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Chapter 0

Preliminaries

0.1 Polynomials and Rational

Fuctions

.3r+2<8
3r<8—2
3xr <6
T <2

L3-2x <7

—2r <4

T > —2

. 1<2-3x<6
1-2<-3x<6-2
—-1<-3r<4

4
357773
L —2<2x—-3<5
1 <2 <8

1

T+ 2

>0

r—4 =
z+2>0,x—4>00rzx+2<0,2—-4<0
r>-2,x>4orx< -2, x<4
r>4orzx<—2

2¢ +1
.x+<0

T+ 2
20 +1<0,z24+2>0o0r2x4+1>0,2+2<0
x<—%,x>—20rx>—%,x<—2

1

—2<z< ) (Since z > —1, 2 < —2 is not
possible).
2?2 +22-3>0

(z+3)(z-1)=>0
r>lorax < -3
2?2 =5 —-6<0
(x—6)(z+1)<0
-1<z<6

10.

11.

12.

13.

14.

15.

17.

lt+5]<2-2<z+5<2
—2-5<r<2-5
—T<z< -3
20 +1] <4
—4<2x+1<4
—4-1<2xr<4—-1
-5 <2z <3

5 < 3
e p<c

2 2
Yes. The slope of the line joining the points

1

(2, 1) and (0, 2) is —5 which is also the slope
of the line joining the Points (0, 2) and (4, 0).
No. The slope of the line joining the points
(3,1) and (4, 4) is 3, while the slope of the
line joining the points (4, 4) and (5, 8) is 4.

No. The slope of the line joining the points
(4, 1) and (3, 2) is —1, while the slope of the
1
line joining the points (3, 2) and (1, 3) is —3
No. The slope of the line joining the points
(1, 2) and (2, 5) is 3, but the slope of line join-

ing the points (2, 5) and (4, 8) is 3

=4+ 16 =20

To — X1 - 3—1 -
(¢) The equation of line is
y=m(z—x0) + Yo
y=2(x—1)+2
y=2x

=Vi+1= \/5
Y2 — Y1 —3+2 1
b = = -
() X9 — I —1-1 2

(¢) The equation of line is
y =m(x—xo) +yo
y= =1+

T — 3

<

()d{(03,—14) (— 11—04)}
\/ ~1.1-0.3)" + (=04 + 1.4)°

(—1.4)> +1 =296

(b) m=2"9 _ —04+14 1
To — X1 —-1.1-0.3 1.4
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(¢) The equation of line is 57
y=m(1x—mo)+yo “7
L4y = “2 — 1.66 ]
z+ 1.4y = —1.66 =

18. (a) d{(1.2,2.1),(3.1,2.4)}
_\/31—12 +(24-21)°

(1.9)> + (0.3)°
1 1 1
=+3.614+0.09 =+v3.7 22'y:_1(x+2)+1:_1$+§

— 24-21 0.3 ]

(b) m=L2"Y _ =2 ~0.16 o

ro—z; 31-12 1.9 i

(¢) The equation of line is ]
y=m(z — z0) + Yo

=(0.16) (r —1.2) — 2.1 L S L B B T
-5 -4 -3 -2 -1 7 1 2 3
y = 0.16z — 2.292 x -+
y ]
-3
19. y=2(z—-1)+3=22+1 ]

5 23. Parallel. Both have slope 3.

2] 24. Neither. Slopes are 2 and 4.
1
T — T 25. Perpendicular. Slopes are —2 and 3
26. Neither. Slopes are 2 and —2.
1
27. Perpendicular. Slopes are 3and -3
1
28. Parallel. Both have slope —3
29. (a) y=2(x—2)+1
20. y=1 1
/ 2.0 (b) y:—§($—2)+1
e 30. (a) y=3z+3
2— 1
08 (b) y=—z2+3
0.4—
{xwxwyxwxv-vaxxxxyxxxxx 31. (a)y:2($_3)+1
-2 -1 T 1 2
-] (b) y=—5(@-3)+1
—0.8-
T e 32. (a) y=—1
] (b) z=0
- 3—1 2
33. Sl = — =2
Slope m 5 1= 1

Equation of lineisy =2(x — 1)+ 1 =2z — 1.
21. y=12(x—23)+1.1=12z—1.66 When z =4,y ="17.



0.1.

34.

35.
36.
37.

38.
39.

40.
41.
42.

43.

44.

45.

46.

47.

48.

POLYNOMIALS AND RATIONAL FUCTIONS

1
1 = —
Slope m 5

1
Equation of line is y = 3 (r+2)+ 1.
When z =4, y = 4.

Yes, passes vertical line test.
Yes, passes vertical line test.

No. The vertical line x = 0 meets the curve
twice; nearby vertical lines meet it three times.

No, does not pass vertical line test.

Both: This is clearly a cubic polynomial, and
also a rational function because it can be writ-
ten as

[ |
fa)= T
This shows that all polynomials are rational.
Rational.
Rational.

Neither: Contains square root.

We need the function under the square root to
be non-negative. x + 2 > 0 when x > —2. The
domain is {z € R|z > -2} = [-2, 0).

Negatives are permitted inside the cube root.
There are no restrictions, so the domain is
(—00, 00) or all real numbers.

The function is defined only if
?—zx—-6>0andz#5
(x—3)(r+2)>0and x #5
r<—-2orrx>3andx#5
(—o0, —2]U[3, 5) U (5,00)

We need the numerator function under square
root be non-negative. 2 — 4 > 2, when
|z] > 2 Also the denominator cannot be zero.
9 — 2% > 0, when |z| < 3 The domain is

(-3, -2] U [2, 3).

The denominator cannot be zero. 22 —1 = 0
whenx = 1. The domain is

{z e Rz # 1}

= (—OO, _1) U (_17 1) U (1a OO)

The denominator cannot be zero.
22422 —6=0when z = -1+ /7.
The domain is {:c eERlz# -1+ \ﬁ}

= (—oo,—l—ﬁ)U(—l—f?, —1+\ﬁ)
U(—l—&-\f77 oo)

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

3
f(0)=02-0-1=—-1
f@2)=22-2-1=1
F(=3)=(=3)"—(=3)—1=11

1 1\* 1 5
f(g):@ R
Fy=7=1
f(lO)-l%:O.S
£(100) = 2 =003

Again, the only constraint we know for sure is
that x should not be negative, i.e., a reasonable
domain would be {z|z > 0}.

Width can be anywhere from 0 to 200 feet. A
reasonable domain is {z|0 <z <200} .

Answers vary. There may well be a positive
correlation (more study hours = better grade),
but not necessarily a functional relation.

Answers vary. Evidence supports a relation-

ship.

Answers vary. While not denying a negative
correlation (more exercise = less weight), there
are too many other factors (metabolic rate,
diet) to be able to quantify a person’s weight
as a function just of the amount of exercise.

Answers vary. Objects of all weights fall at the
same speed unless friction affects them differ-
ently.

A flat interval corresponds to an interval of
constant speed; going up means that the speed
is increasing while the graph going down means
that the speed is decreasing. It is likely that
the bicyclist is going uphill when the graph is
going down and going downhill when the graph
is going up.

Influxes of immigrants occur where graph rises.
War and plague occur where graph falls.

The z—intercept occurs where
0=a22-22—-8=(z—4)(z+2),s0xr=4or
x = —2; y—intercept at y = 02—2(0) -8 = —8

The x— intercept occurs where
0=a?+4z+4 = (x+2)7° soz = —2; y—
intercept at y = 02 +4(0) +4 = 4.



61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

The x—intercept occurs where
0=2-8=(z—2)(2*+2x+4),s0x=2
(using the quadratic formula on the quadratic
factor gives the solutions = —1 £ v/—3, nei-
ther of which is real so neither contributes a
solution); y—intercept at y = 03 — 8 = —8.

The x—intercept occurs where
0=a3—-322+3z—1=(z—1)" soz=1
y—intercept at y = (0)*—3(0)°+3 (0)—1 = —1.

The x—intercept occurs where the numerator
is zero, at 0 = 2* —4 = (2 —2)(z+2), so
. (0> —4
= +2; y—intercept at y = ~———— = —4.
x ; y—intercept at y 01

The x-intercept occurs where the numerat or
is zero, at ©x = %; y—intercept at

20 -1

S0 -4 4

2?2 — 4z + 3 = (x — 3) (z — 1), so the zeros are
z=1and z =3.

2?2+ 2 — 12 = (x +4) (z — 3), so the zeros are
x=—4and z = 3.

Quadratic formula gives
44168

T=—o
=242

Quadratic formula gives

—4+ /42 -4(2)(-1)
2(2)
—246
2

23 =32 +2r=2(x—-2)(z—1).
So, the zeros are x =0, 1 and 2.

xTr =

23 —222 —2+2=(z—-2)(z—1)(x+1). So,
the zeros are x = —1, 1 and 2.

With ¢t = 23,25 + 2% — 2 becomes > +t — 2
and factors as (¢ +2)(t —1). The expression
is zero only if one of the factors is zero, i.e., if
t =1ort=—2 With z = t'/3 the first oc-
curs only if x = (1)1/3 = 1. The latter occurs
only if z = (—2)"/3, about —1.2599.

42t —dr—4=(x—-2)(x+1)(z+2).
So, the zeros are x = —2, —1 and 2.

Substitute y = 22 + 2z + 3 intoy = v + 5
242 +3=2+5

74.

75.

76.

7.

78.
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P +2-2=0
(x4+2)(z-1)=0
r=—-2o0orzx=1

When z = -2,y =3

Whenz=1,y=6

The points of intersection are (—2, 3) and
(1, 6).

Substitute y = 22 + 42 —2 into y = 222+ 2 —6
44 —-2=22>4+1—-6

22 -32x-4=0

(z—4)(z+1)=0

r=4orz=-1

When z =4, y = 30

When z = -1, y = -5

The points of intersection are (4, 30) and
(-1, =5).

If B(h) = —1.8h + 212, then we can solve
B (h) = 98.6 for h as follows:

98.6 = —1.8h + 212

1.8h =113.4

h= % =63

This altitude (63,000 feet above sea level, more
than double the height of Mt. Everest) would
be the elevation at which we humans boil alive
in our skins. Of course the cold of space and
the near-total lack of external pressure create
additional complications which we shall not try
to analyze.

Let x represent compression and L (z) repre-
sent spin rate. Given the points (120, 9100)
and (60, 10,000), the linear function is

y = —15(x — 60) + 10, 000.

The spin rate of a 90-compression ball is 9550,
and the spin rate of a 100-compression ball is
9400.

This is a two-point line-fitting problem. If a
point is interpreted as (x, y)=(temperature,
chirp rate), then the two given points are
(79, 160) and (64, 100). The slope being
160 — 100 60

79-64 15
y — 100 = 4 (z — 64) or y = 4x — 156.

=4, we could write

From problem 77 we know the temperature is
1
a function of chirping rate, T (r) = v + 39,

where 7 is measured in chirps per minute. The
number of chirps in 15 seconds will then be

1
Zr, and the temperature may conveniently be
found by adding 39.
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79. Her winning percentage is calculated by the (b) Intercepts: y = 8 (No a-intercepts). Min-

100 i _ . 8
formula P = 711)’ where P is the winning imum at (—1, 7). No asymptotes.

percentage, w is the number of games won
and ¢ is the total number of games. Plugging
in w = 415 and t = 415 + 120 = 535, we
find her winning percentage is approximately
P =~ T77.57, so we see that the percentage dis-
played is rounded up from the actual percent-
age. Let z be the number of games won in a .
row. If she doesn’t lose any games, her new 4

winning percentage will be given by the for- ]

1 41 T T T T T T T o — T T T T T T T T
M. In order to have her :
535 +x *

winning percentage displayed as 80%, she only
needs a winning percentage of 79.5 or greater.
Thus, we must solve the inequality

mula P =

70.5 < 100(415 + z) 2. (a) Intercepts: =z = V3 = +1.73, y = 3.
035 +w Maximum at (0, 3). No asymptotes.
100(415 + )
795 < ———=
5 +x 57
79.5 (535 + ) < 41500 + 100z .

42532.5 + 79.5x < 41500 + 100z

1032.5 < 20.5x

504 < =x

(In the above, we are allowed to multiply both

sides of the inequality by 535 + x because we 5 4 s -
assume z(the number of wins in a row) is pos- ]

itive.) Thus she must win at least 50.4 times ,
in a row to get her winning percentage to dis- -7
play as 80% Since she can’t win a fraction of a -4
game, she must win at least 51 games in a row. -

0.2 Graphing Calculators and

Computer Aleebra Svs- (b) Intercepts: = = 0.566, 19.434, y = —11.
p g y Maximum at (10,89). No asymptotes.
tems
100
1. (a) Intercepts: z = +1, y = —1. Minimum
occur at (0, —1). No asymptotes. 75
2.0
-1 y 50
1.6—
1.2:
0.8: 25
0.4-]
I {TTU.’JA{TT{ T T LI I/ s s B B B B S B e |
- 3 B! B > -5 %/ 5 10 15 \0 25
X —0.4— X
0.8:/
y
—1.2
6]
201
3. (a) Intercepts: z = —1, y = 1. No extrema

or asymptotes.



ntercepts:

(b) 1 p
r ~ —4.066, —
—14. Local min

at (2.58, —48.427).

Approximately at
asymptotes.

a
o

N
o

0.72 and 4.788, y =
imum: Approximately
Local maximum:

(—2.58, 20.4225). No

FrT T T AT T[T T I T T T 11 rorri
-5.0 -2.5 \Qm 25 5.0

-25—

50

(a) Intercepts: x = v/10 ~ 2.1544, y = 10.
No extrema or asymptotes.

15—

(5]
L1111

[rrrr1rrrra
-2 -1

i

Jé\

(b) Intercepts: z = 0.0334, —5.494 and 5.46,
y = —1. Local minimum: Approximately
at (—3.16,—64.24). Local maximum: Ap-
proximately at (3.16,62.245). No asymp-

totes.

CHAPTER 0. PRELIMINARIES

(4]
o
Lty

N
(&)

TTTTTTTTTT7TUTTd
0 2.5 5.0

[T T T T[T TIo
5.0 -25

IIII?IIIITII

Intercepts: z = +1,y = —1. Minimum at
(0, —1). No asymptotes.

[ T T T T T T T U™ T T T T T T T T 1
-2 - - 1 2
X —0.4—]
_0.8]

Intercepts: « = 0475, —1.395,y =
—1. Minimum at (approximately)
(—1/+/2,—2.191). No asymptotes.

(a) Intercepts: = = £v/2,y = 2. Maximum

at (0, 2). No asymptotes.
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LI I O e

Intercepts: = ~ +2.33, and +£0.74,y =
3. Local maximum at (0,3). Minima at
(£v/3, —6). No asymptotes.

5.0

-10.

Intercepts: x ~ —1.149, y = 2. No ex-
trema or asymptotes

.
y 4
—3
Intercepts: « ~ 0.050,y = —1. The two
. 24 — /176
local maxima occur at z = — 0
24 4+ /176
and r = — 4_170, while the two
.. 24 + /176
local minima occur at x = — 0
24 — /176
and x = —{/ —————. No asymptotes.

10

L I - 2 e e |
-3 -2 -1 1 2 3
X

8. (a) Intercepts: z = v/12, y = 12. No extrema
or asymptotes

y 10:

s
[xxxwyxwxvaxxxxyxxxx1
-2 -1 - 1 2

x ]

-]

o]

(b) Intercepts: x o~ —456,y =

1. Local maximum at approximately
(—3.67, 143.42). Local Minimum at ap-
proximately (—0.33,0.98), No asymp-
totes.

—200

100y

Close up of the behavior near the origin:



9.

(a)

LI e
-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2
X

Intercepts: y = —3 (no a-intercepts). No
extrema. Horizontal asymptote y = 0.
Vertical asymptote z = 1.

10—

Intercepts y = 0 (and z = 0). No ex-
trema. Horizontal asymptote y = 3. Ver-
tical asymptote x = 1.

Intercepts y = 0 (and = 0). Lo-
cal maximum at (0, 0).Local minimum at
(2, 12).Vertical asymptote = 1. Slant
asymptote y = 3x + 3.

10. (a)

CHAPTER 0. PRELIMINARIES

30

20

No x-intercept. y-intercept at y = 2. No
extrema. Horizontal asymptote y = 0.

Vertical asymptote z = —2.
30

Intercepts * = 0, y = 0. No extrema.

Horizontal asymptote y = 4. Vertical
asymptote r = —2.
20—
16—
12—
o]
L L L L L7 L L L L
-10 -8 -6 -4 412 /7 2 4 6 8 10
X 4—
-8
124
16
_20-]

Intercepts z = 0,y = 0. Local maximum
at (—4,—32). Local minimum at (0, 0).
Vertical asymptote x = —2. Slant asymp-
tote y = 4z — 8.
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11. (a)

Intercepts are y = —% (No a-intercepts).
Local maximum: At (0, —%) Horizontal
asymptote: y = 0. Vertical asymptotes:
r =42

L B
5 -4 -3

Intercepts: « = 0, y = 0. No extrema.
Vertical asymptotes:z = £2. No horizon-
tal asymptotes.

Intercepts: © = 0, y = 0. Local max-
imum: At (0, 0). Vertical asymptotes:
x = +2. Horizontal asymptotes: y = 2

12. (a)

I I I O A5 TT [T T T T T[T T 1T 1
-7.5 -5.0 -2.5 e{o 25 5.0 7.5
X

No intercepts.

