end of this
book with an index in a SQL table.

Indexes | 129

Table 5-20. Book index versus SQL index comparison

Book SQL Table

Terms A book has many pages.
Each page has attributes
including the word count,
concepts covered, etc.

A table has many rows.
Each row has columns, including
customer_id, log_date, etc.

Scenario You are reading this book and
want to find all pages about
the concept subqueries.

You are querying a table and want
to find all rows where the
log_date is 2021-01-01.

The slow
approach

You could start from page 1
and flip through every page of
this book to see if subqueries
are mentioned or not. This
would take a long time.

You could start from row 1 and
scan through every row to see
whether the log_date is
2021-01-01 or not. This would
take a long time.

Create an
index

An index was created for all
concepts in this book. Each
concept is listed in the index
along with the page numbers
that talk about the concept.

An index was created on the
log_date column in the table.
Every log_date is listed in the
index along with the row numbers
that contain the log_date.

The fast
approach

To find pages about
subqueries, you can go to the
index to quickly find the page
numbers that reference
subqueries and go to those
pages.

To find rows with a log_date of
2021-01-01, your query uses
the index to quickly find the row
numbers that contain the date and
return those rows.

When the same query is run on my_table (that now has the
log_date column indexed):

SELECT *
FROM my_table
WHERE log_date = '2021-01-01';

the query will run much faster because instead of checking
each row in the table, it sees the log_date of 2021-01-01, goes
to the index, and quickly pulls all rows that have that log_date.

130 | Chapter 5: Creating, Updating, and Deleting

TIP

It’s a good idea to create an index on a few columns that
you filter on often. For example, the primary key column,
the date column, etc.
You wouldn’t want to create an index for too many col‐
umns, though, because it does take up space. Also, any
time rows are added or removed, the index would need to
be rebuilt, which is time consuming.

Create an Index to Speed Up Queries
The following code creates a new index called my_index on the
log_date column in the my_table table:

CREATE INDEX my_index ON my_table (log_date);

NOTE

When creating an index in Oracle, you must uppercase the
column name and surround it in quotes:

CREATE INDEX my_index ON my_table
 ('LOG_DATE');

Oracle automatically creates an index for PRIMARY KEY and
UNIQUE columns when a table is created.

Indexes can take a long time to create. However, it’s a one-time
task that’s worth it in the long run for many faster queries in
the future.

You can also create a multicolumn index or a composite index.
The following code creates an index on two columns: log_date
and team:

CREATE INDEX my_index ON my_table (log_date, team);

Indexes | 131

The order of the columns matters here. If you write a query
that filters on:

• Both columns: the index will make the query fast
• The first column (log_date): the index will make the

query fast
• The second column (team): the index will not help because

it first organizes data by the log_date and then the team
column

NOTE

You need CREATE privileges to create an index. If you get
an error when running the preceding code, you do not
have the permission to do so and need to talk to your data‐
base administrator.

Delete an index
The code in Table 5-21 shows how to delete an index in each
RDBMS.

Table 5-21. Code to delete an index

RDBMS Code

MySQL, SQL Server DROP INDEX my_index ON my_table;

Oracle, PostgreSQL, SQLite DROP INDEX my_index;

WARNING

Dropping an index cannot be undone. Be 100% sure you
want to delete an index before dropping it.
On the bright side, there is no data loss. The data in the
table is untouched, and you can always recreate the index.

132 | Chapter 5: Creating, Updating, and Deleting

Views
Imagine you have a long and complex SQL query that includes
many joins, filters, aggregations, etc. The results of the query
are useful to you and something that you want to reference
again at a later point.

This is a great situation to create a view, or give a name to the
output of a query. Remember that the output of a query is a
single table, so a view looks just like a table. The difference is
that the view doesn’t actually hold any data like a table, but just
references the data instead.

NOTE

Sometimes database adminstrators (DBAs) will create
views to restrict access to tables. Imagine there is a cus
tomer table. Most people should only be able to read the
data in the table, and not make changes to it.

The DBA can create a customer view that includes data
identical to the customer table. Now, everyone can query
the customer view, and only the DBA would be able to edit
the data within the customer table.

The following code is a complex query that we don’t want to
write over and over again:

-- Number of waterfalls owned by each owner
SELECT o.id, o.name,
 COUNT(w.id) AS num_waterfalls
FROM owner o LEFT JOIN waterfall w
 ON o.id = w.owner_id
GROUP BY o.id, o.name;

id name num_waterfalls
----- ---------------- ---------------
 1 Pictured Rocks 3

Views | 133

 2 Michigan Nature 3
 3 AF LLC 1
 4 MI DNR 1
 5 Horseshoe Falls 0

Let’s say that we want to find the average number of waterfalls
that an owner owns. We could do this using either a subquery
or a view:

-- Subquery Approach
SELECT AVG(num_waterfalls) FROM
(SELECT o.id, o.name,
 COUNT(w.id) AS num_waterfalls
FROM owner o LEFT JOIN waterfall w
 ON o.id = w.owner_id
GROUP BY o.id, o.name) my_subquery;

AVG(num_waterfalls)

 1.6

-- View Approach
CREATE VIEW owner_waterfalls_vw AS
SELECT o.id, o.name,
 COUNT(w.id) AS num_waterfalls
FROM owner o LEFT JOIN waterfall w
 ON o.id = w.owner_id
GROUP BY o.id, o.name;

SELECT AVG(num_waterfalls)
 FROM owner_waterfalls_vw;

AVG(num_waterfalls)

 1.6

134 | Chapter 5: Creating, Updating, and Deleting

NOTE

You need CREATE privileges to create a view. If you get an
error when running the preceding code, you do not have
the permission to do so and need to talk to your database
administrator.

Subqueries Versus Views
Both subqueries and views represent the results of a query,
which can then go on to be queried themselves.

• A subquery is temporary. It only exists for the duration of
the query and is great for one-time use.

• A view is saved. Once a view is created, you can continue
to write queries that reference the view.

Create a View to Save the Results of a Query
Use CREATE VIEW to save the results of a query as a view. The
view can then be queried, just like a table.

Using this query:

SELECT *
FROM my_table
WHERE country = 'US';

id country name
--- -------- ------
 1 US Anna
 2 US Emily
 3 US Molly

Views | 135

Create a view:

CREATE VIEW my_view AS
SELECT *
FROM my_table
WHERE country = 'US';

Query the view:

SELECT * FROM my_view;

id country name
--- -------- ------
 1 US Anna
 2 US Emily
 3 US Molly

Display existing views
The code in Table 5-22 shows how to display all existing views
in each RDBMS.

Table 5-22. Code to display existing views

RDBMS Code

MySQL SHOW FULL TABLES

WHERE table_type = 'VIEW';

Oracle SELECT view_name

FROM user_views;

PostgreSQL SELECT table_name

FROM information_schema.views

WHERE table_schema NOT IN

 ('information_schema', 'pg_catalog');

SQL Server SELECT table_name

FROM information_schema.views;

SQLite SELECT name

FROM sqlite_master

WHERE type = 'view';

136 | Chapter 5: Creating, Updating, and Deleting

Update a view
To update a view is another way of saying to overwrite a view.
The code in Table 5-23 shows how to update a view in each
RDBMS.

Table 5-23. Code to update a view

RDBMS Code

MySQL,
Oracle,
PostgreSQL

CREATE OR REPLACE VIEW my_view AS

SELECT *

FROM my_table

WHERE country = 'CA';

SQL Server CREATE OR ALTER VIEW my_view AS

SELECT *

FROM my_table

WHERE country = 'CA';

SQLite DROP VIEW IF EXISTS my_view;

CREATE VIEW my_view AS

SELECT * FROM my_table WHERE country = 'CA';

Delete a view

When you no longer need a view, you can delete it using a DROP
VIEW statement:

DROP VIEW my_view;

WARNING

Dropping a view cannot be undone. Be 100% sure you
want to delete a view before dropping it.
On the bright side, there is no data loss. The data is still in
the original table, and you can always recreate the view.

Views | 137

Transaction Management
A transaction allows you to more safely update a database. It
consists of a sequence of operations that are executed as a sin‐
gle unit. Either all of the operations are executed or none of
them are, which is also known as atomicity.

The following code kicks off a transaction before making any
changes to the tables. After the statements are run, no updates
are permanently made to the database until the changes are
committed:

START TRANSACTION;

INSERT INTO page_views (user_id, page)
 VALUES (525, 'home');
INSERT INTO page_views (user_id, page)
 VALUES (525, 'contact us');
DELETE FROM new_users WHERE user_id = 525;
UPDATE page_views SET page = 'request info'
 WHERE page = 'contact us';

COMMIT;

Why is it safer to use a transaction?
After starting a transaction:

All four statements are treated as one unit.
Imagine you run the first three statements, and while
you’re doing that, someone else edits the database in a way
that your fourth statement doesn’t run. This is problematic
because for you to update the database properly, all four
statements need to run together. The transaction does just
that—it requires all four statements to act as one unit, so
either all of them run or none of them run.

You can undo your changes if needed.
After starting the transaction, you can run each of the
statements and see how they would affect the tables. If
everything looks right, you can end the transaction and

138 | Chapter 5: Creating, Updating, and Deleting

lock in your changes with a COMMIT. If something looks
wrong and you want to return things back to the way they
were before the transaction, you can do so with a ROLL
BACK.

In general, if you are updating a database, it is good practice to
use a transaction.

The following sections cover two scenarios in which using a
transaction is helpful—one ending in a COMMIT to confirm
changes and the other ending in a ROLLBACK to undo changes.

Double-Check Changes Before a COMMIT
Imagine you want to delete some rows of data, but you want to
double-check that the correct rows are going to get deleted
before you permanently remove them from the table.

The following code shows the step-by-step process for how you
would use a transaction in SQL to do so.

1. Start a transaction.
-- MySQL and PostgreSQL
START TRANSACTION;
or
BEGIN;

-- SQL Server and SQLite
BEGIN TRANSACTION;

In Oracle, you are essentially always in a transaction. A
transaction begins when you execute your first SQL state‐
ment. After a transaction has ended (with a COMMIT or ROLL
BACK), another one begins when the next SQL statement is
executed.

2. View the table you plan to change.
You are in transaction mode at this point, meaning no
changes will be made to the database.

Transaction Management | 139

SELECT * FROM books;

+------+--------------+
| id | title |
+------+--------------+
1	Becoming
2	Born a Crime
3	Bossypants
+------+--------------+

3. Test the change and see how it affects the table.
You want to delete all multiword book titles. The following
SELECT statement lets you view all the multiword book
titles in the table.

SELECT * FROM books WHERE title LIKE '% %';

+------+--------------+
| id | title |
+------+--------------+
| 2 | Born a Crime |
+------+--------------+

The following DELETE statement uses the same WHERE clause
to now delete the multiword book titles in the table.

DELETE FROM books WHERE title LIKE '% %';

SELECT * FROM books;

+------+--------------+
| id | title |
+------+--------------+
| 1 | Becoming |
| 3 | Bossypants |
+------+--------------+

You are still in transaction mode at this point, so the
change has not been made permanent.

4. Confirm the change with COMMIT.
Use COMMIT to lock in the changes. After this step, you are
no longer in transaction mode.

COMMIT;

140 | Chapter 5: Creating, Updating, and Deleting

WARNING

You cannot undo (aka rollback) a transaction once it has
been committed.

Undo Changes with a ROLLBACK
Transactions are especially useful to test out changes and undo
them if necessary.

1. Start a transaction.
-- MySQL and PostgreSQL
START TRANSACTION;
or
BEGIN;

-- SQL Server and SQLite
BEGIN TRANSACTION;

In Oracle, you are essentially always in a transaction. A
transaction begins when you execute your first SQL state‐
ment. After a transaction has ended (with a COMMIT or ROLL
BACK), another one begins when the next SQL statement is
executed.

2. View the table you plan to change.
You are in transaction mode at this point, meaning no
changes will be made to the database.

SELECT * FROM books;

+------+--------------+
| id | title |
+------+--------------+
1	Becoming
2	Born a Crime
3	Bossypants
+------+--------------+

3. Test the change and see how it affects the table.

Transaction Management | 141

You want to delete all multiword book titles. The following
DELETE statement accidentally deletes the entire table
(you’ve forgotten a space in '%%'). You didn’t want this to
happen!

DELETE FROM books WHERE title LIKE '%%';

SELECT * FROM books;

+------+--------------+
| id | title |
+------+--------------+

It’s a good thing you’re still in transaction mode at this
point, so the change has not been made permanent.

4. Undo the change with ROLLBACK.
Instead of COMMIT, ROLLBACK the changes. The table will not
be deleted. After this step, you are no longer in transaction
mode and can continue on with your other statements.

ROLLBACK;

142 | Chapter 5: Creating, Updating, and Deleting

CHAPTER 6

Data Types

In a SQL table, each column can only include values of a single
data type. This chapter covers commonly used data types, as
well as how and when to use them.

The following statement specifies three columns along with the
data type for each column: id holds integer values, name holds
values containing up to 30 characters, and dt holds date values:

CREATE TABLE my_table (
 id INT,
 name VARCHAR(30),
 dt DATE
);

INT, VARCHAR, and DATE are just three of the many data types in
SQL. Table 6-1 lists four categories of data types, along with
common subcategories. Data type syntax varies widely by
RDBMS, and the differences are detailed out in each section of
this chapter.

143

Table 6-1. Data types in SQL

Numeric String Datetime Other

Integer (123)
Decimal (1.23)
Floating Point
(1.23e10)

Character
('hello')
Unicode
('西瓜')

Date
('2021-12–01')
Time ('2:21:00')
Datetime
('2021-12-01
2:21:00')

Boolean
(TRUE)
Binary (images,
documents,
etc.)

Table 6-2 lists example values of each data type to show how
they are represented in SQL. These values are often referred to
as literals or constants.

Table 6-2. Literals in SQL

Category Subcategory Example Values

Numeric Integer 123

+123

-123

Decimal 123.45

+123.45

-123.45

Floating Point 123.45E+23

123.45e−23

String Character 'Thank you!'

'The combo is 39-6-27.'

Unicode N'Amélie'

N'♥♥♥'

Datetime Date '2022-10-15'

'15-OCT-2022' (Oracle)

Time '10:30:00'

'10:30:00.123456'

'10:30:00 -6:00'

Datetime '2022-10-15 10:30:00'

'15-OCT-2022 10:30:00' (Oracle)

144 | Chapter 6: Data Types

Category Subcategory Example Values

Other Boolean TRUE

FALSE

Binary (example values
are displayed as
hexadecimal)

X'AB12' (MySQL, PostgreSQL)
x'AB12' (MySQL, PostgreSQL)
0xAB12 (MySQL, SQL Server, SQLite)

The NULL Literal
Cells with no value are represented by the NULL keyword (aka
the NULL literal), which is case insensitive (NULL = Null = null).

You will often see null values in a table, but null itself is not a
data type. Any numeric, string, datetime, or other column can
include null values within the column.

How to Choose a Data Type
When deciding on a data type for a column, it is important to
balance storage size and flexibility.

Table 6-3 shows a few examples of integer data types. Note that
each data type allows for a different range of values and
requires a different amount of storage space.

Table 6-3. A sample of integer data types

Data Type Range of Values Allowed Storage Size

INT -2,147,483,648 to 2,147,483,647 4 bytes

SMALLINT -32,768 to 32,767 2 bytes

TINYINT 0 to 255 1 byte

How to Choose a Data Type | 145

Imagine you have a column of data that contains the number of
students in a classroom:

15
25
50
70
100

This column contains numeric data—more specifically, inte‐
gers. You could choose any of the three integer data types in
Table 6-3 to assign to this column.

The case for INT
If storage space isn’t an issue, then INT is a simple and
solid choice that works across all RDBMSs.

The case for TINYINT
Since all values are between 0 and 255, choosing TINYINT
would save on storage space.

The case for SMALLINT
If there may be higher student counts inserted into the
column at a later point, SMALLINT allows for more flexibil‐
ity while still using less space than INT.

There is no single right answer here. The best data type for a
column depends on both the storage space and flexibility
required.

TIP

If you’ve already created a table but want to change the
data type for a column, you can do so by modifying the
column’s constraint with an ALTER TABLE statement. More
details can be found under Modifying a Constraint in
Chapter 5.

146 | Chapter 6: Data Types

Numeric Data
This section introduces numeric values to give you an idea of
how they are represented in SQL, and then goes into detail on
integer, decimal, and floating point data types.

Columns with numeric data can be input into numeric func‐
tions such as SUM() and ROUND(), which are covered in the
Numeric Functions section in Chapter 7.

Numeric Values
Numeric values include integers, decimal numbers, and float‐
ing point numbers.

Integer values

Numbers without a decimal are treated as integers. The + is
optional.

123 +123 -123

Decimal values
Decimals include a decimal point and are stored as exact val‐
ues. The + is optional.

123.45 +123.45 -123.45

Floating point values
Floating point values use scientific notation.

123.45E+23 123.45e−23

These values are interpreted as 123.45 × 1023 and 123.45 ×
10–23, respectively.

Numeric Data | 147

NOTE

Oracle allows for a trailing F, f, D, or d to indicate FLOAT or
DOUBLE (more precise FLOAT value):

123F +123f -123.45D 123.45d

Integer Data Types
The following code creates an integer column:

CREATE TABLE my_table (
 my_integer_column INT
);

INSERT INTO my_table VALUES
 (25),
 (-525),
 (2500252);

SELECT * FROM my_table;

+-------------------+
| my_integer_column |
+-------------------+
| 25 |
| -525 |
| 2500252 |
+-------------------+

Table 6-4 lists the integer data type options for each RDBMS.

148 | Chapter 6: Data Types

Table 6-4. Integer data types

RDBMS Data Type Range of Values Allowed Storage Size

MySQL TINYINT –128 to 127
0 to 255 (unsigned)

1 byte

SMALLINT –32,768 to 32,767
0 to 65,535 (unsigned)

2 bytes

MEDIUMINT –8,388,608 to 8,388,607
0 to 16,777,215 (unsigned)

3 bytes

INT or
INTEGER

–2,147,483,648 to 2,147,483,647
0 to 4,294,967,295 (unsigned)

4 bytes

BIGINT –263 to 263 – 1
0 to 264 – 1 (unsigned)

8 bytes

Oracle NUMBER –10125 to 10125 – 1 1 to 22 bytes

PostgreSQL SMALLINT –32,768 to 32,767 2 bytes

INT or
INTEGER

–2,147,483,648 to 2,147,483,647 4 bytes

BIGINT –263 to 263 – 1 8 bytes

SQL Server TINYINT 0 to 255 1 byte

SMALLINT –32,768 to 32,767 2 bytes

INT or
INTEGER

–2,147,483,648 to 2,147,483,647 4 bytes

BIGINT –263 to 263 – 1 8 bytes

SQLite INTEGER –263 to 263 – 1
(if larger, will switch to a REAL
data type)

1, 2, 3, 4, 6, or
8 bytes

Numeric Data | 149

NOTE

MySQL allows for both signed ranges (positive and nega‐
tive integers) and unsigned ranges (positive integers only).
The default is the signed range. To specify an unsigned
range:

CREATE TABLE my_table (
 my_integer_column INT UNSIGNED
);

PostgreSQL has a SERIAL data type that creates an auto-
incrementing integer (1, 2, 3, etc.) in a column. Table 6-5
lists the SERIAL options, each with a different range.

Table 6-5. Serial options in PostgreSQL

Data Type Range of Values Generated Storage Size

SMALLSERIAL 1 to 32,767 2 bytes

SERIAL 1 to 2,147,483,647 4 bytes

BIGSERIAL 1 to 9,223,372,036,854,775,807 8 bytes

Decimal Data Types
Decimal numbers are also known as fixed point numbers. They
include a decimal point and are stored as an exact value. Mone‐
tary data (like 799.95) is often stored as a decimal number.

The following code creates a decimal column:

CREATE TABLE my_table (
 my_decimal_column DECIMAL(5,2)
);

INSERT INTO my_table VALUES
 (123.45),
 (-123),
 (12.3);

SELECT * FROM my_table;

150 | Chapter 6: Data Types

+-------------------+
| my_decimal_column |
+-------------------+
| 123.45 |
| -123.00 |
| 12.30 |
+-------------------+

When defining the data type DECIMAL(5,2):

• 5 is the maximum number of total digits that are stored.
This is called the precision.

• 2 is the number of digits to the right of the decimal point.
This is called the scale.

Table 6-6 lists the decimal data type options for each RDBMS.

Table 6-6. Decimal data types

RDBMS Data Type Max Digits Allowed Default

MySQL DECIMAL or
NUMERIC

Total: 65
After decimal point: 30

DECIMAL(10,0)

Oracle NUMBER Total: 38
After decimal point: –84 to
127 (negative means before
the decimal point)

0 digits after
decimal point

PostgreSQL DECIMAL or
NUMERIC

Before decimal point:
131,072
After decimal point: 16,383

DECIMAL(30,6)

SQL Server DECIMAL or
NUMERIC

Total: 38
After decimal point: 38

DECIMAL(18,0)

SQLite NUMERIC No inputs No default

Floating Point Data Types
Floating point numbers are a computer science concept. When
a number has many digits, either before or after a decimal

Numeric Data | 151

point, instead of storing all the digits, floating point numbers
only store a limited number of them to save on space.

• Number: 1234.56789
• Floating point notation: 1.23 x 10^3

You’ll notice that the decimal point “floated” over a few spaces
to the left and that an approximate value (1.23) was stored,
instead of the full original value (1234.56789).

There are two floating point data types:

• Single precision: number is represented by at least 6 digits,
with a full range of around 1E–38 to 1E+38

• Double precision: number is represented by at least 15 dig‐
its, with a full range of around 1E–308 to 1E+308 The fol‐
lowing code creates both a single precision (FLOAT) and a
double precision (DOUBLE) floating point column:

CREATE TABLE my_table (
 my_float_column FLOAT,
 my_double_column DOUBLE
);

INSERT INTO my_table VALUES
 (123.45, 123.45),
 (-12345.6789, -12345.6789),
 (1234567.890123456789, 1234567.890123456789);

SELECT * FROM my_table;

+-----------------+--------------------+
| my_float_column | my_double_column |
+-----------------+--------------------+
123.45	123.45
-12345.7	-12345.6789
1234570	1234567.8901234567
+-----------------+--------------------+

152 | Chapter 6: Data Types

WARNING

Because floating point data stores approximate values,
comparisons and calculations may be slightly off from
what you would expect.
If your data will always have the same number of decimal
digits, it is better to use a fixed point data type like DECIMAL
to store exact values instead of a floating point data type.

Table 6-7 lists the floating point data type options for each
RDBMS.

Table 6-7. Floating point data types

RDBMS Data Type Input Range Storage Size

MySQL FLOAT 0 to 23 bits 4 bytes

FLOAT 24 to 53 bits 8 bytes

DOUBLE 0 to 53 bits 8 bytes

Oracle BINARY_FLOAT No inputs 4 bytes

BINARY_DOUBLE No inputs 8 bytes

PostgreSQL REAL No inputs 4 bytes

DOUBLE PRECISION No inputs 8 bytes

SQL Server REAL No inputs 4 bytes

FLOAT 1 to 24 bits 4 bytes

FLOAT 25 to 53 bits 8 bytes

SQLite REAL No inputs 8 bytes

Numeric Data | 153

NOTE

Oracle’s FLOAT data type is NOT a floating point number.
Instead, FLOAT is equivalent to NUMERIC, which is a decimal
number. For a floating point data type, you should use
BINARY_FLOAT or BINARY_DOUBLE instead.

Bits versus Bytes versus Digits

1 bit is the smallest unit of storage. It can have a value of 0 or 1.

1 byte consists of 8 bits. Example byte: 10101010.

Each character is represented by a byte. The digit 7 = 00000111
in byte form.

String Data
This section introduces string values to give you an idea of how
they are represented in SQL, and then goes into detail on char‐
acter and unicode data types.

Columns with string data can be input into string functions
such as LENGTH() and REGEXP() (regular expression), which are
covered in the String Functions section in Chapter 7.

String Values
String values are sequences of characters including letters,
numbers, and special characters.

String basics
The standard is to enclose string values in single quotes:

'This is a string.'

Use two adjacent single quotes when you need to embed a sin‐
gle quote in a string:

'You''re welcome.'

154 | Chapter 6: Data Types

SQL will treat the two adjacent single quotes as a single quote
within the string and return:

'You're welcome.'

TIP

As a best practice, single quotes ('') should be used to
enclose string values, while double quotes ("") should be
used for identifiers (names of tables, columns, etc.).

Alternatives to single quotes
If your text contains many single quotes and you want to use a
different character to denote a string, Oracle and PostgreSQL
allow you to do so.

Oracle allows you to preface a string with a Q or q, followed by
any character, then the string and finally the character again:

Q'[This is a string.]'
q'[This is a string.]'
Q'|This is a string.|'

PostgreSQL allows you to surround text with two dollar signs
and an optional tag name:

$$This is a string.$$
$mytag$This is a string.$mytag$

Escape sequences
MySQL and PostgreSQL support escape sequences, or a special
sequence of text that has meaning. Table 6-8 lists common
escape sequences.

String Data | 155

Table 6-8. Common escape sequences

Escape Sequence Description

\' Single quote

\t Tab

\n New line

\r Carriage return

\b Backspace

\\ Backslash

MySQL allows you to include escape sequences within a string
using the \ character:

SELECT 'hello', 'he\'llo', '\thello';

+-------+--------+------------+
| hello | he'llo | hello |
+-------+--------+------------+

PostgreSQL allows you to include escape sequences in strings if
the overall string is prefaced with an E or e:

SELECT 'hello', E'he\'llo', e'\thello';

----------+----------+---------------
 hello | he'llo | hello

Escape sequences only apply to strings enclosed by single
quotes and not strings enclosed by dollar signs.

Character Data Types
The most common way to hold string values is to use character
data types. The following code creates a variable character col‐
umn allowing for up to 50 characters:

CREATE TABLE my_table (
 my_character_column VARCHAR(50)
);

156 | Chapter 6: Data Types

INSERT INTO my_table VALUES
 ('Here is some text.'),
 ('And some numbers - 1 2 3 4 5'),
 ('And some punctuation! :)');

SELECT * FROM my_table;

+------------------------------+
| my_character_column |
+------------------------------+
| Here is some text. |
| And some numbers - 1 2 3 4 5 |
| And some punctuation! :) |
+------------------------------+

There are three main character data types:

VARCHAR (variable character)
This is the most popular string data type. If the data type is
VARCHAR(50), then the column will allow up to 50 charac‐
ters. In other words, the string length is variable.

CHAR (character)
If the data type is CHAR(5), then each value in the column
will have exactly 5 characters. In other words, the string
length is fixed. Data will be right-padded with spaces to be
exactly the length specified. For example, 'hi' would be
stored as 'hi '.

TEXT

Unlike VARCHAR and CHAR, TEXT requires no inputs, mean‐
ing you do not have to specify a length for the text. It is
useful for storing long strings, like a paragraph or more of
text.

Table 6-9 lists the character data type options for each RDBMS.

String Data | 157

Table 6-9. Character data types

RDBMS Data Type Input Range Default Storage Size

MySQL CHAR 0 to 255
characters

CHAR(1) Varies

VARCHAR 0 to 65,535
characters

Input
required

Varies

TINY

TEXT

No inputs No inputs 255 bytes

TEXT No inputs No inputs 65,535 bytes

MEDIUM

TEXT

No inputs No inputs 16,777,215 bytes

LARGE

TEXT

No inputs No inputs 4,294,967,295
bytes

Oracle CHAR 1 to 2,000
characters

CHAR(1) Varies

VAR

CHAR2

1 to 4,000
characters

Input
required

Varies

LONG No inputs No inputs 2 GB

PostgreSQL CHAR 1 to 10,485,760
characters

CHAR(1) Varies

VARCHAR 1 to 10,485,760
characters

Input
required

Varies

TEXT No inputs No inputs Varies

SQL Server CHAR 1 to 8,000 bytes Input
required

Varies

VARCHAR 1 to 8,000 bytes,
or max

Input
required

Varies, or up to 2
GB

TEXT No inputs No inputs 2,147,483,647
bytes

SQLite TEXT No inputs No inputs Varies

158 | Chapter 6: Data Types

NOTE

Oracle’s VARCHAR2 is typically used instead of VARCHAR.
They are identical in terms of functionality, but VARCHAR
may one day be modified, so it’s safer to use VARCHAR2.

Unicode Data Types
Character data types are typically stored as ASCII data, but can
also be stored as Unicode data if a larger library of characters is
needed.

ASCII Versus Unicode Encoding
There are many ways to encode data, or in other words, turn
data into 0’s and 1’s for a computer to understand. The default
encoding that SQL uses is called ASCII (American Standard
Code for Information Interchange).

With ASCII, there are 28 = 128 characters that are turned into a
series of eight 0’s and 1’s. For example, the ! character maps to
00100001. These eight 0’s and 1’s are known as a byte of data.

There are other encoding types beyond ASCII, such as UTF
(Unicode Transformation Format). With Unicode, there are 221
characters:

• The first 28 characters are the same as ASCII (! = 100001).
• Other characters include Asian characters, math symbols,

emojis, etc.
• Not all characters have been assigned values yet.

String Data | 159

The following code shows the difference between the VARCHAR
and NVARCHAR (Unicode) data types:

CREATE TABLE my_table (
 ascii_text VARCHAR(10),
 unicode_text NVARCHAR(10)
);

INSERT INTO my_table VALUES
 ('abc', 'abc'),
 (N'赵欣婉', N'赵欣婉');

SELECT * FROM my_table;

+------------+--------------+
| ascii_text | unicode_text |
+------------+--------------+
| abc | abc |
| ??? | 赵欣婉 |
+------------+--------------+

NOTE

When inserting Unicode data from a text file into an
NVARCHAR column, the Unicode values in the text file do
not need the N prefix.

Table 6-10 lists the Unicode data type options for each RDBMS.

Table 6-10. Unicode data types

RDBMS Data Type Description

MySQL NCHAR Like CHAR, but for Unicode data

NVARCHAR Like VARCHAR, but for Unicode data

Oracle NCHAR Like CHAR, but for Unicode data

NVARCHAR2 Like VARCHAR2, but for Unicode data

160 | Chapter 6: Data Types

RDBMS Data Type Description

PostgreSQL CHAR CHAR supports Unicode data

VARCHAR VARCHAR supports Unicode data

SQL Server NCHAR Like CHAR, but for Unicode data

NVARCHAR Like VARCHAR, but for Unicode data

SQLite TEXT TEXT supports Unicode data

Datetime Data
This section introduces datetime values to give you an idea of
how they are represented in SQL, and then goes into detail on
the datetime data types in each RDBMS.

Columns with datetime data can be input into datetime func‐
tions such as DATEDIFF() and EXTRACT(), which are covered in
the Datetime Functions section in Chapter 7.

Datetime Values
Datetime values can come in the form of dates, times or date‐
times.

Date values
A date column should have date values in the format YYYY-
MM-DD. In Oracle, the default format is DD-MON-YYYY.

October 15th, 2022 is written as:

'2022-10-15'

In Oracle, October 15th, 2022 is written as:

'15-OCT-2022'

When referencing a date value in a query, you must preface the
string with either a DATE or CAST keyword to tell SQL it is a date,
as shown in Table 6-11.

Datetime Data | 161

Table 6-11. Referencing a date in a query

RDBMS Code

MySQL SELECT DATE '2021-02-25';

SELECT DATE('2021-02-25');

SELECT CAST('2021-02-25' AS DATE);

Oracle SELECT DATE '2021-02-25' FROM dual;

SELECT CAST('25-FEB-2021' AS DATE) FROM dual;

PostgreSQL SELECT DATE '2021-02-25';

SELECT DATE('2021-02-25');

SELECT CAST('2021-02-25' AS DATE);

SQL Server SELECT CAST('2021-02-25' AS DATE);

SQLite SELECT DATE('2021-02-25');

NOTE

In Oracle, the date format after the DATE keyword is differ‐
ent than the date format within the CAST function.
Also, in Oracle, when doing a calculation or looking up a
system variable that only contains a SELECT clause, you
need to add FROM dual to the end of the query. dual is a
dummy table that holds a single value.

SELECT DATE '2021-02-25' FROM dual;
SELECT CURRENT_DATE FROM dual;

If a column contains dates of a different format, such as
MM/DD/YY, you can apply a string to date function for SQL to
recognize it as a date.

Time values
A time column should have time values in the format
hh:mm:ss. 10:30 a.m. is written as:

'10:30:00'

162 | Chapter 6: Data Types

You can also include more granular seconds, up to six decimal
places:

'10:30:12.345678'

You can also add a time zone. Central Standard Time is also
known as UTC-06:00:

'10:30:12.345678 -06:00'

When referencing a time value in a query, you must preface the
string with either a TIME or CAST keyword to tell SQL it is a
time, as shown in Table 6-12.

Table 6-12. Referencing a time in a query

RDBMS Code

MySQL SELECT TIME '10:30';

SELECT TIME('10:30');

SELECT CAST('10:30' AS TIME);

Oracle SELECT TIME '10:30:00' FROM dual;

SELECT CAST('10:30' AS TIME) FROM dual;

PostgreSQL SELECT TIME '10:30';

SELECT CAST('10:30' AS TIME);

SQL Server SELECT CAST('10:30' AS TIME);

SQLite SELECT TIME('10:30');

NOTE

In Oracle, the time format after the TIME keyword must
include seconds as well.

If a column contains times of a different format, such as mmss,
you can apply a string to time function for SQL to recognize it
as a time.

Datetime Data | 163

Date and time values
A datetime column should have datetime values in the format
YYYY-MM-DD hh:mm:ss. In Oracle, the default format is DD-
MON-YYYY hh:mm:ss.

October 15, 2022 at 10:30 a.m. is written as:

'2022-10-15 10:30'

In Oracle, October 15, 2022 at 10:30 a.m. is written as:

'15-OCT-2022 10:30'

When referencing a datetime value in a query, you must pref‐
ace the string with either a DATETIME, TIMESTAMP, or CAST key‐
word to tell SQL it is a datetime, as shown in Table 6-13.

Table 6-13. Referencing a datetime in a query

RDBMS Code

MySQL SELECT TIMESTAMP '2021-02-25 10:30';

SELECT TIMESTAMP('2021-02-25 10:30');

SELECT CAST('2021-02-25 10:30' AS DATETIME);

Oracle SELECT TIMESTAMP '2021-02-25 10:30:00'

FROM dual;

SELECT CAST('25-FEB-2021 10:30'

 AS TIMESTAMP) FROM dual;

PostgreSQL SELECT TIMESTAMP '2021-02-25 10:30';

SELECT CAST('2021-02-25 10:30' AS TIMESTAMP);

SQL Server SELECT CAST('2021-02-25 10:30' AS DATETIME);

SQLite SELECT DATETIME('2021-02-25 10:30');

164 | Chapter 6: Data Types

NOTE

In MySQL, the keyword is TIMESTAMP, but the data type is
DATETIME within the CAST function.

In Oracle, the date format after the TIMESTAMP keyword is
different than the date format within the CAST function.
Also, the time format after the TIMESTAMP keyword must
include seconds, but it is not required within the CAST
function.

If a column contains datetimes of a different format, such as
MM/DD/YY mm:ss, you can apply a string to date or string to
time function for SQL to recognize it as a datetime.

Datetime Data Types
There are many ways to store datetime values. Because the data
types vary so widely, in this section, there is a separate subsec‐
tion for each RDBMS.

MySQL datetime data types
The following code creates five different datetime columns:

CREATE TABLE my_table (
 dt DATE,
 tm TIME,
 dttm DATETIME,
 ts TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
 yr YEAR
);

INSERT INTO my_table (dt, tm, dttm, yr)
 VALUES ('21-7-4', '6:30',
 2021, '2021-12-25 7:00:01');

+------------+----------+---------------------+
| dt | tm | dttm |
+------------+----------+---------------------+

Datetime Data | 165

| 2021-07-04 | 06:30:00 | 2021-12-25 07:00:01 |
+------------+----------+---------------------+

+---------------------+------+
| ts | yr |
+---------------------+------+
| 2021-01-29 12:56:20 | 2021 |
+---------------------+------+

Table 6-14 lists common datetime data type options in MySQL.

Table 6-14. MySQL datetime data types

Data Type Format Range

DATE YYYY-MM-DD 1000-01-01 to 9999-12-31

TIME hh:mm:ss –838:59:59 to 838:59:59

DATETIME YYYY-MM-DD
hh:mm:ss

1000-01-01 00:00:00 to 9999-12-31
23:59:59

TIMESTAMP YYYY-MM-DD
hh:mm:ss

1970-01-01 00:00:01 UTC to 2038-01-19
03:14:07 UTC

YEAR YYYY 0000 to 9999

NOTE

Both DATETIME and TIMESTAMP store dates and times. The
difference is that DATETIME doesn’t have a time zone
attached to it, whereas TIMESTAMP stores Unix values (a
specific point in time) and is often used to note when a
record is created or updated.

Oracle datetime data types
The following code creates four different datetime columns:

CREATE TABLE my_table (
 dt DATE,
 ts TIMESTAMP,

166 | Chapter 6: Data Types

 ts_tz TIMESTAMP WITH TIME ZONE,
 ts_lc TIMESTAMP WITH LOCAL TIME ZONE
);

INSERT INTO my_table VALUES (
 '4-Jul-21', '4-Jul-21 6:30',
 '4-Jul-21 6:30:45AM CST', '4-Jul-21 6:30'
);

DT TS
------------ -------------------------------
04-JUL-21 04-JUL-21 06.30.00.000000 AM

TS_TZ

04-JUL-21 06.30.45.000000 AM CST

TS_LC

04-JUL-21 06.30.00.000000 AM

Table 6-15 lists common datetime data type options in Oracle.

Table 6-15. Oracle datetime data types

Data Type Description

DATE Can store either just the date or the date and time if the
NLS_DATE_FORMAT is updated

TIMESTAMP Like DATE, but adds fractional seconds (the default is six
digits, but can go up to nine digits after the decimal point)

TIMESTAMP WITH
TIME ZONE

Like TIMESTAMP, but adds the time zone

TIMESTAMP WITH
LOCAL TIME ZONE

Like TIMESTAMP WITH TIME ZONE, but adjusts based
on the user’s local time zone

Datetime Data | 167

Check the datetime formats in Oracle
The following code checks the current date and timestamp
formats:

SELECT value
FROM nls_session_parameters
WHERE parameter in ('NLS_DATE_FORMAT',
 'NLS_TIMESTAMP_FORMAT');

VALUE

DD-MON-RR
DD-MON-RR HH.MI.SSXFF AM

To change the date or timestamp format, you can alter the
NLS_DATE_FORMAT or NLS_TIMESTAMP_FORMAT parameter.

The following code changes the current NLS_DATE_FORMAT =

DD-MON-RR to include time as well:

ALTER SESSION
SET NLS_DATE_FORMAT = 'YYYY-MM-DD HH:MI:SS';

Other common symbols for date and time, such as YYYY for
year and HH for hour can be found in Table 7-27: Datetime for‐
mat specifiers.

PostgreSQL datetime data types
The following code creates five different datetime columns:

CREATE TABLE my_table (
 dt DATE,
 tm TIME,
 tm_tz TIME WITH TIME ZONE,
 ts TIMESTAMP,
 ts_tz TIMESTAMP WITH TIME ZONE
);

INSERT INTO my_table VALUES (
 '2021-7-4', '6:30', '6:30 CST',

168 | Chapter 6: Data Types

 '2021-12-25 7:00:01', '2021-12-25 7:00:01 CST'
);

 dt | tm | tm_tz |
------------+----------+-------------+
 2021-07-04 | 06:30:00 | 06:30:00-06 |

 ts | ts_tz
---------------------+------------------------
 2021-12-25 07:00:01 | 2021-12-25 07:00:01-06

Table 6-16 lists common datetime data type options in
PostgreSQL.

Table 6-16. PostgreSQL datetime data types

Data Type Format Range

DATE YYYY-MM-DD 4713 BC to 5874897 AD

TIME hh:mm:ss 00:00:00 to 24:00:00

TIME WITH TIME ZONE hh:mm:ss+tz 00:00:00+1459 to 24:00:00–1459

TIMESTAMP YYYY-MM-DD
hh:mm:ss

4713 BC to 294276 AD

TIMESTAMP WITH
TIME ZONE

YYYY-MM-DD
hh:mm:ss+tz

4713 BC to 294276 AD

SQL Server datetime data types
The following code creates six different datetime columns:

CREATE TABLE my_table (
 dt DATE,
 tm TIME,
 dttm_sm SMALLDATETIME,
 dttm DATETIME,
 dttm2 DATETIME2,
 dttm_off DATETIMEOFFSET
);

INSERT INTO my_table VALUES (
 '2021-7-4', '6:30', '2021-12-25 7:00:01',

Datetime Data | 169

 '2021-12-25 7:00:01', '2021-12-25 7:00:01',
 '2021-12-25 7:00:01-06:00'
);

dt tm
------------- ---------------------
2021-07-04 06:30:00.00000000

dttm_sm

2021-12-25 07:00:00

dttm

2021-12-25 07:00:01.000

dttm2

2021-12-25 07:00:01.0000000

dttm_off

2021-12-25 07:00:01.0000000 -06:00

Table 6-17 lists common datetime data type options in SQL
Server.

Table 6-17. SQL Server datetime data types

Data Type Format Range

DATE YYYY-MM-DD 0001-01-01 to 9999-12-31

TIME hh:mm:ss 00:00:00.0000000 to 23:59:59.9999999

SMALLDATETIME YYYY-MM-DD
hh:mm:ss

Date: 1900-01-01 to 2079-06-06
Time: 0:00:00 through 23:59:59

DATETIME YYYY-MM-DD
hh:mm:ss

Date: 1753-01-01 to 9999-12-31
Time: 00:00:00 to 23:59:59.999

DATETIME2 YYYY-MM-DD
hh:mm:ss

Date: 0001-01-01 to 9999-12-31
Time: 00:00:00 to 23:59:59.9999999

170 | Chapter 6: Data Types

Data Type Format Range

DATETIMEOFFSET YYYY-MM-DD
hh:mm:ss
+hh:mm

Time zone offset ranges from –12:00 to
+14:00

SQLite datetime data types

SQLite doesn’t have a datetime data type. Instead, TEXT, REAL, or
INTEGER can be used to store datetime values.

NOTE

Even though there aren’t specific datetime data types in
SQLite, datetime functions including DATE(), TIME(), and
DATETIME() allow you to work with dates and times in
SQLite.
More details can be found in the Datetime Functions sec‐
tion in Chapter 7.

The following code shows three ways to store datetime values
in SQLite:

CREATE TABLE my_table (
 dt_text TEXT,
 dt_real REAL,
 dt_integer INTEGER
);

INSERT INTO my_table VALUES (
 '2021-12-25 7:00:01',
 '2021-12-25 7:00:01',
 '2021-12-25 7:00:01'
);

dt_text|dt_real
2021-12-25 7:00:01|2021-12-25 7:00:01

Datetime Data | 171

dt_integer
2021-12-25 7:00:01

Table 6-18 lists the datetime data type options in SQLite.

Table 6-18. Table 6-18. SQLite datetime data types

Data Type Description

TEXT Stored as a string in the format YYYY-MM-DD
HH:MM:SS.SSS

REAL Stored as a Julian day number, which is the number of
days since noon in Greenwich on November 24, 4714 BC

INTEGER Stored as Unix time, which is the number of seconds since
1970-01-01 00:00:00 UTC

Other Data
There are many other data types in SQL, including ones that
are specific to each RDBMS.

Some of them fall into one of the existing categories of data
types, but capture more detailed data, like the numeric type
MONEY or the datetime type INTERVAL.

Others capture more complex data, like geospatial data that
notes a particular location on earth or web data stored in
JSON/XML formats.

This section covers two additional data types: Boolean data and
data from external files.

Boolean Data
The two Boolean values are TRUE and FALSE. They are case
insensitive and should be written without quotes:

SELECT TRUE, True, FALSE, False;

+------+------+-------+-------+
| 1 | 1 | 0 | 0 |
+------+------+-------+-------+

172 | Chapter 6: Data Types

Boolean data types
MySQL, PostgreSQL, and SQLite support Boolean data types.
The following code creates a Boolean column:

CREATE TABLE my_table (
 my_boolean_column BOOLEAN
);

INSERT INTO my_table VALUES
 (TRUE),
 (false),
 (1);

SELECT * FROM my_table;

+-------------------+
| my_boolean_column |
+-------------------+
| 1 |
| 0 |
| 1 |
+-------------------+

Oracle and SQL Server don’t have Boolean data types, but there
are workarounds:

• In Oracle, use the CHAR(1) data type to hold values 'T' and
'F' or the NUMBER(1) data type to hold values 1 and 0.

• In SQL Server, use the BIT data type, which holds 1, 0, and
NULL values.

External Files (Images, Documents, etc.)
If you plan to include images (.jpg, .png, etc.) or documents
(.doc, .pdf, etc.) in a column of data, there are two approaches
to do so: store links to the files (more common) or store the
files as binary values.

Other Data | 173

Approach 1: Store links to the files
This is typically the recommended approach if your files
are over 1 MB each. For reference, the average iPhone
photo is a few MB.

The files would be stored outside of the database, putting
less load on the database, and often resulting in better
performance.

Steps to store links to files:

1. Note the path names of the files on the file system (/
Users/images/img_001.jpg).

2. Create a column that stores strings, like VAR

CHAR(100).
3. Insert the path names into the column.

Approach 2: Store the files as binary values
This is typically the recommended approach if your files
are smaller in size.

The files would be stored inside of the database, which
makes things like backing up the data more
straightforward.

Steps to store binary values:

1. Convert the files to binary (if you open up a binary
file, it will look like a random sequence of characters,
such as Z™⁄≈jhJcE Ät, ÷mfPfõrà).

2. Create a column that stores binary values, like BLOB.
3. Insert the binary values into the column.

Binary and hexadecimal values
Binary data represents the raw values that a computer inter‐
prets. It is often displayed in a more compact, human-readable
form called hexidecimal.

174 | Chapter 6: Data Types

• Character: a
• Equivalent binary value: 01100001
• Equivalent hexidecimal value: 61

Hexadecimals convert 1’s and 0’s into a number system of 16
symbols (0-9 and A-F). Hexadecimals are proceeded by X, x, or
0x:

SELECT X'AF12', x'AF12', 0xAF12;

+----------+----------+--------+
| 0xAF12 | 0xAF12 | 0xAF12 |
+----------+----------+--------+

MySQL supports all three formats. PostgreSQL supports the
first two formats. SQL Server and SQLite support the third
format.

In Oracle, while you can’t easily display a hexidecimal value,
you can use the TO_NUMBER function to display a hexidecimal
value as a number instead: SELECT TO_NUMBER('AF12', 'XXXX')
FROM dual; with the X standing for hexidecimal notation.

Binary data types
The following code creates a binary data column:

CREATE TABLE my_table (
 my_binary_column BLOB
);

INSERT INTO my_table VALUES
 ('a'),
 ('aaa'),
 ('ae$ iou');

SELECT * FROM my_table;

Other Data | 175

+--------------------------------------+
| my_binary_column |
+--------------------------------------+
| 0x61 |
| 0x616161 |
| 0x61652420696F75 |
+--------------------------------------+

In MySQL, Oracle, and SQLite, the most common binary data
type is BLOB.

In PostgreSQL, use bytea instead.

In SQL Server, use VARBINARY (such as VARBINARY(100)) instead.

NOTE

In Oracle and SQL Server, the string ae$ iou isn’t auto‐
matically recognized as a binary value and needs to first be
converted into one before getting inserted into a table.

-- Oracle
SELECT RAWTOHEX('ae$ iou') FROM dual;

-- SQL Server
SELECT CONVERT(VARBINARY, 'ae$ iou');

Table 6-19 lists the binary data type options for each RDBMS.

176 | Chapter 6: Data Types

Table 6-19. Binary data types

RDBMS Data Type Description Input
Range

Storage Size

MySQL BINARY Fixed length binary
string where values
are right-padded
with 0’s to get to
the exact size

0 to 255
bytes

Varies

VARBI

NARY

Variable length
binary string

0 to
65,535
bytes

Varies

TINY

BLOB

Tiny Binary Large
OBject

No inputs 255 bytes

BLOB Binary Large OBject No inputs 65,535 bytes

MEDIUM

BLOB

Medium Binary
Large OBject

No inputs 16,777,215 bytes

LARGE

BLOB

Large Binary Large
OBject

No inputs 4,294,967,295
bytes

Oracle RAW Variable length
binary string

1 to
32,767
bytes

Varies

LONG

RAW

Larger RAW No inputs 2 GB

BLOB Larger LONG RAW No inputs 4 GB

PostgreSQL BYTEA Variable length
binary string

No inputs 1 or 4 bytes plus
the actual binary
string

Other Data | 177

RDBMS Data Type Description Input
Range

Storage Size

SQL Server BINARY Fixed length binary
string where values
are left padded
with 0’s to get to
the exact size

1 to 8,000
bytes

Varies

VARBI

NARY

Variable length
binary string

1 to 8,000
bytes, or
max

Varies, or up to 2
GB

SQLite BLOB Binary Large OBject No inputs Stored exactly as
it was input

178 | Chapter 6: Data Types

CHAPTER 7

Operators and Functions

Operators and functions are used to perform calculations, com‐
parisons, and transformations within a SQL statement. This
chapter provides code examples for commonly used operators
and functions.

The following query highlights five operators (+, =, OR, BETWEEN,
AND) and two functions (UPPER, YEAR):

-- Pay increases for employees
SELECT name, pay_rate + 5 AS new_pay_rate
FROM employees
WHERE UPPER(title) = 'ANALYST'
 OR YEAR(start_date) BETWEEN 2016 AND 2018;

Operators Versus Functions
Operators are symbols or keywords that perform a calculation
or comparison. Operators can be found within the SELECT, ON,
WHERE, and HAVING clauses of a query.

Functions take in zero or more inputs, apply a calculation or
transformation, and output a value. Functions can be found
within the SELECT, WHERE and HAVING clauses of a query.

179

In addition to SELECT statements, operators and functions can
also be used in INSERT, UPDATE, and DELETE statements.

This chapter includes one section on Operators and five sec‐
tions on functions: Aggregate Functions, Numeric Functions,
String Functions, Date Time Functions, and Null Functions.

Table 7-1 lists common operators and Table 7-2 lists common
functions.

Table 7-1. Common operators

Logical
Operators

Comparison Operators
(Symbols)

Comparison
Operators
(Keywords)

Math Operators

AND

OR

NOT

=

!=, <>
<

<=

>

v=

BETWEEN

EXISTS

IN

IS NULL

LIKE

+

-

*

/

%

Table 7-2. Common functions

Aggregate
Functions

Numeric
Functions

String
Functions

Datetime
Functions

Null
Functions

COUNT()

SUM()

AVG()

MIN()

MAX()

ABS()

SQRT()

LOG()

ROUND()

CAST()

LENGTH()

TRIM()

CONCAT()

SUBSTR()

REGEXP()

CURRENT_

DATE

CURRENT_

TIME

DATEDIFF()

EXTRACT()

CONVERT()

COA

LESCE()

Operators
Operators can be symbols or keywords. They can perform cal‐
culations (+) or comparisons (BETWEEN). This section describes
the available operators in SQL.

180 | Chapter 7: Operators and Functions

Logical Operators
Logical operators are used to modify conditions, which result
in TRUE, FALSE, or NULL. The logical operators in the code block
(NOT, AND, OR) are bolded:

SELECT *
FROM employees
WHERE start_date IS NOT NULL
 AND (title = 'analyst' OR pay_rate < 25);

TIP

When using AND and OR to combine multiple conditional
statements, it’s a good idea to clearly state the order of
operations with parentheses: ().

Table 7-3 lists the logical operators in SQL.

Table 7-3. Logical operators

Operator Description

AND Returns TRUE if both conditions are TRUE. Returns FALSE if either is
FALSE. Returns NULL otherwise.

OR Returns TRUE if either condition is TRUE. Returns FALSE if both are
FALSE. Returns NULL otherwise.

NOT Returns TRUE if the condition is FALSE. Returns FALSE if it is TRUE.
Returns NULL otherwise.

Imagine there is a column called name. Table 7-4 shows how
values in the column would be evaluated in a conditional state‐
ment without a NOT and with a NOT.

Operators | 181

Table 7-4. NOT example

name name IN ('Henry',

'Harper')

name NOT IN ('Henry',

'Harper')

Henry TRUE FALSE

Lily FALSE TRUE

NULL NULL NULL

Imagine there are two columns called name and age. Table 7-5
shows how values in the columns would be evaluated in a con‐
ditional statement with an AND and with an OR.

Table 7-5. AND and OR example

name age name =

'Henry'

age >

3

name =

'Henry'

AND age >

3

name =

'Henry' OR

age > 3

Henry 5 TRUE TRUE TRUE TRUE

Henry 1 TRUE FALSE FALSE TRUE

Lily 2 FALSE FALSE FALSE FALSE

Henry NULL TRUE NULL NULL TRUE

Lily NULL FALSE NULL FALSE NULL

Comparison Operators
Comparison operators are used in predicates.

Operators Versus Predicates
Predicates are comparisons that include an operator:

• The predicate age = 35 includes the = operator.

• The predicate COUNT(id) < 20 includes the < operator.

182 | Chapter 7: Operators and Functions

Predicates are also known as conditional statements. These
comparisons are evaluated on each row in a table, and result in
a value of TRUE, FALSE, or NULL.

The comparison operators in the code block (IS NULL, =,
BETWEEN) are bolded:

SELECT *
FROM employees
WHERE start_date IS NOT NULL
 AND (title = 'analyst'
 OR pay_rate BETWEEN 15 AND 25);

Table 7-6 lists comparison operators that are symbols and
Table 7-7 lists comparison operators that are keywords.

Table 7-6. Comparison operators (symbols)

Operator Description

= Tests for equality

!=, <> Tests for inequality

< Tests for less than

<= Tests for less than or equal to

> Tests for greater than

>= Tests for greater than or equal to

NOTE

MySQL also allows for <=>, which is a null-safe test for
equality.

When using =, if two values are compared and one of them
is NULL, the resulting value is NULL.

When using <=>, if two values are compared and one of
them is NULL, the resulting value is 0. If they are both NULL,
the resulting value is 1.

Operators | 183

Table 7-7. Comparison operators (keywords)

Operator Description

BETWEEN Tests whether a value lies within a given range

EXISTS Tests whether rows exist in a subquery

IN Tests whether a value is contained in a list of values

IS NULL Tests whether a value is null or not

LIKE Tests whether a value matches a simple pattern

NOTE

The LIKE operator is used to match simple patterns, like
finding text that starts with the letter A. More details can be
found in the LIKE section.
Regular expressions are used to match more complex pat‐
terns, like extracting any text located between two punctu‐
ation marks. More details can be found in the regular
expressions section.

Each keyword comparison operator is explained in detail in the
following sections.

BETWEEN

Use BETWEEN to test if a value falls within a range. BETWEEN is a
combination of >= and <=. The smaller of the two values should
always be written first, with the AND operator separating the
two.

To find all rows where the ages are greater than or equal to 35
and less than or equal to 44:

SELECT *
FROM my_table
WHERE age BETWEEN 35 AND 44;

184 | Chapter 7: Operators and Functions

To find all rows where the ages are less than 35 or greater than
44:

SELECT *
FROM my_table
WHERE age NOT BETWEEN 35 AND 44;

EXISTS

Use EXISTS to test if a subquery returns results or not. Typically,
the subquery references another table.