2
Local maximum: At (0,—<).

Vertical
asymptotes: At z = 43. Horizontal
asymptote: y =0

10
8
6
4
2
S0 s 1o s i e 8 10

Intercepts: « = 0, y = 0. No extrema.
Vertical asymptotes: x = £3. No hori-

zontal asymptotes.
10—

Intercepts: =z = 0,y = 0. Local max-
imum: At (0,0). Vertical asymptotes:
x = £3. Horizontal asymptote: y = 6



10
13. (a)
(b)

14. (a)

L LIS I e e e e |
-15 -10 -5 o 5 10 15
X

3
Intercepts: y = Z(no x-intercepts). Max-

3
imum at (0, Z) Horizontal asymptote

y=0.

2
y-intercept at y = 3

Horizontal asymp-

No z-intercept.

2
Maximum at (0, §)

tote y = 0.

1

Intercepts: * = -2, y = —=. No ex-

trema. Horizontal asymptotes at y = 0.
Vertical asymptotes at t = —3 and z = 2.

15.

CHAPTER 0. PRELIMINARIES

-2 -1 T 2 3 4 5

Intercepts at « = 1, y = — . Local maxi-
mum at approximately (3.83, 0.09). Local
minimum at approximately (—1.83, 2.91).

Horizontal asymptote y = 0. Vertical
asymptotes t = —3 and z = —1.
10.0
7.5
50 y
2.5
L F T
-2.5 25 5.
—2.5

5.0

Intercepts: * = 0, y = 0. No extrema.
Horizontal asymptotes: = +3. No ver-
tical asymptotes.

No extrema or intercepts. Vertical
asymptotes: x = £2. Horizontal asymp-
totes: y = £3



0.2.

16.

17.

18.

19.

20.

GRAPHING CALCULATORS AND COMPUTER ALGEBRA SYSTEMS 11

-10—

(a) Intercepts: = = 0, y = 0. No extrema.
Horizontal asymptotes: y = +2. No ver-
tical asymptotes.

T T T T1T T P T T 1T T T 17T 7T 1T T
5 -4 -3 -2 -1 /U 1 2 3 4 5
x 1
y
—3
—4—]
-5
(b) No intercepts or extrema. Vertical
asymptotes: x = +1. Horizontal asymp-
totes: y = +2
5
o
o]
.
L L L L T A L L L DL L
5 -4 3 -2 41 7 2 3 4 5
X -1
y 4
—3
4
—5—

Vertical asymptotes where
22 —4=0= 2 ==+2.

Vertical asymptotes where
22 -9=0= =43

Vertical asymptotes where
2> +32—-10=0

= (z+5)(z—-2)=0
=>r=-5o0rzr=2

Vertical asymptotes where
22 =22 —15=(xz—5)(z+3)=0

21.

22,

23.

24.

25.

=r=-30orx=2>5

Vertical asymptotes where

23+ 322 4+22=0

:>x(x2+3:17+2) =0
=z(x+2)(x+1)=0
=x=0,—2o0orx=-1

Since none of these x values make the numer-
ator zero, they are all vertical asymptotes.

Vertical asymptotes where
2’ —9=0=z==3.

A window with —0.1 <z < 0.1 and —0.0001 <
y < 0.0001 shows all details.

107°

10—

8-

6

.
T T |
-0.1 -0.05 o 0.05 0.1

x -2

—4

y 4

-6

—8

A window with —4 < z <12 and —1600 < y <
2000 shows all details.

2,000
1,500

y 1,000

LI B B
5.0 7.5 10.0
x

—1,00

—1,50

A window with —15 <z <15 and —80 <y <
80 shows all details.

75

50

25

TT TT T T T T T T T T T TT1]
5 10 15
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26. A window with —3 < x <4 and —80 <y < 30
shows all details.
o

27. A window with —10 <z <10 and -5 <y <2
shows all details.

28. A window with —10 <z < 10and —11 <y <2
shows all details.

29. Graphof y = \/(z — 1) — (22 — 1) :

30.

31.

CHAPTER 0. PRELIMINARIES

The blow-up makes it appear that there are
two intersection points. Solving algebraically,
Vr—1=x*—1 (for x > 1) when
p-1=(22=1)" = ((z—1) (x+1))*

— (@ - 1)z +1)?
We see that = 1 is one solution (obvious from
the start), while for any other, we can cancel
one factor of x — 1 and find
l=(@-1)(z+1)°=(22-1)(z+1)
=23 4+a2 -z -1
Hence 2% +2% —2—2 = 0. By solver or spread-

sheet, this equation has only the one solution
x ~ 1.206.

Graph of y = /(22 +4) — (22 +2) :
§
oo

Graph shows one intersection at x = 0.
Graph of y = (2% — 322) — (1 — 3x) :
1.0

0.5

o 05 1.0 2.0
ood—v v T

2.

The graph shows the only intersection near



0.2.

32.

33.

34.

GRAPHING CALCULATORS AND COMPUTER ALGEBRA SYSTEMS 13

x = 1. Solving algebraically,
3 =32 =1- 32

=23 -322+32-1=0
= (z-1)°=0

=z=1
So there is only one solution: = = 1.

Graph of y = (23 + 1) — (=322 — 3z) :

—1.0

—0.8

—0.6

0.4

0.2

T —r =TT T T T 1100
2.0 ¥ -1.0 -0.5 ofo
H-0.2

-0.4

Graph shows only intersection near x = —1.
Algebraically, 23 + 1 = —322 — 32 when

2 +322+3x+1=(z+1)* =0 and the only
solution is x = —1.

Graph of y = (22 — 1)2 -2z +1)3:

— X
-5.0 x\s\k olo 25 5.0 75 fo.o
Lol I I T T Y A

After zooming out, the graph shows that there
are two solutions: one near zero, and one
around ten. Algebraically,

(@2 -1)"" =22 +1

= (22 -1)° =z +1)°

=t -2+ 1 =83+ 122 + 6 + 1

= 2" —82% — 1422 — 62 =0
:>x(x3—8x2—14m—6) =0

We thus confirm the obvious solution x = 0,
and by solver or spreadsheet, find the second
solution = = 9.534.

Graph of y = (z +1)° — (2 — z)3 :

35.

36.

37.

38.

39.

40.

Graph shows one solution at approximately
r = 0.62.

Graph of y = cosx — (22 — 1) :

The graph shows that there are two solutions:
x =~ £1.177 by calculator or spreadsheet

Graph of y =sinz — (22 + 1) :

1
x
-2 -1 1 2
S T Y N N S I Y Y Y N |

Graph shows no intersections.

Calculator shows zeros at approximately
—1.879,0.347 and 1.532.
Calculator shows zeros at approximately

3.87,0.79 and —0.66.

Calculator shows zeros at approximately .5637
and 3.0715.

Calculator shows zeros at approximately 1 and
0.54.
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41.

42.

43.

44.

45.

46.

Calculator shows zeros at approximately
—5.248 and 10.006.

Calculator shows zeros at approximately
2.02, — 0.26, — 1.10 and —2.04.

The graph of y = 22 on the window —10 < z <
10,—10 < y < 10 appears identical (except for
labels) to the graph of y = 2(x — 1)* + 3 if the
latter is drawn on a graphing window centered
at the point (1,3) with 1 -5v2 < 2 < 1+5v/2,
—7<y<13.

The graph of y = z* is below the graph of
y = 22 when —1 < z < 1, and above it when
x > 1. Both graphs have roughly the same up-
ward parabola shape, but y = z* is flatter at
the bottom.

Vy? is the distance from (x,y) to the z-axis

24 (y—2)% is the distance from (z,y) to

the point (0, 2). If we require that these be the
same, and we square both quantities, we have

2
y* =2+ (y—2)
v =2 +y? —dy+4
4y =x®+4

1
Y= ZzQ +1
In this relation, we see that y is a quadratic
function of . The graph is commonly known
as a parabola.

The distance between (x,y) and the x-axis is
v y?. The distance between (z,y)and (1,4)

is \/(m — 1%+ (y—4)°
and squaring both sides yields y? = (z — 1)° +
(y — 4)* which simplifies to y = 2w — 1)>+16
(a parabola).

Setting these equal

0.3 Inverse Fuctions

f(x) =2 and g (z) = 2!/ 5
Flg@)=f(a7) = (a°) =2
g(f (@) =g () = (2°)/° =26/5) =

CHAPTER 0. PRELIMINARIES

3. f(z) =22 +1and g(z) = 13/36_1

’—‘l\.’)

flg (@) = (”“‘1> 1
( >+1
F

.T3+171 @:
f(x):xiQ and g(x) 1;233
_ 1 _ 1 _
f(g(2)) T S e T =z
1-2(-1
9(f (@) = f”z)
x+2
:( _ (I}r2>)(x+2)
(x+2)—2=x

3

. The function is one-to-one since f(z) = x° is

one-to-one. To find the inverse function, write
_ .3

y=z"—2

y+2= z°

Jy+2==x

So f~t(z)=Yr+2

. The function is one-to-one with inverse

F7 @) = Vo1
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10.
11.

—8—

—10-

The graph of y = 2°is one-to-one and hence

so is f(z) = 2% — 1. To find a formula for the
inverse, write

y=2a°—1

y+1=2a°

Vy+l==x

So fl(z)=vr+1

. The function is one-to-one with inverse

() = Ve —4.

. The function is not one-to-one since it is an

even function (f(—z) = f(z)).
f(2) =18 = f(=2).

Not one-to-one. Fails horizontal line test.

In particular,

Here, the natural domain requires that the
radicand (the object inside the radical) be
nonnegative. Hence x > —1 is required, while

12

13.

14.

15.

16.

17.

18.

15

all function values are non negative. Therefore
the inverse, if defined at all, will be defined
only for nonnegative numbers. Sometimes one
can determine the existence of an inverse in
the process of trying to find its formula. This
is an example: Write

y=Vad+1

v =% 41

v —1=2a°

VP i=s

The left side is a formula for f~!(y), good for
y > 0. Therefore, f~'(z) = /22 — 1 when-

ever x > 0.

<
N w
L]

)

e s

X

YT

Not one-to-one. Fails horizontal line test.

(a) Since f(0) = —1, we know f~'(=1) =0
(b) Since f (1) =4, we know f~1(4) =1

(a) Since f (0) =1, we know f~1(1) = 0.
(b) Since f(2) = 13, we know f~1(13) = 2.

(a) Since f(—1) = —5, we know f~'(=5) =
—1.

(b) Since f (1) =5, we know f~*(5) = 1.

(a) Since f(2) = 38, we know f~1(38) =2
(b) Since f (1) = 3, we know f~*(3) = 1.
(a) Since f(2) = 4, we know f~1(4) = 2.
(b) Since f(0) = 2, we know f~!(2) = 0.
(a) Since f (1) =3, we know f~1(3) =1
(b) Since f(0) = 1, we know f~1(1) = 0.
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19.

20.

21.

22,

23.

Reflect the graph across the line y = x.
o—

Reflect the graph across the line y = x.

Reflect the graph across the line y = x.

Reflect the graph across the line y = x.

4.0

f N T T T T T T T T ]
-4 -2 2 4
x -0.8

—1.6

y -

—2.4—

—3.2

—4.0-

The range of function f is the domain of its in-

24.

25.

26.

27.

28.

29.

30.

31.

32.

CHAPTER 0. PRELIMINARIES

verse. Therefore, if the range of f is all y > 0,
then the domain of the f~!is z > 0.

If the graph of f includes (a, b), then b =
f (a), which implies f~1(b) = a. Therefore,
the graph of f~1 includes (b, a).

If the line y = 3 does not intersect the graph
of f, there is no z such that f (x) = 3. Hence
f~1is not defined at z = 3.

The range of function f~! is the domain of the
function f. Therefore, if the domain of f is
all real numbers, the range of f~! is all real
numbers.

If f(x) = 23 — 5, then the horizontal line test

is passed, so f(x) is one-to-one.
4.0

3.2—

Not one-to-one. Fails horizontal line test.

The function f(z) = 23 4 2z — 1 easily passes
the horizontal line test and is invertible.

Not one-to-one. Fails horizontal line test.
Not one-to-one. Fails horizontal line test.

The function f(x) = 2°+ 42 — 2 is one-to-one.
The graph of the inverse is
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33.

34.

35.

36.

1
If f(z) = oy then the horizontal line test
x

is passed, so f(x) is one-to-one.

5—]

Not one-to-one. Fails horizontal line test.

If f(x) = %, then the horizontal line test
x
is passed, so f(z) is one-to-one.

20—

The function f(z) = is one-to-one.

X
Vit

The graph of the inverse is

37.

38.

39.

17

T T T T T T 1 T T T T T T T T T 7

2 2
flo@)=(g9() = (Vz) ==
g(f (@) =VF () =Va? =z
Because z > 0, the absolute value is the same
as z. Thus these functions (both defined only

when x > 0) are inverses.
107

= 2> — 1(z>0) and g(z) =

f ()
Viti(z>-1). flg@)=(Vat+1) —1=
zand g(f(x)) =+ (22 —=1)4+1 =z (because

x > 0), therefore f and g are inverse functions.
10

T T T T T TR T T T T 7
-10 -8 -6 -4 -2 2 4 6 8 10

With f(z) = 22 defined only for < 0, (shown
below as the upper left graph) the horizontal
line test is easily passed. The formula for the
inverse function g is g(x) = —+/z shown below
as the lower right graph and defined only for
z > 0.
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40.

41.

42.

L L B B B B A N
-5 -4 -3 -2 -1 ON\_1

The inverse function is f~1(z) = —vz — 2.

| L L L L LA L L L L L
-0 -8 -6 -4 -2 2 6 8 10

The graph of y = (z — 2)” is a simple parabola
with vertex at (2, 0). If we take only the right
half {z > 2} (shown below as the lower right
graph) the horizontal line test is easily passed,
and the formula for the inverse function g is
g(z) = 2 + /x defined only for z > 0 and
shown below as the upper left graph.

107

T T T TP T
-0 -8 -6 -4 -2 T©® 2 4 6 8 10

f(z) = (x4 1)" is one-to-one for z > —1. The
inverse is f~1 (x) = 2'/* — 1 for > 0.

CHAPTER 0. PRELIMINARIES

T T T ]

|
n
I
|
n

. In the first place, for f(z) to be defined,

the radicand must be nonnegative, i.e., 0 <
2?2 — 2z = 2(x — 2) which entails either z < 0
or x > 2. One can restrict the domain to ei-
ther of these intervals and have an invertible
function. Taking the latter for convenience,
the inverse will be found as follows:
y=vaz?-2x
YP=a?—2z=(x-17-1
Y¥+1=(z-1)7°

Y+1l==x(x-1)
With « > 2 and the left side nonnegative, we
must choose the plus sign. We can then write
z = 1+ +/y2+1. The right side is now a
formula for f~'(y) seemingly good for any v,
but we recall from the original formula (as a
radical) that y must be nonnegative. We sum-
marize the conclusion:

fha)=1++Va2+1, (x>0)

This is the upper graph below. The lower
graph is the original f(z) = v/x? — 2z. Had we
chosen {z < 0}, the “other half of the domain”,
and called the new function h, (same formula
as f but a different domain, not shown) we
would have come by choosing the minus sign,
to the formula

hl(z)=1—+Va2+1, (x>0).

The two inverse formulae, if graphed together,
fill out the right half of the hyperbola —z? +

y-1)*=1
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44.

45.

INVERSE FUCTIONS

is one-to-one for x > 2. To

by = 35-

solve f:f)r z, clear the denominator and use

the quadratic formula yz? — x — 4y = 0 so
1+ /1 +16y2
=%

plus sign. Switch z and y to get f~!(x) =

. Since x > 2, we use the

1+ v1+ 1622
—fOI'Z'>O.
2z
107
o
8-
7
6
5-
4
3
2]
1]
O+—T—T T 1T T T T T ©~ T T T 111
o 1 2 3 4 5 6 7 8 9 10

The function sin(z) (solid below) is increasing
and one-to-one on the interval —5 < z < 3.
One does not “find” the inverse in the sense
of solving the equation y = sin (z) and obtain-
ing a formula. It is done only in theory or
as a graph. The name of the inverse is the
“arcsin” function (y = arcsin(z) shown dot-
ted), and some of its properties are developed

in the next section.
1.5 ;

0.5 y

SN L L L L B 7 [ I o |
-1.5 -1.0 -0.5 0.5 1.0 1.5

46.

47.

48.

49.

50.

51.

52.

19
f(z) = cosz(solid graph) is one-to-one for
0 < z < w. The inverse is cos_la:(dotted

graph) for —1 <z <1
\ 3.2
28]
: . 2.4:
e
\g.oj

A company’s income is not in fact a function of
time, but a function of a time interval (income
is defined as the change in net worth). When
income is viewed as a function of time, it is usu-
ally after picking a fixed time interval (week,
month, quarter, or year) and assigning the in-
come for the period in a consistent manner to
either the beginning or the ending date as in
“...income for the quarter beginning...”. This
much said, income more often than not rises
and falls over time, so the function is unlikely
to be one-to-one. In short, income functions
usually do not have inverses.

Height of a person over time is not one-to-one
since it stays fairly constant.

During an interval of free fall following a drop,
the height is decreasing with time and (barring
a powerful updraft, as with hail) an inverse ex-
ists. After impact, if there is a bounce then
some of the heights are repeated and the func-
tion is no longer one-to-one on the expanded
time interval.