The following query returns employees who also happen to be
customers:

SELECT e.id, e.name
FROM employees e
WHERE EXISTS (SELECT *
 FROM customers c
 WHERE c.email = e.email);

EXISTS Versus JOIN
The EXISTS query could also be written with a JOIN:

SELECT *
FROM employees e INNER JOIN customers c
 ON e.email = c.email;

A JOIN is preferred when you want values from both tables to
be returned (SELECT *).

An EXISTS is preferred when you want values from a single
table to be returned (SELECT e.id, e.name). This type of query
is sometimes referred to as a semi-join. EXISTS is also useful
when the second table has duplicate rows and you’re only inter‐
ested in whether a row exists or not.

Operators | 185

The following query returns customers who have never made a
purchase:

SELECT c.id, c.name
FROM customers c
WHERE NOT EXISTS (SELECT *
 FROM orders o
 WHERE o.email = c.email);

IN

Use IN to test whether a value falls within a list of values.

The following query returns values for a few employees:

SELECT *
FROM employees
WHERE e.id IN (10001, 10032, 10057);

The following query returns employees who have not taken a
vacation day:

SELECT e.id
FROM employees e
WHERE e.id NOT IN (SELECT v.emp_id
 FROM vacations v);

WARNING

When using NOT IN, if there is even a single NULL value in
the column in the subquery (v.emp_id in this case), the
subquery will never be TRUE, meaning no rows will be
returned.

If there are potentially NULL values in the column in the
subquery, it is better to use NOT EXISTS:

SELECT e.id
FROM employees e
WHERE NOT EXISTS (SELECT *
 FROM vacations v
 WHERE v.emp_id = e.id);

186 | Chapter 7: Operators and Functions

IS NULL

Use IS NULL or IS NOT NULL to test whether a value is null or
not.

The following query returns employees who don’t have a
manager:

SELECT *
FROM employees
WHERE manager IS NULL;

The following query returns employees who have a manager:

SELECT *
FROM employees
WHERE manager IS NOT NULL;

LIKE

Use LIKE to match a simple pattern. The percent sign (%) is a
wildcard that means one or more characters.

Here is a sample table:

SELECT * FROM my_table;

+------+--------------------+
| id | txt |
+------+--------------------+
1	You are great.
2	Thank you!
3	Thinking of you.
4	I'm 100% positive.
+------+--------------------+

Find all rows that contain the term you:

SELECT *
FROM my_table
WHERE txt LIKE '%you%';

Operators | 187

-- MySQL, SQL Server and SQLite results
+------+------------------+
| id | txt |
+------+------------------+
1	You are great.
2	Thank you!
3	Thinking of you.
+------+------------------+

-- Oracle and PostgreSQL results
+------+------------------+
| id | txt |
+------+------------------+
| 2 | Thank you! |
| 3 | Thinking of you. |
+------+------------------+

In MySQL, SQL Server, and SQLite, the pattern is case insensi‐
tive. Both You and you are captured by '%you%'.

In Oracle and PostgreSQL, the pattern is case sensitive. Only you
is captured by '%you%'.

Find all rows that start with the term You:

SELECT *
FROM my_table
WHERE txt LIKE 'You%';

+------+----------------+
| id | txt |
+------+----------------+
| 1 | You are great. |
+------+----------------+

Use NOT LIKE to return rows that don’t contain the characters.

Instead of the percent sign (%) to match one or more charac‐
ters, you can use the underscore (_) to match exactly one
character.

188 | Chapter 7: Operators and Functions

WARNING

Because % and _ have special meaning when used with
LIKE, if you want to search for those actual characters,
you’ll need to add the ESCAPE keyword.

The following code finds all rows that contain the %
symbol:

SELECT *
FROM my_table
WHERE txt LIKE '%!%%' ESCAPE '!';

+------+--------------------+
| id | txt |
+------+--------------------+
| 4 | I'm 100% positive. |
+------+--------------------+

After the ESCAPE keyword, we’ve declared ! as the escape
character, so when the ! is put in front of the middle % in
%!%%, !% is interpreted as %.

LIKE is useful when searching for a particular string of charac‐
ters. For more advanced pattern searches, you can use regular
expressions, which are covered in the regular expressions sec‐
tion later in this chapter.

Math Operators
Math operators are math symbols that can be used in SQL. The
math operator in the code block (/) is bolded:

SELECT salary / 52 AS weekly_pay
FROM my_table;

Table 7-8 lists the math operators in SQL.

Operators | 189

Table 7-8. Math operators

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

%

(MOD in Oracle)
Modulo (remainder)

NOTE

In PostgreSQL, SQL Server, and SQLite, dividing an integer
by an integer results in an integer:

SELECT 15/2;
7

If you want the result to include decimals, you can either
divide by a decimal or use the CAST function:

SELECT 15/2.0;
7.5

 –– PostgreSQL and SQL Server
SELECT CAST(15 AS DECIMAL) /
 CAST(2 AS DECIMAL);
 7.5

-- SQLite
SELECT CAST(15 AS REAL) /
 CAST(2 AS REAL);
7.5

190 | Chapter 7: Operators and Functions

Other math operators include:

• Bitwise operators such as & (AND), | (OR), and ^ (XOR)
for working with bits (0 and 1 values).

• Assignment operators such as += (add equals) and -= (sub‐
tract equals) for updating values in a table.

Aggregate Functions
An aggregate function performs a calculation on many rows of
data and results in a single value. Table 7-9 lists the five basic
aggregate functions in SQL.

Table 7-9. Basic aggregate functions

Function Description

COUNT() Counts the number of values

SUM() Calculates the sum of a column

AVG() Calculates the average of a column

MIN() Finds the minimum of a column

MAX() Finds the maximum of a column

Aggregate functions apply calculations to non-null values in a
column. The only exception is COUNT(*), which counts all rows,
including null values.

You can also aggregate multiple rows into a single list using
functions like ARRAY_AGG, GROUP_CONCAT, LISTAGG, and
STRING_AGG. More details can be found in the Aggregate rows
into a single value or list section in Chapter 8.

Aggregate Functions | 191

NOTE

Oracle supports additional aggregate functions like median
(MEDIAN), mode (STATS_MODE), and standard deviation
(STDDEV).

Aggregate functions (bolded in the example) are located in the
SELECT and HAVING clauses of a query:

SELECT COUNT(*) AS total_rows,
 AVG(age) AS average_age
FROM my_table;

SELECT region, MIN(age), MAX(age)
FROM my_table
GROUP BY region
HAVING MIN(age) < 18;

WARNING

If you choose to have both aggregate and nonaggregate col‐
umns in the SELECT statement, you must include all nonag‐
gregate columns in the GROUP BY clause (region in the
preceding example).
Some RDBMSs will throw an error if you do not do this.
Other RDBMSs (such as SQLite), will not throw an error
and allow the statement to run, even though the results
returned will be inaccurate. It is good practice to double-
check your results to make sure they make sense.

192 | Chapter 7: Operators and Functions

MIN/MAX Versus LEAST/GREATEST
The MIN and MAX functions find the smallest and largest values
within a column.

The LEAST and GREATEST functions find the smallest and largest
values within a row. Inputs can be numeric, string, or datetime
values. If one value is NULL, the function returns NULL.

The following table shows the total miles run each quarter, and
the query finds the miles run in the best quarter:

SELECT * FROM goat;

+--------+------+------+------+------+
| name | q1 | q2 | q3 | q4 |
+--------+------+------+------+------+
Ali	100	200	150	NULL
Bolt	350	400	380	300
Jordan	200	250	300	320
+--------+------+------+------+------+

SELECT name, GREATEST(q1, q2, q3, q4)
 AS most_miles
FROM goat;

+--------+------------+
| name | most_miles |
+--------+------------+
Ali	NULL
Bolt	400
Jordan	320
+--------+------------+

Numeric Functions
Numeric functions can be applied to columns with numeric
data types. This section covers common numeric functions in
SQL.

Numeric Functions | 193

Apply Math Functions
There are multiple types of math calculations in SQL:

Math Operators
Calculations using symbols such as +, -, *, /, and %

Aggregate Functions
Calculations that summarize an entire column of data into
a single value such as COUNT, SUM, AVG, MIN, and MAX

Math Functions
Calculations using keywords that apply to each row of
data such as SQRT, LOG, and more that are listed in
Table 7-10

NOTE

SQLite only supports the ABS function. Other math func‐
tions need to be manually enabled. More details can be
found on the math functions page on the SQLite website.

Table 7-10. Math functions

Category Function Description Code Result

Positive and
Negative
Values

ABS Absolute value SELECT

ABS(-5);

5

SIGN Returns –1, 0,
or 1 depending
on if a number
is negative,
zero, or positive

SELECT

SIGN(-5);

–1

194 | Chapter 7: Operators and Functions

https://oreil.ly/0XwjB

Category Function Description Code Result

Exponents
and
Logarithms

POWER x raised to the
power of y

SELECT

POWER(5,2);

25

SQRT Square root SELECT

SQRT(25);

5

EXP e (=2.71828)
raised to the
power of x

SELECT

EXP(2);

7.389

LOG

(LOG(y,x) in
SQL Server)

Log of y base x SELECT

LOG(2,10);

SELECT

LOG(10,2);

3.322

LN

(LOG in SQL
Server)

Natural log
(base e)

SELECT

LN(10);

SELECT

LOG(10);

2.303

LOG10

(LOG(10,x)
in Oracle)

Log base 10 SELECT

LOG10(100);

SELECT

LOG(10,100)

FROM dual;

2

Other MOD

(x%y in SQL
Server)

Remainder of x
/ y

SELECT

MOD(12,5);

SELECT

12%5;

2

PI

(not available in
Oracle)

Value of pi SELECT

PI();

3.14159

COS, SIN, etc. Cosine, sine,
and other trig
functions (input
is in radians)

SELECT

COS(.78);

0.711

Numeric Functions | 195

Generate Random Numbers
Table 7-11 shows how to generate a random number in each
RDBMS. In some cases, you can input a seed so that the ran‐
dom number generated is the same each time.

Table 7-11. Random number generator

RDBMS Code Range of Results

MySQL,
SQL Server

SELECT RAND(); 0 to 1

-- Optional seed

SELECT RAND(22);

Oracle SELECT DBMS_RANDOM.VALUE

FROM dual;

0 to 1

SELECT DBMS_RANDOM.RANDOM

FROM dual;

–2E31 to +2E31

PostgreSQL SELECT RANDOM(); 0 to 1

SQLite SELECT RANDOM(); –9E18 to +9E18

The random number function is sometimes used to return a
few random rows of a table. While not the most efficient query
(since the table has to be sorted), it is a quick hack:

-- Return 5 random rows
SELECT *
FROM my_table
ORDER BY RANDOM()
LIMIT 5;

Oracle and SQL Server allow you to randomly sample a table:

-- Return random 20% of rows in Oracle
SELECT *
FROM my_table
SAMPLE(20);

-- Return random 100 rows in SQL Server
SELECT *

196 | Chapter 7: Operators and Functions

FROM my_table
TABLESAMPLE(100 ROWS);

Round and Truncate Numbers
Table 7-12 shows the various ways to round numbers in each
RDBMS.

Table 7-12. Rounding options

Function Description Code Output

CEIL

(CEILING in SQL
Server)

Rounds up to the
nearest integer

SELECT

CEIL(98.7654);

SELECT

CEILING(98.7654);

99

FLOOR Rounds down to
the nearest integer

SELECT

FLOOR(98.7654);

98

ROUND Rounds to a
specific number of
decimal places,
defaults to 0
decimals

SELECT

ROUND(98.7654,2);

98.77

TRUNC

(TRUNCATE in
MySQL;
ROUND(x,y,

1) in SQL Server)

Cuts off number at
a specific number
of decimal places,
default to 0
decimals

SELECT

TRUNC(98.7654,2);

SELECT

TRUNCATE(98.7654,2);

SELECT

ROUND(98.7654,2,1);

98.76

NOTE

SQLite only supports the ROUND function. Other rounding
options need to be manually enabled. More details can be
found on the math functions page on the SQLite website.

Numeric Functions | 197

https://oreil.ly/rF2Rt

Convert Data to a Numeric Data Type
The CAST function is used to convert between various data
types, and is often used for numeric data.

In the following example, we want to compare a string column
with a numeric column

Here is a table with a string column:

+------+---------+
| id | str_col |
+------+---------+
1	1.33
2	5.5
3	7.8
+------+---------+

Try to compare the string column with numeric value:

SELECT *
FROM my_table
WHERE str_col > 3;

-- MySQL, Oracle, and SQLite results
+------+---------+
| id | str_col |
+------+---------+
| 2 | 5.5 |
| 3 | 7.8 |
+------+---------+

-- PostgreSQL and SQL Server results
Error

198 | Chapter 7: Operators and Functions

NOTE

In MySQL, Oracle, and SQLite, the query returns the cor‐
rect results because the string column is recognized as a
numeric column when the > operator is introduced.

In PostgreSQL and SQL Server, you must explicitly CAST
the string column into a numeric column.

Cast the string column to a decimal column to compare it with
a number:

SELECT *
FROM my_table
WHERE CAST(str_col AS DECIMAL) > 3;

 id | str_col
----+---------
 2 | 5.5
 3 | 7.8

NOTE

Using CAST does not permanently change the data type of
the column; it is only for the duration of the query. To per‐
manently change the data type of a column, you can alter
the table.

String Functions
String functions can be applied to columns with string data
types. This section covers common string operations in SQL.

Find the Length of a String
Use the LENGTH function.

String Functions | 199

In the SELECT clause:

SELECT LENGTH(name)
FROM my_table;

In the WHERE clause:

SELECT *
FROM my_table
WHERE LENGTH(name) < 10;

In SQL Server, use LEN instead of LENGTH.

NOTE

Most RDBMSs exclude trailing spaces when calculating the
length of a string, while Oracle includes them.

Example string: 'Al '
Length: 2
Length in Oracle: 5

To exclude trailing spaces in Oracle, use the TRIM function:

SELECT LENGTH(TRIM(name))
FROM my_table;

Change the Case of a String
Use the UPPER or LOWER function.

UPPER:

SELECT UPPER(type)
FROM my_table;

LOWER:

SELECT *
FROM my_table
WHERE LOWER(type) = 'public';

200 | Chapter 7: Operators and Functions

Oracle and PostgreSQL also have INITCAP(string) to uppercase
the first letter of each word in a string and lowercase the other
letters.

Trim Unwanted Characters Around a String
Use the TRIM function to remove both leading and trailing char‐
acters around a string value. The following table has several
characters that we’d like to remove:

SELECT * FROM my_table;

+----------------+
| color |
+----------------+
| !!red |
| .orange! |
| ..yellow.. |
+----------------+

Remove spaces around a string

By default, TRIM removes spaces from both the left and right
sides of a string:

SELECT TRIM(color) AS color_clean
FROM my_table;

+-------------+
| color_clean |
+-------------+
| !!red |
| .orange! |
| ..yellow.. |
+-------------+

Remove other characters around a string
You can specify other characters to remove besides a single
space. The following code removes exclamation marks around
a string:

String Functions | 201

SELECT TRIM('!' FROM color) AS color_clean
FROM my_table;

+-----------------+
| color_clean |
+-----------------+
| red |
| .orange |
| ..yellow.. |
+-----------------+

In SQLite, use TRIM(color, '!') instead.

Remove characters from the left or right side of a string
There are two options for removing characters on either side of
a string.

Option 1: TRIM(LEADING ..) and TRIM(TRAILING ..)
In MySQL, Oracle and PostgreSQL, you can remove char‐
acters from either the left or right side of a string with
TRIM(LEADING ..) and TRIM(TRAILING ..), respectively.
The following code removes exclamation marks from the
beginning of a string:

SELECT TRIM(LEADING '!' FROM color) AS color_clean
FROM my_table;

+----------------+
| color_clean |
+----------------+
| red |
| .orange! |
| ..yellow.. |
+----------------+

Option 2: LTRIM and RTRIM
Use the keywords LTRIM and RTRIM to remove characters
from either the left or right side of a string, respectively.

In Oracle, PostgreSQL, and SQLite, all unwanted characters
can be listed within a single string. The following code

202 | Chapter 7: Operators and Functions

removes periods, exclamation marks, and spaces from the
beginning of a string:

SELECT LTRIM(color, '.! ') AS color_clean
FROM my_table;

+-------------+
| color_clean |
+-------------+
| red |
| orange! |
| yellow.. |
+-------------+

In MySQL and SQL Server, only whitespace characters can
be removed using LTRIM(color) or RTRIM(color).

Concatenate Strings
Use the CONCAT function or the concatenation operator (||).

-- MySQL, PostgreSQL, and SQL Server
SELECT CONCAT(id, '_', name) AS id_name
FROM my_table;

-- Oracle, PostgreSQL, and SQLite
SELECT id || '_' || name AS id_name
FROM my_table;

+-----------+
| id_name |
+-----------+
| 1_Boots |
| 2_Pumpkin |
| 3_Tiger |
+-----------+

Search for Text in a String
There are two approaches to search for text in a string.

String Functions | 203

Approach 1: Does the text appear in the string or not?
Use the LIKE operator to determine whether text appears
in a string or not. With the following query, only rows that
contain the text some will be returned:

SELECT *
FROM my_table
WHERE my_text LIKE '%some%';

More details can be found in the LIKE section earlier in
this chapter.

Approach 2: Where does the text appear in the string?
Use the INSTR/POSITION/CHARINDEX function to determine
the location of text in a string.

Table 7-13 lists the parameters required by the location func‐
tions in each RDBMS.

Table 7-13. Functions to find the location of text in a string

RDBMS Code Format

MySQL INSTR(string, substring)

LOCATE(substring, string, position)

Oracle INSTR(string, substring, position, occur

rence)

PostgreSQL POSITION(substring IN string)

STRPOS(string, substring)

SQL Server CHARINDEX(substring, string, position)

SQLite INSTR(string, substring)

The inputs are:

• string (required): the string you are searching in (i.e., the
name of a VARCHAR column)

• substring (required): the string you are searching for (i.e., a
character, a word, etc.)

204 | Chapter 7: Operators and Functions

• position (optional): the starting position for the search.
The default is to start at the first character (1). If position is
negative, the search begins at the end of the string.

• occurrence (optional): the first/second/third, etc. time the
substring appears in the string. The default is the first
occurrence (1).

Here is a sample table:

+------------------------------+
| my_text |
+------------------------------+
| Here is some text. |
| And some numbers - 1 2 3 4 5 |
| And some punctuation! :) |
+------------------------------+

Find the location of the substring some within the string
my_text:

SELECT INSTR(my_text, 'some') AS some_location
FROM my_table;

+---------------+
| some_location |
+---------------+
| 9 |
| 5 |
| 5 |
+---------------+

Counting in SQL Starts at 1
Unlike other programming languages that are zero-indexed
(the count starts from 0), the count starts from 1 in SQL.

The 9 in the preceding output means the ninth character.

String Functions | 205

NOTE

In Oracle, regular expressions can also be used to search for
a substring using REGEXP_INSTR. More details are in the
regular expressions in Oracle section.

Extract a Portion of a String
Use the SUBSTR or SUBSTRING function. The function name and
inputs differ for each RDBMS:

-- MySQL, Oracle, PostgreSQL, and SQLite
SUBSTR(string, start, length)

-- MySQL
SUBSTR(string FROM start FOR length)

-- MySQL, PostgreSQL, and SQL Server
SUBSTRING(string, start, length)

-- MySQL and PostgreSQL
SUBSTRING(string FROM start FOR length)

The inputs are:

• string (required): the string you are searching in (i.e., the
name of a VARCHAR column)

• start (required): the starting location of the search. If start
is set to 1, the search will start from the first character, 2 is
the second character, and so on. If start is set to 0, it will be
treated like a 1. If start is negative, the search will start
from the last character.

• length (optional): the length of the string returned. If
length is omitted, then all characters from the start to the
end of the string will be returned. In SQL Server, length is
required. Here is a sample table:

206 | Chapter 7: Operators and Functions

+------------------------------+
| my_text |
+------------------------------+
| Here is some text. |
| And some numbers - 1 2 3 4 5 |
| And some punctuation! :) |
+------------------------------+

Extract a substring:

SELECT SUBSTR(my_text, 14, 8) AS sub_str
FROM my_table;

+----------+
| sub_str |
+----------+
| text. |
| ers - 1 |
| tuation! |
+----------+

NOTE

In Oracle, regular expressions can also be used to extract a
substring using REGEXP_SUBSTR. More details are in the
regular expressions in Oracle section.

Replace Text in a String
Use the REPLACE function. Note the order of the inputs for the
function:

REPLACE(string, old_string, new_string)

Here is a sample table:

+------------------------------+
| my_text |
+------------------------------+
| Here is some text. |

String Functions | 207

| And some numbers - 1 2 3 4 5 |
| And some punctuation! :) |
+------------------------------+

Replace the word some with the word the:

SELECT REPLACE(my_text, 'some', 'the')
 AS new_text
FROM my_table;

+-----------------------------+
| new_text |
+-----------------------------+
| Here is the text. |
| And the numbers - 1 2 3 4 5 |
| And the punctuation! :) |
+-----------------------------+

NOTE

In Oracle and PostgreSQL, regular expressions can also be
used to replace a string using REGEXP_REPLACE. More
details are in the regular expressions in Oracle and regular
expressions in PostgreSQL sections.

Delete Text from a String
You can use the REPLACE function, but specify an empty string
as the replace value.

Replace the word some with an empty string:

SELECT REPLACE(my_text, 'some ', '')
 AS new_text
FROM my_table;

+-------------------------+
| new_text |
+-------------------------+
| Here is text. |

208 | Chapter 7: Operators and Functions

| And numbers - 1 2 3 4 5 |
| And punctuation! :) |
+-------------------------+

Use Regular Expressions
Regular expressions allow you to match complex patterns. For
example, finding all words that have exactly five letters or find‐
ing all words that start with a capital letter.

Imagine you have the following recipe for taco seasoning:

- 1 tablespoon chili powder
- .5 tablespoon ground cumin
- .5 teaspoon paprika
- .25 teaspoon garlic powder
- .25 teaspoon onion powder
- .25 teaspoon crushed red pepper flakes
- .25 teaspoon dried oregano

You want to exclude the amounts and just have a list of ingredi‐
ents. To do so, you can write a regular expression to extract all
of the text that follows the term spoon.

The regular expression would look like:

(?<=spoon).*$

and the results would look like:

chili powder
ground cumin
paprika
garlic powder
onion powder
crushed red pepper flakes
dried oregano

The regular expression went through all of the text and extrac‐
ted any text that was sandwiched between the term spoon and
the end of the line.

A couple things to note about regular expressions:

String Functions | 209

• Regular expression syntax is not intuitive. It is helpful to
break down the meaning of each part of a regular expres‐
sion using an online tool, such as Regex101.

• Regular expressions are not SQL-specific. They can be
used within many programming languages and text
editors.

• RegexOne provides a quick introductory tutorial. You can
also reference Thomas Nield’s O’Reilly post, “An Introduc‐
tion to Regular Expressions.”

TIP

Instead of memorizing regular expression syntax, I recom‐
mend finding existing regular expressions and modifying
them to fit your needs.
For the previous regular expression, I searched for “regular
expression text after string.”

The second Google search result got me to (?<=WORD).*$.
I used Regex101 to understand each part of the regular
expression, and finally replaced WORD with spoon.

Regular expression functions vary widely by RDBMS, so there
is a separate section for each one. SQLite does not support reg‐
ular expressions by default, but they can be implemented. More
details can be found in the SQLite documentation.

Regular Expressions in MySQL

Use REGEXP to look for a regular expression pattern anywhere in
a string.

Here is a sample table:

+----------------------------+-------------+
| title | city |
+----------------------------+-------------+

210 | Chapter 7: Operators and Functions

https://regex101.com
https://regexone.com
https://oreil.ly/1jJQk
https://oreil.ly/1jJQk
https://regex101.com
https://oreil.ly/gmxS6

10 Things I Hate About You	Seattle
22 Jump Street	New Orleans
The Blues Brothers	Chicago
Ferris Bueller's Day Off	Chi
+----------------------------+-------------+

Find all variant spellings of Chicago:

SELECT *
FROM movies
WHERE city REGEXP '(Chicago|CHI|Chitown)';

+--------------------------+---------+
| title | city |
+--------------------------+---------+
| The Blues Brothers | Chicago |
| Ferris Bueller's Day Off | Chi |
+--------------------------+---------+

MySQL’s regular expressions are case-insensitive for character
strings; CHI and Chi are seen as equivalent.

Find all movies with numbers in the title:

SELECT *
FROM movies
WHERE title REGEXP '\\d';

+----------------------------+-------------+
| title | city |
+----------------------------+-------------+
| 10 Things I Hate About You | Seattle |
| 22 Jump Street | New Orleans |
+----------------------------+-------------+

In MySQL, any single backslash in a regular expression (\d =
any digit) needs to be changed to a double backslash.

Regular expressions in Oracle
Oracle supports many regular expression functions including:

String Functions | 211

• REGEXP_LIKE matches a regular expression pattern within
the text.

• REGEXP_COUNT counts the number of times a pattern
appears in the text.

• REGEXP_INSTR locates the positions that a pattern appears
in the text.

• REGEXP_SUBSTR returns the substrings in the text that
match a pattern.

• REGEXP_REPLACE replaces substrings that match a pattern
with other text.

Here is a sample table:

 TITLE CITY
---------------------------- -------------
 10 Things I Hate About You Seattle
 22 Jump Street New Orleans
 The Blues Brothers Chicago
 Ferris Bueller's Day Off Chi

Find all movies with numbers in the title:

SELECT *
FROM movies
WHERE REGEXP_LIKE(title, '\d');

 TITLE CITY
---------------------------- -------------
 10 Things I Hate About You Seattle
 22 Jump Street New Orleans

212 | Chapter 7: Operators and Functions

NOTE

The following expressions are equivalent:

REGEXP_LIKE(title, \d)
REGEXP_LIKE(title, [0-9])
REGEXP_LIKE(title, [[:digit:]])

The third option uses POSIX regular expression syntax,
which is supported by Oracle.

Count the number of capital letters in the title:

SELECT title, REGEXP_COUNT(title, '[A-Z]')
 AS num_caps
FROM movies;

 TITLE NUM_CAPS
---------------------------- ----------
 10 Things I Hate About You 5
 22 Jump Street 2
 The Blues Brothers 3
 Ferris Bueller's Day Off 4

Find the location of the first vowel in the title:

SELECT title, REGEXP_INSTR(title, '[aeiou]')
 AS first_vowel
FROM movies;

 TITLE FIRST_VOWEL
---------------------------- -------------
 10 Things I Hate About You 6
 22 Jump Street 5
 The Blues Brothers 3
 Ferris Bueller's Day Off 2

Return all numbers in the title:

SELECT title, REGEXP_SUBSTR(title, '[0-9]+')
 AS nums
FROM movies

String Functions | 213

https://oreil.ly/G3Tkw

WHERE REGEXP_SUBSTR(title, '[0‐9]+') IS NOT NULL;

 TITLE NUMS
---------------------------- ------
 10 Things I Hate About You 10
 22 Jump Street 22

Replace all numbers in the title with the number 100:

SELECT REGEXP_REPLACE(title, '[0-9]+', '100')
 AS one_hundred_title
FROM movies;

 ONE_HUNDRED_TITLE

 100 Things I Hate About You
 100 Jump Street

NOTE

More details and examples on regular expressions in Ora‐
cle can be found in the Oracle Regular Expressions Pocket
Reference by Jonathan Gennick and Peter Linsley
(O’Reilly).

Regular expressions in PostgreSQL

Use SIMILAR TO or ~ to look for a regular expression pattern
anywhere in a string.