Height of a ball thrown upward will be one-to-
one until it reaches its apex, so on this domain
it has an inverse.

Two three-dimensional shapes with congruent
profiles will cast identical shadows if the con-
gruent profiles face the light source. Such ob-
jects need not be fully identical in shape. (For
an example, think of a sphere and a hemisphere
with the flat side of the latter facing the light).
The shadow as a function of shape is not one-
to-one and does not have an inverse.

The number of calories burned increases as
running speed increases. This is likely one-to-
one and will have an inverse.
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53.

54.

0.4

The usual meaning of a “ten percent cut in
salary” is that the new salary is 90% of the
old. Thus after a ten percent raise the salary
is 1.1 times the original, and after a subse-
quent ten percent cut, the salary is 90% of the
raised salary, or .9 times 1.1 times the origi-
nal salary. The combined effect is 99% of the
original, and therefore the ten percent raise
and the ten percent cut are not inverse oper-
ations. The 10%-raise function is y = f (z) =
(1.1) 2, and the inverse relation is x = y/1.1 =
(0.90909...) y. Thus f~!(z) = (0.90909) z and
in the language of cuts, this is a pay cut of
fractional value 1 — 0.90909... = 0.090909... or
9.0909...percent.

(a) If z is the original salary of the employee,
then the new salary is y = f(z) = 1.062+

500. The inverse relation is x = y 1_05(?0
— 500 ’
Therefore, f~(z) = = .
erefore, f~1(x) 106

(b) If x is the original salary of the em-
ployee, then the new salary isy = f (z) =
1.06 (z + 500). The inverse relation is z =

— 530 — 530
Y 106 Therefore, f~1(z) = x1.06 .

Trigonometric and Inverse
Trigonometric Functions

) (1800) e

@ (5

0 ()(5)-0

0 () (%) -
o () ()
0 (E)(E)
o ) (2) e
IR
(@) 3 (1800) ~17189°

10.

11.

13.

14.

CHAPTER 0. PRELIMINARIES

@ (120°) (1) =

3
@ o) (15) -3

2
(a) 40° 187T0° - ?ﬂ

4
(b) 80° 15?0" - ?ﬁ

5
(c) 450° 180° - g

13
(d) 3907 180° - Tﬂ

. 2cos(z) — 1 =0 when cos (z) = 1/2. This oc-

curs whenever © = % + 2km or x = —% + 2k7
for any integer k.

. 2sinz +1 =0 when sinz = —% This occurs

whenever r = —% + 2k or ¥ = — % + 2k for
any integer k.

. V2cos(z) — 1 = 0 when cos (z) = 1/4/2. This

occurs whenever x = 7 +2km or v = —§ +2kn
for any integer k.

+ 2k7 for any

. 2sinz — /3 = 0 when sinz = % This occurs
53

whenever x = % +2kmor x =
integer k.

. sin?z—4sinz+3 = (sinz — 1) (sinz — 3) when

sine = 1 (sinx # 3 for any z). This occurs
whenever x = 5 + 2k for any integer k.

sin?z —2sinz—3 = (sinz — 3) (sinx + 1) when
sine = —1 (sinz # 3 for any z). sinz = —1
whenever x = 37” + 2k7 for any integer k.

sin®z 4+ cosz — 1 = (1 — cos m) +cosx —1

= (cosx) (cosx —1) =0
when cosx = 0 or cosx = 1. This occurs
whenever * = § + km or x* = 2km for any
integer k.

. Use the sine double angle formula to get

2sinzcosx — cosx = (2sinz —1)cosx = 0
then (2sinxz — 1) = 0 whenever x = § + 2k7
or x = 2% + 2km and cosz = 0 whenever

x = § + km for any integer k.

cos?x + cosz = (cosx) (cosx +1) = 0 when
cosxz = 0 or cosx = —1 this occurs whenever
x =5 + kmor x =7 + 2kn for any integer k.
sin?z — sinz = sin (sinz — 1) = 0 whenever
x = km or x = § + 2km for any integer k.
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15. The graph of f(x) = sin2z. 19. The graph of f(x) = 3cos (z — 7/2).

1.0 4

0.8—

TT T T T Ty [T T T TT T T NI TT T
-5.0 25 o 2.5 5.0
X

TIIII

20. The graph of f(x) = 4cos (z + 7).

4.0

3.2

[T TTTTT
6 -5 -4 -3 -2

23. The graph of f(x) = sinz sin 12z.
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24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

The graph of f(z) = sinx cos 12z.

1.0

—0.6—{

—0.8—{

-1.0—

Amplitude is 3, period is &< =,
frequency is %
Amplitude is 2, period is =&,
frequency is %

. . . .2
Amplitude is 5, period is 5,

(o 3
frequency is 5.

2m

Amplitude is 3, period is <,

(. 5
frequency is 5-.

Amplitude is 3, period is 27” = 7, frequency is
%. We are completely ignoring the presence of
—m/2. This has an influence on the so-called
“phase shift”which will be studied in Chapter

6.

Amplitude is 4, period is 2

3
3
frequency is 5.

Amplitude is 4 (the graph oscillates between

—4 and 4, so we may ignore the minus sign),
. . . 1

period is 27, frequency is 5- .

Amplitude is 2, period is 2&

3
o 3
frequency is 5.

sin(a — §) = sin (0 + (B))
= sinacos (—f) + sin (—f) cos «

= sin @ cos § — sin 3 cos a

34.

35.

38.

39.

40.

41.

42,

43.

44.

45.

46.

1 7
. == = 0 - =
cos” (0) > = 2

CHAPTER 0. PRELIMINARIES

cos(a — B) = cos (a + (—f))
= cos acos (—f) — sinasin (—f3)
= cosacos B + sin asin 8
(a) cos(260) = cos(6 + 0)
= cos () cos (§) — sin (#) sin (6)
= cos?6 — sin?f
= cos?6 — (1 — 00820)
= 2c0s%0 — 1

(b) Just continue on, writing
cos (26) = 2cos?0 — 1

=2(1-sin’¢) — 1

=1 - 2sin*¢
(a) Divide sin?6 4 cos?0 = 1 by cos?6 to get
sin?6 9 9
w0520 =2 " tan“0 + 1 = sec0.

viding s~ + cos“t = y sin”~ ¢ yields
b) Dividing sin6 29 = 1 by sin?0 yield
cot20 + 1 = csc20
v

Any arbitrary point on the unit circle is
(cos 0, sinB), therefore the ordered pair on the
circle is (0, 1).

tan"1(0)=0= 6 =0

The ordered pair on the circle is (1, 0).
sinH(-1)=-2=0=-7%

The ordered pair on the circle is (0, —1).

cos (1) =0=60=0

The ordered pair on the circle is (1, 0).

sec (1) =0=6=0
The ordered pair on the circle is (1, 0).

tan '(-1)=-%=>60=-7%

The ordered pair on the circle is (%, f%) .
“1)=" ="

sec™ (2) 3 3

The ordered pair on the circle is (%, ?)

o) ="sp="1
csc 1 (2) 6= 5

The ordered pair on the circle is (@,

N
SN—

s ™
t i) =-=60="-
cot™ (1) 1 1

The ordered pair on the circle is (

Es
¥
N———

)

S

Vs ™

tan '(V3) == =>0==

an (\f) 3 3
1

The ordered pair on the circle is (5,

ol
—
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47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

TRIGONOMETRIC AND INVERSE TRIGONOMETRIC FUNCTIONS 23

Use the formula

cos(z+3) = cos z cos B—sin fsin x. Now we see
that cos 8 must equal 4/5 and sin 5 must equal
3/5. Since (4/5)* +(3/5)* = 1, this is possible.
We see that § = sin~* (3/5) ~ 0.6435 radians,
or 36.87°.

Use the formula

sin(z + ) = sinz cos 5 + sin Bcosz. Now we
see that cos 8 must equal 2/1/5 and sin 8 must
equal 1/+/5. Since (2/\/5)24—(1/\/5)2 =1, this
is possible. We see that 8 = sin™' (2/V/5) ~
0.4636 radians, or 26.57°.

2
cos(2z) has period g = 7 and sin(wz) has

2m
period — = 2. There are no common inte-
T
ger multiples of the periods, so the function

f (z) = cos (2x) + 3sin (7x) is not periodic.

sinz has period 27 and cosv/2z has period
V/2m. There are no common integer multi-
ples of the periods, so the function f(z) =
sinz — cos V2z is not periodic.

2
sin(2x) has period ?ﬂ- = 7 and cos (5z) has pe-

2
riod 2. The smallest integer multiple of both

of these is the fundamental period, and it is
2m.

2 2
cos 3x has period T and sin 7z has period il

The smallest integer multiple of both of these
is the fundamental period, and it is 2.

2
1 1 8

2 .2
cos sin 3 5= g Be
cause 6 s in the first quadrant, its cosine is non-

2v/2
negative. Hence cosf = \/g = Tf = 0.9428.

First quadrant, 3-4-5 right triangle, so sinf =
3

g.

Second quadrant, 1-v/3-2 right triangle, so

V3

0 =—Y2
COSs 9

Second quadrant, 1-v/3-2 right triangle, so

tanf = ———.

V3
Assume 0 < x < 1 and give the temporary
name 6 to sin~' (z). In a right triangle with
hypotenuse 1 and one leg of length x, the an-
gle 6 will show up opposite the z-side, and the

58.

59.

60.

61.

adjacent side will have length v/1 — x2 Write
cos (sin™! (z)) = cos (0)

) /1 — 2
v =+1—22
The formula is numerlcally correct it he cases
z =0 and x = 1, and both sides are even func-
tions of z, i.e. f(—x) = f(z) so the formula is
good for —1 <z < 1.

tan~ 'z relates to a triangle in the first or
fourth quadrant with opposite side x, adja-
cent side 1, and hypotenuse vx2+1. There-

fore, cos (tan_lx) = This is valid

2+ 1
for all x.
Assume 1 < z and give the temporary name
0 to sec™!(z). In a right triangle with hy-
potenuse x and one leg of length 1, the angle 8
will show up adjacent to the side of length 1,
and the opposite side will have length vz2 — 1.
Write
tan (sec™" (z)) = tan (0)

:czl— 1 o
The formula is numerically correct in the case
x > 1. Dealing with negative z is trickier: as-
sume x > 1 for the moment. The key identity
is sec™! (=) = m —sec™! (z). Taking tangents
on both sides and applying the identity
t —t b
tan (a — b) = an (a) — tan (b)
1+ tan (a) tan (b)

with @ = 7, tan (a) = 0, b =sec™
0 — tan (sec_lx)
140

— Ve 1= —\(cay -1

In this 1den‘51ty7 —z (on both sides) plays the
role of an arbitrary number < —1. Conse-
quently, the final formula is tan (sec™'z) =

—v/ 22 — 1 whenever x < —1.

cos~ 'z relates to a triangle in the first or

second quadrant with adjacent side z, hy-

potenuse 1, and opposite side /1 — 2. There-
x

> is valid for —1 <

Lz, we find

tan (sec_lx) =

fore cot (Cosflx) =

r <1.

— T

One can use the formula sin (Cos_lac) =

V1 — 22 derived in the text:

REOREOR:
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63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

cos™! (g) relates to a triangle in the first

quadrant with adjacent side 3 and hypotenuse
5, so the opposite side must be 4 and then

i )

2
sin~! 3 relates to a triangle in the first

quadrant with opposite side 2 and hypotenuse
2 3
3 int(Z)) =2,
, SO €SC (sm (3)) 5

From graph the three solutions are 0, 1.109,
and 3.698.

From graph the three solutions are 0 and +2.28
From graph the two solutions are +1.455
From graph the two solutions are 0 and 0.88

Let h be the height of the rocket. Then
h
5= tan 20° = h = 2tan 20° ~ 0.73(miles)

The person and the shadow form a right trian-
gle similar to the triangle formed by the light-
pole and the distance from the base of the pole
to the tip of the shadow. If x represents the
height of the pole, we have that

x

4+2

6
=3 and therefore z = 18.

Let i be the height of the steeple. Then

= tan 50°
s0r20 ™
= h =100tan50° ~ 119.2 (feet).

If the steeple is 20’ inside the building, the
height is 100tan50° =~ 119.18 feet. If the
steeple is 21’ inside the building, the height
is 101 tan 50° = 120.37 feet. The difference is
1.19 feet.

Using feet as the measuring standard, we find
20/12 5 5
A = —— = A — -1 -

tan . 32 = A(x) = tan (3m)

The graph of y = A(z) (of course, one has
to choose an appropriate range to make this a
function):

74.

75.

76.

7.

CHAPTER 0. PRELIMINARIES

»

Wbl

[rrrr 7T

1

From the center of the hole to the left (or right)
edge is 2.25 inches. Consider the right trian-
gle formed by the golfer, the center of the hole
and the left edge. The angle at the golfer is

2.25
tan~* <) The margin of error is then
x

2.25
twice that, or A = 2tan™! <)
x

Presumably, the given amplitude (170) is the
same as the “peak voltage” (v,). Recalling an
earlier discussion (#25 this section): the role
of w there is played by 27 f here, the frequency
in cycles per second (Hz) was w/2m, which is
now the f-parameter (27f/27). The period
was 27 /w (which is now 1/f), given in this
case to be m/30 (seconds). So, apparently, the
frequency is f = 30/7 (cycles per second) and
the meter voltage is 170 ~ 120.2

V2

Revolutions per minute measures frequency.
The period is the reciprocal. The period of

1 3
a 33§ rpm record is 100 minutes per revolu-

tion. Similarly, the period of a 45 rpm record

1
is V3 minutes per revolution.

There seems to be a certain slowly increasing
base for sales (110 4 2t), and given that the

sine function has period 776 = 12 months, the
sine term apparently represents some sort of
seasonally cyclic pattern. If we assume that
travel peaks at Thanksgiving, the effect is that
time zero would correspond to a time one quar-
terperiod (3 months) prior to Thanksgiving, or
very late August.

The annual increase for the year beginning at
time ¢ is given by s (¢t + 12) — s(¢) and auto-
matically ignores both the seasonal factor and
the basic 110, and indeed it is the constant



0.5. EXPONENTIAL AND LOGARITHMIC FUNCTIONS

2 x 12 = 24 (in thousands of dollars per year
and independent of the reference point ¢).

78. The graph of sin 8¢ + sin 8¢ looks like

79.

80.

31

2

Il
M

The difference in frequency produces clearly
audible beats (to the trained ear).

As luck would have it, the trig functions
csc and cot, being reciprocals respectively of
sine and tangent, have inverses almost exactly
where the other two do, both on the interval
[—%, g] but excluding the origin where neither
is defined, and excluding the lower endpoint in
the case of the cotangent. The range for the
sine is [—1,1], hence the range for the csc is
{l#| > 1} and this is the domain for csc™!.
The tangent assumes all values, and so does
the cot (zero included as a value by convention
when z = 7/2 or x = —m/2), so the domain
for cot™! is universal. Finally, we simply copy
the language of the others:

y = csc™ () if |2| > 1,

y lies in [—%, %] and & = csc (y).
y = cot™!(z) if y lies in (—%,%], and = =
cot (y).

Let a be the distance from the ball to the
ground directly beneath it, let b be the distance
along the ground from home plate to the point

25

directly below the ball, and let ¢ be the dis-
tance from the outfielder to the point directly
below the ball. Then tanv = a/b,tana = a/c

tan «
and tan 8 = b/c, so that tany = . There-
tan 8
tan o
fore ¢ = tan™! )
v tan 8

0.5 Exponential and Logarith-

10.

11. —

12, ——

13.

14.

15.

16.

17.
18.

19.

20.

mic Functions

1 1
2_3 = — = —
23 8
1 1
4_2 = — = —
42 16
.32 =3

. 62/° = /62 = /36
. 523 =52 = {25

g Lo 111
Y2 Y16 Y82 292

1

ik

Va2 = 22/3

2

73—2‘@_3

X

4 —2

ﬁ—4$

11 1y,

2z 2xY/2 2

3 3 3 3/

203 232 2

232 = (Vi) =23 =8

823 = (YB) =22 =4

VS Y8 ies

21/2_\/5_ -

2 2

(1/3)>  (1/9)

2¢71/2 2 1.213
4e=2/3 ~2.05
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21. Both the graphs have same y-intercept.
4— '

i
i
I
|

1
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1
1
1

i
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<
N

N
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-3 -2 -1 - 1 2 3

X

Graph of f(x): Dotted line.
Graph of g(z): Solid line.

22. For the graph f(z), y-intercept is 2 and for
the graph g(z), y-intercept is 4.

—4 ,

2y

-

TTTTTTTTTSITTTT

|

173

|

L
N
[&]
[
o

Graph of f(x): Dotted line.
Graph of g(x): Solid line.

23. For the graph f(z), y-intercept is 3 and for
the graph g(z), y-intercept is 2.

[TT? TTTTTTTTTTTITTTITTT T
-1 1 2 3 4
_ X

Graph of f(x): Dotted line.
Graph of g(z): Solid line.

24. For both the 2graphs, y-intercept is 1. The
graph of e * approaches the xz-axis faster
2

than the graph of e~ 7.

CHAPTER 0. PRELIMINARIES

1.5

pret Nt

FT T T T 1199
-4 -2

X
-0.

IIITIIJ

—1.0

Graph of f(x): Dotted line.
Graph of g(x): Solid line.