Here is a sample table:

 title | city
----------------------------+-------------
 10 Things I Hate About You | Seattle
 22 Jump Street | New Orleans
 The Blues Brothers | Chicago
 Ferris Bueller's Day Off | Chi

Find all variant spellings of Chicago:

214 | Chapter 7: Operators and Functions

https://oreil.ly/5As3T
https://oreil.ly/5As3T

SELECT *
FROM movies
WHERE city SIMILAR TO '(Chicago|CHI|Chi|Chitown)';

 title | city
--------------------------+---------
 The Blues Brothers | Chicago
 Ferris Bueller's Day Off | Chi

PostgreSQL’s regular expressions are case-sensitive for charac‐
ter strings; CHI and Chi are seen as different values.

SIMILAR TO Versus ~
SIMILAR TO offers limited regular expression capabilities, and is
most often used to offer multiple alternatives (Chicago|CHI|
Chi). Other common regex symbols to use with SIMILAR TO are
* (0 or more), + (1 or more), and {} (exact number of times).

The tilde (~) should be used for more advanced regular expres‐
sions along with POSIX syntax, which is another flavor of regu‐
lar expression that PostgreSQL supports.

The full list of supported symbols can be found in the Post‐
greSQL documentation.

The following example uses ~ instead of SIMILAR TO.

Find all movies with numbers in the title:

SELECT *
FROM movies
WHERE title ~ '\d';

+----------------------------+-------------+
| title | city |
+----------------------------+-------------+
| 10 Things I Hate About You | Seattle |
| 22 Jump Street | New Orleans |
+----------------------------+-------------+

String Functions | 215

https://oreil.ly/Thzdv
https://oreil.ly/wsB46
https://oreil.ly/wsB46

PostgreSQL also supports REGEXP_REPLACE, which allows you to
replace characters in a string that match a particular pattern.

Replace all numbers in the title with the number 100:

SELECT REGEXP_REPLACE(title, '\d+', '100')
FROM movies;

regexp_replace

100 Things I Hate About You
100 Jump Street
The Blues Brothers
Ferris Bueller's Day Off

The regular expression \d is equivalent to [0-9] and
[[:digit::]].

Regular expressions in SQL Server
SQL Server supports a very limited amount of regular expres‐
sions through its LIKE keyword.

Here is a sample table:

 title city
---------------------------- -------------
 10 Things I Hate About You Seattle
 22 Jump Street New Orleans
 The Blues Brothers Chicago
 Ferris Bueller's Day Off Chi

SQL Server uses a slightly different flavor of regular expression
syntax, which is detailed in the Microsoft documentation.

Find all movies with numbers in the title:

SELECT *
FROM movies
WHERE title LIKE '%[0-9]%';

216 | Chapter 7: Operators and Functions

https://oreil.ly/QANyP

 title city
---------------------------- -------------
 10 Things I Hate About You Seattle
 22 Jump Street New Orleans

Convert Data to a String Data Type
When string functions are applied to nonstring data types, it is
typically not an issue even though there is a data type
mismatch.

The following table has a numeric column called numbers:

+---------+
| numbers |
+---------+
| 1.33 |
| 2.5 |
| 3.777 |
+---------+

When the string function LENGTH (or LEN in SQL Server) is
applied on the numeric column, the statement executes without
error in most RDBMSs:

SELECT LENGTH(numbers) AS len_num
FROM my_table;

-- MySQL, Oracle, SQL Server, and SQLite results
+---------+
| len_num |
+---------+
| 4 |
| 3 |
| 5 |
+---------+

-- PostgreSQL results
Error

In PostgreSQL, you must explicitly CAST the numeric column
into a string column:

String Functions | 217

SELECT LENGTH(CAST(numbers AS CHAR(5))) AS len_num
FROM my_table;

 len_num

 4
 3
 5

NOTE

Using CAST does not permanently change the data type of
the column—it is only for the duration of the query. To
permanently change the data type of a column, you can
alter the table.

Datetime Functions
Datetime functions can be applied to columns with datetime
data types. This section covers common datetime functions in
SQL.

Return the Current Date or Time
The following statements return the current date, current time,
and current date and time:

-- MySQL, PostgreSQL, and SQLite
SELECT CURRENT_DATE;
SELECT CURRENT_TIME;
SELECT CURRENT_TIMESTAMP;

-- Oracle
SELECT CURRENT_DATE FROM dual;
SELECT CAST(CURRENT_TIMESTAMP AS TIME) FROM dual;
SELECT CURRENT_TIMESTAMP FROM dual;

-- SQL Server

218 | Chapter 7: Operators and Functions

SELECT CAST(CURRENT_TIMESTAMP AS DATE);
SELECT CAST(CURRENT_TIMESTAMP AS TIME);
SELECT CURRENT_TIMESTAMP;

There are many other functions equivalent to these including
CURDATE() in MySQL, GETDATE() in SQL Server, etc.

The following three situations show how these functions are
used in practice.

Display the current time:

SELECT CURRENT_TIME;

+--------------+
| current_time |
+--------------+
| 20:53:35 |
+--------------+

Create a table that marks the date and time of creation:

CREATE TABLE my_table
 (id INT,
 creation_datetime TIMESTAMP DEFAULT
 CURRENT_TIMESTAMP);

INSERT INTO my_table (id)
 VALUES (1), (2), (3);

 +------+---------------------+
 | id | creation_datetime |
 +------+---------------------+
1	2021-02-15 20:57:12
2	2021-02-15 20:57:12
3	2021-02-15 20:57:12
 +------+---------------------+

Find all rows of data before a certain date:

SELECT *
FROM my_table
WHERE creation_datetime < CURRENT_DATE;

Datetime Functions | 219

 +------+---------------------+
 | id | creation_datetime |
 +------+---------------------+
1	2021-01-15 10:47:02
2	2021-01-15 10:47:02
3	2021-01-15 10:47:02
 +------+---------------------+

Add or Subtract a Date or Time Interval
You can add or subtract various time intervals (years, months,
days, hours, minutes, seconds, etc.) from date and time values.

Table 7-14 lists the ways to subtract a day.

Table 7-14. Return yesterday’s date

RDBMS Code

MySQL SELECT CURRENT_DATE - INTERVAL 1 DAY;

SELECT SUBDATE(CURRENT_DATE, 1);

SELECT DATE_SUB(CURRENT_DATE,

 INTERVAL 1 DAY);

Oracle SELECT CURRENT_DATE - INTERVAL '1' DAY

FROM dual;

PostgreSQL SELECT CAST(CURRENT_DATE -

 INTERVAL '1 day' AS DATE);

SQL Server SELECT CAST(CURRENT_TIMESTAMP - 1 AS DATE);

SELECT DATEADD(DAY, -1, CAST(

 CURRENT_TIMESTAMP AS DATE));

SQLite SELECT DATE(CURRENT_DATE, '-1 day');

Table 7-15 lists the ways to add three hours.

220 | Chapter 7: Operators and Functions

Table 7-15. Return the date and time three hours from now

RDBMS Code

MySQL SELECT CURRENT_TIMESTAMP + INTERVAL 3 HOUR;

SELECT ADDDATE(CURRENT_TIMESTAMP,

 INTERVAL 3 HOUR);

SELECT DATE_ADD(CURRENT_TIMESTAMP,

 INTERVAL 3 HOUR);

Oracle SELECT CURRENT_TIMESTAMP + INTERVAL '3' HOUR

FROM dual;

PostgreSQL SELECT CURRENT_TIMESTAMP +

 INTERVAL '3 hours';

SQL Server SELECT DATEADD(HOUR, 3, CURRENT_TIMESTAMP);

SQLite SELECT DATETIME(CURRENT_TIMESTAMP,

 '+3 hours');

Find the Difference Between Two Dates or Times
You can find the difference between two dates, times, or date‐
times in terms of various time intervals (years, months, days,
hours, minutes, seconds, etc.).

Finding a date difference
Given a start and end date, Table 7-16 lists the ways to find the
days between the two dates.

Here is a sample table:

+------------+------------+
| start_date | end_date |
+------------+------------+
| 2016-10-10 | 2020-11-11 |
| 2019-03-03 | 2021-04-04 |
+------------+------------+

Datetime Functions | 221

Table 7-16. Days between two dates

RDBMS Code

MySQL SELECT DATEDIFF(end_date, start_date)

 AS day_diff

FROM my_table;

Oracle SELECT (end_date - start_date) AS day_diff

FROM my_table;

PostgreSQL SELECT AGE(end_date, start_date) AS day_diff

FROM my_table;

SQL Server SELECT DATEDIFF(day, start_date, end_date)

 AS day_diff

FROM my_table;

SQLite SELECT (julianday(end_date) -

 julianday(start_date)) AS day_diff

FROM my_table;

After running the code in the table, these are the results:

-- MySQL, Oracle, SQL Server, and SQLite
+----------+
| day_diff |
+----------+
| 1493 |
| 763 |
+----------+

-- PostgreSQL

 day_diff

 4 years 1 mon 1 day
 2 years 1 mon 1 day

Finding a time difference
Given a start and end time, Table 7-17 lists the ways to find the
seconds between the two times.

222 | Chapter 7: Operators and Functions

Here is a sample table:

+------------+----------+
| start_time | end_time |
+------------+----------+
| 10:30:00 | 11:30:00 |
| 14:50:32 | 15:22:45 |
+------------+----------+

Table 7-17. Seconds between two times

RDBMS Code

MySQL SELECT TIMEDIFF(end_time, start_time)

 AS time_diff

FROM my_table;

Oracle No time data type

PostgreSQL SELECT EXTRACT(epoch from end_time -

 start_time) AS time_diff

FROM my_table;

SQL Server SELECT DATEDIFF(second, start_time, end_time)

 AS time_diff

FROM my_table;

SQLite SELECT (strftime('%s',end_time) -

 strftime('%s',start_time))

 AS time_diff

FROM my_table;

After running the code in the table, these are the results:

-- MySQL
+-----------+
| time_diff |
+-----------+
| 01:00:00 |
| 00:32:13 |
+-----------+

Datetime Functions | 223

-- PostgreSQL, SQL Server, and SQLite

 time_diff

 3600
 1933

Finding a datetime difference
Given a start and end datetime, Table 7-18 lists the ways to find
the number of hours between the two datetimes.

Here is a sample table:

+---------------------+---------------------+
| start_dt | end_dt |
+---------------------+---------------------+
| 2016-10-10 10:30:00 | 2020-11-11 11:30:00 |
| 2019-03-03 14:50:32 | 2021-04-04 15:22:45 |
+---------------------+---------------------+

Table 7-18. Hours between two datetimes

RDBMS Code

MySQL SELECT TIMESTAMPDIFF(hour, start_dt, end_dt)

 AS hour_diff

FROM my_table;

Oracle SELECT (end_dt - start_dt) AS hour_diff

FROM my_table;

PostgreSQL SELECT AGE(end_dt, start_dt) AS hour_diff

FROM my_table;

SQL Server SELECT DATEDIFF(hour, start_dt, end_dt)

 AS hour_diff

FROM my_table;

SQLite SELECT ((julianday(end_dt) -

 julianday(start_dt))*24) AS hour_diff

FROM my_table;

224 | Chapter 7: Operators and Functions

After running the code in the table, these are the results:

-- MySQL, SQL Server, and SQLite
+-----------+
| hour_diff |
+-----------+
| 35833 |
| 18312 |
+-----------+

-- Oracle

 HOUR_DIFF

 +000001493 01:00:00.000000
 +000000763 00:32:13.000000

-- PostgreSQL

 hour_diff

 4 years 1 mon 1 day 01:00:00
 2 years 1 mon 1 day 00:32:13

Datetime Functions | 225

NOTE

The PostgreSQL result is lengthy:

SELECT AGE(end_dt, start_dt)
FROM my_table;

 age

 4 years 1 mon 1 day 01:00:00
 2 years 1 mon 1 day 00:32:13

Use the EXTRACT function to pull out only the year field.

SELECT EXTRACT(year FROM
 AGE(end_dt, start_dt))
FROM my_table;

 date_part

 4
 2

Extract a Part of a Date or Time
There are multiple ways to extract a time unit (month, hour,
etc.) from a date or time value. Table 7-19 shows how to do so,
specifically for the month time unit.

Table 7-19. Extract the month from a date

RDBMS Code

MySQL SELECT EXTRACT(month FROM CURRENT_DATE);

SELECT MONTH(CURRENT_DATE);

Oracle SELECT EXTRACT(month FROM CURRENT_DATE)

FROM dual;

PostgreSQL SELECT EXTRACT(month FROM CURRENT_DATE);

SELECT DATE_PART('month', CURRENT_DATE);

226 | Chapter 7: Operators and Functions

RDBMS Code

SQL Server SELECT DATEPART(month, CURRENT_TIMESTAMP);

SELECT MONTH(CURRENT_TIMESTAMP);

SQLite SELECT strftime('%m', CURRENT_DATE);

Both MySQL and SQL Server support time unit specific func‐
tions like MONTH(), as seen in Table 7-19.

• MySQL supports YEAR(), QUARTER(), MONTH(), WEEK(),
DAY(), HOUR(), MINUTE(), and SECOND().

• SQL Server supports YEAR(), MONTH(), and DAY().

You can replace the month or %m values in Table 7-19 with other
time units. Table 7-20 lists the time units accepted by each
RDBMS.

Table 7-20. Time unit options

MySQL Oracle PostgreSQL SQL Server SQLite

microsecond
second
minute
hour
day
week
month
quarter
year

second
minute
hour
day
month
year

microsecond
millisecond
second
minute
hour
day
dow
week
month
quarter
year
decade
century

nanosecond
microsecond
millisecond
second
minute
hour
week
weekday
day
dayofyear
month
quarter
year

%f (fractional second)
%S (second)
%s (seconds since
1970-01-01)
%M (minute)
%H (hour)
%J (Julian day number)
%w (day of week)
%d (day of month)
%j (day of year)
%W (week of year)
%m (month)
%Y (year)

Datetime Functions | 227

NOTE

You can also extract a time unit from a string value. The
code can be found in Table 7-28: Extract year from a
string.

Determine the Day of the Week of a Date
Given a date, determine the day of the week:

• Date: 2020-03-16
• Numeric day of the week: 2 (Sunday is the first day)
• Day of the week: Monday

Table 7-21 returns the numeric day of the week of a given date.
Sunday is the first day, Monday the second day, and so on.

Table 7-21. Return the numeric day of the week

RDBMS Code Range of Values

MySQL SELECT DAYOFWEEK('2020-03-16'); 1 to 7

Oracle SELECT TO_CHAR(

 date '2020-03-16', 'd')

FROM dual;

1 to 7

PostgreSQL SELECT DATE_PART('dow',

 date '2020-03-16');

0 to 6

SQL Server SELECT DATEPART(weekday,

 '2020-03-16');

1 to 7

SQLite SELECT strftime('%w',

 '2020-03-16');

0 to 6

Table 7-22 returns the day of the week of a given date.

228 | Chapter 7: Operators and Functions

Table 7-22. Return the day of the week

RDBMS Code

MySQL SELECT DAYNAME('2020-03-16');

Oracle SELECT TO_CHAR(date '2020-03-16', 'day')

FROM dual;

PostgreSQL SELECT TO_CHAR(date '2020-03-16', 'day');

SQL Server SELECT DATENAME(weekday, '2020-03-16');

SQLite Not available

Round a Date to the Nearest Time Unit
Oracle and PostgreSQL support rounding and truncating (also
known as rounding down).

Rounding in Oracle
Oracle supports rounding and truncating a date to the nearest
year, month, or day (first day of the week).

To round down to the first of the month:

SELECT TRUNC(date '2020-02-25', 'month')
FROM dual;

01-FEB-20

To round to the nearest month:

SELECT ROUND(date '2020-02-25', 'month')
FROM dual;

01-MAR-20

Rounding in PostgreSQL
PostgreSQL supports truncating a date to the nearest year,
quarter, month, week (first day of the week), day, hour, minute,
or second. Additional time units can be found in the Post‐
greSQL documentation.

Datetime Functions | 229

https://oreil.ly/OONv8
https://oreil.ly/OONv8

To round down to the first of the month:

SELECT DATE_TRUNC('month', DATE '2020-02-25');

2020-02-01 00:00:00-06

To round down to the minute:

SELECT DATE_TRUNC('minute', TIME '10:30:59.12345');

10:30:00

Convert a String to a Datetime Data Type
There are two ways to convert a string to a datetime data type:

• Use the CAST function for a simple case.
• Use STR_TO_DATE/TO_DATE/CONVERT for a custom case.

The CAST function
If a string column contains dates in a standard format, you can
use the CAST function to turn it into a date data type.

Table 7-23 shows the code for converting to a date data type.

Table 7-23. Convert a string to a date

RDBMS Required Date Format Code

MySQL,
PostgreSQL,
SQL Server

YYYY-MM-DD SELECT CAST('2020-10-15'

 AS DATE);

Oracle DD-MON-YYYY SELECT CAST('15-OCT-2020'

 AS DATE)

FROM dual;

SQLite YYYY-MM-DD SELECT DATE('2020-10-15');

Table 7-24 shows the code for converting to a time data type.

230 | Chapter 7: Operators and Functions

Table 7-24. Convert a string to a time

RDBMS Required Time Format Code

MySQL,
PostgreSQL,
SQL Server

hh:mm:ss SELECT CAST('14:30'

 AS TIME);

Oracle hh:mm:ss

hh:mm:ss AM/PM

SELECT CAST('02:30:00 PM'

 AS TIME)

FROM dual;

SQLite hh:mm:ss SELECT TIME('14:30');

Table 7-25 shows the code for converting to a datetime data
type.

Table 7-25. Convert a string to a datetime

RDBMS Required Datetime
Format

Code

MySQL,
SQL Server

YYYY-MM-DD

hh:mm:ss

SELECT CAST('2020-10-15

14:30' AS DATETIME);

Oracle DD-MON-YYYY

hh:mm:ss

DD-MON-YYYY

hh:mm:ss AM/PM

SELECT CAST('15-OCT-20

02:30:00 PM' AS TIMESTAMP)

FROM dual;

PostgreSQL YYYY-MM-DD

hh:mm:ss

SELECT CAST('2020-10-15

14:30' AS TIMESTAMP);

SQLite YYYY-MM-DD

hh:mm:ss

SELECT DATETIME('2020-10-15

14:30');

The CAST function can also be used to convert dates to numeric
and string data types.

The STR_TO_DATE, TO_DATE, and CONVERT functions

For dates and times not in the standard YYYY-MM-DD/DD-MON-
YYYY/hh:mm:ss formats, use a string to date or a string to time
function instead.

Datetime Functions | 231

Table 7-26 lists the string to date and string to time functions
for each RDBMS. The example strings in the code are in non-
standard formats MM-DD-YY and hhmm.

Table 7-26. String to date and string to time functions

RDBMS String to date String to time

MySQL SELECT

STR_TO_DATE('10-15-22',

'%m-%d-%y');

SELECT

STR_TO_DATE('1030',

'%H%i');

Oracle SELECT

TO_DATE('10-15-22',

'MM-DD-YY')

FROM dual;

SELECT

TO_TIMESTAMP('1030',

'HH24MI')

FROM dual;

PostgreSQL SELECT

TO_DATE('10-15-22',

'MM-DD-YY');

SELECT

TO_TIMESTAMP('1030',

'HH24MI');

SQL Server SELECT CONVERT(

VARCHAR, '10-15-22',

105);

SELECT CAST(

CONCAT(10,':',30)

AS TIME);

SQLite No nonstardard date function No non-standard time function

NOTE

SQL Server uses the CONVERT function to change a string to
a datetime data type. VARCHAR is the original data type,
10-15-22 is the date, and 105 stands for the format MM-DD-
YYYY.

Other date formats are MM/DD/YYYY (101), YYYY.MM.DD
(102), DD/MM/YYYY (103), and DD.MM.YYYY (104). More for‐
mats are listed in the Microsoft documentation.

The time formats are hh:mi:ss (108) and hh:mi:ss:mmm
(114), neither which match the format in Table 7-26, which
is why the time can’t be read in by SQL Server using CON
VERT.

232 | Chapter 7: Operators and Functions

https://oreil.ly/qY0IH

You can replace the %H%i or HH24MI values in Table 7-26 with
other time units. Table 7-27 lists common format specifiers for
MySQL, Oracle, and PostgreSQL.

Table 7-27. Datetime format specifiers

MySQL Oracle and PostgreSQL Description

%Y YYYY 4-digit year

%y YY 2-digit year

%m MM Numeric month (1–12)

%b MON Abbreviated month (Jan–Dec)

%M MONTH Name of month (January–December)

%d DD Day (1–31)

%h HH or HH12 12 hours (1–12)

%H HH24 24 hours (0–23)

%i MI Minutes (0–59)

%s SS Seconds (0–59)

Apply a date function to a string column
Imagine you have the following string column:

str_column
10/15/2022
10/16/2023
10/17/2024

You want to extract the year from each date:

year_column
2022
2023
2024

Problem
You cannot use a datetime function (EXTRACT) on a string
column (str_column).

Datetime Functions | 233

Solution
First convert the string column into a date column. Then
apply the datetime function. Table 7-28 lists how to do so
in each RDBMS.

Table 7-28. Extract year from a string

RDBMS Code

MySQL SELECT YEAR(STR_TO_DATE(str_column,

 '%m/%d/%Y'))

FROM my_table;

Oracle SELECT EXTRACT(YEAR FROM TO_DATE(str_column,

 'MM/DD/YYYY'))

FROM my_table;

PostgreSQL SELECT EXTRACT(YEAR FROM TO_DATE(str_column,

 'MM/DD/YYYY'))

FROM my_table;

SQL Server SELECT YEAR(CONVERT(CHAR, str_column, 101))

FROM my_table;

SQLite SELECT SUBSTR(str_column, 7)

FROM my_table;

NOTE

SQLite does not have datetime functions, but a work‐
around is to use the SUBSTR (substring) function to extract
the last four digits.

Null Functions
Null functions can be applied to any type of column and are
triggered when a null value is encountered.

234 | Chapter 7: Operators and Functions

Return an Alternative Value if There Is a Null Value
Use the COALESCE function.

Here is a sample table:

+------+----------+
| id | greeting |
+------+----------+
1	hi there
2	hello!
3	NULL
+------+----------+

When there is no greeting, return hi:

SELECT COALESCE(greeting, 'hi') AS greeting
FROM my_table;

+----------+
| greeting |
+----------+
| hi there |
| hello! |
| hi |
+----------+

MySQL and SQLite also accept IFNULL(greeting, 'hi').

Oracle also accepts NVL(greeting, 'hi').

SQL Server also accepts ISNULL(greeting, 'hi').

Null Functions | 235

CHAPTER 8

Advanced Querying Concepts

This chapter covers a few advanced ways of wrangling data
using SQL queries, beyond the six main clauses covered in
Chapter 4, Querying Basics, and the common keywords cov‐
ered in Chapter 7, Operators and Functions.

Table 8-1 includes descriptions and code examples of the four
concepts covered in this chapter.

Table 8-1. Advanced querying concepts

Concept Description Code Example

Case
Statements

If a condition is met,
return a particular
value. Otherwise,
return another value.

SELECT house_id,
 CASE WHEN flg = 1
 THEN 'for sale'
 ELSE 'sold' END
FROM houses;

Grouping and
Summarizing

Split data into groups,
aggregate the data
within each group, and
return a value for each
group.

SELECT zip, AVG(ft)
FROM houses
GROUP BY zip;

237

Concept Description Code Example

Window
Functions

Split data into groups,
aggregate or order the
data within each group,
and return a value for
each row.

SELECT zip,
 ROW_NUMBER() OVER
 (PARTITION BY zip
 ORDER BY price)
FROM houses;

Pivoting and
Unpivoting

Turn values in a column
into multiple columns
or consolidate multiple
columns into a single
column. Supported by
Oracle and SQL Server.

-- Oracle syntax
SELECT *
FROM listing_info
PIVOT
 (COUNT(*) FOR
 room IN ('bd','br'));

This chapter describes each of the concepts in Table 8-1 in
detail, along with common use cases.

Case Statements
A CASE statement is used to apply if-else logic within a query.
For example, you could use a CASE statement to spell out values.
If a 1 is seen, display vip. Otherwise, display general

admission.

+--------+ +-------------------+
| ticket | | ticket |
+--------+ +-------------------+
1		vip
0	-->	general admission
1		vip
+--------+ +-------------------+

In Oracle, you may also see the DECODE function, which is an
older function that operates similarly to the CASE statement.

238 | Chapter 8: Advanced Querying Concepts

NOTE

Using a CASE statement temporarily updates values for the
duration of a query. To save the updated values, you can
do so with an UPDATE statement.

The following two sections go over two types of CASE

statements:

• Simple CASE statement for a single column of data
• Searched CASE statement for multiple columns of data

Display Values Based on If-Then Logic
for a Single Column
To check for equality within a single column of data, use the
simple CASE statement syntax.

Our goal:

Instead of displaying the values 1/0/NULL, display the values
vip/reserved seating/general admission:

• If flag = 1, then ticket = vip
• If flag = 0, then ticket = reserved seating
• Else, ticket = general admission

Here is a sample table:

SELECT * FROM concert;

+-------+------+
| name | flag |
+-------+------+
| anton | 1 |
| julia | 0 |

Case Statements | 239

| maren | 1 |
| sarah | NULL |
+-------+------+

Implement the if-else logic with a simple CASE statement:

SELECT name, flag,
 CASE flag WHEN 1 THEN 'vip'
 WHEN 0 THEN 'reserved seating'
 ELSE 'general admission' END AS ticket
FROM concert;

+-------+------+-------------------+
| name | flag | ticket |
+-------+------+-------------------+
anton	1	vip
julia	0	reserved seating
maren	1	vip
sarah	NULL	general admission
+-------+------+-------------------+

If no WHEN clause is a match and no ELSE value is specified, a
NULL will be returned.

Display Values Based on If-Then Logic
for Multiple Columns
To check for any condition (=, <, IN, IS NULL, etc.) within
potentially multiple columns of data, use the searched CASE
statement syntax.

Our goal:

Instead of displaying the values 1/0/NULL, display the values
vip/reserved seating/general admission:

• If name = anton, then ticket = vip
• If flag = 0 or flag = 1, then ticket = reserved seating
• Else, ticket = general admission

240 | Chapter 8: Advanced Querying Concepts

Here is a sample table:

SELECT * FROM concert;

+-------+------+
| name | flag |
+-------+------+
anton	1
julia	0
maren	1
sarah	NULL
+-------+------+

Implement the if-else logic with a searched CASE statement:

SELECT name, flag,
 CASE WHEN name = 'anton' THEN 'vip'
 WHEN flag IN (0,1) THEN 'reserved seating'
 ELSE 'general admission' END AS ticket
FROM concert;

+-------+------+-------------------+
| name | flag | ticket |
+-------+------+-------------------+
anton	1	vip
julia	0	reserved seating
maren	1	reserved seating
sarah	NULL	general admission
+-------+------+-------------------+

If multiple conditions are met, the first listed condition takes
precedence.

NOTE

To replace all NULL values in a column with another value,
you could use a CASE statement, but it is more common to
use the NULL function COALESCE instead.

Case Statements | 241

Grouping and Summarizing
SQL allows you to separate rows into groups and summarize
the rows within each group in some way, ultimately returning
just one row per group.

Table 8-2 lists the concepts associated with grouping and sum‐
marizing data.

Table 8-2. Grouping and summarizing concepts

Category Keyword Description

The main concept GROUP BY Use the GROUP BY clause to
separate rows of data into groups.

Ways to summarize
rows within each
group

COUNT

SUM

MIN

MAX

AVG

These aggregate functions
summarize multiple rows of data
into a single value.

ARRAY_AGG

GROUP_CONCAT

LISTAGG

STRING_AGG

These functions combine multiple
rows of data into a single list.