25. The graph f (z) is defined for positive values
of  only and the graph g(x) is defined for all

nonzero value of x.
5.0—

2.5—]

x ]
_\'\
I B N O

Graph of f(x): Dotted line.
Graph of g(z): Solid line.

26. Both the graphs f(z) and g(z) are same.

e

Graph of f(x) : Dotted line.
Graph of g(z) : Solid line.

27. 2* =2
= Ine?* =1n?2
= 2x=1n2

=z = % ~ (0.3466
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28.

29.

30.

31.

32.

33.

34.
35.

36.

37.

38.

EXPONENTIAL AND LOGARITHMIC FUNCTIONS

et =3
=4z :lln33
- = HT ~ 0.2747

e® (22 —=1) =0 = 22 — 1 = 0(Since e” # 0).
Hence x =1 or x = —1.
2
xef2z+26721:():>x;r =0=xz=-2
e(E
4lny = -8
=Inz=-2

9 1
=>r=ce :—2%0.13533
e

2?lnz —9lnz =0
:>(x2—9)lnx:0

So either lnz =0 or z2—9=10
=z=1 =43

e21nx — 4

= 2lnx =1n4

= Inz? =In4

=22=4

=z =212

But in the original equation we had the expres-
sion e21"® 50 2 # —2 and thus the only solution
isx=2.

In(e*)=6=2r=6=z=3

er =1+6e"
=X e —6=0

= (" =3)(e"+2)=0

= e —3=0 (Since e* +2 #0)
=x=1In3

Inz +1In(x—1)=1In2

Taking the exponential of both sides we get
=zr—1)=2

=22-2-2=0

= (z—-2)(z+1)=0

zrx=—lorx=2

But In z is not defined for x = —1. Hence x = 2
is the only solution.

(a) logg9 =logs (3%) =2
(b) log,64 = log, (4*) =3

1 _
(c) 1og32—7 =log; (37%) = -3

1 1 _
(a) log41—6 = log44—2 =log4™2 = -2
(b) log,2 = log,4'/? =

(c) loge3 = logg9'/2 =

39.

40.

41.

42.

43.
44.

45.

46.
47.

48.

49.

50.

51.

27

In7
— =~ 1.771
In3 77

In 60
b) log,60 = —— =~ 2.953
(b) log, Ind

1 In(1/24)

1 In 10

(&) logs 75 =~ 93

In3

b) log,3 = — ~0.79
(b) log, Ind

In8

—— ~0.95
In9

(a) logs7 =

~ —1.66

(c) loge8 =
1.3
In3 —In4 =1Iny
42 1
2In4 —In3 =1n — :ln—6
3 3
iln4d-In2=1-2In2-mn2=0

31n2—1n% zln% =1In1l6

1n% +4In2 = 111%2 +n2t = 111(2%24) =

In (3-2%) =In(12)

In9—2m3=Ing =Inl1=0

fO)=2=a=2.

Then f(2) = 6 gives 2¢** = 6, so 2b = In3
1

and b = §1n3. So f(x) = 2¢(3m3)z

2[ehﬂ3>}x/2 —9.30/2

F0)=3=a=3.

Then f(3) = 4 gives 3¢® = 4, 50 3b =In 3 and

b=1ln3. So f(z) = ez z)e,

f(0)=4=a=4.

Then f(2) = 2 gives 4e?® = 21, so 2b =1In 1 and

b=1Inl. So f(z) =4de(3m3),

F0)=5=a=5.

Then f(1) = 2 gives e’ = 2, so and b =1In 2.

So f(x) = seln8)e,

et +e”

We know that coshx = . To show

that coshz > 1 for all x is the same as showing
that coshz — 1 > 0 for all z. So we ask when

is the expression coshz — 1 = ete’ 1
greater than or equal to 07 2
B

———— — 1 >0 if and only if

e*+e -2

> 0 if and only if

€ +e ¥ —2>0if and only if
e’ +1—2e"* >0 if and only if *



28

52.

53.

54.

55.

56.

57.

¥ —2e7*+1>0if and only if

(e* —1)*>0

But (e® — 1)? is always greater than or equal
to 0 since it is squared. It is actually equal to
0 at « = 0(i.e., cosh0 = 1), so the range of
y=-coshzxisy > 1.

* In the * step (above), we have multiplied on
both sides by e®, which we are allowed to do
since e* > 0 for all z. To show that the range
of the hyperbolic sine is all real numbers, let
a be any real number and solve the equation
sinh(z) = a. Let u = ¢®. Then

u— 1

u

2
u? — 1 = 2au if and only if
u? — 2au — 1 = 0 if and only if

2a + v4a? + 4
u:w:aﬁ_ a2+1_

We simplified and chose the positive square
root because u > 0. Because we found a unique
solution no matter what a we had started with,
we have shown that the range of y = sinhx is
the whole real line.

= ¢ if and only if

cosh?z — sinh?x

(et +e® 2 e —e 7\ 2
B 2 2
B 621 + 2 + 6721 62w -2 + 672:v 4

— =—-=1
4 4 4

Since sinh™*(0) = 0, the equation is solved
only by 22 —1 =0, hence z =1 or x = —1.

cosh (3z +2) = 0 has no solutions because
coshz > 1 for all z.

10
9
1— (=) =0651
()

The percentage decreases by almost 1%

We take on faith, whatever it may mean, that

1 n
lim (1 + ) =e
n—o00 n

Just to take a sample starting with n = 25,
the numbers are

25 26 27
26 27 28
(25) 5 (26) 5 (27> and so on. If we
were to try taking a similar look at the num-
bers in lim (1 — — | , the numbers starting
n

n—oo

at n = 26 would be

25\%% 726\ /27\*® 1
% '\ g7 | 73 , and so on.

We could rewrite these as

58.

59.

60.
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26 28
25 7

925\ 25 26\ 20 % o7\ 271 2
G) ]G] G
Here, the numbers inside the square brack-
ets are the reciprocals of the numbers in the
original list, which were all pretty close to
e. Therefore these must all be pretty close
to 1/e . As to the external powers, they are

all close to 1 and getting closer. This limit
must be 1/e . The expression in question must

1
approach 1 — — ~ 0.632.
e

If y = az™ then Iny = In(axz™) = Ilna +
Inz™ = Ina+mIn z. Direct substitutions show
that v = mu + b, and this is the equation of a
line.

u=Inx | .78846 | .87547 | .95551
v=Iny | 2.6755 | 2.8495 | 3.0096
u=Inz | 1.0296 | 1.0986 | 1.1632
v=Iny | 3.1579 | 3.2958 | 3.4249

34249 — 26775 _

=~ 2.
"7 11632 — 78846
Then we solve 2.6755 = 2 - (.78846) + b to

find b ~ 1.099. Now b = Ina, so a = e* =~
3.001, and the function is y = 3.001z2.

u=Inx | 1.0296 | 1.0986 | 1.1632
v=Iny | 2.2375 | 2.3408 | 2.4380
u=Inz | 1.2238 | 1.2809 | 1.3350
v=Iny | 2.5289 | 2.6145 | 2.6953
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61.

62.

EXPONENTIAL AND LOGARITHMIC FUNCTIONS

o o o
o o N
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N
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N
@
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1.05 1.1 1.15 1.2 1.25 1.3
o 2.6953 — 2.2375 — 1.4990 ~ §
1.3350 — 1.0296 2
Then we solve 2.6953 = 2(1.3350) + b to find

b= .6928. Now b =Ina, so a = e ~ 1.9993 ~
2, and the function is y = 2z°/2.

We compute v = Inz and v = Iny for x values
in number of decades since 1780 and y values
in millions.

u=Inz 0 0.693 | 1.099 | 1.386
v=Iny | 1.36 | 1,668 | 1.974 | 2.262
u=Inz | 1.609 | 1.792 | 1.946 | 2.079
v=Iny | 2.549 | 2.839 | 3.14 | 3.447

T T
1 2

This plot does not look linear, which makes it
clear that the population is not modeled by a
power of x. The discussion in the Chapter has
already strongly indicated that an exponential
model is fairly good.

x 2.2 24 2.6
Iny | 2.6755 | 2.8495 | 3.0096
T 2.8 3.0 3.2
Iny | 3.1579 | 3.2958 | 3.4249

63.

64.

65.

66.

29

3.4
3.3 °
3.2

3.1

2.9

vvvvvvvvvvvvvvvvvvvvvvvvvvvv

This plot is slightly bowed concave down. The
log-log plot looks more linear, and the function
is modeled better by a power function.

(a) 7= —log[H"] = [H]=10""
(b) [HT]=10"8
() [H] =10~
For each increase in pH of one, [H'] is re-
duced to one tenth of its previous value.
If the pH = 2.5 = —log[H™"], then [HT] =
10725 ~ 3.16 x 1073, If the pH = 7.5 =
—log[H ], then [HT] = 10775 ~ 3.16 x 1075.
The concentration of hydrogen ions in blood is
smaller by a factor of 10°.
(a) logE = 4.4+ 1.5(4) =104 = E = 10194
(b) log E =4.4+1.5(5) =119 = F = 10!

(c) logE = 4.4+ 1.5(6) = 13.4 = E = 1034
For each increase in M of one, F is in-
creased by a factor of 101 ~ 31.6.

I

1

s I
= 10° = To-12
= I=10%10""2=10"*
(b)y I=10"7
(c) I=10"2
For each increase in dB of ten, I increases
by a factor of 10.

67. The issue is purely whether or not y =

0 when z = 315, i.e., whether or
not cosh(315/127.7) = cosh(2.4667...) =
5.9343... is the same as (757.7)/(127.7) =
5.9334... We see that it’s pretty close, and
these numbers would be considered equal ac-
cording to the level of accuracy reported in the
original measurements.
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68.

69.

70.

If y = —c(z — 315)(x + 315), the z inter-

cepts are at x = 4315 and are 630 feet apart

as desired. The y intercept will be 630 pro-

vided that —c¢(0 — 315)(0 + 315) = 630, or if
630 2

3152 315

The parabola is narrower than the hyperbolic
cosine.

f = f(x) = 220"
= 220e(2") = 920 . 2%

From problem 69, the frequency as a function
of the number of octaves above the A below
middle C'is f(z) = 220 - 2. We have then

1
F(3) =220 2"/" ~ 261.6 Ho.

0.6 Transformations of Func-

- (fog)(x) =

- (fog)(x) =

- flg()) =

tions

fg(@)) = g(x) +1=vz-3+1
with domain {z|z > 3}.
(9o f)(z) =g(f(x))
=V /f(x) -1
=V(@+1)-3=vz -2

with domain {z|z > 2}.

flg(@) =vr+1-2

with domain {z|z > —1}.

g(f@)=/(@-2)+1=vz -1

with domain {z|z > 1}.

f(lnz) = =g

with domain {z|z > 0}.

(g0 f)(x) = g(e”) =ne* =

with domain (—00,00) or all real numbers.

v1—1Inx. For the domain, we need
(I1—-Inz) >0,s00 <z <e, but also the do-
main of Inz is x > 0 so the domain of f(g(x))
is{z|0<x<e}

g(f(z)) =lny1—zon {z|x < 1}.

5.

10. 2

11.
12.
13.
14.
15.

16. ¢*

17.

18.

19.

20.

- flg()) =
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(fog)(w) = f(sinz) =sin*z + 1

with domain (—o0, 0o) or all real numbers.

(go f)(@) =g(a? +1) = sin(a? + 1)

with domain (—oo, c0) or all real numbers.
1

(22 —2)2 -1
1

x4—4:1ci+3

(22 =3) (22— 1)
This is valid if = # +v/3 and x # +1.
Ly o
g(f(x)) = (x21> — 2. This is valid if
x # +1.

2 +1 = f(g9(x)) when f(x) = x and
g(x) = z* + 1, for example.

Yo ¥3 = flg(x)) when f(z) =

x + 3, for example.

7 = (@) when f(x) = 1/ and g(x) =

z? + 1, for example.
1

Vrand g(z) =

+1 = f(g9(x)) when f(z) = =z + 1 and
g(x) = 1/22, for example.

(4 4+ 1)* + 3 = f(g(z)) when

f(z) = 2* + 3 and g(x) = 4= + 1, for example.
Az +
I

1)2 +3—f( (x)) when
r) = 42? + 3 and g(z) = x + 1, for example.
sin®z = f(g(x)) when f(z) = 2® and g(z) =
sin z, for example.
sin(z®) = f(g(z)) when f(z) = sinz and
g(x) = 3, for example.

"1 = f(g(x)) when f(z) = ¢” and g(z) =
x? + 1, for example.

? = f(g(x)) when f(z) = e” and g(z) =

4z — 2, for example.

3
m = f(g9(h(z)) when f(x) = 3/z,

g(z) = V&, and h(z) = sinz + 2, for exam-
ple.

Velr+1 = f(g(h(ﬂﬁ)) when f(z) = V,
g(x) =z +1, and h(z) = €', for example.
cos(4z = 2) = f(g(h(x))) when f(z) = =,

g(x) = cosx, and h(z) = 4z — 2, for example.

In 22+ flg(h(zx ))) when f(z) = Inz,
g(z) = \/E and h(z) = 2% + 1, for example.
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21.

22.

23.

26.

TRANSFORMATIONS OF FUNCTIONS

4¢” — 5 = f(g(h(z))) when f(z) = 4z — 5,
g(z) = e®, and h(z) = 22, for example.

tan™!(3z+1)]* = f(g(h(x))) when f(z) = a2,
g(z) = tan"!z, and h(z) = 3z + 1, for exam-
ple.

Graph of f(x) —3:

<
Plere bl

[TTTTTTTUIa U7 I
5 -4 -3 -2 -1 -0 1 \2

X —

_o—

Graph of f(x) +2:

31

"
?

8

N

(R I~ B W A A 0 B O A A

A

27. Graph of f(2z):

3
2

1

[T T T T T o
-2 -1

28. Graph of 3f(z):

29. Graph of —3f (z) + 2:



32

5.0

25

5 -4 -3 -2 1
30. Graph of 3f(x +2)
y
" \/2\/V€ T 4’
-105
31. Graph of f(z —4):
32. Graph of f(z + 3):
r10o
s
e 6 ala ] - Py
L5
:-10
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33. Graph of f(2x):

IR IR
5 -4 -3 -2 Jd1/4 2 3 4 5
y s
by

34. Graph of f(2z —4):
10:
Yy 5;
4 2 "’{ """"" ‘j"_'_‘
5]
107
35. Graph of f(3z + 3):
rio
J 55
42m SO
s
[0
36. Graph of 3f(x):
10:
vy 5]
AT T e T 2 a

[ Yy B Y

a
o]
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37.

39.

40.

41.

42.

43.

44.

45.

Graph of 2f(z) — 4

r—

[T T T 1o T
5 -4 -7 42 -1 _(
< ]
5—|
-10—\

vvvvvvvvv

f@)y=22+22x+1=(z+1)%
Shift y = 22 to the left 1 unit.

f@)=22—dx+4=(x—2)%
This is the graph of x2 shifted 2 to the right.

flx)=2?+2z+4=(2>+22+1)+4-1
=(x+1)*+3
Shift y = 22 to the left 1 unit and up 3 units.

flo)=2? -4z +2=2%—4x+4-2
=(z—-2)?%-2

This is the graph of z? shifted 2 to the right

and 2 down.

f(z)=22% + 4z +4
=2(*+2x+1)+4-2
=2(z+1)2+2
Shift y = 22 to the left 1 unit, then multiply
the scale on the y-axis by 2, then shift up 2
units.

flx) =322 —6xr+2=3(z—1)?-1.
This is the graph of z? with the y-scale multi-
plied by 3, shifted 1 to the right and 1 down.

Graph is reflected across the z-axis and the
scale on the y-axis is multiplied by 2.

46.

47.

48.

49.
50.

51.

52.

53.

54.

55.

56.

57.
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Graph is reflected across the z-axis, vertical
scale tripled.

Graph is reflected across the z-axis, the scale
on the y-axis is multiplied by 3, and the graph
is shifted up 2 units.

Graph is reflected across the z-axis, vertical
scale doubled, and shifted down 1 unit.

Graph is reflected across the y-axis.

Graph is reflected across the y-axis and then
reflected across the z-axis, i.e. graph is rotated
by an angle 27 about the origin.

(—x+ 1) +2(—2z+1) = (z - 1)? = 2(z — 1).
Therefore graph is shifted 1 unit to the right.

Graph is reflected across the y-axis, horizontal
scale tripled, and shifted down 3 units.

The graph is reflected across the z-axis and the
scale on the y-axis is multiplied by |c|.

For ¢ < 0, the graph of f(cx) is the mirror
image across the y-axis of f(z) with the hori-
zontal scale multiplied by 1/]|c|.

The graph of y = |z|® is identical to that of
y = 2% to the right of the y-axis because for
x > 0 we have |z|*> = 23. For y = |z|® the
graph to the left of the y-axis is the reflection
through the y-axis of the graph to the right
of the y-axis. In general to graph y = f(|z|)
based on the graph of y = f(z), the procedure
is to discard the part of the graph to the left of
the y-axis, and replace it by a reflection in the
y-axis of the part to the right of the y-axis.

If f(z) = 23, then

(=) = (~2)* = —a® = — f(a).

If in general you have the right half of a graph
satisfying f(—x) = — f(x), you can rotate 180°
about the origin to see the left half.

The rest of the first 10 iterates of f(x) = cosz
with g = 1 are:

x4 = co0s.65 ~ .796

T5 = cos.796 ~ .70

Tg = cos.70 =~ .765

T7 = c0s.765 ~ .721

rg = c0s.721 =~ .751

T9g = c0s.751 ~ .731

T19 = cos.731 ~ .744

Continuing in this fashion and retaining more
decimal places, one finds that x3¢ through x4
are all 0.739085. The same process is used with
a different xg.
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58.

59.

60.

61.

62.

We have z1 = f(xg) so 2 = f(z1) = f(f(20))
and x3 = f(z2) = f(f(f(z))) and so on.

The graphs of cos z, cos cos z, cos cos cos z, and
COS COS COS COS X

TTTTTTT
1

TTTTTT]
2 3

The limiting line is y = 0.739085.

They converge to 0. One of the problems
in Chapter 2 asks the student to prove that
|sin(z)| < |x| for all but £ = 0. This would
show that 0 is the only solution to the equa-
tion sin(x) = x and offers a partial explanation
(see the comments for #61) of the phenomena
which the student observes.

If you start with a number x with |z| < 1, the
iterations converge to 0. If you start with a
number x with |z| > 1, the iterations diverge
quickly. If you start with x = +1, the itera-
tions all equal 1.

If the iterates of a function f (starting from
some point xg) are going to go toward (and
remain arbitrarily close to) a certain num-
ber L, this number L must be a solution
of the equation f(x) = z. For the list of
iterates xg,x1,x2,3,... is, apart from the
first term, the same list as the list of num-
bers f(xo), f(z1), f(2z2), f(x3),.... (Remem-
ber that z,,4+1 is f(x,).) If any of the numbers
in the first list are close to L, then the f-values
(in the second list) are close to f(L). But since
the lists are identical ( apart from the first term
2o which is not in the second list), it must be
true that L and f(L) are the same number.

If conditions are right (and they are in the two
cases f(z) = cos(z) (#57) and f(z) = sin(z)
(#59), this “convergence” will indeed occur,
and since there is in these cases only one solu-
tion x about 0.739085 in (#57) and = 0 in
(#59) it won’t matter where you started.

The only fixed point is x = 0, since this is the
only solution to sinxz = x. One can see that

1.

8.

. The line apparently goes through (1
2
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this is the only solution by graphing y = sinx
and y = z on the same axes and looking for
intersection points.

Ch. 0 Review Exercises

_7T=3_ 4 _
T0-2 -2
4-1 3

T1-3 2

m —2

m

. These lines both have slope 3. They are paral-

lel unless they are coincident. But the first line
includes the point (0, 1) which does not satisfy
the equation of the second line. The lines are
not coincident.

. m1 = —1/ma, so the lines are perpendicular.

. Let P =(1,2), Q = (2,4), R = (0,6).

4-2

Then PQ has slope 71

=2

0—2

2—-6
1-0
Since no two of these slopes are negative recip-

rocals, none of the angles are right angles. The
triangle is not a right triangle.

=-1

QR has slope

—4

RP has slope

. The slopes between points seem to be alter-

nating between 950 and 1050. If the pattern
continues, the next points will be (4,6100),
(5,7050), and (6,8100).

,1) and
(3,2). If so the slope would be m = 2=1 = 1
The equation would be
y=g3(x—1)+lory=3z+3.
Using the equation with z = 4, we find y =
3@ +3=3

£(0) = —4, £(2) = —6, and f(4) = 0.

3—1 2"
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9. Using the point-slope method, we find y =
—3(z+1)—-1

10. y=3(z—0)—2= 1z —2

11. The graph passes the vertical line test, so it is
a function.

12. Fails vertical line test: not a function.

13. The radicand cannot be negative, hence we re-
quire 4 — 22 > 0 = 4 > z2. Therefore the
natural domain is {z| — 2 < z < 2} or, in
“interval-language”: [—2,2].

14. The function is not defined where the denomi-
nator is zero, so the domain for f(x) is {z|x #

+/2}.

15. Intercepts at z = —4 and 2, and y = —8. Local
minimum at x = —1. No asymptotes.

1

16. Intercepts at =z ~ 2.36, 0.17 and —2.53, and
y = 1. Local maximum at x = —v/2. Local
minimum at z = v/2. No asymptotes.

17. Intercepts at z = —1 and 1, and y = 1. Local
minimum at x = 1 and at x = —1. Local max-
imum at x = 0. No asymptotes.

35

18. Intercepts at = ~ 1.97,—0.82, and —1.89, and
y = —1. Local maximums at x ~ —1.52 and
0.29. Local minimums at x ~ —0.29 and 1.52.
No asymptotes.

19. Intercept at y = 0 and at x = 0. No extrema.
Horizontal asymptote y = 4. Vertical asymp-
tote x = —2.

20

15

vvvvvvvv

20. Intercept at y = 1. No z-intercept since the
function is undefined at x = 2. No extrema.
Horizontal asymptote y = 0. Vertical asymp-
tote x = —1.
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N

21. Intercept at y = 0 and z = %” for integers k.
Extrema: y takes maximum 1 and minimum
—1 with great predictability and regularity. No
asymptotes.

22. Intercept at y = 0 and = = ’“4—” for inte-
gers k. No extrema. Vertical asymptotes at

x = @ for integers k

3

2

23. Intercept at y = 2 and from the
amplitude/phase  shift form  f(x) =
V5 sin (z +sin™'(2//5)), we could write down
all the intercepts only at considerable incon-
venience. Extrema: y takes maximum V5 and
minimum —+/5 with great predictability and
regularity. No asymptotes.

CHAPTER 0. PRELIMINARIES

24. Intercept y = 1. Local maximums at * =
M for integers k. Local minimums at

x = krm for integers k. Vertical asymptotes

at x = W for integers k.

25. Intercept y = 4 (no z-intercepts). No extrema.
Left horizontal asymptote y = 0.

26. Intercept y = 3 (no a-intercepts). No extrema.
Horizontal asymptote y = 0.
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27.

28.

29.
30.
31.
32.

33.

34.

o o

o

i T T B B M B B I A B

o

-0.4 -0.2 o 0.2 0.4

Intercept * = 1/3 (no y-intercepts). No ex-
trema. Vertical asymptote x = 0.

vvvvvvvvvvvvvvvvvvvvv

No intercepts, extrema, or asymptotes.
Function only defined for x > 0.

Intercepts at * = —4 and 2, and y = —8.
Intercepts y = 1, and z = +£1.
Vertical asymptote z = —2.

Vertical asymptote at * = —1. This is where
the denominator is zero (and the numerator is
not zero). Note that the function is not defined
at x = 2.

2?2 —3x — 10 = (2 — 5)(x + 2). The zeros are
when £ =5 and z = —2.

23 + 42% + 3z = z(z + 3)(z + 1). Zeros are

x=0,—1and —3.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

37

Guess a root: x = 1. Factor the left side:
(x — 1)(z? — 22 — 2). Solve the quadratic by
formula:

_ 24 4/22 —4(1)(-2) 143
5 .

Complete list of three roots: =z = 1, o =
1—V3~—-732, 2=1+/3~2732.

T

Zeros are at r ~ 1.618, and —0.618. Exact
values are z = (14 /5)/2.

There are 3 solutions, one at x = 0 and the
other two negatives of one another. The value
in question is .928632.. . ., found using the func-
tion “Goal Seek” in Excel. The result can be
checked, and a graphing calculator can find
them by graphing y = 23 and y = sinz on the
same axes and finding the intersection points.

The graph shows two zeros. Squaring both
sides gives 22 +1 = z*—222+1, or 0 = 2% —3z2.
The solutions are x = ++/3. (x =0 is an ex-
traneous solution.)

Let h be the height of the telephone pole. Then
% = tan34° = h = 50tan 34° ~ 33.7 feet.

The triangle in the first quadrant with adja-
cent side 1 and hypotenuse 5 has opposite side

V24, s0 sinf = @.

(3)571/2:7:L:§
51/2 \/g 5
1 1

b) 372=_ =—

(b) 37 =5 =3

(a) = —0 =207 1/2

In8 —2In2 =1In8 — In 22
=In8—~In4d=1n (%) =In2

en4? =8 = 4r =8 and z = 2.

362””:8:6255:%
= lne2® :ln(%)
:>2x:ln(§)

1
:>x=§1n§
2In3z=5=1n3z =3

= ¢5/2

M

=3z, 50 = 1e%/2.
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47. The natural domain for f is the full real line.

48.

49.

50.

51.

52.

53.

54.

55.

56.

The natural domain for g is {z|1 < z}. Be-
cause f has a universal domain, the natural
domain for f o g is the same as the domain
for g, namely {z|1 < z}. Because g requires
its inputs be not less than 1, the domain for
g o f is the set of x for which 1 < f(x), i.e.,
{z]1 < 2?} = {z|1 < |z}, or in interval lan-
guage (—oo, —1] U [1, 00).

The formulae are easier:

(fog)x) = f(Vz —1)
— (Vr—T)2=z—1
(9o fl(x) =g(z*) = Va2 -1
Caution: the formula for f o g is defined for
any x, but the domain for f o g is restricted as

stated earlier. The formula must be viewed as
irrelevant outside the domain.

(Fog)a) = (s and
(go @) =z
are both valid for x # £1.

= f(g(z)) for f(z) = e® and g(z) =
322 4 2.

Veinz +2 = f(g(x)) for f(z) =

g(z) =sinx + 2.

2
e3$ +2

Va and

2 —dr+1=22—4x+4—-4+1,50

f(x) = (z — 2)? — 3. The graph of f(z) is the
graph of 22 shifted two units to the right and
three units down.

2?2+ 42 +6 = (22 +4x +4) + 2, so

f(x) = (x +2)? + 2. The graph of f(z) is the
graph of z2 shifted two units to the left and
two units up.

Like 23, the function f(x) = 23 — 1 passes the
horizontal line test and is one-to-one. To find
a formula for the inverse, solve for x to find
(y + 1)Y/3 = z then switch  and y to get
f~Hx) = (z+1)Y/3 for all z.

e~4% is one-to-one, and its inverse is f% Inz.
The function is even (f(—z) = f(x)). Ev-
ery horizontal line (except y = 0) which meets
the curve at all automatically meets it at least
twice. The function is not one-to-one. There
is no inverse.

23 — 2z + 1 is not one-to-one as it fails the
horizontal line test.

CHAPTER 0. PRELIMINARIES

57. The inverse of z° + 23 — 1:

58. The inverse of 3 + 5z + 2:
1
(o]
5 1‘0‘
59. The inverse of Va3 + 4z:
A
5]
, ]
5]
]
G‘ vvvvvvvvvvvvvvvvvvvvvvvvvv
o 2 4 6 8 10

m3+2x.

60. The inverse of e

61. On the unit circle, y = sinf = 1 when 6 =

PR
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62.

63.

64.

65.

Hence, sin™!' 1 = 5

On the unit circle, z = cosf = —1/2 when
y = sinf = i\/§/2 in the second or third
quadrant. This coincides with a 30°-60°-90°
or %—E—% triangle, so cos™'(—1) = 27/3 or
cos™(—3) = 4n/3.

Since tanf = jg;‘z, we want y = cosf to be
equal to —xr = —sin# on the unit circle. This
happens when § = —w/4 and 0 = 37/4. Hence,

tan~!(—1) = —Z or tan~!(—1) = 2T.

We have that csc™!(—2) =sin™'(—3). On the
unit circle, y = sinf = —1/2 when & = cosf =
:I:\/§/2 in the third or fourth quadrant. This
coincides with a 30°-60°-90° or §-%-7 trian-
gle, so csc™!(=2) = sin™'(—3) = —7/6 or
csc™H(=2) = T /6.

If an angle 6 has sec(d) = 2, then it has
cos(f) = 1/2. Tts sine could be :I:?. But

66.

67.

68.

69.

70.

39

if & = sec™!(2), then in addition to all that

has been stated, it is in the first quadrant, and

the choice of sign (for its sine) is positive. In
V3

summary, sin(sec™' 2) = sinf = .

cos~1(4/5) relates to a triangle in quadrant 1
with adjacent side 4 and hypotenuse 5, so the
opposite side must be 3, and the tangent of this

angle is 2

1
sin~* (Sin (%’T)) =sin~! (72) =7
sin(—%) = —2. cos_l(—g) relates to a tri-

angle in the second quadrant with angle %“.

sin2z =1=

2z = § + 2km for any integer k so

x = T + km for any integer k.

cos 3x = % whenever

3r = £% + 2kn for any integer k, or
r==+g+ %Tﬂ for any integer k.



Chapter 1

Limits and
Continuity

1.1 A Brief Preview of
Calculus

1. (a) The slope appears to be 2.

Second point | mgec
(2,5) 3
(1.1,2.21) 2.1
(1.01,2.0201) | 2.01
(0,1) 1
(0.9,1.81) 1.9
(0.99,1.9801) | 1.99

(b) The slope appears to be 4.

Second point | mgec
(3, 10) 5
(2.1, 5.41) 4.1
(2.01, 5.0401) | 4.01
(1,2) 3
(1.9, 4.61) 3.9
(1.99, 4.9601) | 3.99

2. (a) The slope appears to be 3.

Second point Mgee
(2,10) 7
(1.1,3.331) 3.31
(1.01,3.030301) | 3.0301
(0,2) 1
(0.9,2.729) 2.71
(0.99,2.970299) | 2.9701

(b) The slope appears to be 12.

Second point Mgee
(3, 27) 19
(2.1, 11.261) 12.61
(2.01, 10.120601) | 12.0601
(1, 3) 7
(1.9, 8.859) 11.41
(1.99, 9.880599) | 11.9401

The slope appears to be 0.
Second point Mgec
(1, 0.5403) —0.4597
(0.1, 0.995) —0.05
(0.01, 0.99995) —0.005
(-1, 0.5403) 0.4597
(-0.1, 0.995) 0.05
(-0.01, 0.99995) 0.005

The slope appears to be 1.
Second point Mgec
(1, 0.5403) 0.9466
(1.5, 0.0707) | 0.9986
(1.57, 0.0008) 1
(2.5,-0.8011) | 0.8621
(2, -0.4161) 0.9695
(1.6, -0.0292) 1

4. (a) The slope appears to be %

Second point Mgec
(1, v2) 0.4142
(0.1, 1.0488) | 0.488
(0.01, 1.004988) | 0.4988
(1, 0) 1
(-0.1, 0.9487) | 0.513
(-0.01, 0.99499) | 0.501

The slope appears to be 0.25.
Second point Mgec
(2, 1.7321) 0.2679
(2.9, 1.9748) 0.252
(2.99, 1.9975) 0.25
(4,2.2361) | 0.2361
(3.1, 2.0248) 0.248
(3.01, 2.0025) 0.25

The slope appears to be 1.
Second point Mgec
(1, ¢e) 1.718282
(0.1, 1.1052) 1.051709
(0.01, 1.0101) | 1.005017
(-1, 0.3679) 0.632121
(-0.1, 0.9048) | 0.951626
(-0.01, 0.9901) | 0.995017

(b) The slope appears to be 2.72.
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Second point | mgec
(0, 1) 1.7183
(0.9, 2.4596) | 2.587
(0.99, 2.6912) | 2.71
(2, 7.3891) 4.6708
(1.1, 3.0042) | 2.859
(1.01, 2.7456) | 2.73

6. (a) The slope appears to be 1.

Second point Mgee
(0.1, -2.3026) 2.5584
(0.9, -0.1054) 1.054
(0.99, -0.01005034) | 1.005034
(2, 0.6931) 0.6931
(1.1, 0.09531) 0.9531
(1.01, 0.00995) 0.995

Note that we used 0.1 rather than 0 as an
evaluation point because Inz is not de-

fined at 0.
(b) The slope appears to be 0.5.

Second point Mgec
(1, 0) 0.6931
(1.9, 0.6419) 0.512

(1.99, 0.6881) 0.5
(3, 1.0986) 0.4055
(2.1, 0.7419) 0.488

(2.01, 0.6981) 0.5

7. (a) For the x-values of our points here we use

(approximations of) 0, &, 7, ‘%’T, and 3.
Left Right Length
(0, 1) (0.393, 0.92) | 0.400
(0.393, 0.92) | (0.785, 0.71) | 0.449
(0.785, 0.71) | (1.18, 0.383) | 0.509
(1.18, 0.383) | (1.571,0) | 0.548

’ \ Total | 1.906 |

(b) For the x-values of our points here we use

: : . T w 3 ® 57
(approximations of) 0, &, &, 56+ > I¢

%ﬂ, %, and 5.
Left Right Length
(0, 1) (0.196, 0.98) | 0.197
(0.196, 0.98) | (0.393, 0.92) | 0.204
(0.393, 0.92) | (0.589, 0.83) | 0.217
(0.589, 0.83) | (0.785, 0.71) | 0.232
(0.785, 0.71) | (0.982, 0.56) | 0.248
(0.982, 0.56) | (1.178,0.38) | 0.262
(1.178, 0.38) | (1.37, 0.195) | 0.272
(1.37, 0.195) (1.571, 0) 0.277
y |  Total | 1.909

(¢) Actual length approximately 1.9101.
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8. (a) For the z-values of our points here we use

(approximations of) 0, &, 7, %”, and 3.
Left Right Length
0, 0) (0.393, 0.38) | 0.548
(0.393, 0.38) | (0.785, 0.71) | 0.509
(0785, 0.71) | (1.18, 0.924) | 0.449
(1.18,0.924) | (1.57,1) | 0.400

’ \ Total | 1.906 |

(b) For the z-values of our points here we use

(approximations of) 0

s ™

3n ©®™ 5w

> 167 82 167 4 167

%’T, %r, and 7.
Left Right Length
(0, 0) (0.196, 0.2) 0.277
(0.196, 0.2) (0.39, 0.38) 0.272
(0.39, 0.38) | (0.589, 0.56) | 0.262
(0.589, 0.56) | (0.785, 0.71) | 0.248
(0.785, 0.71) | (0.982, 0.83) | 0.232
(0.982, 0.83) | (1.18,0.924) | 0.217
(1.18,0.924) | (1.374, 0.98) | 0.204
(1.374, 0.98) (1.571, 1) 0.197
y |  Total | 1.909 |

(¢) Actual length approximately 1.9101.