Extensions of the
GROUP BY clause

ROLLUP Includes rows for subtotals and the
grand total as well.

CUBE Includes aggregations for all
possible combinations of the
grouped by columns.

GROUPING

SETS

Allows you to specify particular
groupings to display.

GROUP BY Basics
The following table shows the number of calories burned by
two people:

SELECT * FROM workouts;

242 | Chapter 8: Advanced Querying Concepts

+------+----------+
| name | calories |
+------+----------+
ally	80
ally	75
ally	90
jess	100
jess	92
+------+----------+

To create a summary table, you need to decide how to:

1. Group the data: separate all the name values into two
groups—ally and jess.

2. Aggregate the data within the groups: find the total
calories within each group.

Use the GROUP BY clause to create a summary table:

SELECT name,
 SUM(calories) AS total_calories
FROM workouts
GROUP BY name;

+------+----------------+
| name | total_calories |
+------+----------------+
| ally | 245 |
| jess | 192 |
+------+----------------+

More details on how GROUP BY works behind the scenes can be
found in The GROUP BY Clause section in Chapter 4.

Grouping by multiple columns
The following table shows the number of calories burned by
two people during their daily workouts:

SELECT * FROM daily_workouts;

Grouping and Summarizing | 243

+------+------+------------+----------+
| id | name | date | calories |
+------+------+------------+----------+
1	ally	2021-03-03	80
1	ally	2021-03-04	75
1	ally	2021-03-05	90
2	jess	2021-03-03	100
2	jess	2021-03-05	92
+------+------+------------+----------+

When writing a query with a GROUP BY clause that groups by
multiple columns and/or includes multiple aggregations:

• The SELECT clause should include all column names and
aggregations that you want to appear in the output.

• The GROUP BY clause should include the same column
names that are in the SELECT clause.

Use the GROUP BY clause to summarize the stats for each person,
returning both the id and name along with two aggregations:

SELECT id, name,
 COUNT(date) AS workouts,
 SUM(calories) AS calories
FROM daily_workouts
GROUP BY id, name;

+------+------+----------+----------+
| id | name | workouts | calories |
+------+------+----------+----------+
| 1 | ally | 3 | 245 |
| 2 | jess | 2 | 192 |
+------+------+----------+----------+

Reduce the GROUP BY List for Efficiency
If you know that each id is linked to a single name, you can
exclude the name column from the GROUP BY clause and get the
same results as the previous query:

244 | Chapter 8: Advanced Querying Concepts

SELECT id,
 MAX(name) AS name,
 COUNT(date) AS workouts,
 SUM(calories) AS calories
FROM daily_workouts

GROUP BY id;

This runs more efficiently behind the scenes since the GROUP BY
only has to occur on one column.

To compensate for dropping the name from the GROUP BY

clause, you’ll notice that an arbitrary aggregate function (MAX)
was applied to the name column within the SELECT clause.
Because there is only one name value within each id group,
MAX(name) will simply return the name associated with each id.

Aggregate Rows into a Single Value or List
With the GROUP BY clause, you must specify how the rows of
data within each group should be summarized using either:

• An aggregate function to summarize rows into a single
value: COUNT, SUM, MIN, MAX, and AVG

• A function to summarize rows into a list (shown in the
sample table): GROUP_CONCAT and others listed in Table 8-3

Here is a sample table:

SELECT * FROM workouts;

+------+----------+
| name | calories |
+------+----------+
ally	80
ally	75
ally	90
jess	100
jess	92
+------+----------+

Use GROUP_CONCAT in MySQL to create a list of calories:

Grouping and Summarizing | 245

SELECT name,
 GROUP_CONCAT(calories) AS calories_list
FROM workouts
GROUP BY name;

+------+---------------+
| name | calories_list |
+------+---------------+
| ally | 80,75,90 |
| jess | 100,92 |
+------+---------------+

The GROUP_CONCAT function differs for each RDBMS. Table 8-3
shows the syntax supported by each RDBMS:

Table 8-3. Aggregate rows into a list in each RDBMS

RDBMS Code Default Separator

MySQL GROUP_CONCAT(calories)

GROUP_CONCAT(calories

 SEPARATOR ',')

Comma

Oracle LISTAGG(calories)

LISTAGG(calories, ',')

No value

PostgreSQL ARRAY_AGG(calories) Comma

SQL Server STRING_AGG(calories, ',') Separator required

SQLite GROUP_CONCAT(calories)

GROUP_CONCAT(calories, ',')

Comma

In MySQL, Oracle, and SQLite, the separator portion (',') is
optional. PostgreSQL doesn’t accept a separator, and SQL Server
requires one.

You can also return a sorted list or a unique list of values.
Table 8-4 shows the syntax supported by each RDBMS.

246 | Chapter 8: Advanced Querying Concepts

Table 8-4. Return a sorted or unique list of values in each RDBMS

RDBMS Sorted List Unique List

MySQL GROUP_CONCAT(calories

ORDER BY calories)

GROUP_CONCAT(DIS
TINCT calories)

Oracle LISTAGG(calories) WITHIN
GROUP (ORDER BY calories)

LISTAGG(DISTINCT
calories)

PostgreSQL ARRAY_AGG(calories ORDER
BY calories)

ARRAY_AGG(DIS
TINCT calories)

SQL Server STRING_AGG(calories, ',')

WITHIN GROUP (ORDER BY calo
ries)

Not supported

SQLite Not supported GROUP_CONCAT(DIS
TINCT calories)

ROLLUP, CUBE, and GROUPING SETS
In addition to GROUP BY, you can also add on the ROLLUP, CUBE,
or GROUPING SETS keywords to include additional summary
information.

The following table lists five purchases over the course of three
months:

SELECT * FROM spendings;

 YEAR MONTH AMOUNT
----- ------ -------
 2019 1 20
 2019 1 30
 2020 1 42
 2020 2 37
 2020 2 100

The examples in this section build on the following GROUP BY
example, which returns the total monthly spendings:

SELECT year, month,
 SUM(amount) AS total

Grouping and Summarizing | 247

FROM spendings
GROUP BY year, month
ORDER BY year, month;

 YEAR MONTH TOTAL
----- ------ ------
 2019 1 50
 2020 1 42
 2020 2 137

ROLLUP

MySQL, Oracle, PostgreSQL, and SQL Server support ROLLUP,
which extends the GROUP BY by including additional rows for
subtotals and the grand total.

Use ROLLUP to display the yearly and total spendings as well.
The 2019, 2020, and total spending rows are added with the
addition of ROLLUP:

SELECT year, month,
 SUM(amount) AS total
FROM spendings
GROUP BY ROLLUP(year, month)
ORDER BY year, month;

 YEAR MONTH TOTAL
----- ------ ------
 2019 1 50
 2019 50 -- 2019 spendings
 2020 1 42
 2020 2 137
 2020 179 -- 2020 spendings
 229 -- Total spendings

The preceding syntax works in Oracle, PostgreSQL, and SQL
Server. The MySQL syntax is GROUP BY year, month WITH

ROLLUP, which also works in SQL Server.

248 | Chapter 8: Advanced Querying Concepts

CUBE

Oracle, PostgreSQL, and SQL Server support CUBE, which
extends the ROLLUP by including additional rows for all possible
combinations of the columns that you are grouping by, as well
as the grand total.

Use CUBE to display monthly spendings (single month across
multiple years) as well. The January and Feburary spending
rows are added with the addition of CUBE:

SELECT year, month,
 SUM(amount) AS total
FROM spendings
GROUP BY CUBE(year, month)
ORDER BY year, month;

 YEAR MONTH TOTAL
----- ------ ------
 2019 1 50
 2019 50
 2020 1 42
 2020 2 137
 2020 179
 1 92 -- January spendings
 2 137 -- February spendings
 229

The preceding syntax works in Oracle, PostgreSQL, and SQL
Server. SQL Server also supports the syntax GROUP BY year,
month WITH CUBE.

GROUPING SETS

Oracle, PostgreSQL, and SQL Server support GROUPING SETS,
which lets you specify particular groupings that you want to
display.

This data is a subset of the results generated by CUBE, only
including groupings of one column at a time. In this case, only
the total yearly and total monthly spendings are returned:

Grouping and Summarizing | 249

SELECT year, month,
 SUM(amount) AS total
FROM spendings
GROUP BY GROUPING SETS(year, month)
ORDER BY year, month;

 YEAR MONTH TOTAL
----- ------ ------
 2019 50
 2020 179
 1 92
 2 137

Window Functions
A window function (or analytic function in Oracle) is similar to
an aggregate function in that they both perform a calculation
on rows of data. The difference is that an aggregate function
returns a single value while a window function returns a value
for each row of data.

The following table lists employees along with their monthly
sales. The following queries use this table to show the differ‐
ence between an aggregate function and a window function.

SELECT * FROM sales;

+-------+-------+-------+
| name | month | sales |
+-------+-------+-------+
David	3	2
David	4	11
Laura	3	3
Laura	4	14
Laura	5	7
Laura	6	1
+-------+-------+-------+

250 | Chapter 8: Advanced Querying Concepts

Aggregate Function
SUM() is an aggregate function. The following query sums up
the sales for each person and returns each name along with its
total_sales value.

SELECT name,
 SUM(sales) AS total_sales
FROM sales
GROUP BY name;

+-------+-------------+
| name | total_sales |
+-------+-------------+
| David | 13 |
| Laura | 25 |
+-------+-------------+

Window Function
ROW_NUMBER() OVER (PARTITION BY name ORDER BY month) is a
window function. In the bolded portion of the following query,
for each person, a row number is generated that represents the
first month, second month, etc. that they sold something. The
query returns each row along with its sale_month value.

SELECT name,
 ROW_NUMBER() OVER (PARTITION BY name
 ORDER BY month) AS sale_month
FROM sales;

+-------+------------+
| name | sale_month |
+-------+------------+
David	1
David	2
Laura	1
Laura	2
Laura	3
Laura	4
+-------+------------+

Window Functions | 251

Breaking Down the Window Function
ROW_NUMBER() OVER (PARTITION BY name ORDER BY month)

A window is a group of rows. In the preceding example, there
were two windows. The name David had a window of two rows
and the name Laura had a window of four rows:

ROW_NUMBER()

The function you want to apply to each window. Other
common functions include RANK(), FIRST_VALUE(),
LAG(), etc. This is required.

OVER

This states that you are specifying a window function.
This is required.

PARTITION BY name

This states how you want to split your data into windows.
It can be split according to one or more columns. This is
optional. If excluded, the window is the entire table.

ORDER BY month

This states how each window should be sorted before the
function is applied. This is optional in MySQL, Post‐
greSQL, and SQLite. It is required in Oracle and SQL
Server.

The following sections include examples of how window func‐
tions are used in practice.

Rank the Rows in a Table
Use the ROW_NUMBER(), RANK(), or DENSE_RANK() function to add
a row number to each row of a table.

The following table shows the number of babies given popular
names:

SELECT * FROM baby_names;

252 | Chapter 8: Advanced Querying Concepts

+--------+--------+--------+
| gender | name | babies |
+--------+--------+--------+
F	Emma	92
F	Mia	88
F	Olivia	100
M	Liam	105
M	Mateo	95
M	Noah	110
+--------+--------+--------+

The two following queries:

• Rank the names by popularity
• Rank the names by popularity for each gender

Rank the names by popularity:

SELECT gender, name,
 ROW_NUMBER() OVER (
 ORDER BY babies DESC) AS popularity
FROM baby_names;

+--------+--------+------------+
| gender | name | popularity |
+--------+--------+------------+
M	Noah	1
M	Liam	2
F	Olivia	3
M	Mateo	4
F	Emma	5
F	Mia	6
+--------+--------+------------+

Rank the names by popularity for each gender:

SELECT gender, name,
 ROW_NUMBER() OVER (PARTITION BY gender
 ORDER BY babies DESC) AS popularity
FROM baby_names;

+--------+--------+------------+

Window Functions | 253

| gender | name | popularity |
+--------+--------+------------+
F	Olivia	1
F	Emma	2
F	Mia	3
M	Noah	1
M	Liam	2
M	Mateo	3
+--------+--------+------------+

ROW_NUMBER Versus RANK Versus
DENSE_RANK

There are three approaches to adding row numbers. Each one
has a different way of handling ties.

ROW_NUMBER breaks the tie:

NAME BABIES POPULARITY
------- ------- ------------
Olivia 99 1

Emma 80 2
Sophia 80 3
Mia 75 4

RANK keeps the tie:

NAME BABIES POPULARITY
------- ------- ------------
Olivia 99 1

Emma 80 2
Sophia 80 2
Mia 75 4

DENSE_RANK keeps the tie and doesn’t skip numbers:

NAME BABIES POPULARITY
------- ------- ------------
Olivia 99 1

Emma 80 2
Sophia 80 2
Mia 75 3

254 | Chapter 8: Advanced Querying Concepts

Return the First Value in Each Group
Use FIRST_VALUE and LAST_VALUE to return the first and last
rows of a window, respectively.

The following queries break down the two-step process to
return the most popular name for each gender.

Step 1: Display the most popular name for each gender.
SELECT gender, name, babies,
 FIRST_VALUE(name) OVER (PARTITION BY gender
 ORDER BY babies DESC) AS top_name
FROM baby_names;

+--------+--------+--------+----------+
| gender | name | babies | top_name |
+--------+--------+--------+----------+
F	Olivia	100	Olivia
F	Emma	92	Olivia
F	Mia	88	Olivia
M	Noah	110	Noah
M	Liam	105	Noah
M	Mateo	95	Noah
+--------+--------+--------+----------+

Use the output as a subquery for the next step, which fil‐
ters on the subquery.

Step 2: Return only the two rows containing the most popular
names.

SELECT * FROM

(SELECT gender, name, babies,
 FIRST_VALUE(name) OVER (PARTITION BY gender
 ORDER BY babies DESC) AS top_name
FROM baby_names) AS top_name_table

WHERE name = top_name;

+--------+--------+--------+----------+
| gender | name | babies | top_name |
+--------+--------+--------+----------+
| F | Olivia | 100 | Olivia |

Window Functions | 255

| M | Noah | 110 | Noah |
+--------+--------+--------+----------+

In Oracle, exclude the AS top_name_table portion.

Return the Second Value in Each Group
Use NTH_VALUE to return a specific rank number within each
window. SQL Server does not support NTH_VALUE. Instead, refer
to the code in the next section, Return the first two values in
each group, but only return the second value.

The following queries break down the two-step process to
return the second most popular name for each gender.

Step 1: Display the second most popular name for each gender.
SELECT gender, name, babies,
 NTH_VALUE(name, 2) OVER (PARTITION BY gender
 ORDER BY babies DESC) AS second_name
FROM baby_names;

+--------+--------+--------+-------------+
| gender | name | babies | second_name |
+--------+--------+--------+-------------+
F	Olivia	100	NULL
F	Emma	92	Emma
F	Mia	88	Emma
M	Noah	110	NULL
M	Liam	105	Liam
M	Mateo	95	Liam
+--------+--------+--------+-------------+

The second parameter in NTH_VALUE(name, 2) is what
specifies the second value in the window. This can be any
positive integer.

Use the output as a subquery for the next step, which fil‐
ters on the subquery.

Step 2: Return only the two rows containing the second most pop‐
ular names.

SELECT * FROM

(SELECT gender, name, babies,

256 | Chapter 8: Advanced Querying Concepts

 NTH_VALUE(name, 2) OVER (PARTITION BY gender
 ORDER BY babies DESC) AS second_name
FROM baby_names) AS second_name_table

WHERE name = second_name;

+--------+--------+--------+-------------+
| gender | name | babies | second_name |
+--------+--------+--------+-------------+
| F | Emma | 92 | Emma |
| M | Liam | 105 | Liam |
+--------+--------+--------+-------------+

In Oracle, exclude the AS second_name_table portion.

Return the First Two Values in Each Group
Use ROW_NUMBER within a subquery to return multiple rank
numbers within each group.

The following queries break down the two-step process to
return the first and second most popular names for each
gender.

Step 1: Display the popularity rank for each gender.
SELECT gender, name, babies,
 ROW_NUMBER() OVER (PARTITION BY gender
 ORDER BY babies DESC) AS popularity
FROM baby_names;

+--------+--------+--------+------------+
| gender | name | babies | popularity |
+--------+--------+--------+------------+
F	Olivia	100	1
F	Emma	92	2
F	Mia	88	3
M	Noah	110	1
M	Liam	105	2
M	Mateo	95	3
+--------+--------+--------+------------+

Use the output as a subquery for the next step, which fil‐
ters on the subquery.

Window Functions | 257

Step 2: Filter on the rows that contain ranks 1 and 2.
SELECT * FROM

(SELECT gender, name, babies,
 ROW_NUMBER() OVER (PARTITION BY gender
 ORDER BY babies DESC) AS popularity
FROM baby_names) AS popularity_table

WHERE popularity IN (1,2);

+--------+--------+--------+------------+
| gender | name | babies | popularity |
+--------+--------+--------+------------+
F	Olivia	100	1
F	Emma	92	2
M	Noah	110	1
M	Liam	105	2
+--------+--------+--------+------------+

In Oracle, exclude the AS popularity_table portion.

Return the Prior Row Value
Use LAG and LEAD to look a certain number of rows behind and
ahead, respectively.

Use LAG to return the previous row:

SELECT gender, name, babies,
 LAG(name) OVER (PARTITION BY gender
 ORDER BY babies DESC) AS prior_name
FROM baby_names;

+--------+--------+--------+------------+
| gender | name | babies | prior_name |
+--------+--------+--------+------------+
F	Olivia	100	NULL
F	Emma	92	Olivia
F	Mia	88	Emma
M	Noah	110	NULL
M	Liam	105	Noah
M	Mateo	95	Liam
+--------+--------+--------+------------+

258 | Chapter 8: Advanced Querying Concepts

Use LAG(name, 2, 'No name') to return the names from two
rows prior and replace NULL values with No name:

SELECT gender, name, babies,
 LAG(name, 2, 'No name')
 OVER (PARTITION BY gender
 ORDER BY babies DESC) AS prior_name_2
FROM baby_names;

+--------+--------+--------+--------------+
| gender | name | babies | prior_name_2 |
+--------+--------+--------+--------------+
F	Olivia	100	No name
F	Emma	92	No name
F	Mia	88	Olivia
M	Noah	110	No name
M	Liam	105	No name
M	Mateo	95	Noah
+--------+--------+--------+--------------+

The LAG and LEAD functions each take three arguments:
LAG(name, 2, 'None')

• name is the value you want to return. It is required.
• 2 is the row offset. It is optional and defaults to 1.
• 'No name' is the value that will be returned when there is

no value. It is optional and defaults to NULL.

Calculate the Moving Average
Use a combination of the AVG function and the ROWS BETWEEN
clause to calculate the moving average.

Here is a sample table:

SELECT * FROM sales;

Window Functions | 259

+-------+-------+-------+
| name | month | sales |
+-------+-------+-------+
David	1	2
David	2	11
David	3	6
David	4	8
Laura	1	3
Laura	2	14
Laura	3	7
Laura	4	1
Laura	5	20
+-------+-------+-------+

For each person, find the three-month moving average of sales,
from two months prior to the current month:

SELECT name, month, sales,
 AVG(sales) OVER (PARTITION BY name
 ORDER BY month
 ROWS BETWEEN 2 PRECEDING AND
 CURRENT ROW) three_month_ma
FROM sales;

+-------+-------+-------+----------------+
| name | month | sales | three_month_ma |
+-------+-------+-------+----------------+
David	1	2	2.0000
David	2	11	6.5000
David	3	6	6.3333
David	4	8	8.3333
Laura	1	3	3.0000
Laura	2	14	8.5000
Laura	3	7	8.0000
Laura	4	1	7.3333
Laura	5	20	9.3333
+-------+-------+-------+----------------+

260 | Chapter 8: Advanced Querying Concepts

NOTE

The preceding example looks at the two rows prior
through the current row:

ROWS BETWEEN 2 PRECEDING AND CURRENT ROW

You can also look at the next rows using the FOLLOWING
keyword:

ROWS BETWEEN 2 PRECEDING AND 3 FOLLOWING

These ranges are sometimes referred to as sliding windows.

Calculate the Running Total
Use a combination of the SUM function and the ROWS BETWEEN
UNBOUNDED clause to calculate the running total.

For each person, find the running total of sales, up to the cur‐
rent month:

SELECT name, month, sales,
 SUM(sales) OVER (PARTITION BY name
 ORDER BY month
 ROWS BETWEEN UNBOUNDED PRECEDING AND
 CURRENT ROW) running_total
FROM sales;

+-------+-------+-------+---------------+
| name | month | sales | running_total |
+-------+-------+-------+---------------+
David	1	2	2
David	2	11	13
David	3	6	19
David	4	8	27
Laura	1	3	3
Laura	2	14	17
Laura	3	7	24
Laura	4	1	25
Laura	5	20	45
+-------+-------+-------+---------------+

Window Functions | 261

NOTE

Here, we calculated the running total for each person. To
calculate the running total for the entire table, you can
remove the PARTITION BY name portion of the code.

ROWS Versus RANGE
An alternative to ROWS BETWEEN is RANGE BETWEEN. The follow‐
ing query calculates the running total of sales made by all
employees, using both the ROWS and RANGE keywords:

SELECT month, name,

 SUM(sales) OVER (ORDER BY month ROWS BETWEEN
 UNBOUNDED PRECEDING AND CURRENT ROW) rt_rows,

 SUM(sales) OVER (ORDER BY month RANGE BETWEEN
 UNBOUNDED PRECEDING AND CURRENT ROW) rt_range
FROM sales;

+-------+-------+----------+------------+

| month | name | rt_rows | rt_range |
+-------+-------+----------+------------+

1	David	2	5
1	Laura	5	5
2	David	16	30
2	Laura	30	30
3	David	36	43
3	Laura	43	43
4	David	51	52
4	Laura	52	52
5	Laura	72	72
+-------+-------+----------+------------+

The difference between the two is that RANGE will return the
same running total value for each month (since the data was
ordered by month), while ROWS will have a different running
total value for each row.

262 | Chapter 8: Advanced Querying Concepts

Pivoting and Unpivoting
Oracle and SQL Server support the PIVOT and UNPIVOT opera‐
tions. PIVOT takes a single column and splits it out into multiple
columns. UNPIVOT takes multiple columns and consolidates
them into a single column.

Break Up the Values of a Column into Multiple
Columns
Imagine you have a table where each row is a person followed
by a fruit that they ate that day. You want to take the fruit col‐
umn and create a separate column for each fruit.

Here is a sample table:

SELECT * FROM fruits;

+------+-------+--------------+
| id | name | fruit |
+------+-------+--------------+
1	Henry	strawberries
2	Henry	grapefruit
3	Henry	watermelon
4	Lily	strawberries
5	Lily	watermelon
6	Lily	strawberries
7	Lily	watermelon
+------+-------+--------------+

Expected output:

+-------+--------------+------------+------------+
| name | strawberries | grapefruit | watermelon |
+-------+--------------+------------+------------+
| Henry | 1 | 1 | 1 |
| Lily | 2 | 0 | 2 |
+-------+--------------+------------+------------+

Use the PIVOT operation in Oracle and SQL Server:

Pivoting and Unpivoting | 263

-- Oracle
SELECT *
FROM fruits
PIVOT
(COUNT(id) FOR fruit IN ('strawberries',
 'grapefruit', 'watermelon'));

-- SQL Server
SELECT *
FROM fruits
PIVOT
(COUNT(id) FOR fruit IN ([strawberries],
 [grapefruit], [watermelon])
) AS fruits_pivot;

Within the PIVOT section, the id and fruit columns are refer‐
enced, but the name column is not. Therefore, the name column
will stay as its own column in the final result and each fruit will
be turned into a new column.

The values of the table are the count of the number of rows in
the original table that contained each particular name/fruit
combination.

PIVOT Alternative: CASE
A more manual way of doing a PIVOT is to use a CASE state‐
ment instead in MySQL, PostgreSQL, and SQLite since they do
not support PIVOT.

SELECT name,

 SUM(CASE WHEN fruit = 'strawberries'
 THEN 1 ELSE 0 END) AS strawberries,
 SUM(CASE WHEN fruit = 'grapefruit'
 THEN 1 ELSE 0 END) AS grapefruit,
 SUM(CASE WHEN fruit = 'watermelon'
 THEN 1 ELSE 0 END) AS watermelon
FROM fruits
GROUP BY name
ORDER BY name;

264 | Chapter 8: Advanced Querying Concepts

List the Values of Multiple Columns in a Single
Column
Imagine you have a table where each row is a person followed
by multiple columns that contain their favorite fruits. You want
to rearrange the data so that all of the fruits are in one column.

Here is a sample table:

SELECT * FROM favorite_fruits;

+----+-------+-----------+-----------+-----------+
| id | name | fruit_one | fruit_two | fruit_thr |
+----+-------+-----------+-----------+-----------+
1	Anna	apple	banana	
2	Barry	raspberry		
3	Liz	lemon	lime	orange
4	Tom	peach	pear	plum
+----+-------+-----------+-----------+-----------+

Expected output:

+----+-------+-----------+------+
| id | name | fruit | rank |
+----+-------+-----------+------+
1	Anna	apple	1
1	Anna	banana	2
2	Barry	raspberry	1
3	Liz	lemon	1
3	Liz	lime	2
3	Liz	orange	3
4	Tom	peach	1
4	Tom	pear	2
4	Tom	plum	3
+----+-------+-----------+------+

Use the UNPIVOT operation in Oracle and SQL Server:

-- Oracle
SELECT *
FROM favorite_fruits
UNPIVOT
(fruit FOR rank IN (fruit_one AS 1,

Pivoting and Unpivoting | 265

 fruit_two AS 2,
 fruit_thr AS 3));

-- SQL Server
SELECT *
FROM favorite_fruits
UNPIVOT
(fruit FOR rank IN (fruit_one,
 fruit_two,
 fruit_thr)
) AS fruit_unpivot
WHERE fruit <> '';

The UNPIVOT section takes the columns fruit_one, fruit_two,
and fruit_thr and consolidates them into a single column
called fruit.

Once that’s done, you can go ahead and use a typical SELECT
statement to pull the original id and name columns along with
the newly created fruit column.

UNPIVOT Alternative: UNION ALL
A more manual way of doing an UNPIVOT is to use UNION ALL
instead in MySQL, PostgreSQL, and SQLite since they do not
support UNPIVOT.

WITH all_fruits AS
(SELECT id, name,
 fruit_one as fruit,
 1 AS rank
FROM favorite_fruits

UNION ALL
SELECT id, name,
 fruit_two as fruit,
 2 AS rank
FROM favorite_fruits

UNION ALL
SELECT id, name,
 fruit_three as fruit,
 3 AS rank
FROM favorite_fruits)

266 | Chapter 8: Advanced Querying Concepts

SELECT *
FROM all_fruits
WHERE fruit <> ''
ORDER BY id, name, fruit;

MySQL does not support inserting a constant into a column
within a query (1 AS rank, 2 AS rank, and 3 AS rank).
Remove those lines for the code to run.

Pivoting and Unpivoting | 267

CHAPTER 9

Working with Multiple
Tables and Queries

This chapter covers how to bring together multiple tables by
either joining them or using union operators, and also how to
work with multiple queries using common table expressions.

Table 9-1 includes descriptions and code examples of the three
concepts covered in this chapter.

Table 9-1. Working with multiple tables and queries

Concept Description Code Example

Joining
Tables

Combine the columns of
two tables based on
matching rows.

SELECT c.id, l.city
FROM customers c
 INNER JOIN loc l
 ON c.lid = l.id;

Union
Operators

Combine the rows of two
tables based on matching
columns.

SELECT name, city
FROM employees;
UNION
SELECT name, city
FROM customers;

269

Concept Description Code Example

Common
Table
Expressions

Temporarily save the
output of a query, for
another query to
reference it. Also includes
recursive and hierarchical
queries.