9. (a)

Left Right Length
(0, 1) (0.75, 1.323) | 0.817
(0.75,1.323) | (1.5, 1.581) 0.793
(1.5, 1.581) | (2.25, 1.803) | 0.782
(2.25, 1.803) (3,2) 0.776

y |  Total | 3.167 |
Left Right Length
(0, 1) (0.375, 1.17) | 0.413
(0.375, 1.17) | (0.75, 1.323) | 0.404
(0.75,1.323) | (1.125, 1.46) | 0.399
(1.125, 1.46) (1.5, 1.58) 0.395
(1.5, 1.58) (1.88, 1.696) | 0.392
(1.88, 1.696) | (2.25, 1.80) 0.390
(2.25,1.80) | (2.63,1.904) | 0.388
(2.63, 1.904) (3,2) 0.387

’ \ Total \ 3.168 ‘

(¢) Actual length approximately 3.168.

10. (a)

Left Right Length
(1, 1) (1.25,0.8) | 0.3202
(1.25,0.8) | (1.5,0.67) | 0.2833
(15,0.67) | (1.75,0.571) | 0.2675
(1.75, 0.571) (2,05) 0.2600

y |  Total | 1.1310 |




Left Right Length

(1, 1) (1.125,0.89) | 0.167
(1.125, 0.89) | (1.25,0.8) | 0.153
(1.25, 0.8) (1.375,0.73) | 0.145
(1.375, 0.73) (1.5, 0.67) 0.139
(1.5, 0.67) (1.625, 0.62) | 0.135
(1.625, 0.62) | (1.75,0.57) 0.133
(1.75,0.57) | (1.875,0.53) | 0.131
(1.875, 0.53) (2, 0.5) 0.129

’ \ Total \ 1.132

(¢) Actual length approximately 1.1321.

Left Right | Length
(-2,5) | (-1,2) | 3.162
(-1,2) | (0,1) | 1414
(0,1) | (1,2) 1.414
(1,2) | (2,5) | 3.162
y | Total [ 9.153 |
Left Right Length
(-2, 5) (-1.5, 3.25) | 1.820
(-1.5,325) | (-1, 2) 1.346
(-1, 2) (-0.5, 1.25) | 0.901
(-0.5, 1.25) (0, 1) 0.559
(0, 1) (0.5, 1.25) 0.559
(0.5, 1.25) 1, 2) 0.901
(1,2) (1.5, 3.25) 1.346
(1.5, 3.25) (2,5) 1.820
’ \ Total \ 9.253 ‘

(¢) Actual length approximately 9.2936.
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(b)
11. (a)
(b)
12. (a)

Left Right Length
(-1, 1) (-0.5, 1.875) | 1.0078
(-0.5, 1.875) (0, 2) 0.5154
(0, 2) (0.5, 2.125) | 0.5154
(0.5, 2.125) (1, 3) 1.0078
’ \ Total \ 3.0463 ‘
Left Right Length
(-1, 1) (-0.75, 1.58) | 0.630
(-0.75, 1.58) (-.5, 1.88) 0.388
(-.5, 1.88) (-0.25, 1.98) | 0.273
(-0.25, 1.98) (0, 2) 0.251
(0, 2) (0.25, 2.016) | 0.251
(0.25,2.016) | (0.5,2.13) | 0.273
(0.5, 2.13) (0.75, 2.42) 0.388
(0.75, 2.42) (1, 3) 0.630
’ \ Total \ 3.084

13.

14.

CHAPTER 1.

()
(a)

(b)

(a)
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Actual length approximately 3.0957.

The sum of the areas of the rectangles is

11/8 = 1.375.

N\

The sum of the areas of the rectangles is
43/32 = 1.34375.
=T
A 1 N
/| o N\

A1 11 N

The width of the entire region

(=1 <2 <1)is 2, so the width of each
rectangle is 2/16 = 0.125.

The left endpoints of the rectangles are
-1,-1+2, ..., -1+2 -1+3

so the midpoints of the rectangles are
“1+ 4, -1+3, ..., -1+ 3

The heights of the rectangles are then
given by the function f(z) = 1 — 22
evaluated at those midpoints. We multi-
ply each height by the width (0.125) and
add them all to obtain the approximation
1.3359375 for the area.

Using the same method as in (a), the
width of the rectangles is now

2/32 = 0.0625, and the midpoints are
1+ 4, -1+, ..., -1+ 3.

The approximation is 1.333984375.
Using the same method as in (a), the
width of the rectangles is now

2/64 = 0.03125, and the midpoints are
—l+gp, 1+, -1+ 2L
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The approximation is 1.333496094.
The actual area is 4/3.

15. The following is a graph with 4 rectangles:

-
I}

N

o o
B 111D 1%

(a) Using the same method as in exercise 13,
the width of the rectangles is 7/16, and

the midpoints are
T 3 157

E, Tﬁ’ ceey 16 .
The approximation is 2.003216378.

(b) Using the same method as in exercise 13,
the width of the rectangles is now 7/32,
and the midpoints are

T 37 31w

ﬁ, 57 ceey 32 .
The approximation is 2.000803417.

(¢) Using the same method as in exercise 13,
the width of the rectangles is now 7/64,

and the midpoints are
T 37 631

a, a7 ceey 64 .
The approximation is 2.000200812.

The actual area is 2.

16. The following is a graph with 4 rectangles:

.
L

O =TT T L S s e S
o] 0.2 0.4 0.6 0.8 1

x

(a) Using the same method as in exercise 13,
the width of the rectangles is 1/16, and

the midpoints are

1 3 15
167 167 * "’ 16"

The approximation is 0.249511719.
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(b) Using the same method as in exercise 13,
the width of the rectangles is now 1/32,
and the midpoints are
1 3 31
320 32 ) 32
The approximation is 0.24987793.

(c) Using the same method as in exercise 13,

the width of the rectangles is now 1/64,

and the midpoints are
1 3 63

6747 a’ ceey 64 .
The approximation is 0.249969482.

The actual area is 1/4.

17. The function represents a quarter of the circle
in the first quadrant, with the center as the
origin and radius 1.

(a)
Left Right Length
(0,1) (0.25, 0.9682) | 0.2520
(0.25, 0.9682) | (0.5, 0.866) 0.2773
(0.5, 0.866) (0.75, 0.661) | 0.3200
(0.75, 0.661) (1, 0) 0.7066
] \ Total | 1.5559 |
(b)
Left Right Length
(0,1) (0.125, 0.9922) | 0.1252
(0.125, 0.9922) | (0.25, 0.9682) | 0.1273
(0.25, 0.9682) | (0.375, 0.927) | 0.1316
(0.375, 0.927) (0.5, 0.866) 0.1391
(0.5, 0.866) (0.625, 0.7806) | 0.1514
(0.625, 0.7806) | (0.75,0.6614) | 0.1727
(0.75, 0.6614) | (0.875, 0.4841) | 0.2169
(0.875, 0.4841) (1, 0) 0.5
y \ Total | 1.5642
The exact length of the curve is equal to
the
1 (circumference of the circle)
_2n(l) w
T4 2

18. The function represents a quarter of the circle
in the first quadrant, with the center as the
origin and radius 3.

(a)

Left Right Length
(0, 3) (0.75, 2.905) | 0.756
(0.75, 2.905) | (1.5, 2.598) 0.810
(1.5, 2.598) | (2.25, 1.984) | 0.969
(2.25, 1.984) (3,0) 2.121

’ \ Total \ 4.656 ‘
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Left Right Length

(0, 3) (0.375,2.976) | 0.376

(0.375, 2.976) | (0.75, 2.905) | 0.382

(0.75, 2.905) | (1.125,2.781) | 0.395

(1.125, 2.781) (1.5, 2.598) 0.417

(1.5, 2.508) | (1.875, 2.342) | 0.454

(1.875, 2.342) | (2.25, 1.984) 0.518

(2.25, 1.984) | (2.625, 1.452) | 0.651
(2.625, 1.452) (3,0 15

’ \ Total | 4.693 |

The exact length of the curve is equal to

the

1
1 (circumference of the circle)

_ 27(3) _ 3

4 2

1.2 The Concept of Limit

1. The graph of y = (m

3

2

-1
1 ) is as follows

x f(z) x f(z)
0.9 1.9 1.1 2.1
099 | 1.99 | 1.0I | 2.01

0.999 | 1.999 | 1.00I | 2.001
0.9999 | 1.9999 | 1.0001 | 2.0001

2. The graph of y = <

Notice that the table and the graph both sug-

gest that, as x gets closer and closer to 1 from
2

the left as well as from the right

gets

closer and closer to 2.This can be verified using
factorization as follows:
(x—1)(x+1)

@—1)

z—=1 v —1 r—1
=lim(z+1)=2
rz—1

2+

$2—$—2> is as follows

CHAPTER 1. LIMITS AND CONTINUITY

-2 -1 i 3 4
-

r [ J@ [« | @
-0.9 0.3103 -1.1 0.3548
-0.99 | 0.3311 | -1.01 0.3355

-0.999 | 0.3331 | -1.001 | 0.3336
-0.9999 | 0.3334 | -1.0001 | 0.3334

Notice that the table and the graph both sug-
gest that, as x gets closer and closer to -1 from

2
the left as well as from the right (;C—HC)
2 —x—2

gets closer and closer to 3" This can be verified

using factorization as follows:

. 2+ . x(x+1)
lm ———= lim ——mM——
zo-1gx2 —x—2 zo-1 (sz)(erl)
. x 1
= lim = -

-1 —2 3

x2

-2
. The graph of y = <x4> is as follows

r [ J@ [ = [ @
1.9 0.2564 2.1 0.2439
1.99 0.2506 2.01 0.2494

1.999 | 0.2501 | 2.001 | 0.2499

1.9999 0.25 2.0001 0.25

Notice that the table and the graph both sug-
gest that, as x gets closer and closer to 2 from

-2
the left as well as from the right (;2 — 4> gets
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1
closer and closer to —. This can be verified us-

ing factorization as follows
x—2 I x—2
m ———- = 11m ———¥=
r—2 (Ez —4 r—2 (:L’ s 2)($ + 2)
1 1

lim ——

x f(z) x f(z)
2.9 3.3333 3.1 2.7273
2,99 | 3.0303 | 3.01 | 2.9703

2.999 | 3.003 | 3.001 | 2.997
2.9999 | 3.0003 | 3.0001 | 2.9997
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—_1)?
4. The graph of y = (362@—}—295)—3) is as follows

10—
ol
o—|

— L

FT T T T T T [T T r o171

-0 8 -6 4| -2/ 2 4 6 8 10
.
.
.

z f(z) x f(x)
0.9 -0.0256 1.1 0.0244
0.99 -0.0025 1.01 0.0025
0.999 | -0.0003 | 1.001 | 0.0003
0.9999 | -0.00003 | 1.0001 | 0.00003

Notice that the
suggest that, as
1 from the left

table and the graph both
x gets closer and closer to
as well as from the right

3r—9
(x2—x5x+6) gets closer and closer to 3.

This can be verified using factorization as fol-

lows
3x—9 3(x—3)
im ———— = lim —————
s—3 22 —5x+6 -3 (x—3)(zx—2)
731112’):5—2:3
2+

2 + 22

3

-

Notice that the table and the graph both
suggest that, as x gets closer and closer to
1 from the left as well as from the right

(- 1)
2421 —3
This can be verified using factorization as fol-
lows

gets closer and closer to 0.

(2= 1) (2~ 1)
im ————*— = lim ——————
e=122 42 -3 =1 (x—1)(x+3)
T R

z f(z) z f(@)
-1.9 -0.5263 2.1 -0.4762
-1.99 -0.5025 -2.01 -0.4975

-1.999 -0.5003 -2.001 -0.4998
-1.9999 | -0.50001 | -2.0001 | -0.49998
24x 24 x
m —— = lim ———
z——2 22 + 2 z——2 z(x -+ 2)
. 1 1
= lim —=——
rT——2 T 2



(¢) lim f(z)=1

r—1

(d) lim f(z)=-1

T2~

(e) lim f(x)=3

z—2t

() %1_>I112 f(z) does not exist.

(g) lim f(x)=2.5

z—3~

(h) lim f(z)=1.5

r——3

9. (a) lim f(z)= lim 2z =4

r—2~ T2~
b) i = li 24
©) lim /(@)= Jig o
(c) lim f(x) =4

(d) lim f(z) = lim 22 =2
rz—1 z—1

: _ 2 __ 92 __
(e) lim f(z) = limz® =3"=9

16

10. (a) lim f(z)= lim 2° —1=—1

z—0~ z—0~
(b) lim f(z)= lim Va+1-—2
z—0t z—0t
=—-1

(¢) lim f(z) =-1

z—0

(d) lim f(z)= lim 2® —1= -2

rz——1 z——1

(e) lim f(z) =lim+vz+1—-2=0
r—3 r—3

11.

12.

13.

14.

15.
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f(1.5) =2.22, f(1.1) = 2.05,
£(1.01) = 2.01, f(1.001) = 2.00.

The values of f(x) seem to be approaching 2
as x approaches 1 from the right.

£(0.5) = 1.71, £(0.9) = 1.95,
£(0.99) = 1.99, £(0.999) = 2.00.

The values of f(z) seem to be approaching 2 as
x approaches 1 from the left. Since the limits
from the left and right exist and are the same,
the limit exists.

f(=15)=—0.4
F(=1.1) = —0.4762
F(—1.01) = —0.4975
£(=1.001) = —0.4998

The values of f(x) seem to be approaching
—0.5 as = approaches —1 from the left.

£(—0.5) = —0.6667
£(—0.9) = —0.5263
£(—0.99) = —0.5025
£(—0.999) = —0.5003

The values of f(z) seem to be approaching
—0.5 as x approaches —1 from the right. Since
the limits from the left and right exist and are
the same, the limit exists.

By inspecting the graph, and using a sequence
of values (as in exercises 11 and 12), we see
that the limit is approximately 1.

The numerical evidence suggests that the func-
tion the function blows up at z = 1. From the
graph we see that the function has a vertical
asymptote at x = 1.
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16.

17.

18.

19.

20.

21.

22,

23.

x y = f(=)

0.9 0.290960

0.6 0.062177

0.2 [ 1.388 x 1071

-0.2 11388 x 1011

-0.6 0.062177

-0.9 0.290960

By inspecting the graph and using a sequence
of values, we see that the limit is approximately
0.

r | y=flz)

0.9 | 0.949122

0.99 | 0.994991

0.999 | 0.999500

1.001 | 1.000500

1.01 | 1.005000

1.1 1.049206

By inspecting the graph, and using a sequence
of values, we see that the limit is approximately
1.

The limit exists and equals 1.

The limit exists and equals 1.

The limit does not exist because the graph os-
cillates wildly near = = 0.

By inspecting the graph, and using a sequence
of values (as in exercises 11 and 12), we see
that the limit is approximately 3/2.

The numerical evidence suggests that

lim ‘I:SI = —1 while lim |I:§| =1

z—2— 1T z—2+ 1%

so lim £=2Z. does not exist. There is a break
T—2 lz—2]

in the graph at x = 2.

The function approaches 1/2 from the left, and
—1/2 from the right. Since these are not equal,
the limit does not exist.

One possibility:

47

24. One possibility:

@

n
]

I N S A

n

Y15
] .
0.57
T
3 2 -1 o 1 2 3

25. One possibility:

<
d e e

"
L

vvvvvvvvvvvvvvvvvvvvv

L VDR

26. One possibility:

27. Numerical and graphical evidence show that
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28.

29.

30.

2 x+1

the limits lim x and lim 1 do not

z—=1 x —1 =2 12 —
exist (both have vertical asymptotes). Our
conjecture is that if g(a) = 0 and f(a) # 0,

/(=)

lim —=% does not exist.

1 si
lim a:2+ = 0 and lim SWr_ 0. If the
z——-12%+1 =T X

numerator f(a) = 0, and the denominator
g(a) # 0, then the limit lim f@) =0.
r—a g(:r)

The first argument gives the correct value; the
second argument is not valid because it looks
only at certain values of x.

From the values shown in table below, we can
conclude f(z) tends to infinity as z tends to 0.

x f(z)
0.1 9.9990
0.01 | 99.0099

0.001 500

For x > 0, as x decreases, the value of function
starts decreasing sharply as shown in table be-
low.

v 7(@)
0.0001 99.0099
0.00001 9.9990
0.000001 1
0.0000001 0.1
0.00000001 0.01
0.0000000001 | 0.000001

For x < 0, as x increases, the value of function
starts increasing sharply as shown in table be-
low.

v 7@
-0.0001 -99.0099
-0.00001 -9.9990
-0.000001 -1
-.0000001 -0.1
-.00000001 -0.01
-.0000000001 | -0.000001

Notice that the table suggests that, as x gets
closer and closer to 0 from the left as well

as from the right gets closer

T
22 + 0.000001
and closer to 0. Therefore

x
1. = 1. —_— = O
Jim, f (@) = Jim <x2 + 0.000001)

CHAPTER 1. LIMITS AND CONTINUITY

31. (a)
z | (Q+ax)7 x (1+x)=
0.1 2.59 —0.1 2.87
0.01 2.70 —0.01 2.73
0.001 2.7169 —0.001 2.7196

lim (1 + x)Y/* ~ 2.7182818
z—0

(b) We see that 1/x is increasing without
bound when x is approaches 0. While it
is true that 1 raised to any power is 1,
numbers close to 1 raised to large enough
powers may be very far from 1.

32.
T xsecx
0.1 | 0.099
0.01 | 0.010
0.001 | 0.001
lim %% =0
z—0t

secx

For negative x the values of x

not real numbers, so lim x5°¢%
z—0—

are usually
= 0 does not

exist.

33. Possible answers:

x
fla)=—
(@) 1 ifx <0
xT) =
g 1 ifz>0
34. There are many possibilities. Here is a simple
one
-z x<0
flx)=< 3 x=0
x z>0

35. By inspecting the graph, and using a sequence
of values (as in exercises 11 and 12), we see
that the limit is approximately 1/2.

2

36. By inspecting the graph, and using a sequence
of values (as in exercises 11 and 12), we see
that the limit is approximately 1/2.



1.3. COMPUTATION OF LIMITS

37.

38.

39.

The limit of h(w) as w — 0" seems to be 0.

0.3

For w = 0, the ball position the batter sees at
t = 0.4 is the same as what he tries to hit.

The graph of function

flw) = O'f? [1—sin (2720 + g)}

is shown below.
3.0

(%)

0.ot+TT T T T T T

[o] 1 2 3 4 5

Also, the different values of the function are
shown in table below.

o [ @)
0.1 2.2978
0.01 2.3119

0.001 2.3120

0.0001 2.3120

0.00001 | 2.3120

Notice that the table and the graph both
suggest that, as w gets closer and closer to

0.625
0 from the right 5 {1 — sin (2.72w + g)}
w
gets closer and closer to 2.3120.

For 3 <t <4, f(t)=8,s0 lim f(t) =8.
t—3.5

Also lim f(t) =8.

t—4—

On the other hand, for 4 <t¢ <5, f(¢) = 10,
li t) = 10.
o lim, 70

40.

49

Hence lim f(¢) does not exist.
t—4

14

12

10

The limit does not exist at t = 1, 2, 3, 4, and
5 hours. In each case the limit from the left is
two dollars less than the limit from the right.
We would be in a hurry to move our car just
before the hour to try to save $2. Just after
the hour, we can relax and take our time as
the next price increase doesn’t come until the
next hour.

Computation of Limits

Clim(2? =32 4+1)=0"-3(0)+1=1
x—0

- lim V2041 = Y/2(2) +1 = /5.
xr—r

lim cos ™ (z%) = cos ™! 0 = z

x—0
lim x—572—577§
e—222+4 2244 8
L ox2—z—6
lim ———
r—3 5E—3
T ) G
r—3 x—3
=lim(z+2)=3+2=5
r—3

22 +x—2
=122 — 3z + 2
@S+

a1 (x —1)(z —2)
G S B
Iﬂl(fo) —1
I 22—z —2
Tl—>mQ 2 —4
~ fim (z=2)(z+1)

z—2 (x + 2)(z — 2)
_ x+1_2+1_§
S a2z 42 242 4
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10.

11.

12.

13.

14.

15.

lmL

z—1 132 4+ 2x — 3
(z—1)(2*+z+1)

im

L R P Py

o ox?4+x+1 174141 3
= lim = = -
z—=1 x4+ 3 1+3 4
sin x . sinx
lim = lim ——
z—0 tan x r—0 ST
. Ccos T
= lim cosz = cos0 =1
x—0
tanx
lim
x—0 x
sin x
= lim

rz—0 ' COS T

. sinxzx . 1
lim lim =1.
z—0 I z—0 COST

72m+1

xre
lim ———
20 x24T
B SC( 72x+1)
= lim —————=
z—0 x(m +1)
g2kl o —2(0)+1
= lim = =e
z—=0 T+ 1 0+1

132

lim z?csc?x = lim — 5
z—0 z—0 sin“x

1 . 1
lim Iim — | =1
:E—>O bll’l(l]’ (L‘—)O sSin T

xT xr

vVe+4—2

lir%
xr—r
= lim $+ zt+d+2
x—0 x vor+4+2
lim r+4—4
7w—>0x(\/x+ —|—2)
=lim ——

w—>0x(\/x+ +2)
= lim

z—>0\/1‘+ +2

1

f+2 2+2 T4

i 2%

=03 — /o +9

h 2 (3+VEE0)
B VET9) B+ Vet
. 2x(3+\/x—|—9)

z—0

= hm 2(3+\/sc+ 9) =

rz—1

lim

z—1 /o —1

o WEEDE-D
r—1 \/571
=lim(vVz+1)=Vi+1=2

16.

17.

18.

19.

20.

21.

22,

23.

24.

CHAPTER 1. LIMITS AND CONTINUITY

.z’ —64 . (x—4) (2 + 42 + 16)
lim = lim
(z—4)

rx—4 r — 4 r—4
= lim (2° + 4 + 16)
T—4

=42 4+4x4+16 =48

;1—>ml<xil 22 1)2
11<x1 (xl)(:v+1))

~ lim z+1 _ 2
_a}:al ((m—l)(m+1) (x—l)(x+1))

= lim

z—1
a—1 \ (z — 1)(x + 1))

. 1 1
=lim|—— ) ==
=1 \x+1 2

Undefined. The limit from the right is 0, but
the limit from the left does not exist.

r—0~ T
Since the limit from the left does not equal the
limit from the right, we see that lirr%] ngzl)
T—
does not exist.
lim f(z) = lim 2z =2(2) =4
r—2~ T2~ ) )
li = li =22=4
e

lim f(2) =

Undefined. The limit from the left is 2, but the
limit from the right is -2.

lim f(z)= lim (2z+1)
z——1 r——1"
=2(-1)+1=-1
li = lim 3=3

Therefore hm1 f(z) does not exist.
T—r—

lim f(z) =3

r—1—

lim f(z) = lim 2z +1=3,

rz—1t r—1t

Therefore lim1 f(z)=3
T—
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25.

26.

27.

28.

29.

COMPUTATION OF LIMITS

2 _
lim (2+h) 4
h—0 h
. (4+4h+h%) —4
= lim
h—0 2h
4
= lim h+h =lim4+h=4
h—0 h —0
3 _
lim (1+h) 1
h—0 h
. 1+3h+3R2+h% -1
= lim
h—0 h
. h(3+3h+h?)
=lim ——M——~
h—0 h

=lim3+3h+h?>=3
h—0

sinx

Consider f(z) =

and a polynomial

p(z) = 22 — 4 such that p(2) = 0.

sinx
=1.

Also lim
Tr—r €T

Therefore by the theorem 3.4(viii),
lim f(p(e) = L

= gl1—>mz 2—4 1
. tanx . sinx
lim = lim
z—0 bz z—0 bxr cosx
. lsinz 1 )
= lim | =
z—=0 \b x cosx
1 /.. sinx . 1
= — [ lim lim
5 \z—=0 2z z—0 CoS T
1 1
= —(1)(1) = =
~(H)(1)
x? \ x?sin (1/z) ‘
—0.1 0.0054
—0.01 5x107°
—0.001 | -8 x 1077
0.1 —0.005
0.01 —5x107°
0.001 8x 1077

Conjecture: ili% x?sin (1/z) = 0.
Let f(x) = —22, h(z) = 2%

Then f(z) < 2?sin (1) < h(x)

Jiny (%) =0, lin o) =0
Therefore, by the Squeeze Theorem,

;13%) 22 sin (%) =0.

30.

31.

32.

33.

ol

You cannot use the Squeeze Theorem as in ex-
ercise 29 because the secant function is not
bounded between -1 and 1 like the sine func-
tion is. This is difficult to investigate graph-
ically because of the infinitely many vertical
asymptotes as x approaches 0.

Let f(z) =0, h(z) = \/z. We see that

f(@) < Vzcos®(1/z) < h(z),
lim 0=0, lim vz =0

z—0t

Therefore, by the Squeeze Theorem,

lim /zcos? (1) = 0.

€T

z—0t

Saying that | f(z)| < M for all x is the same as
saying —M < f(x) < M for all x.

This implies that
—~Max? < 22 f(x) < M2

Since +Mz? — 0 as © — 0, the Squeeze The-
orem shows that lin%J 22 f(z) = 0.
x—

Velocity is given by the limit
L 2R — 1)
h—0 h 9 )
— lim 2+ h)*+2—-(2°2+2)
h—0
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34.

35.

36.

37.

38.

39.

40.

41.

42.

Velocity is given by the limit

Lo FO+R) — £(0
h—0 h
. hr+2-2
= lim
h—0 h
=limh=0
h—0

Velocity is given by the limit

i £0+R) = F(0)
h—0 h 3 3
o 0 = (0)
h—0 h
N
= fm g
= lim h?> =0
h—0

Velocity is given by the limit

i F0ER) = £ (D)

h—0 h s

S ) et
h—0 h

(see exercise 26).

lim =4/ = —
z—0+ x 2 2
. l—cos?z . sin?z
lim 5 = lim 5
z—0 €T z—0 X

i f@) = lim g(r) =
a polynomlal Snmlarly7

xl—l)r(rll‘*' f(x) - I1_1>I£1+ h($> -

g(a) because g(x) is

h(a).

Evaluate g(a) and h(a). If they are equal, the
limit exists and is this value. If they are not
equal, the limit does not exist.

. 2 _
(a) 31:1_>r112(x 3z +1)

=22 -3(2)+1
=1

T — 2
(b) zh—% 241
lim (z — 2)
z—0

= T 2
ili%(x +1)

(Theorem 3.2)

(Theorem 3.1(iv))

lim z — lim 2

= m (Theorem 3.1(ii))
6—)02 z—0

= ﬁ (Equations 3.1, 3.2, and 3.5)

= -2

(a) lim (z+ 1)sinz
r——1

= lim (z+1) lim sinz
r—— r——1

43.

44.

45.

47.

48.

CHAPTER 1. LIMITS AND CONTINUITY
(Theorem 3.1).
Using Theorems 3.2 and 3.4 we get that
this is equal to (—1 + 1) sin(—1) = 0.

(b) By Theorem 3.1,

z lim z)(lim e*

. xrew (;pal )(ajﬁl )

lim = -

z—1 tanx lim tanz
r—1

Using Theorem 3.2 and Theorem 3.4 we

e
see that this equals :

anl’

lim [2f(2) - 39(x)]

=2 lim f(z) -3 lim g(a)

=2(2) - 3(-3) =13

lim [3f(2)g()]

=3(1im f(x))(hm 9(a))

= 3(2)(~3) =

o @) Daﬂzf @ e s
wagl@)  lmg(e) -3 3
2 @) h(@)

e f(@) + h()

2 (1 ) (1 )
lim /() + lim h(z)
_ 220 _,
2+0
lim p (p(p(p(2))))
i p (o (p (2% - 1))

x—0

2

:}jlir%)p((x4—2x2) —1)

:alcgr%)p(xg—4x6+4x4—l)

= lim (x8—4x6—|—4x4—1)2—1
x—0

=(-1)’-1=0

lim p (3 +2p (z —p (2)))

i p (342 (o - (2~ 1))

zlimp(3—|—2p(aj—x2+1))

fhmp(3+2<x—x +1) 1))

—hmp(3+2 T—2x +1) 2)

:hmp x—x +1 —|—1)

lim (2(35—37 + ) —|—1)2—1

x—0

(2(0—02+1)2+1)2—1 =8
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49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

COMPUTATION OF LIMITS

We can’t split the limit of a product into a
product of limits unless we know that both
limits exist; the limit of the product of a term
tending toward 0 and a term with an unknown
limit is not necessarily 0 but instead is un-
known.

The limit of a quotient is not the quotient of
the limits if the denominator is 0. The fraction

% is indeterminate, and can equal any finite

value or be undefined.
One possibility is f(z) = 2, g(z) = —1.

f@) = = g(z) = 3. lim f(z)g(x) = 1, but
T—r

1ir% g(x) does not exist.

z—

Yes. If g}%[f(x) + g(z)] exists, then, it would
also be true that

lim [ () + g(a)] — lim f(z)

exists. But by Theorem 3.1 (ii)

lim [ () + g(a)] — lim f(z)

=l [1£(2) + 9(a)] - @]

= lim g(x)

r—a

so lim g(z) would exist, but we are given that
Tr—a

lim g(z) does not exist.
r—a

False. For example, let f(z) = 1/x. 1ir% f(z)
r—

does not exist, but lim = = lim z = 0.
z—0 f(:v) x—0

lim (1+2)Y% = e~ 2.71828
rz—0t
lim /% does not exist.
x—0
lim z=%° =1
r—0t
lim z™? does not exist.
r—0t
When z is small and positive, 1/x is large and

positive, so tan~!(1/z) approaches 7/2. But
when z is small and negative, 1/z is large and
negative, so tan~!(1/xz) approaches —m/2. So
the limit does not exist.

lim In || does not exist.
z—0 z

lim [ ()]?

= [t 1@)] [t )] [t )]
=L-L-L=1L%

62.

63.

64.

65.

66.

33

lim [/ ()]* = [1im f(@)] |lim [/(@)]"]

r—a Tr—a T—ra

=L-L°=1L"

Since we have a starting place, and we have
shown that we can always get from one step
to the next, the theorem must be true for any
positive integer.

Given that lim f(z) = L.

T—ra

Assume that ilgb[f(x)]k = LF.
Now lim [ (x)]*1 = lim ()] (x)
— tim [f(2)]* lim f(a) = LVL = LF+1,

Therefore lim [f(x)]™ = L™ for any positive in-
T—ra
teger n.

lim [z] =2; lim [z] =3

z—3~ xz—3+

Therefore lir% [] does not exist.
T—

(a) lim[z] does not exist.
r—1

Approaches 0 from left, 1 from right.
(b) lim [z] =1.

z—1.5
(¢) lim [2x] does not exist.

z—1.5

Approaches 2 from left, 3 from right.
(d) lim z — [z] does not exist.

z—1

Approaches 1 from left, 0 from right.

lim T(z) = lim (0.14z) =0 = T'(0).

z—01 z—0t

lim  T(x) = 0.14(10,000) = 1400
2—10,000~

lim  T(x)= 1500+ 0.21(10,000) = 3600
£—10,000+

Therefore  lim  T'(z) does not exist.
£—10,000

A small change in income should result in a

small change in tax liability. This is true near

2 = 0 but is not true near z = 10,000. As your

income grows past $10,000 your tax liability

jumps enormously.

If lim T(z) =0, thena =0. If lim ex-
z—0t x—20,000

ists, then b must be 2400. These limits should
exist so that $0 income corresponds to $0 tax,
and so that the tax function doesn’t have sud-
den jumps.
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1.4 Continuity and its

1.

10.

- fle) =

- fl2) =

Consequences
fla) = 2?2+ x—2 _ (z+2)(z—-1)
x+2 (x +2)
Notice that the graph of f is a straight line, but
with a hole in it at x = —2. So, f is contin-
uous whenever x # —2. f(z) has a removable
discontinuity at x = —2. The discontinuity

can be removed by redefining the function as
g(x) =2 — 1.

xQ—x—GZ (x=3)(z+2)

x—3 (x —3)

Notice that the graph of f is a straight line, but
with a hole in it at z = 3. So, f is continuous
whenever x # 3. f(z) has a removable discon-
tinuity at x = 3. The discontinuity can be re-
moved by redefining the function g(z) = x + 2.

z—1
(x4+1)(z—-1)
tinuity at x = 1 and a non-removable discon-
tinuity at x = —1; the removable discontinuity
is removed by

g(z) =

has a removable discon-

z+1

. f(x) is discontinuous where the denominator is

0. The function is not defined at £ = —2 and
x = 1. (Not removable.)

. No discontinuities.

. f(z) is discontinuous where the denominator is

0. The function is not defined at x = 1 + /5.
(Not removable.)

2 .
zsinx . .
has non-removable discontinu-

fz) =

ities at * = § + km for any integer k.

. Discontinuous wherever sinz = 0. That is

x = km for any integer k. (Not removable.)

. By sketching the graph, or numerically, one can

see that hn%) 2zInz? = 0. Thus, one can remove

the discontinuity at = 0 by defining

[ zlnz? ifx#£0
9(””)_{ 0 if 2 =0
3 3
Here f () = Inz? 2In|z|’

which is defined for all real z whenever

x # 0,41. It has non- removable discontinuity
at x = 1 and x = —1 and removable discontin-
uty at £ = 0. We can remove the discontinuty

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.
24.
25.