WITH my_cte AS (
 SELECT name,
 SUM(order_id)
 AS num_orders
 FROM customers
 GROUP BY name)

SELECT MAX(num_orders)
FROM my_cte;

Joining Tables
In SQL, joining means combining data from multiple tables
together within a single query. The following two tables list the
state a person lives in and the pets they own:

-- states -- pets
+------+-------+ +------+------+
| name | state | | name | pet |
+------+-------+ +------+------+
| Ada | AZ | | Deb | dog |
| Deb | DE | | Deb | duck |
+------+-------+ | Pat | pig |
 +------+------+

Use the JOIN clause to join the two tables into one table:

SELECT *
FROM states s INNER JOIN pets p
 ON s.name = p.name;

+------+-------+------+------+
| name | state | name | pet |
+------+-------+------+------+
| Deb | DE | Deb | dog |
| Deb | DE | Deb | duck |
+------+-------+------+------+

The resulting table only includes rows for Deb since she is
present in both tables.

270 | Chapter 9: Working with Multiple Tables and Queries

The left two columns are from the states table and the right
two are from the pets table. The columns in the output can be
referenced using the aliases s.name, s.state, p.name, and p.pet.

Breaking Down the JOIN Clause
states s INNER JOIN pets p ON s.name = p.name

Tables (states, pets)
The tables we would like to combine.

Aliases (s, p)
These are nicknames for the tables. This is optional, but
recommended for simplicity. Without aliases, the ON

clause could be written as states.name = pets.name.

Join Type (INNER JOIN)
The INNER portion specifies that only matching rows
should be returned. If only JOIN is written, then it defaults
to an INNER JOIN. Other join types can be found in
Table 9-2.

Join Condition (ON s.name = p.name)
The condition that must be true in order for two rows to
be considered matching. Equal (=) is the most common
operator, but others can be used as well including not
equal (!= or <>), >, <, BETWEEN, etc.

In addition to the INNER JOIN, Table 9-2 lists the various types
of joins in SQL. The following query shows the general format
for joining tables together:

SELECT *
FROM states s [JOIN_TYPE] pets p
 ON s.name = p.name;

Replace the bolded [JOIN_TYPE] portion with the keywords in
the Keyword column to get the results shown in the Resulting
Rows column. For the CROSS JOIN join type, exclude the ON
clause to get the results shown in the table.

Joining Tables | 271

Table 9-2. Ways to join together tables

Keyword Description Resulting Rows

JOIN Defaults to an
INNER JOIN.

 nm | st | nm | pt
-----+----+-----+------
 Deb | DE | Deb | dog
 Deb | DE | Deb | duck

INNER

JOIN

Returns the rows in
common.

 nm | st | nm | pt
-----+----+-----+------
 Deb | DE | Deb | dog
 Deb | DE | Deb | duck

LEFT

JOIN

Returns the rows in
the left table and the
matching rows in the
other table.

 nm | st | nm | pt
-----+----+------+------
 Ada | AZ | NULL | NULL
 Deb | DE | Deb | dog
 Deb | DE | Deb | duck

RIGHT

JOIN

Returns the rows in
the right table and the
matching rows in the
other table.

 nm | st | nm | pt
------+------+-----+------
 Deb | DE | Deb | dog
 Deb | DE | Deb | duck
 NULL | NULL | Pat | pig

FULL

OUTER

JOIN

Returns the rows in
both tables.

 nm | st | nm | pt
------+------+------+------
 Ada | AZ | NULL | NULL
 Deb | DE | Deb | dog
 Deb | DE | Deb | duck
 NULL | NULL | Pat | pig

CROSS

JOIN

Returns all
combinations of rows
in the two tables.

 nm | st | nm | pt
-----+----+-----+------
 Ada | AZ | Deb | dog
 Ada | AZ | Deb | duck
 Ada | AZ | Pat | pig
 Deb | DE | Deb | dog
 Deb | DE | Deb | duck
 Deb | DE | Pat | pig

In addition to joining tables using the standard JOIN ...

ON ... syntax, Table 9-3 lists others ways to join tables in SQL.

272 | Chapter 9: Working with Multiple Tables and Queries

Table 9-3. Syntax to join together tables

Type Description Code

JOIN ... ON ...

Syntax
Most common join syntax
that works with INNER
JOIN, LEFT JOIN,
RIGHT JOIN, FULL
OUTER JOIN, and
CROSS JOIN.

SELECT *

FROM states s

 INNER JOIN

pets p

 ON s.name =

p.name;

USING Shortcut Use USING instead of the
ON clause if the names of
the columns that you are
joining on match.

SELECT *

FROM states

 INNER JOIN

pets

 USING

(name);

NATURAL JOIN

Shortcut
Use NATURAL JOIN
instead of INNER JOIN if
the names of all of the
columns that you are
joining on match.

SELECT *

FROM states

 NATURAL

JOIN pets;

Old Join Syntax Return all the combinations
of the rows in two tables.
Equivalent to a CROSS
JOIN.

SELECT *

FROM states s,

pets p

WHERE s.name =

p.name;

Joining Tables | 273

Type Description Code

Self Join Use either the old join or
new join syntax to return all
the combinations of the
rows in a table with itself.

>SELECT *

FROM states s1,

states s2

WHERE s1.region

= s2.region;

SELECT *

FROM states s1

 INNER JOIN

states s2

WHERE s1.region

= s2.region;

The following sections describe the concepts in Tables 9-2 and
9-3 in detail.

Join Basics and INNER JOIN
This section walks through how a join works conceptually, as
well as the basic join syntax using an INNER JOIN.

Join basics
You can think of joining tables in two steps:

1. Display all combinations of rows in the tables.
2. Filter on the rows that have matching values.

Here are two tables we’d like to join:

-- states -- pets
+------+-------+ +------+------+
| name | state | | name | pet |
+------+-------+ +------+------+
| Ada | AZ | | Deb | dog |
| Deb | DE | | Deb | duck |
+------+-------+ | Pat | pig |
 +------+------+

274 | Chapter 9: Working with Multiple Tables and Queries

Step 1: Display all combinations of rows.
By listing the table names in the FROM clause, all possible
combinations of rows from the two tables are returned.

SELECT *
FROM states, pets;

+------+-------+------+------+
| name | state | name | pet |
+------+-------+------+------+
Ada	AZ	Deb	dog
Deb	DE	Deb	dog
Ada	AZ	Deb	duck
Deb	DE	Deb	duck
Ada	AZ	Pat	pig
Deb	DE	Pat	pig
+------+-------+------+------+

The FROM states, pets syntax is an older way of doing a
join in SQL. A more modern way of doing the same thing
is using a CROSS JOIN.

Step 2: Filter on the rows that have matching names.
You likely don’t want to display all combinations of rows
in the two tables, but rather only situations where the name
column of both tables match.

SELECT *
FROM states s, pets p
WHERE s.name = p.name;

+------+-------+------+------+
| name | state | name | pet |
+------+-------+------+------+
| Deb | DE | Deb | dog |
| Deb | DE | Deb | duck |
+------+-------+------+------+

The row Deb/DE is listed twice because it matched two Deb
values in the pets table.

The preceding code is equivalent to an INNER JOIN.

Joining Tables | 275

NOTE

The two-step process described previously is purely con‐
ceptual. Databases will rarely do a cross join when execut‐
ing a join, but instead do it in a more optimized way.
However, thinking in these conceptual terms will help you
correctly write join queries and understand their results.

INNER JOIN
The most common way to join together two tables is using an
INNER JOIN, which returns rows that are in both tables.

Use INNER JOIN to only return people in both tables
SELECT *
FROM states s INNER JOIN pets p
 ON s.name = p.name;

+------+-------+------+------+
| name | state | name | pet |
+------+-------+------+------+
| Deb | DE | Deb | dog |
| Deb | DE | Deb | duck |
+------+-------+------+------+

Join together more than two tables
This can be done by including additional sets of the
JOIN .. ON .. keywords:

SELECT *
FROM states s
 INNER JOIN pets p
 ON s.name = p.name
 INNER JOIN lunch l
 ON s.name = l.name;

276 | Chapter 9: Working with Multiple Tables and Queries

Join on more than one column
This can be done by including additional conditions
within the ON clause. Imagine you want to join the follow‐
ing tables on both name and age:

-- states_ages -- pets_ages
+------+-------+-----+ +------+-----+-----+
| name | state | age | | name | pet | age |
+------+-------+-----+ +------+-----+-----+
| Ada | AK | 25 | | Ada | ant | 30 |
| Ada | AZ | 30 | | Pat | pig | 45 |
+------+-------+-----+ +------+-----+-----+

SELECT *
FROM states_ages s INNER JOIN pets_ages p
 ON s.name = p.name
 AND s.age = p.age;

+------+-------+------+------+------+------+
| name | state | age | name | pet | age |
+------+-------+------+------+------+------+
| Ada | AZ | 30 | Ada | ant | 30 |
+------+-------+------+------+------+------+

LEFT JOIN, RIGHT JOIN, and FULL OUTER JOIN
Use LEFT JOIN, RIGHT JOIN, and FULL OUTER JOIN to bring
together rows from two tables, including ones that don’t appear
in both tables.

LEFT JOIN

Use LEFT JOIN to return all people in the states table. People in
the states table that are not in the pets table get returned with
NULL values.

SELECT *
FROM states s LEFT JOIN pets p
 ON s.name = p.name;

+------+-------+------+------+
| name | state | name | pet |
+------+-------+------+------+

Joining Tables | 277

Ada	AZ	NULL	NULL
Deb	DE	Deb	dog
Deb	DE	Deb	duck
+------+-------+------+------+

A LEFT JOIN is equivalent to a LEFT OUTER JOIN.

RIGHT JOIN

Use RIGHT JOIN to return all people in the pets table. People in
the pets table that are not in the states table get returned with
NULL values.

SELECT *
FROM states s RIGHT JOIN pets p
 ON s.name = p.name;

+------+-------+------+------+
| name | state | name | pet |
+------+-------+------+------+
Deb	DE	Deb	dog
Deb	DE	Deb	duck
NULL	NULL	Pat	pig
+------+-------+------+------+

A RIGHT JOIN is equivalent to a RIGHT OUTER JOIN.

SQLite does not support RIGHT JOIN.

TIP

The LEFT JOIN is much more common than the RIGHT
JOIN. If a RIGHT JOIN is needed, swap the two tables
within the FROM clause and do a LEFT JOIN instead.

FULL OUTER JOIN

Use FULL OUTER JOIN to return all people in both the states
and pets tables. Missing values from both tables are returned
with NULL values.

278 | Chapter 9: Working with Multiple Tables and Queries

SELECT *
FROM states s FULL OUTER JOIN pets p
 ON s.name = p.name;

+------+-------+------+------+
| name | state | name | pet |
+------+-------+------+------+
Ada	AZ	NULL	NULL
Deb	DE	Deb	dog
Deb	DE	Deb	duck
NULL	NULL	Pat	pig
+------+-------+------+------+

A FULL OUTER JOIN is equivalent to a FULL JOIN.

MySQL and SQLite do not support FULL OUTER JOIN.

USING and NATURAL JOIN
When joining tables together, to save on typing, you can use
the USING or NATURAL JOIN shortcutsinstead of the standard
JOIN .. ON .. syntax.

USING

MySQL, Oracle, PostgreSQL, and SQLite support the USING
clause.

You can use the USING shortcut in place of the ON clause to join
on two columns of the exact same name. The join must be an
equi-join (= in the ON clause) to use USING.

-- ON clause
SELECT *
FROM states s INNER JOIN pets p
 ON s.name = p.name;

+------+-------+------+------+
| name | state | name | pet |
+------+-------+------+------+
| Deb | DE | Deb | dog |
| Deb | DE | Deb | duck |

Joining Tables | 279

+------+-------+------+------+

-- Equivalent USING shortcut
SELECT *
FROM states INNER JOIN pets
 USING (name);

+------+-------+------+
| name | state | pet |
+------+-------+------+
| Deb | DE | dog |
| Deb | DE | duck |
+------+-------+------+

The difference between the two queries is that the first query
returns four columns including s.name and p.name, while the
second query returns three columns because the two name col‐
umns get merged together as one and is simply called name.

NATURAL JOIN

MySQL, Oracle, PostgreSQL, and SQLite support a NATURAL
JOIN.

You can use the NATURAL JOIN shortcut in place of the INNER
JOIN .. ON .. syntax to join two tables based on all columns of
the exact same name. The join must be an equi-join (= in the ON
clause) to use a NATURAL JOIN.

-- INNER JOIN ... ON ... AND ...
SELECT *
FROM states_ages s INNER JOIN pets_ages p
 ON s.name = p.name
 AND s.age = p.age;

+------+-------+------+------+------+------+
| name | state | age | name | pet | age |
+------+-------+------+------+------+------+
| Ada | AZ | 30 | Ada | ant | 30 |
+------+-------+------+------+------+------+

280 | Chapter 9: Working with Multiple Tables and Queries

-- Equivalent NATURAL JOIN shortcut
SELECT *
FROM states_ages NATURAL JOIN pets_ages;

+------+------+-------+------+
| name | age | state | pet |
+------+------+-------+------+
| Ada | 30 | AZ | ant |
+------+------+-------+------+

The difference between the two queries is that the first query
returns six columns including s.name, s.age, p.name, and
p.age, while the second query returns four columns because
the duplicate name and age columns get merged together and
are simply called name and age.

WARNING

Be careful when using a NATURAL JOIN. It saves quite a bit
of typing, but can do an unexpected join if a column of a
matching name is added or removed from a table. It is bet‐
ter to use for quick queries versus production code.

CROSS JOIN and Self Join
Another way of joining tables together is by displaying all com‐
binations of the rows in two tables. This can be done with a
CROSS JOIN. If this is done on a table with itself, it is called a self
join. A self join is useful when you want to compare rows
within the same table.

CROSS JOIN

Use CROSS JOIN to return all combinations of the rows in two
tables. It is equivalent to listing out the tables in the FROM clause
(which is sometimes referred to as “old join syntax”).

-- CROSS JOIN
SELECT *

Joining Tables | 281

FROM states CROSS JOIN pets;

-- Equivalent table list
SELECT *
FROM states, pets;

+------+-------+------+------+
| name | state | name | pet |
+------+-------+------+------+
Ada	AZ	Deb	dog
Deb	DE	Deb	dog
Ada	AZ	Deb	duck
Deb	DE	Deb	duck
Ada	AZ	Pat	pig
Deb	DE	Pat	pig
+------+-------+------+------+

Once all combinations are listed out, you can choose to filter
on the results by adding a WHERE clause to return fewer rows
based on what you’re looking for.

Self join
You can join a table with itself using a self join. There are typi‐
cally two steps to a self join:

1. Display all combinations of the rows in a table with itself.
2. Filter on the resulting rows based on some criteria.

The following are two examples of self joins in practice.

Here is a table of employees and their managers:

SELECT * FROM employee;

+------+--------+----------+--------+
| dept | emp_id | emp_name | mgr_id |
+------+--------+----------+--------+
tech	201	lisa	101
tech	202	monica	101
data	203	nancy	201

282 | Chapter 9: Working with Multiple Tables and Queries

| data | 204 | olivia | 201 |
| data | 205 | penny | 202 |
+------+--------+----------+--------+

Example 1: Return a list of employees and their managers.
SELECT e1.emp_name, e2.emp_name as mgr_name
FROM employee e1, employee e2
WHERE e1.mgr_id = e2.emp_id;

+----------+----------+
| emp_name | mgr_name |
+----------+----------+
nancy	lisa
olivia	lisa
penny	monica
+----------+----------+

Example 2: Match each employee with another employee in their
department.

SELECT e.dept, e.emp_name, matching_emp.emp_name
FROM employee e, employee matching_emp
WHERE e.dept = matching_emp.dept
 AND e.emp_name <> matching_emp.emp_name;

+------+----------+----------+
| dept | emp_name | emp_name |
+------+----------+----------+
tech	monica	lisa
tech	lisa	monica
data	penny	nancy
data	olivia	nancy
data	penny	olivia
data	nancy	olivia
data	olivia	penny
data	nancy	penny
+------+----------+----------+

Joining Tables | 283

NOTE

The preceding query has duplicate rows (monica/lisa and
lisa/monica). To remove the duplicates and return just
four rows instead of eight, you can add the line:

AND e.emp_name < matching_emp.emp_name

to the WHERE clause to only return rows where the first
name is before the second name alphabetically. Here is the
output without duplicates:

+------+----------+----------+
| dept | emp_name | emp_name |
+------+----------+----------+
tech	lisa	monica
data	nancy	olivia
data	nancy	penny
data	olivia	penny
+------+----------+----------+

Union Operators
Use the UNION keyword to combine the results of two or more
SELECT statements. The difference between a JOIN and a UNION
is that JOIN links together multiple tables within a single query,
whereas UNION stacks the results of multiple queries:

-- JOIN example
SELECT *
FROM birthdays b JOIN candles c
 ON b.name = c.name;

-- UNION example
SELECT * FROM writers
UNION
SELECT * FROM artists;

Figure 9-1 shows the difference between the results of a JOIN
and a UNION, based on the preceding code.

284 | Chapter 9: Working with Multiple Tables and Queries

Figure 9-1. JOIN versus UNION

There are three ways to combine the rows of two tables
together. These are also known as union operators:

UNION

Combines the results of multiple statements.

EXCEPT (MINUS in Oracle)
Returns the results minus another set of results.

INTERSECT

Returns overlapping results.

UNION
The UNION keyword combines the results of two or more SELECT
statements into one output.

Union Operators | 285

Here are two tables we’d like to combine:

-- staff
+---------+---------+
| name | origin |
+---------+---------+
michael	NULL
janet	NULL
tahani	england
+---------+---------+

-- residents
+---------+---------+------------+
| name | country | occupation |
+---------+---------+------------+
eleanor	usa	temp
chidi	nigeria	professor
tahani	england	model
jason	usa	dj
+---------+---------+------------+

Use UNION to combine the two tables and eliminate any dupli‐
cate rows:

SELECT name, origin FROM staff
UNION
SELECT name, country FROM residents;

+---------+---------+
| name | origin |
+---------+---------+
michael	NULL
janet	NULL
tahani	england
eleanor	usa
chidi	nigeria
jason	usa
+---------+---------+

Note that tahani/england appears in both the staff and
residents tables. However, it only shows up as one row in the

286 | Chapter 9: Working with Multiple Tables and Queries

result set because UNION removes duplicate rows from the
output.

Which Queries Can You Union Together?
When doing a UNION on two queries, some characteristics of the
queries must match and others do not have to match.

Number of Columns: MUST MATCH
When you union together two queries, you must specify
the same number of columns in both queries.

Column Names: DO NOT HAVE TO MATCH
The column names of the two queries do not need to
match to do a UNION. The column names used in the first
SELECT statement in a UNION query become the names of
the output columns.

Data Types: MUST MATCH
The data types of the two queries need to match to do a
UNION. If they do not match, you can use the CAST function
to cast them into the same data type before doing a UNION.

UNION ALL

Use UNION ALL to combine the two tables and preserve dupli‐
cate rows:

SELECT name, origin FROM staff
UNION ALL
SELECT name, country FROM residents;

+---------+---------+
| name | origin |
+---------+---------+
michael	NULL
janet	NULL
tahani	england
eleanor	usa
chidi	nigeria

Union Operators | 287

| tahani | england |
| jason | usa |
+---------+---------+

TIP

If you know with certainty that no duplicate rows are pos‐
sible, use UNION ALL to improve performance. UNION does
an additional sort behind the scenes to identify the
duplicates.

UNION with other clauses

You can also include other clauses when using a UNION, such as
WHERE, JOIN, etc. However, only one ORDER BY clause is allowed
for the whole query, and it should be at the very end.

Filter out null values and sort the results of a UNION query:

SELECT name, origin
FROM staff
WHERE origin IS NOT NULL

UNION

SELECT name, country
FROM residents

ORDER BY name;

+---------+---------+
| name | origin |
+---------+---------+
chidi	nigeria
eleanor	usa
jason	usa
tahani	england
+---------+---------+

288 | Chapter 9: Working with Multiple Tables and Queries

UNION with more than two tables
You can union together more than two tables by including
additional UNION clauses.

Combine the rows of more than two tables:

SELECT name, origin
FROM staff

UNION

SELECT name, country
FROM residents

UNION

SELECT name, country
FROM pets;

TIP

UNION is typically used to combine results from multiple
tables. If you are combining results from a single table, it is
better to write a single query instead and use the appropri‐
ate WHERE clause, CASE statement, etc.

EXCEPT and INTERSECT
In addition to using a UNION to combine the rows of multiple
tables, you can use EXCEPT and INTERSECT to combine the rows
in different ways.

EXCEPT

Use EXCEPT to “subtract” the results of one query from another
query.

Return the staff members that are not residents:

Union Operators | 289

SELECT name FROM staff
EXCEPT
SELECT name FROM residents;

+---------+
| name |
+---------+
| michael |
| janet |
+---------+

MySQL does not support EXCEPT. Instead, you can use the NOT
IN keywords as a workaround:

SELECT name
FROM staff
WHERE name NOT IN (SELECT name FROM residents);

Oracle uses MINUS instead of EXCEPT.

PostgreSQL also supports EXCEPT ALL, which does not remove
duplicates. EXCEPT removes all occurrences of a value, while
EXCEPT ALL removes specific instances.

INTERSECT

Use INTERSECT to find the rows in common between two
queries.

Return the staff members that are residents as well:

SELECT name, origin FROM staff
INTERSECT
SELECT name, country FROM residents;

+---------+---------+
| name | origin |
+---------+---------+
| tahani | england |
+---------+---------+

MySQL does not support INTERSECT. Instead, you can use an
INNER JOIN as a workaround:

290 | Chapter 9: Working with Multiple Tables and Queries

SELECT s.name, s.origin
FROM staff s INNER JOIN residents r
 ON s.name = r.name;

PostgreSQL also supports INTERSECT ALL, which preserves
duplicate values.

Union Operators: Order of Evaluation
When writing a statement with multiple union operators
(UNION, EXCEPT, INTERSECT), use parentheses to specify the
order in which the operations should occur.

SELECT * FROM staff
EXCEPT
(SELECT * FROM residents
UNION
SELECT * FROM pets);

Unless otherwise specified, union operators are performed in
top-down order, except that INTERSECT takes precedence over
UNION and EXCEPT.

Common Table Expressions
A common table expression (CTE) is a temporary result set. In
other words, it temporarily saves the output of a query for you
to write other queries that reference it.

You can spot a CTE when you see the WITH keyword. There are
two types of CTEs:

Nonrecursive CTE
A query for other queries to reference (see “CTEs Versus
Subqueries” on page 293).

Recursive CTE
A query that references itself (see “Recursive CTEs” on
page 295).

Common Table Expressions | 291

NOTE

Nonrecursive CTEs are a lot more common than recursive
CTEs. Most of the time, if someone mentions a CTE, they
are referring to a nonrecursive CTE.

Here is an example of a nonrecursive CTE in practice:

-- Query the results of my_cte
WITH my_cte AS (
 SELECT name, AVG(grade) AS avg_grade
 FROM my_table
 GROUP BY name)

SELECT *
FROM my_cte
WHERE avg_grade < 70;

Here is an example of a recursive CTE in practice:

-- Generate the numbers 1 through 10
WITH RECURSIVE my_cte(n) AS
(
 SELECT 1 -- Include FROM dual in Oracle
 UNION ALL
 SELECT n + 1 FROM my_cte WHERE n < 10
)

SELECT * FROM my_cte;

In MySQL and PostgreSQL, the RECURSIVE keyword is required.
In Oracle and SQL Server, the RECURSIVE keyword must be left
out. SQLite works with either syntax.

In Oracle, you may see older code that uses the CONNECT BY syn‐
tax for recursive queries, but CTEs are much more common
these days.

292 | Chapter 9: Working with Multiple Tables and Queries

CTEs Versus Subqueries
Both CTEs and subqueries allow you to write a query, and then
write another query that references the first query. This section
describes the difference between the two approaches.

Imagine your goal is to find the department that has the largest
average salary. This can be done in two steps: write a query that
returns the average salary for each department; use a CTE or
subquery to write a query around the first query to return the
department with the largest average salary.

Step 1. Query that finds the average salary for each department

SELECT dept, AVG(salary) AS avg_salary
FROM employees
GROUP BY dept;

+-------+------------+
| dept | avg_salary |
+-------+------------+
mktg	78000
sales	61000
tech	83000
+-------+------------+

Step 2. CTE and subquery that find the department with the larg‐
est average salary using the preceding query

-- CTE approach
WITH avg_dept_salary AS (
 SELECT dept, AVG(salary) AS avg_salary
 FROM employees
 GROUP BY dept)

SELECT *
FROM avg_dept_salary
ORDER BY avg_salary DESC
LIMIT 1;

-- Equivalent subquery approach
SELECT *
FROM

Common Table Expressions | 293

(SELECT dept, AVG(salary) AS avg_salary
FROM employees
GROUP BY dept) avg_dept_salary

ORDER BY avg_salary DESC
LIMIT 1;

+------+------------+
| dept | avg_salary |
+------+------------+
| tech | 83000 |
+------+------------+

The LIMIT clause syntax differs by software. Replace LIMIT 1
with ROWNUM = 1 in Oracle and TOP 1 in SQL Server. More
details can be found in The LIMIT Clause section in Chapter 4.

Advantages of a CTE Versus a Subquery
There are a few advantages to using a CTE instead of a
subquery.

Multiple References
Once a CTE is defined, you can reference it by name mul‐
tiple times within the SELECT queries that follow:

WITH my_cte AS (...)

SELECT * FROM my_cte WHERE id > 10
UNION

SELECT * FROM my_cte WHERE score > 90;

With a subquery, you would need to write out the full sub‐
query each time.

Multiple Tables
CTE syntax is more readable when working with multiple
tables because you can list all the CTEs up front:

WITH my_cte1 AS (...),
 my_cte2 AS (...)

SELECT *

294 | Chapter 9: Working with Multiple Tables and Queries

FROM my_cte1 m1
 INNER JOIN my_cte2 m2
 ON m1.id = m2.id;

With subqueries, the subqueries would be scattered
throughout the overall query.

CTEs are not supported in older SQL software, which is why
subqueries are still commonly used.

Recursive CTEs
This section walks through two practical situations where a
recursive CTE would be useful.

Fill in missing rows in a sequence of data
The following table includes dates and prices. Note that the
date column is missing data for the second and fifth of the
month.

SELECT * FROM stock_prices;

+------------+--------+
| date | price |
+------------+--------+
2021-03-01	668.27
2021-03-03	678.83
2021-03-04	635.40
2021-03-06	591.01
+------------+--------+

Fill in the dates with a two-step process:

1. Use a recursive CTE to generate a sequence of dates.
2. Join the sequence of dates with the original table.

Common Table Expressions | 295

NOTE

The following code runs in MySQL. Table 9-4 has the syn‐
tax for each RDBMS.

Step 1: Use a recursive CTE to generate a sequence of dates called
my_dates.

The my_dates table starts with the date 2021-03-01, and
adds on the next date again and again, up until the date
2021-03-06:

-- MySQL syntax
WITH RECURSIVE my_dates(dt) AS (
 SELECT '2021-03-01'
 UNION ALL
 SELECT dt + INTERVAL 1 DAY
 FROM my_dates
 WHERE dt < '2021-03-06')

SELECT * FROM my_dates;

+------------+
| dt |
+------------+
| 2021-03-01 |
| 2021-03-02 |
| 2021-03-03 |
| 2021-03-04 |
| 2021-03-05 |
| 2021-03-06 |
+------------+

Step 2: Left join the recursive CTE with the original table.

-- MySQL syntax
WITH RECURSIVE my_dates(dt) AS (
 SELECT '2021-03-01'
 UNION ALL
 SELECT dt + INTERVAL 1 DAY
 FROM my_dates
 WHERE dt < '2021-03-06')

296 | Chapter 9: Working with Multiple Tables and Queries

SELECT d.dt, s.price
FROM my_dates d
 LEFT JOIN stock_prices s
 ON d.dt = s.date;

+------------+--------+
| dt | price |
+------------+--------+
2021-03-01	668.27
2021-03-02	NULL
2021-03-03	678.83
2021-03-04	635.40
2021-03-05	NULL
2021-03-06	591.01
+------------+--------+

Step 3 (Optional): Fill in the null values with the previous day’s
price.

Replace the SELECT clause (SELECT d.dt, s.price) with:

SELECT d.dt, COALESCE(s.price,
 LAG(s.price) OVER
 (ORDER BY d.dt)) AS price
...

+------------+--------+
| dt | price |
+------------+--------+
2021-03-01	668.27
2021-03-02	668.27
2021-03-03	678.83
2021-03-04	635.40
2021-03-05	635.40
2021-03-06	591.01
+------------+--------+

There are syntax differences for each RDBMS.

Here is the general syntax for generating a date column. The
bolded portions differ by RDBMS, and the software-specific
code is listed in Table 9-4.

[WITH] my_dates(dt) AS (
 SELECT [DATE]
 UNION ALL

Common Table Expressions | 297

 SELECT [DATE PLUS ONE]
 FROM my_dates
 WHERE dt < [LAST DATE])

SELECT * FROM my_dates;

Table 9-4. Generating a date column in each RDBMS

RDBMS WITH DATE DATE PLUS ONE LAST DATE

MySQL WITH

RECUR

SIVE

'2021-03-01' dt +

INTERVAL 1

DAY

'2021-03-06'

Oracle WITH DATE

'2021-03-01'

dt +

INTERVAL

'1' DAY

DATE

'2021-03-06'

PostgreSQL WITH

RECUR

SIVE

CAST(

'2021-03-01'

AS DATE)

CAST(dt +

INTERVAL

'1 day'

AS DATE)

'2021-03-06'

SQL Server WITH CAST(

'2021-03-01'

AS DATE)

DATEADD(DAY,

1, CAST(dt

AS DATE))

'2021-03-06'

SQLite WITH

RECUR

SIVE

DATE(

'2021-03-01')

DATE(dt,

'1 day')

'2021-03-06'

Return all the parents of a child row
The following table includes the roles of various family mem‐
bers. The rightmost column includes the id of a person’s
parent.

SELECT * FROM family_tree;

+------+---------+----------+-----------+
| id | name | role | parent_id |
+------+---------+----------+-----------+
| 1 | Lao Ye | Grandpa | NULL |
| 2 | Lao Lao | Grandma | NULL |

298 | Chapter 9: Working with Multiple Tables and Queries

3	Ollie	Dad	NULL
4	Alice	Mom	1
4	Alice	Mom	2
5	Henry	Son	3
5	Henry	Son	4
6	Lily	Daughter	3
6	Lily	Daughter	4
+------+---------+----------+-----------+

NOTE

The following code runs in MySQL. Table 9-5 has the syn‐
tax for each RDBMS.

You can list each person’s parents and grandparents with a
recursive CTE:

-- MySQL syntax
WITH RECURSIVE my_cte (id, name, lineage) AS (
 SELECT id, name, name AS lineage
 FROM family_tree
 WHERE parent_id IS NULL
 UNION ALL
 SELECT ft.id, ft.name,
 CONCAT(mc.lineage, ' > ', ft.name)
 FROM family_tree ft
 INNER JOIN my_cte mc
 ON ft.parent_id = mc.id)

SELECT * FROM my_cte ORDER BY id;

+------+---------+-------------------------+
| id | name | lineage |
+------+---------+-------------------------+
1	Lao Ye	Lao Ye
2	Lao Lao	Lao Lao
3	Ollie	Ollie
4	Alice	Lao Ye > Alice
4	Alice	Lao Lao > Alice

Common Table Expressions | 299

5	Henry	Ollie > Henry
5	Henry	Lao Ye > Alice > Henry
5	Henry	Lao Lao > Alice > Henry
6	Lily	Ollie > Lily
6	Lily	Lao Ye > Alice > Lily
6	Lily	Lao Lao > Alice > Lily
+------+---------+-------------------------+

In the preceding code (also known as a hierarchical query),
my_cte contains two statements that are unioned together:

• The first SELECT statement is the starting point. The rows
where the parent_id is NULL are treated as the tree roots.

• The second SELECT statement defines the recursive link
between the parent and child rows. The children of each
tree root are returned and tacked on to the lineage col‐
umn until the full lineage is spelled out.

There are syntax differences for each RDBMS.

Here is the general syntax for listing all the parents. The bolded
portions differ by RDBMS, and the software-specific code is lis‐
ted in Table 9-5.

[WITH] my_cte (id, name, lineage) AS (
 SELECT id, name, [NAME] AS lineage
 FROM family_tree
 WHERE parent_id IS NULL
 UNION ALL
 SELECT ft.id, ft.name, [LINEAGE]
 FROM family_tree ft
 INNER JOIN my_cte mc
 ON ft.parent_id = mc.id)

SELECT * FROM my_cte ORDER BY id;

Table 9-5. Listing all the parents in each RDBMS

RDBMS WITH NAME LINEAGE

MySQL WITH

RECURSIVE

name CONCAT(mc.lineage,

' > ', ft.name)

300 | Chapter 9: Working with Multiple Tables and Queries

RDBMS WITH NAME LINEAGE

Oracle WITH name mc.lineage ||

' > ' || ft.name

PostgreSQL WITH

RECURSIVE

CAST(name AS

VARCHAR(30))

CAST(CONCAT(

mc.lineage,

' > ', ft.name)

AS VARCHAR(30))

SQL Server WITH CAST(name AS

VARCHAR(30))

CAST(CONCAT(

mc.lineage,

' > ', ft.name)

AS VARCHAR(30))

SQLite WITH

RECURSIVE

name mc.lineage ||

' > ' || ft.name

Common Table Expressions | 301

CHAPTER 10

How Do I…?

This chapter is intended to be a quick reference for frequently
asked SQL questions that combine multiple concepts:

• Find the rows containing duplicate values
• Select rows with the max value for another column
• Concatenate text from multiple fields into a single field
• Find all tables containing a specific column name
• Update a table where the ID matches another table

Find the Rows Containing Duplicate Values
The following table lists seven types of teas and the tempera‐
tures they should be steeped at. Note that there are two sets of
duplicate tea/temperature values, which are in bold.

SELECT * FROM teas;

+----+--------+-------------+
| id | tea | temperature |
+----+--------+-------------+
| 1 | green | 170 |
| 2 | black | 200 |

303

3	black	200
4	herbal	212
5	herbal	212
6	herbal	210
7	oolong	185
+----+--------+-------------+

This section covers two different scenarios:

• Return all unique tea/temperature combinations
• Return only the rows with duplicate tea/temperature

values

Return All Unique Combinations
To exclude duplicate values and return only the unique rows of
a table, use the DISTINCT keyword.

SELECT DISTINCT tea, temperature
FROM teas;

+--------+-------------+
| tea | temperature |
+--------+-------------+
green	170
black	200
herbal	212
herbal	210
oolong	185
+--------+-------------+

Potential extensions

To return the number of unique rows in a table, use the COUNT
and DISTINCT keywords together. More details can be found in
the DISTINCT section in Chapter 4.

304 | Chapter 10: How Do I…?

Return Only the Rows with Duplicate Values
The following query identifies the rows in the table with dupli‐
cate values.

WITH dup_rows AS (
 SELECT tea, temperature,
 COUNT(*) as num_rows
 FROM teas
 GROUP BY tea, temperature
 HAVING COUNT(*) > 1)

SELECT t.id, d.tea, d.temperature
FROM teas t INNER JOIN dup_rows d
 ON t.tea = d.tea
 AND t.temperature = d.temperature;

+----+--------+-------------+
| id | tea | temperature |
+----+--------+-------------+
2	black	200
3	black	200
4	herbal	212
5	herbal	212
+----+--------+-------------+

Explanation

The bulk of the work happens in the dup_rows query. All of the
tea/temperature combinations are counted, and then only the
combinations that occur more than once are kept with the
HAVING clause. This is what dup_rows looks like:

+--------+-------------+----------+
| tea | temperature | num_rows |
+--------+-------------+----------+
| black | 200 | 2 |
| herbal | 212 | 2 |
+--------+-------------+----------+

The purpose of the JOIN in the second half of the query is to
pull the id column back into the final output.

Find the Rows Containing Duplicate Values | 305

Keywords in the query

• WITH dup_rows is the start of a common table expression,
which allows you to work with multiple SELECT statements
within a single query.

• HAVING COUNT(*) > 1 uses the HAVING clause, which allows
you to filter on an aggregation like COUNT().

• teas t INNER JOIN dup_rows d uses an INNER JOIN, which
allows you to bring together the teas table and the
dup_rows query.

Potential extensions

To delete particular duplicate rows from a table, use a DELETE
statement. More details can be found in Chapter 5

Select Rows with the Max Value for Another
Column
The following table lists employees and the number of sales
they’ve made. You want to return each employee’s most recent
number of sales, which are in bold.

SELECT * FROM sales;

+------+----------+------------+-------+
| id | employee | date | sales |
+------+----------+------------+-------+
1	Emma	2021-08-01	6
2	Emma	2021-08-02	17
3	Jack	2021-08-02	14
4	Emma	2021-08-04	20
5	Jack	2021-08-05	5
6	Emma	2021-08-07	1
+------+----------+------------+-------+

306 | Chapter 10: How Do I…?

Solution
The following query returns the number of sales that each
employee made on their most recent sale date (aka each
employee’s largest date value).

SELECT s.id, r.employee, r.recent_date, s.sales
FROM (SELECT employee, MAX(date) AS recent_date
 FROM sales
 GROUP BY employee) r
INNER JOIN sales s
 ON r.employee = s.employee
 AND r.recent_date = s.date;

+------+----------+-------------+-------+
| id | employee | recent_date | sales |
+------+----------+-------------+-------+
| 5 | Jack | 2021-08-05 | 5 |
| 6 | Emma | 2021-08-07 | 1 |
+------+----------+-------------+-------+

Explanation
The key to this problem is to break it down into two parts. The
first goal is to identify the most recent sale date for each
employee. This is what the output of the subquery r looks like:

+----------+-------------+
| employee | recent_date |
+----------+-------------+
| Emma | 2021-08-07 |
| Jack | 2021-08-05 |
+----------+-------------+

The second goal is to pull the id and sales columns back into
the final output, which is done using the JOIN in the second
half of the query.

Select Rows with the Max Value for Another Column | 307

Keywords in the query

• GROUP BY employee uses the GROUP BY clause, which splits
up the table by employee and finds the MAX(date) for each
employee.

• r INNER JOIN sales s uses an INNER JOIN, which allows
you to bring together the r subquery and the sales table.

Potential extensions

An alternative to the GROUP BY solution is to use a window
function (OVER … PARTITION BY …) with a FIRST_VALUE func‐
tion, which would return the same results. More details can be
found in the “Window Functions” on page 250 section in
Chapter 8.

Concatenate Text from Multiple Fields into a
Single Field
This section covers two different scenarios:

• Concatenate text from fields in a single row into a single
value

• Concatenate text from fields in multiple rows into a single
value

Concatenate Text from Fields in a Single Row
The following table has two columns, and you want to concate‐
nate them into one column.

308 | Chapter 10: How Do I…?

+----+---------+ +-----------+
| id | name | | id_name |
+----+---------+ +-----------+
1	Boots	--->	1_Boots
2	Pumpkin		2_Pumpkin
3	Tiger		3_Tiger
+----+---------+ +-----------+

Use the CONCAT function or the concatenation operator (||) to
bring together the values:

-- MySQL, PostgreSQL, and SQL Server
SELECT CONCAT(id, '_', name) AS id_name
FROM my_table;

-- Oracle, PostgreSQL, and SQLite
SELECT id || '_' || name AS id_name
FROM my_table;

+-----------+
| id_name |
+-----------+
| 1_Boots |
| 2_Pumpkin |
| 3_Tiger |
+-----------+

Potential extensions
Chapter 7, Operators and Functions, covers other ways to work
with string values in addition to CONCAT, including:

• Finding the length of a string
• Finding words in a string
• Extracting text from a string

Concatenate Text from Multiple Fields into a Single Field | 309

Concatenate Text from Fields in Multiple Rows
The following table lists the calories burned by each person.
You want to concatenate the calories for each person into a sin‐
gle row.

+------+----------+ +------+----------+
| name | calories | | name | calories |
+------+----------+ +------+----------+
| ally | 80 | ---> | ally | 80,75,90 |
| ally | 75 | | jess | 100,92 |
| ally | 90 | +------+----------+
| jess | 100 |
| jess | 92 |
+------+----------+

Use a function like GROUP_CONCAT, LISTAGG, ARRAY_AGG, or
STRING_AGG to create the list.

SELECT name,
 GROUP_CONCAT(calories) AS calories_list
FROM workouts
GROUP BY name;

+------+---------------+
| name | calories_list |
+------+---------------+
| ally | 80,75,90 |
| jess | 100,92 |
+------+---------------+

This code works in MySQL and SQLite. Replace GROUP_CON
CAT(calories) with the following in other RDBMSs:

Oracle
LISTAGG(calories, ',')

PostgreSQL
ARRAY_AGG(calories)

SQL Server
STRING_AGG(calories, ',')

310 | Chapter 10: How Do I…?

Potential extensions
The aggregate rows into a single value or list section in Chapter
8 includes details on how to use other separators besides the
comma (,), how to sort the values, and how to return unique
values.

Find All Tables Containing a Specific Column
Name
Imagine you have a database with many tables. You want to
quickly find all tables that contain a column name with the
word city in it.

Solution
In most RDBMSs, there is a special table that contains all table
names and column names. Table 10-1 shows how to query that
table in each RDBMS.

The last line of each code block is optional. You can include it if
you want to narrow down the results for a particular database
or user. If excluded, all tables will be returned.

Table 10-1. Find all tables containing a specific column name

RDBMS Code

MySQL SELECT table_name, column_name
FROM information_schema.columns
WHERE column_name LIKE '%city%'
 AND table_schema = 'my_db_name';

Oracle SELECT table_name, column_name
FROM all_tab_columns
WHERE column_name LIKE '%CITY%'
 AND owner = 'MY_USER_NAME';

PostgreSQL,
SQL Server

SELECT table_name, column_name
FROM information_schema.columns
WHERE column_name LIKE '%city%'
 AND table_catalog = 'my_db_name';

Find All Tables Containing a Specific Column Name | 311

The output will display all column names that contain the term
city along with the tables they are in:

+------------+-------------+
| TABLE_NAME | COLUMN_NAME |
+------------+-------------+
customers	city
employees	city
locations	metro_city
+------------+-------------+

NOTE

SQLite does not have a table that contains all column
names. Instead, you can manually show all tables and then
view the column names within each table:

.tables
pragma table_info(my_table);

Potential extensions
Chapter 5, Creating, Updating, and Deleting, covers more ways
to interact with databases and tables, including:

• Viewing existing databases
• Viewing existing tables
• Viewing the columns of a table

Chapter 7, Operators and Functions, covers more ways to search
for text in addition to LIKE, including:

• = to search for an exact match
• IN to search for multiple terms
• Regular expressions to search for a pattern

312 | Chapter 10: How Do I…?

Update a Table Where the ID Matches
Another Table
Imagine you have two tables: products and deals. You’d like to
update the names in the deals table with the names of items in
the products table that have a matching id.

SELECT * FROM products;

+------+--------------------+
| id | name |
+------+--------------------+
101	Mac and cheese mix
102	MIDI keyboard
103	Mother's day card
+------+--------------------+

SELECT * FROM deals;

+------+--------------+
| id | name |
+------+--------------+
| 102 | Tech gift | --> MIDI keyboard
| 103 | Holiday card | --> Mother's day card
+------+--------------+

Solution

Use an UPDATE statement to modify values in a table using the
UPDATE ... SET ... syntax. Table 10-2 shows how to do this in
each RDBMS.

Table 10-2. Update a table where the ID matches another table

RDBMS Code

MySQL UPDATE deals d,

 products p

SET d.name = p.name

WHERE d.id = p.id;

Update a Table Where the ID Matches Another Table | 313

RDBMS Code

Oracle UPDATE deals d

SET name = (SELECT p.name

 FROM products p

 WHERE d.id = p.id);

PostgreSQL, SQLite UPDATE deals

SET name = p.name

FROM deals d

 INNER JOIN products p

 ON d.id = p.id

WHERE deals.id = p.id;

SQL Server UPDATE d

SET d.name = p.name

FROM deals d

 INNER JOIN products p

 ON d.id = p.id;

The deals table is now updated with the names from the
products table:

SELECT * FROM deals;

+------+-------------------+
| id | name |
+------+-------------------+
| 102 | MIDI keyboard |
| 103 | Mother's day card |
+------+-------------------+

WARNING

Once the UPDATE statement is executed, the results cannot
be undone. The exception is if you start a transaction
before executing the UPDATE statement.

314 | Chapter 10: How Do I…?

Potential extensions
Chapter 5, Creating, Updating, and Deleting, covers more ways
to modify tables, including:

• Updating a column of data
• Updating rows of data
• Updating rows of data with the results of a query
• Adding a column to a table

Final Words
This book covers the most popular concepts and keywords in
SQL, but we’ve only scratched the surface. SQL can be used to
perform many tasks, using a variety of different approaches. I
encourage you to keep on learning and exploring.

You may have noticed that SQL syntax varies widely by
RDBMS. Writing SQL code requires a lot of practice, patience,
and looking up syntax. I hope you’ve found this pocket guide to
be helpful for doing so.

Update a Table Where the ID Matches Another Table | 315

Index

Symbols
!= (inequality) operator, 183
"" (double quotes)

column aliases, 59
enclosing identifiers, 44, 49,

155
enclosing text values in files,

113
$$ (dollar signs), enclosing strings

in PostgreSQL, 155
% (percent sign)

modulo operator, 189
use with LIKE, 187, 188

'' (single quotes)
embedding single quote in

string value, 154
enclosing string values, 49,

154
escape sequences in, 156

() (parentheses)
enclosing subqueries, 61
indicating order of opera‐

tions, 181
* (asterisk)

multiplication operator, 189
selecting all columns, 55

+ (plus sign), addition operator,
179, 189

, (comma) separator, 55, 112, 246,
311

- (minus sign) subtraction opera‐
tor, 189

-- comment for single line of
code, 8, 48

. (dot notation), 59
/ (forward slash) division opera‐

tor, 189
/* */ comment for multiple lines

of code, 48
; (semicolon) ending SQL state‐

ments, 45
< (less than) operator, 183
<= (less than or equal to) opera‐

tor, 183
<=> (null-safe equality) operator

in MySQL, 183
<> (inequality) operator, 183
= (equal sign)

equals operator, 179, 183
equi-joins, 280
most popular comparison

operator, 47
> (greater than) operator, 183

317

>= (greater than or equal to)
operator, 183

\ (backslash) escaping regular
expressions in MySQL, 211

\d (digits) in regular expressions,
211, 216

_ (underscore), use with LIKE,
188

|| (concatenation) operator, 203,
309

~ (tilde) limited regular expres‐
sion support in PostgreSQL,
215

A
absolute value, 194
aggregate functions, 191-193

aggregating rows into single
value or list, 245, 311

COUNT, 80
multiple, in GROUP BY, 244
versus window functions, 250

aliases, 44
aliasing columns, 57
aliasing subqueries, 70
column versus table, 60

ALL keyword, 63
ALTER privileges, 115
ALTER TABLE statements, 115,

118
ambiguous column name (error),

60
AND operator, 75, 179, 180, 181
ANSI standards, 39-41

deciding whether to use in
writing SQL code, 40

deciding which to use in SQL
code, 41

ARRAY_AGG function, 191, 242,
310

AS keyword
column aliases, 58, 60

using when renaming col‐
umns, 44

using with table aliases, 61
ASCENDING (ASC) keyword, 86
ASCII versus Unicode encoding,

159
assignment operators, 191
atomicity, 138
attributes, 11
AUTOINCREMENT, 110
AVG function, 191

ROWS BETWEEN clause,
using with, 259

B
BETWEEN operator, 179, 184
binary data types, 175
binary values, 174

storing external files as, 174
bits, 154
bitwise operators, 191
BLOB data type, 176
Boolean data types, 173
bytea data type (PostgreSQL), 176
bytes, 154

C
CASCADE keyword, 128

caution with, 129
case insensitivity

keywords in SQL, 42
LIKE patterns in MySQL,

SQL Server, and SQLite,
188

regular expressions in
MySQL, 211

in SQL, 7
case sensitivity

aliases in double quotes, 59
LIKE patterns in Oracle and

PostgreSQL, 188

318 | Index

regular expressions in Post‐
greSQL, 215

CASE statements, 237, 238-242
alternative to PIVOT opera‐

tion, 264
using instead of Oracle's

DECODE function, 40
case, changing for a string, 200
CAST function

converting string to datetime
data type, 230

converting to a numeric data
type, 198-199

converting to a string data
type, 217

referencing date value, 161
referencing datetime value,

164
referencing time value, 163

CHAR data type, 157
character data types, 156

ASCII versus Unicode encod‐
ing, 159

Unicode encodings, 159
VARCHAR, CHAR, and

TEXT, 157
characters, trimming from

around strings, 201-203
CHARINDEX function, 204
CHECK constraint, 103

DROP CHECK and DROP
CONSTRAINT, 123

clauses, 7, 45, 51, 53
operators and functions in,

179
order of clauses in SELECT

statement, 8
order of execution in SELECT

statement, 9
sample query using six main

clauses, 54
cloud, databases hosted on, 22
cloud-based storage solutions

requiring SQL queries on, xi
COALESCE function, 86, 235,

297
code examples from this book, xv
column aliases, 68, 271

with case sensitivity and
punctuation, 59

creating, 57
versus table aliases, 60
use with subqueries in

SELECT clause, 62
column names, searching for, 311
columns, 11

adding to a table, 117
deleting from a table, 118
displaying column names in

SQLite output, 16
displaying for a table, 117
filtering by column in

WHERE clause, 74
multiple, counting unique

combinations, 65
multiple, in GROUP BY, 244
qualifying column names, 59
renaming, 116
renaming with aliases, 44
updating data in, 124

command prompt, 15
for MySQL, 17
for Oracle, 18
for PostgreSQL, 18
for SQL Server, 19
for SQLite, 16

comments, 48
COMMIT command, 138

confirming changes with, 140
no ROLLBACK after, 141

common table expressions
(CTEs), 291-301
nonrecursive, 291-295
recursive, 295-301
versus subqueries, 293-295

advantages of CTEs, 294

Index | 319

comparison operators, 182-189
BETWEEN, 184
EXISTS, 185
IN, 186
IS NULL, 187
keywords, 183
LIKE, 187
symbols, 183

composite indexes, 131
composite key, 105
CONCAT function, 309
concatenating strings

CONCAT function, 203
text from multiple fields into

single field, 308-311
concatenating text from

fields in multiple
rows, 310-311

concatenating text from
fields in single row,
309

|| (concatenation) operator,
203

conditional statements, 47, 75,
183
(see also predicates)

connections (database)
connecting database tool to

database, 23
setting up for Python, 26-29
setting up for R, 31-34

constants, 144
(see also literals)

CONSTRAINT keyword, 102
constraints, 101, 106, 120-124

adding to a table, 122
deleting before deleting a col‐

umn, 118
deleting from a table, 123
displaying for a table, 120
foreign key, deleting table

with, 128
modifying in a table, 122

not allowing NULL values in
a column, 102

requiring unique values in
column, 104

restricting values in column,
103

setting default values in col‐
umn, 103

specifying foreign key, 106
specifying primary key, 105

CONVERT function, 231
correlated subqueries, 62

performance issues with, 62
COUNT function, 80, 191

HAVING clause referring to,
84

HAVING COUNT in query,
306

using with DISTINCT, 64,
304

counting starting at 1 in SQL, 205
CREATE statements

for databases, 96
for indexes, 131
privileges to execute, 95, 100,

132, 135
for tables, 98, 100
for views, 134

Create, Read, Update, and Delete
(see CRUD operations)

CROSS JOIN, 271, 272, 275, 281
syntax, 273

CRUD operations, 6, 91-142
for databases, 91-97
for indexes, 129-132
for tables, 97-129
using with transaction man‐

agement, 138-142
for views, 133-137

CSV files, inserting data from into
a table, 112-115

CTEs (see common table expres‐
sions)

320 | Index

CUBE keyword, 249
current date or time, getting,

218-220
CURRENT_DATE function, 47,

218
CURRENT_TIME function, 218
CURRENT_TIMESTAMP func‐

tion, 218

D
data analysis workflow, 24
Data Control Language (DCL), 51
Data Definition Language (DDL),

50
Data Manipulation Language

(DML), 50
data models, 10-12, 91

versus schemas, 93
Data Query Language (DQL), 50
data types, 143-178

choosing for a column, 145
of columns, 97
datetime data, 161-172

datetime data types,
165-172

numeric data, 147-154
decimal data types, 150
floating point data types,

151
integer data types,

148-150
other data, 172-178

Boolean data types, 173
external files, 173-178

string data, 154-161
character data types,

156-159
Unicode data types, 159

database drivers, 20
installing driver for Python,

25
installing driver for R, 31

database files, 22

Database Management Systems
(DBMS), 3

database objects, 91
database tools, 13, 20-24

comparisons of, 21
connecting to a database, 22

databases, 10, 91-97
about, 1
creating, 22, 95
data model, 10
data model versus schema, 93
deleting, 96
displaying name of current,

94
displaying names of existing,

93
NoSQL, 2
qualifying tables with data‐

base name, 60
querying, 54
schemas, 92
showing in MySQL, 17
showing in Oracle, 18
showing in PostgreSQL, 19
showing in SQL Server, 20
showing in SQLite, 16
SQL, 1
switching to another, 95

DATE data type, 143
DATE keyword, 161
DATEDiFF function, 222
dates, 161

converting string to date data
type, 232

data types (see datetime data
types)

date formats, 232
date units in different

RDBMSs, 226
date values, 161
datetime format specifiers,

233

Index | 321

filling in missing dates with
recursive CTE, 295-298

datetime data, 161-172
DATETIME data type, 166
datetime functions, 43, 161,

218-234
converting string to datetime

data type, 230-234
applying date function to

string column, 233
using CAST function, 230
using

STRING_TO_DATE,
TO_DATE, and CON‐
VERT, 231

determining day of week for a
date, 228

extracting part of date or
time, 226-228

finding difference between
two dates, 221

finding difference between
two datetimes, 224

finding difference between
two times, 222

returning current date or
time, 218-220

rounding date to nearest time
unit, 229

in SQLite, 171
subtracting date or time inter‐

val, 220
DATETIME keyword, 164
datetime values, 161-165

date and time values, 164
date values, 161
datetime data types, 165-172
time values, 162

DB files (see database files)
DCL (Data Control Language), 51
DDL (Data Definition Language),

50
DECIMAL data type, 153

decimals
decimal data types, 150
decimal values, 147

declarative programming, 38
DEFAULT constraint, 103
DELETE statements, 101, 120,

140, 142
operators and functions in,

180
DENSE_RANK function, 252

versus ROW_NUMBER and
RANK, 254

derived tables, 69
DESCENDING (DESC) keyword,

86
digits, 154
DISTINCT keyword, 63, 304

using with COUNT, 80
using with COUNT in

SELECT clause, 64, 304
distributed data processing

frameworks, SQL-like inter‐
faces, xi

DML (Data Manipulation Lan‐
guage), 50

documents, storing for use in
SQL, 173

DOUBLE data type, 152
double precision (floating point

data types), 152
DQL (Data Query Language), 50
DROP statements

DROP CHECK and DROP
CONSTRAINT, 123

for databases, 96
for indexes, 132
for tables, 101, 128
for views, 137

duplicates
excluding duplicate rows with

UNION, 287
finding rows containing

duplicate values, 303-306

322 | Index

preserving duplicate rows
with UNION ALL, 287

removing duplicate rows
from result with DIS‐
TINCT, 64, 304

E
ESCAPE keyword, 189
escape sequences

only for strings enclosed in
single quotes, not dollar
signs ($$), 156

escape sequences in a string, 155
EXCEPT operator, 289

order of execution, 291
EXISTS operator, 185

JOIN versus, 185
NOT EXISTS, 186, 186

expressions, 47
(see also common table

expressions)
extensions for SQL, 38
external files (images, documents,

etc.), 173
EXTRACT function, 233

F
FALSE and TRUE values, 172
filepaths to desktop (example),

114
filtering data

alternatives to WHERE
clause, 78

using HAVING clause, 83
using WHERE clause, 73-77

filtering on columns, 74
filtering on subqueries,

75-77
FIRST_VALUE function, 255
fixed point numbers, 150
FLOAT data type, 152
floating point data types, 151

floating point values, 147
foreign keys, 11

deleting table with foreign key
reference, 128

specifying, 106
frequently asked questions

(FAQs), 303-315
concatenating text from mul‐

tiple fields into single
field, 308
from fields in a single

row, 308
from fields in multiple

rows, 310
finding all tables containing

specific column name,
311-313

finding rows containing
duplicate values, 303-306
returning all unique com‐

binations, 304
returning only rows with

duplicate values,
305-306

selecting rows with max value
for another column,
306-308

FROM clause, 8, 46, 66-73, 78
data from multiple tables,

using JOIN, 66
table aliases, 67

order of execution in SELECT
statement, 9

subqueries within, 69-73
benefits of, 72-73

table aliases defined within,
61

FULL OUTER JOIN, 272, 278
functions, 42, 179, 191-235

aggregate, 191, 193
datetime, 218-234
most common, 180
null, 234

Index | 323

numeric, 193-199
operators versus, 179
string, 199-218

G
go command (SQL Server), 20
GREATEST function, 193
GROUP BY clause, 8, 46, 78-82,

242-247
aggregating rows into single

value or list, 245
collecting of rows, 79
grouping by multiple col‐

umns, 243
HAVING clause following, 83
nonaggregate columns in, 192
order of execution in SELECT

statement, 9
in query selecting rows with

max value, 308
steps to take when using, 82
summarizing of rows in

groups, 80
using to create summary

table, 243
grouping and summarizing, 237,

242-250
GROUP BY clause, 242
using ROLLUP, CUBE, and

GROUPING SETS, 247
CUBE keyword, 249
GROUPING SETS key‐

words, 249
ROLLUP keyword, 248

GROUPING SETS keywords, 249
GROUP_CONCAT function,

191, 245, 310
GUIs (graphical user interfaces)

in database tools, 13
using database tool GUI to

modify table, 119

H
HAVING clause, 8, 83-85

filtering results of GROUP
BY, 83

HAVING COUNT in query,
306

operators and functions in,
179

order of execution in SELECT
statement, 9

in query finding duplicate
values, 305

requirement to follow
GROUP BY, 83

used with SELECT, order of
execution, 84

using to filter data, 78
WHERE versus, 84

hexadecimal values, 174
Homebrew package manager

(Linux and macOS), 15
How do I… (see frequently asked

questions)

I
identifiers, 43

double quotes ("") enclosing,
49

naming, 43
IF EXISTS keywords, 128
IF NOT EXISTS keywords, 100
images, 144

in external files, 173
immutability, primary keys, 106
imperative programming, 37
IN operator, 186

NOT IN, 181, 186
indexes, 129-132

book index versus SQL index,
129

creating to speed up queries,
131

deleting, 132

324 | Index

limiting number of, 131
INNER JOIN, 69, 271, 272,

276-277
in query finding duplicate

values, 306
in query selecting rows with

max value, 308
INSERT statements, 98, 110, 120

operators and functions in,
180

installation, RDBMSs, 15
INSTR function, 204
INTEGER data type, 98, 143, 146,

171
integers

dividing by an integer, 190
integer data types, 148
integer values, 147
sample of integer data types,

145
INTERSECT operator, 290

order of execution, 291
intervals

INTERVAL data type, 172
subtracting date or time inter‐

val, 220
IS NOT NULL operator, 187
IS NULL operator, 48, 187

J
joins, 270-274

basics of, 274
CROSS JOIN, 281
in duplicate rows query, 305
EXISTS versus JOIN, 185
FULL OUTER JOIN, 278
INNER JOIN, 274, 276-277
JOIN clause, 270

breakdown of, 271
join condition, 271
JOIN defaulting to INNER

JOIN, 69, 271
join types, 271

JOIN versus UNION, 284
JOIN … ON … syntax, 67,

276
LEFT JOIN, 277
in query selecting rows with

max value, 307
rewriting subqueries with, 63,

72
RIGHT JOIN, 278
self join, 282-284
syntax to join together tables,

272
USING and NATURAL JOIN

shortcuts, 279-281
using instead of correlated

subquery, 62
using JOIN clause in FROM

clause, 66

K
keywords, 7, 42, 51

case insensitive in SQL, 42
operators as, 180

L
LAG function, 258, 297
LAST_VALUE function, 255
LEAD function, 259
LEAST function, 193
LEFT JOIN, 272, 277, 296
LEFT OUTER JOIN, 278
LENGTH function, 199, 217

LEN function in SQL Server,
217

LIKE operator, 184, 187
limited regular expressions

support in SQL Server,
216

NOT LIKE, 188
searching for text in strings,

204
LIMIT clause, 78, 88

Index | 325

LISTAGG function, 191, 242, 310
literals, 144
localhost, 28, 33
logical operators, 181
LOWER function, 200
LTRIM and RTRIM functions,

202

M
math functions, 194
math operators, 189
MAX function, 191, 193, 245
Microsoft SQL Server (see SQL

Server)
MIN function, 191, 193
missing data

from CSV file, interpretations
by RDBMS, 114

replacing missing values with
another value, 103

MongoDB, 3
MySQL

MySQL Workbench, 21
schemas and databases, 93
writing SQL code with, 17

N
naming conventions

column aliases, 59
identifiers, 43

NATURAL JOIN, 273
caution with, 281
using to replace INNER

JOIN, 280
noncorrelated subqueries, 62
nonrecursive CTEs, 291
NoSQL, 2
NOT NULL constraint, 102, 106
NOT operator, 181
NTH_VALUE function, 256
NULL values, 48

allowing in a column, 102

from CSV file, interpretations
by RDBMS, 114

IS NULL and IS NOT NULL
operators, 187

NOT IN versus NOT EXISTS
operator, 186

NULL and NOT NULL col‐
umn constraints, 102

null functions, 234
NULL literal, 145
replaced by COALESCE func‐

tion, 86
numeric data, 147-154

comparing numeric column
to string column, 198

decimal data types, 150
floating point data types, 151
integer data types, 148
numeric values, 147

numeric functions, 43, 147,
193-199
CAST, converting to a

numeric data type,
198-199

generating random numbers,
196

math, 194
rounding and truncating

numbers, 197
NVARCHAR data type, 160

VARCHAR versus, 160

O
object relational mappers

(ORMs), 30
ON clause, 67

JOIN … ON … syntax, multi‐
ple conditions in, 277

operators in, 179
replacing with USING in

joins, 279
operators, 179-191

comparison, 182-189

326 | Index

versus functions, 179
in join conditions, 271
logical, 181
math, 189
most common, 180
versus predicates, 182
union, 285-291
using to combine predicates,

75
OR operator, 75, 179, 181, 182
Oracle

compared to other RDBMSs,
4

Oracle SQL Developer, 21
procedural language SQL

(PL/SQL), 38
schemas and users, 93
writing SQL code with, 17

Oracle Database (see Oracle)
ORDER BY clause, 8, 85-88, 252

alphabetic sorting in ascend‐
ing order, 86

inability to use in subqueries,
88

order of execution in SELECT
statement, 9

sorting by columns and
expressions not in
SELECT, 87

sorting by descending order,
87

in UNION queries, 288
order of execution

SELECT and HAVING clau‐
ses, 84

SELECT statement, 9
union operators, 291

OVER keyword, 252
OVER … PARTITION BY …

syntax, 252, 308

P
pandas dataframes, 29

PARTITION BY keywords, 252,
262

passwords
to connect to database tool, 23
for Python connection to

database, 28
for R connection to database,

33
pattern matching

LIKE operator, 187
(see also regular expres‐

sions)
performance

correlated subqueries, issues
with, 62

optimizing code, 77
speeding up queries with

indexes, 131
PIVOT operation, 263-265

CASE statement as alternative
to, 264

pivoting and unpivoting, 237,
263-267
breaking up values of column

into multiple columns,
263-265

listing values of multiple col‐
umns in single column,
265-267

PL/SQL (procedural language
SQL), 38

POSITION function, 204
POSIX syntax, regular expres‐

sions, 213, 215
PostgreSQL

compared to other RDBMSs,
4

default database, postgres, 97
pgAdmin, 21
writing SQL code with, 18

precision, 151
double precision floating

point data types, 152

Index | 327

single precision floating point
data types, 152

predicates, 47, 75
combining multiple, using

operators, 75
operators versus, 182

primary keys, 11, 105-106
best practices, 106
foreign keys referring to, 106

programming languages
comparison of SQL to other,

37
writing SQL code within, 13,

24-35
Python, 25-31
R, 31-35

punctuation in column aliases, 59
Python, 37

connecting to a database,
25-29

connecting to RDBMS and
writing SQL code within,
14

SQLAlchemy package, 30
use of SQL with, xiii
writing SQL code within,

29-31

Q
qualifying column names, 59, 68
qualifying table names, 60
queries, 6-10, 53-89

basics, 53
combining with UNION, 287
creating view to save results

of, 135
inserting results of into a

table, 110
speeding up by creating an

index, 131
updating rows with results of,

126

querying concepts, advanced,
237-267
CASE statements, 238-242
grouping and summarizing,

242-250
pivoting and unpivoting,

263-267
window functions, 250-262

quotes in SQL, 48

R
R language

connecting to a database,
31-34

connecting to RDBMS and
writing SQL code within,
14

use of SQL with, xiii
writing SQL code within, 34

random number generator, 196
ranges

RANGE BETWEEN versus
ROWS BETWEEN, 262

testing if value falls in with
BETWEEN, 184

RANK function, 252
versus ROW_NUMBER and

DENSE_RANK, 254
RDBMS software, 13
RDBMSs

ANSI SQL versus RDBMS-
specific SQL, 39

comparisons of, 4
deciding which RDBMS to

use, 14
MySQL, 17
Oracle, 17
PostgreSQL, 18
SQL Server, 19
SQLite, 15

defined, 3
using SQLAlchemy with, 30

328 | Index

variations in SQL syntax, 3,
315

writing SQL code with, 14
REAL data type, 171
recursive CTEs, 291, 295-301

filling in missing rows in data
sequence, 295-298

returning all parents of child
rows, 298-301

RECURSIVE keyword, 292
REGEXP function (MySQL), 210
REGEXP_REPLACE function,

208
in Oracle, 212
in PostgreSQL, 216

regular expressions, 184, 209-217
important notes about, 210
in MySQL, 210
in Oracle, 211
in PostgreSQL, 214
in SQL Server, 216
using in Oracle to extract sub‐

strings, 207
using in Oracle to search for

substrings, 206
Relational Database Management

Systems (see RDBMSs)
relational databases, 1
relationship, defined, 11
remote servers, databases on, 22
renaming

of columns, 116
of tables, 116

REPLACE function, 207
result sets, 54
RIGHT JOIN, 272, 278
RIGHT OUTER JOIN, 278
ROLLBACK command, 138

undoing changes with, 141
ROLLUP keyword, 248
rounding numbers, 197
rows

aggregating into single value
or list, 245

collecting in GROUP BY, 79
deleting from a table, 120
displaying for a table, 119
inserting into a table, 120
ranking in a table, 252
ROWS BETWEEN versus

RANGE BETWEEN, 262
updating values in, 125
updating with query results,

126
ROWS BETWEEN clause, 259
ROWS BETWEEN UNBOUN‐

DED clause, 261
ROW_NUMBER function, 252,

252
versus RANK and

DENSE_RANK, 254
using in subquery to return

multiple ranks in each
group, 257

within a window function,
251

RTRIM and LTRIM functions,
202

S
scale, 151
schemas, 91

data models versus, 93
qualifying tables with schema

name, 60
in SQL databases, 2
varying definitions in

RDBMSs, 93
SELECT clause, 8, 46, 55-66

aliasing columns, 57
aliases with case sensitiv‐

ity and punctuation,
59

COUNT and DISTINCT in,
64

Index | 329

DISTINCT in, 63
operators and functions in,

179
order of execution in SELECT

statement, 9
qualifying columns, 59
qualifying tables, 60
selecting subqueries, 61-63

SELECT statements, 7, 45, 140
clauses in, 7, 45
combining results of two or

more with UNION, 285
operators and functions in,

180
self join, 274, 282-284
semi-join, 185
separators, 246, 311
SIMILAR TO, limited regular

expression support in Post‐
greSQL, 215

single precision (floating point
data types), 152

SMALLINT data type, 146
sorting

ascending and descending
order, 86

by columns and expressions
not in SELECT list, 87

SQL
about, 1
comparison to other pro‐

gramming languages, 37
integral role in data land‐

scape, xi
language summary, 51
searching for syntax online, 4
sublanguages, 50

SQL Server, 5
compared to other RDBMSs,

4
default database, master, 97
SQL Server Management Stu‐

dio, 22

writing SQL code with, 19
SQL statements, 6
SQLAlchemy package (Python),

30
SQLite

compared to other RDBMSs,
4

database stored in outside
files, 94

DB Browser for SQLite, 21
fastest RDBMS to set up, 14

star schema, 92
Start Fridays with grandma's

homemade oatmeal
(mnemonic for clauses), 8

START TRANSACTION, 138
statements, 6, 45

clauses in, 45
string functions, 43, 154, 199-218

changing case of a string, 200
concatenating strings, 203
converting to a string data

type, 217
deleting text from a string,

208
extracting portion of a string,

206
finding length of a string, 199
replacing text in a string, 207
searching for text in strings,

203
trimming unwanted charac‐

ters around strings,
201-203

using regular expressions,
209-217

strings, 154-161
casting to decimal to compare

with a number, 199
character data types, 156
comparing string column to

numeric column, 198

330 | Index

converting to datetime data
type, 230-234

single quotes ('') enclosing, 49
string to date functions, 162
string to datetime functions,

164
string to time functions, 162
string values, 154, 156

alternative to using single
quotes, 155

escape sequences for, 155
Unicode data types, 159

STRING_AGG function, 191,
242, 310

STR_TO_DATE function, 231
sublanguages (SQL), 50
subqueries

common table expressions
versus, 293-295

correlated versus noncorrela‐
ted, 62

correlated, performance
issues with, 62

filtering data on, 255, 256
within FROM clause, 69-73

benefits of using, 72-73
order of execution for

sample query, 69-71
naming temporarily with

aliases, 44
no ORDER BY clauses in, 88
within SELECT clause, 61
using instead of a view, 134
versus views, 135
within WHERE clause, 75

benefits of, 76
versus WITH clause, 71
wrapping DISTINCT in and

using COUNT on, 65
SUBSTR or SUBSTRING func‐

tion, 206
substrings, finding in strings, 205
SUM function, 191, 251

using with ROWS BETWEEN
UNBOUNDED clause,
261

Sweaty feet will give horrible
odors (mnemonic for clau‐
ses), 8

T
table aliases, 60

column aliases versus, 60
using in FROM clause, 67

table names, displaying, 311
tables, 1, 10

combining with UNION and
eliminating duplicate
rows, 286

creating simple table, 98
creating table not already

existing, 100
creating table with automati‐

cally generated field, 108
creating table with con‐

straints, 101-105
not allowing NULL values

in column, 102
requiring unique values in

column, 104
restricting values in col‐

umn with CHECK,
103

setting default values in
column, 103

creating table with primary
and foreign keys, 105-108
specifying foreign key,

106
specifying primary key,

105
creating to populate new data‐

base, 22
derived tables, 69
displaying names of existing

tables, 100

Index | 331

inserting query results into,
110-112

inserting text file data into,
112-115

modifying, 115-129
adding a column, 117
adding a constraint, 122
adding rows, 120
changing data type for a

column, 146
deleting a table, 128
deleting column from a

table, 118
deleting constraints, 123
deleting rows, 120
deleting table with foreign

key referencce, 128
displaying columns, 117
displaying constraints,

120
displaying rows, 119
modifying a constraint,

122
renaming a column or

table, 115-117
updating column of data,

124
updating rows of data, 125
updating rows with query

results, 126
qualifying table names, 60
renaming with aliases, 44
showing in MySQL, 17
showing in Oracle, 18
showing in PostgreSQL, 19
showing in SQL Server, 20
showing in SQLite, 16
SQL requirements for, 97
views versus, 54, 133
working with multiple,

269-301
TCL (Transaction Control Lan‐

guage), 51

terminal window, writing SQL
code in, 13, 15
(see also command prompt)

text
concatenating from multiple

fields into single field,
308-311

finding all tables containing
specific column name,
311-313

inserting data from text file
into a table, 112-115

replacing in a string, 207
searching for in a string, 204

TEXT data type, 157, 171
time, 161

(see also datetime data)
converting string to time data

type, 230
data types (see datetime data

types)
time formats, 232
time units in different

RDBMSs, 227
time values, 162

TIME keyword, 163
TIMESTAMP data type, 166
TIMESTAMP keyword, 164
TINYINT data type, 146
TO_DATE function, 231
trailing spaces

excluding in string length,
200

removing with RTRIM, 202
Transaction Control Language

(TCL), 51
transaction management, 138-142

benefits of, 138
double-checking changes

before COMMIT, 139
no ROLLBACK after COM‐

MIT, 141

332 | Index

undoing changes with ROLL‐
BACK, 141

transaction, defined, 138
TRIM function, 200, 201

removing leading or trailing
characters, 202

TRUE and FALSE values, 172
truncating existing table, 101, 120
truncating numbers, 197
type affinities (SQLite), 98

U
Unicode data types, 159

ASCII versus Unicode encod‐
ing, 159

UNION ALL, alternative to
UNPIVOT, 266

union operators, 284-291
EXCEPT, 289
INTERSECT, 290
JOIN versus UNION, 284
order of execution, 291
requirement for matching

data types, 287
UNION, 285

with more than two
tables, 289

with other clauses, 288
UNION ALL, 287, 296

UNIQUE constraint, 104, 106
unique rows (see DISTINCT key‐

word)
UNPIVOT operation, 265-267

UNION ALL as alternative to,
266

UPDATE statements, 125
inability to undo results, 314
operators and functions in,

180
updating a column of data,

124
updating rows of data, 125

updating table where ID
matches another table,
313

updating values based on a
query, 127

UPPER function, 179, 200
usernames

to connect to database tool, 23
for Python connection to

database, 28
for R connection to database,

33
USING clause, replacing ON in

joins, 273, 279
UTF (Unicode Transformation

Format), 159

V
VARBINARY data type (SQL

Server), 176
VARCHAR data type, 98, 143, 157

versus NVARCHAR, 160
VARCHAR2 in Oracle, 110

vi text editor, 19
views, 133-137

creating to restrict access to
tables, 133

creating to save query results,
135

deleting, 137
displaying existing views, 136
querying, 54
subqueries versus, 135
updating, 137

W
web page for this book, xvi
WHERE clause, 8, 46, 73-78

in CROSS JOINs, 282
DELETE statement using, 140
filtering on columns, 74, 89
filtering on subqueries, 75

Index | 333

versus HAVING, 84
omitting in DELETE state‐

ment, 120
operators and functions in,

179
order of execution in SQL

code, 9
in self join, 284
in UPDATE statement, 126

whitespace
removing spaces around a

string, 201
spaces in column alias names,

59
in SQL, 49, 51

window functions, 237, 250-262
aggregate functions versus,

250
breakdown of, 252
calculating moving average,

259

calculating running total, 261
ranking rows in a table, 252
returning first two values in

each group, 257
returning first value in each

group, 255
returning prior row value, 258
returning second value in

each group, 256
window, defined, 252
WITH clause

in common table expressions,
291

RDBMSs supporting, 71
subqueries versus, 71

working code, writing then opti‐
mizing, 77

Y
YEAR function, 179, 227

334 | Index

About the Author
Alice Zhao is a data scientist who is passionate about teaching
and making complex things easy to understand. She has taught
numerous courses in SQL, Python, and R as a senior data sci‐
entist at Metis and as a cofounder of Best Fit Analytics. Her
highly rated technical tutorials on YouTube are known for
being practical, entertaining, and visually engaging.

She writes about analytics and pop culture on her blog, A Dash
of Data. Her work has been featured in Huffington Post, Thrill‐
ist, and Working Mother. She has spoken at a variety of confer‐
ences including Strata in New York City and ODSC in San
Francisco on topics ranging from natural language processing
to data visualization. She has her MS in analytics and BS in
electrical engineering, both from Northwestern University.

Colophon
The animal on the cover of SQL Pocket Guide is an Alpine sala‐
mander (salamandra atra). Most commonly found in ravines
high up in the Alps (upwards of 1,000m), the Alpine salaman‐
der stands out for its unusual ability to handle cold weather.
The shiny black creatures prefer shady, moist places and the
cracks and gaps in stone walls. It feeds on worms, spiders,
snails, and small insect larvae.

Unlike other salamanders, the Alpine salamander gives birth to
fully formed juveniles. A pregnancy lasts two years, but at even
higher altitudes (1,400–1,700m), it can last up to three years.
The species is generally protected throughout the Alps, but cli‐
mate change has more recently impacted their preferred habitat
of rocky, not-too-dry landscapes.

Many of the animals on O’Reilly covers are endangered; all of
them are important to the world.

The cover illustration is by Karen Montgomery, based on a
black and white engraving from Lydekker’s Royal Natural His‐
tory. The cover fonts are Gilroy Semibold and Guardian Sans.
The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu
Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

http://www.oreilly.com/online-learning

	Copyright
	Table of Contents
	Preface
	Why SQL?
	Goals of This Book
	Updates to the Fourth Edition
	Navigating This Book
	I. Basic Concepts
	II. Database Objects, Data Types, and Functions
	III. Advanced Concepts

	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. SQL Crash Course
	What Is a Database?
	SQL
	NoSQL
	Database Management Systems (DBMS)

	A SQL Query
	SQL Statements
	SQL Queries
	The SELECT Statement
	Order of Execution

	A Data Model

	Chapter 2. Where Can I Write SQL Code?
	RDBMS Software
	Which RDBMS to Choose?
	What Is a Terminal Window?
	SQLite
	MySQL
	Oracle
	PostgreSQL
	SQL Server

	Database Tools
	Connect a Database Tool to a Database

	Other Programming Languages
	Connect Python to a Database
	Connect R to a Database

	Chapter 3. The SQL Language
	Comparison to Other Languages
	ANSI Standards
	SQL Terms
	Keywords and Functions
	Identifiers and Aliases
	Statements and Clauses
	Expressions and Predicates
	Comments, Quotes, and Whitespace

	Sublanguages

	Chapter 4. Querying Basics
	The SELECT Clause
	Selecting Columns
	Selecting All Columns
	Selecting Expressions
	Selecting Functions
	Aliasing Columns
	Qualifying Columns
	Selecting Subqueries
	DISTINCT

	The FROM Clause
	From Multiple Tables
	From Subqueries
	Why Use a Subquery in the FROM Clause?

	The WHERE Clause
	Multiple Predicates
	Filtering on Subqueries

	The GROUP BY Clause
	The HAVING Clause
	The ORDER BY Clause
	The LIMIT Clause

	Chapter 5. Creating, Updating, and Deleting
	Databases
	Data Model Versus Schema
	Display Names of Existing Databases
	Display Name of Current Database
	Switch to Another Database
	Create a Database
	Delete a Database

	Creating Tables
	Create a Simple Table
	Display Names of Existing Tables
	Create a Table That Does Not Already Exist
	Create a Table with Constraints
	Create a Table with Primary and Foreign Keys
	Create a Table with an Automatically
Generated Field
	Insert the Results of a Query into a Table
	Insert Data from a Text File into a Table

	Modifying Tables
	Rename a Table or Column
	Display, Add, and Delete Columns
	Display, Add, and Delete Rows
	Display, Add, Modify, and Delete Constraints
	Update a Column of Data
	Update Rows of Data
	Update Rows of Data with the Results of a Query
	Delete a Table

	Indexes
	Book Index Versus SQL Index Comparison
	Create an Index to Speed Up Queries

	Views
	Create a View to Save the Results of a Query

	Transaction Management
	Double-Check Changes Before a COMMIT
	Undo Changes with a ROLLBACK

	Chapter 6. Data Types
	How to Choose a Data Type
	Numeric Data
	Numeric Values
	Integer Data Types
	Decimal Data Types
	Floating Point Data Types

	String Data
	String Values
	Character Data Types
	Unicode Data Types

	Datetime Data
	Datetime Values
	Datetime Data Types

	Other Data
	Boolean Data
	External Files (Images, Documents, etc.)

	Chapter 7. Operators and Functions
	Operators
	Logical Operators
	Comparison Operators
	Math Operators

	Aggregate Functions
	Numeric Functions
	Apply Math Functions
	Generate Random Numbers
	Round and Truncate Numbers
	Convert Data to a Numeric Data Type

	String Functions
	Find the Length of a String
	Change the Case of a String
	Trim Unwanted Characters Around a String
	Concatenate Strings
	Search for Text in a String
	Extract a Portion of a String
	Replace Text in a String
	Delete Text from a String
	Use Regular Expressions
	Convert Data to a String Data Type

	Datetime Functions
	Return the Current Date or Time
	Add or Subtract a Date or Time Interval
	Find the Difference Between Two Dates or Times
	Extract a Part of a Date or Time
	Determine the Day of the Week of a Date
	Round a Date to the Nearest Time Unit
	Convert a String to a Datetime Data Type

	Null Functions
	Return an Alternative Value if There Is a Null Value

	Chapter 8. Advanced Querying Concepts
	Case Statements
	Display Values Based on If-Then Logic
for a Single Column
	Display Values Based on If-Then Logic
for Multiple Columns

	Grouping and Summarizing
	GROUP BY Basics
	Aggregate Rows into a Single Value or List
	ROLLUP, CUBE, and GROUPING SETS

	Window Functions
	Aggregate Function
	Window Function
	Rank the Rows in a Table
	Return the First Value in Each Group
	Return the Second Value in Each Group
	Return the First Two Values in Each Group
	Return the Prior Row Value
	Calculate the Moving Average
	Calculate the Running Total

	Pivoting and Unpivoting
	Break Up the Values of a Column into Multiple Columns
	List the Values of Multiple Columns in a Single Column

	Chapter 9. Working with Multiple
Tables and Queries
	Joining Tables
	Join Basics and INNER JOIN
	LEFT JOIN, RIGHT JOIN, and FULL OUTER JOIN
	USING and NATURAL JOIN
	CROSS JOIN and Self Join

	Union Operators
	UNION
	EXCEPT and INTERSECT

	Common Table Expressions
	CTEs Versus Subqueries
	Recursive CTEs

	Chapter 10. How Do I…?
	Find the Rows Containing Duplicate Values
	Return All Unique Combinations
	Return Only the Rows with Duplicate Values

	Select Rows with the Max Value for Another Column
	Concatenate Text from Multiple Fields into a Single Field
	Concatenate Text from Fields in a Single Row
	Concatenate Text from Fields in Multiple Rows

	Find All Tables Containing a Specific Column Name
	Update a Table Where the ID Matches Another Table

	Index