26.
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at x = 0 by defining

ifx£0

3
— In 22
9(“”)_{ 0 ifz=0

f(x) has a non-removable discontinuity at

z =1
Continuous everywhere since lim ooy — 1,
x—0 X

and (0) =
f(x) has a non-removable discontinuity at
r=1:

lim f(z)= lim (Bz—1)=—-4
r——1" r——1"

lim f(z) = lim (22 +5z) = —4
rz——11 rz——11

hm fz) = hm (a:2 +5z) =6

hm f(z) = hm (3x‘3) =3

r—1+t

f(z) is undefined at z = 0, and therefore dis-
continuous there. If f(0) is defined to be 0, the
function is continuous everywhere.

f(1) is not defined and lim1 f(z) does not exist.
z—

Discontinuous because function is not defined
at x = 1.

£(0) is not defined and lin%) f(z) does not exist.
x—

The function is discontinuous at x = 0, as it is
not defined at = = 0.

lim f(z) = lim (%) =4

2~ r—2~

li = 1i 3r—2)=4

oy ) = g, (B =)

lim f(x) = 4: /(2)

lim f(z) # f(2)

Discontinuous because function is not defined

at r = 2.
Continuous where 4+ 3 > 0, i.e. on (—3,00)

Continuous where 22 — 4 > 0, i.e. on (00, —2)
and (2, 00).

Continuous everywhere, i.e. on (—o0,00).
Continuous where z — 1 > 0, i.e. on (1, 00).
sin™! (z + 2) is continuous on interval [-3, -1].

In(sin x) is continuous whenever sin z > 0, that
is on the interval (2km, (2k + 1)) for all in-
tegral values of k.
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27.

28.

29.

30.

31.

CONTINUITY AND ITS CONSEQUENCES

f(z) is continuous, on interval [-1, oo ) when-

ever z # /2.

f(x) is continuous on the intervals (—oo, —1)
and (2, 00)
0.14x

lim 7T(z)= lim

£—10000— ©—10000— 32.
— 0.14(10,000) = 1400
lim  T(z)= lim (c+02lz)
£—10000+ £—10000+
= ¢+ 0.21(10,000)
=c+ 2100

c+ 2100 = 1400
c=—700

A small change in income should not result in
a big change in tax, so the tax function should
be continuous.

If lim T'(z) =0, then a =0.
z—0t

If lim

T(x) exists, then b must be 2400.
©—20,000

For T'(x) to be continuous at x = 141,250 we
must have

33.

%)

— (.386)(307,050) — ¢
= 118521.3 — c.

Hence
c=118,521.3 — 94720 = 23801.3.

lim T(z)= lim 0.10z
6,000~ 6,000~
= $600.
lim 7T(z)= lim 0.152 — 300
6,000+ ©—6,000+
= $600.

So T'(6,000) = $600 = lim T(x), and

26,000
T(x) is continuous at x = 6, 000.

(a) The first two rows of the following ta-
ble (together with the Intermediate Value
Theorem) show that f(z) has a root in
[2,3]. In the following rows, we use the
midpoint of the previous interval as our
new x. When f(z) is positive, we use the
left half, and when f(z) is negative, we
use the right half of the interval. (Be-
cause the function goes from negative to

w—)lﬂi?}ZSO_ T(x) = w—>1143?250+ T(x). positive. If the function went from pos-
itive to negative, the intervals would be
Now reversed.)
lim T(zx)= lim (.30)(z)a i
@—141,250— @—141,250— x f(x)
= (.30)(141,250) — 5685 2 _3
= 36690. 3 2
On the other hand, 22;3 _0'725
lim T(z)= lim (.35)(z) —b 75 0.5625
z—141,250+ z—141,250+ 2.625 —0.109375
= (.35)(141,250) — b 2.6875 0.223
— 4943750 — b. 2.65625 0.557
The zero is in the interval
Hence

b =49437.50 — 36690 = 12,747.50.
For T'(z) to be continuous at x = 307,050

[2.625,2.65625).

On repeated application of intermediate
value theorem, we get

we must have T f(x)
lim T(z)= lim T(z). -3 2
©—307,050~ ©—307,050+ ) 3
Now -2.5 -0.75
li T -
am (z) 2.75 0.5625
©—307,050~ -2.6875 0.2227
= (.35)(307,050) — 12,747.5 -2.65625 | 0.0557
= 94,720. The interval in which f (z) has a zero is
[-2.65625,-2.625 ] which is 55 that of the
On the other hand, given interval.
lim T(x)
2—+307,050+ . 34. (a) The first two rows of the following ta-
= lim (.386)(z) —c

z—307,050+

ble (together with the Intermediate Value
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Theorem) show that f(z) has a root in
[2,3]. In the following rows, we use the
midpoint of the previous interval as our
new x. When f(z) is positive, we use the
left half, and when f(z) is negative, we
use the right half of the interval. (Be-
cause the function goes from negative to
positive. If the function went from pos-
itive to negative, the intervals would be

reversed.)
TR0
2 -2
3 13
2.5 3.625
2.25 0.3906

2.125 | —0.9043
2.1875 | —0.2825
2.21875 | 0.4758

The zero is in the interval
(2.1875,2.21875).

(b) On repeated application of intermediate
value theorem, we get

v [ @

-1 1

0 -2
-0.5 -0.125
-0.75 0.5781
-0.625 0.2559
-0.5625 0.0720
-0.53125 | -0.0249

The interval in which f (z) has a zero is
[~0.5625, — 0.5] which is 55 that of the
given interval.

35. The first two rows of the following table (to-

gether with the Intermediate Value Theorem)
show that f(z) has a root in [—2,—1]. In the
following rows, we use the midpoint of the pre-
vious interval as our new x. When f(x) is pos-
itive, we use the right half, and when f(x) is
negative, we use the left half of the interval.

x f(z)
0 1
1 —0.46
05 | 0.378
0.75 | —0.018
0.625 | 0.186
0.6875 | 0.085
0.71875 | 0.034

The zero is in the interval
[0.71875,0.75].

36.

37.

38.

39.

40.
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The first two rows of the following table (to-
gether with the Intermediate Value Theorem)
show that f(x) has a root in [—2,—1]. In the
following rows, we use the midpoint of the pre-
vious interval as our new . When f(z) is pos-
itive, we use the left half, and when f(z) is
negative, we use the right half of the interval.

z @)
-1 —0.6321
0 1

—0.5 0.1065

—0.75 —0.2776

—-0.625 | —0.0897
—0.5625 0.0073
—0.59375 | —0.0415

The zero is in the interval
(—0.59375, —0.5625).

The function is continuous on the intervals

(—6.5,—2), (=2, 1), (1, 4) and (4,7)

The function is continuous on the intervals
(=6, —2),(-2, 0),(0, 4) and (4, 7).

lim f(z) = lim i
z—0~ z—0— x
—2 lim " =2
r—0- X

Hence a must equal 2 if f is continuous.

lim f(z) = lim bcosz
x—0~ z—0~
=b lim cosz =0,
rx—0~

so b and a must equal 2 if f is continuous.

We need ae® +1 =sin"10, so a = —1.

Weneed22—2+b:sin*11,sob:%—2.

. First note that

li = lim 1 -2 2

A ) =l e = 2) 4
=In(3-2)+3%=09.

Also f(3) = 23 +1,

so if f is continuous, 2¢3® + 1 must equal 9;

that is 3 =4, so b = h?T4. Then note that

F(0) =2e®©) 11 =3,

Also,
lim f(z) = lim a(tan™'z +2)
r—0~ z—0—
= a(tan™' 0+ 2)
=a(0+2) = 2a,

so a must equal 3/2 if f is continuous.
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42.

43.

44.

45.

46.

47.

48.

CONTINUITY AND ITS CONSEQUENCES

Corollary 4.1: Suppose that g is continuous at
a and f is continuous at g(a). Then, the com-
position f o g is continuous at a.

Proof: Note that f is continuous at g(a), and
lim g(x) = g(a) Therefore, Theorem 4.3 tells
r—ra

us that lim f(g(z)) = f(lim g(x)).

Tr—a T—a
This is equal to f(g(a)) since g is continuous
at a. Since f(g(a)) = ilg}l f(g(z)), fogis con-
tinuous at z = a.

lim f(z)= lim (32 —3)=3

z—2t r—21
F2)=22=4

Thus f(x) is not continuous from the right at
T =2

Yes, f(x) is continuous from the right at « = 2,
because

lim f(z) = f(2) =3.

r—21

A function is continuous from the left at x = a

if lim f(z) = f(a).

(a) lim f(x) = lim z2 =

T2 T2~
f2)=5
Thus f(z) is not continuous from the left
at r = 2.
(b) lim f(z)= lim 22 =4
T2~ T2~
f2)=3
Thus f(z) is not continuous from the left
at x = 2.
(c) lim f(z)= lim z? =4
T2~ T2~
f(2) =4
Thus f(z) is continuous from the left at
T =2.

(d) f(x) is not continuous from the left at
x = 2 because f(2) is undefined.

(a) Limit might exist if g(a) is also 0.

(b) f(z) is definitely discontinuous because

f(a) does not exist.

2y o) = Jy e Juy J(0)

=0f(0) =0

The function

/() { N

is not continuous at x = 0, but zf(x) equals
|z| and lim xf(z) = 0.
x—0

<0
O<x

49.

50.

51.

52.

53.

54.

55.

o7

lim f(x)

lim g(z) = lim |f(2)| = |lim £(z)]

=[f(a)] = g(a).

It is not true. The function f(z) from the
solution to exercise 64 is a counter-example.
|f(x)] =1 for all , and so |f(x)] is continu-
ous, but f(z) is not.

Let b > a. Then

1immﬂb h(x) = limx*)b (maxagtgb f(t))

= maX,<t<p (limt*)b f(t))

= h(b)
since f is continuous. Thus, & is continuous for
x> a.
No, the property would not be true if f were
not assumed to be continuous. A counterex-

ample is
if a<z<b

1
f(x){ 2 if b<ua

Then h(z) =1 for a <z < b, and h(z) = 2 for
x > b. Thus, h is not continuous at x = b.

lim f(g(x)) = lim (22)* = 0.

x—0
(i g(w) = £(lim 20) = £(0) = 4.
tim, 7(g(x)) # f(Jim g()).

We already know f(x) # 0 for a < x < b.
Suppose f(d) < 0 for some d, a < d < b.

Then by the Intermediate Value Theorem,
there is an e in the interval [c,d] such that
f(e) = 0. But this e would also be between
a and b, which is impossible. Thus, f(z) > 0
for all a <z <b.

The Intermediate Value Theorem does not ap-
ply because the function is not continuous over
the interval [—1,2] (it is undefined at x = 0).
The method of bisections converges to the dis-
continuity at x = 0.

Define a function g(z) = f(x) —z. As the func-
tion f is continuous on the interval [a, b], ¢ is
also continuous on the interval [a, b].

Also f(a) >a=g(a)=f(a) —a >0 and
fO)y<b=gb)=fB) —-b<O.

Hence by using corollary 4.2, there is at least
one number

¢ € (a, b) such that g(c) = 0.
Therefore, f(c) —c=0or f(c) =c.
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56. Theorem 4.2: Suppose that f and g are con-
tinuous at = a. Then (ii) (f-g) is continuous
at x = a and (iii) (f/g) is continuous at z = a.

57.

Proof: (ii) ;13}1 fl@)-g(x) = ;13}1 f(x)- lim g(x)

by Theorem 3.1. This equals

r—a

fla)-g(a) = (f - g)(a) since f and g are con-
tinuous at = = a.

(i) lim f(x)/g(x)

lim f(z)/ lim g(z) by
Tr—a r—a
Theorem 3.1. This equals

fla)/g(a) = (f/g)(a) since f and g are contin-

uous at z = a and g(a) # 0.

The function f(z) is discontinuous where the
denominator is 0, that is, at x =0, x = 1 and

T =2.
-5
I
-]
'““V/'\v/'\' ; AN
-2 -1 4

58. Using the method of bisections starting with

59.

interval [—3, —2] yields

z @)
-3 177
-2 5

—2.5 —47.16
—2.25 —14.17
—2.125 -3.14

—2.0625 1.256

—2.09375 | —0.858

The root is in (—2.09375, —2.0625). The actual
root is approximately —2.08136.

The other root, approximately 1.15538, is
found similarly.

60.

61.

62.
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The graph is discontinuous at x = 100. This is
when the box starts moving.
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The function s(t) has jump discontinuities ev-
ery three months when the salary suddenly in-
creases by $2000. In the function f(t), the
$2000 increase occurs gradually over the 3
month period, so f(t) is continuous. It might
be easier to do calculations with f(¢) because
it is continuous and because it is given by a
simpler formula.

Let f(t) be her distance from home as a func-
tion of time on Monday. Let g(t) be her dis-
tance from home as a function of time on Tues-
day. Let t be given in minutes, with ¢ = 0
corresponding to 7:13 a.m. Then she leaves
home at t = 0 and arrives at her destination at
t = 410. Let h(t) = f(t) — g(t). If h(t) =0 for
some t, then the saleswoman was at exactly the
same place at the same time on both Monday
and Tuesday. h(0) = f(0) — g(0) = —g(0) < 0
and h(410) = f(410) — ¢g(410) = f(410) > 0.
By the Intermediate Value Theorem, there is a
t in the interval [0,410] such that h(t) = 0.

My car was going forward as I approached
the stop sign, rolled backward for a moment,
then proceded forward again, so my car’s ve-
locity was positive, then negative, then posi-
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63.

tive again. Because my car’s velocity is contin-
uous, the Intermediate Value Theorem guar-
antees that the velocity must have been 0 in
between changing from positive to negative,
and again 0 between changing from negative to
positive. This stopping is instantaneous; the
police officer wanted to see me stop for long
enough to look both ways and determine if it
was safe to proceed.

Need ¢(30) = 100 and g(34) = 0.
We may take g(T") to be linear.
~ 0-100

=-2
0 34-30 g
y = —25(x — 34)
g(T) = —25(T — 34)

1.5 Limits Involving

Infinity; Asymptotes

1—2x
lim —— = 0.
(a) fm 57 =
1-2
(b) lim x:—oo.

1+ 2 — 1

(¢) Does not exist.

1-2z
li = 00.
() m pp=e
1-2
(b) lim Yo .

r——1+ 22 — 1

(¢) Does not exist.
r—4
lm
R pay rry
z—4 _
—dr+4

xigl+ 2
z—4
im-—=—=—
=222 —4x +4
1—2x
li — =
(2) Mm_ y

. 1—2x

lim — =
a——1+ (z + 1)2

i 1—=x

im ——— =
z——1 (:E—I—l)2
. 24+ 2 —1
lim ——— =

zo—2+ 12 -4 ’

I 2 4+2r—1
im ———— = -
r——2" .’£2 —4
and hegce
2r —1
lim rrer—l does not exist.
T——2 ,’)3‘2 —4

10.

11.

12.

13.

99

lim (2% — 2z —3)7%3 = .
r——1"

As x approaches —1, z? — 2z — 3 is small,

so (22 — 2z — 3)%/3 is small and positive, so
(22 — 22 — 3)72/3 is large and positive, so the
limit is oo.

lim cotz = oo,

z—0*t

lim cotxz = —oco and
x—0—

lim cotx does not exist.
x—0

lim asec’z = oo,
I+
2
lim zsec’z = oo
=5
and

lim asec®zs = oo.
3,—>2
. 2 +3z—2
im ——
z—o0 32 + 4z — 1
a2 (142
im
T —00 1’2 (3 + -z
lim (1 —i— = — ;22) 1
1
2

8
‘,_. S
S— [ —

)

_ T—00 _
i 4_ ~ 3
LA

202 —x +1
lim —————
x—>oo4x2—3:c—1
222 —x+1 (1/2?
= lim
z—oo 42 — 3z — 1 \ 1/x2
2—1/z+1/2% 1

lim —— 2T 7
w00 4 —3Jz —1/a2 2

e Vit
= lim =
z—oo /% +1
1
= lim
V1
202 — 1

lim ——m8M8M——
do0 4T3 —Br —1

) 2241
lim In
T—00 r—3
. 1+
- i, [ (5]
141
= lim {ln<1+”’§ )}
T—00 = — =
x xr

= lim [lnz] = o0
Tr—r00

8
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14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

lim [In(zsinz)]= lim (lnz)=—o0
r—0t x—0t
. _2 .
lim e” 2% = lim — =0
z—0+ z—o0 ¥
(—z2<l+ : ))
—(z+1) v
lim e @?+2 = lim e ez
Tr—r00 T—r00
{*(%ﬁz)}
2
— lim el (+3) | =
Tr—r0o0

lim cot™ 'z = 0.
xTr—r0o0

(Compare Example 5.8) We are looking for the
angle that # must approach as cotf goes to
oo. Look at the graph of cotf. To define the
inverse cotangent, you must pick one branch
of this graph, and the standard choice is the
branch immediately to the right of the y-axis.
Then as cot 8 goes to oo, the angle goes to 0.

|
lim sec™! < + )
T—00 +

T

1
1+ %)
= lim sec™! (
e [ JEREy
— lim sec—Y(g) = ©
= athﬁngo sec” (x) = 5
. . —2\\ _ . -
xlig)lJr (SIH (6 w2>) o zll}lzloo (Sln (6 ))

= 1. i = O
Jim (sinz) =0,
1
lim (sin (e_ ?))
x—)O*. \ N
= lim_(sin(e"))

= lim (sinz) =0

r—0t
and hence )
= lim (sin (eiﬁ)) =0.
x—0
lim sin(tan™!x) = lim (sinz) = 1.
lim e %"% = lim e~ ®
z—I- T—00
= lim e =0, but
r—r—00
lim e~ %1% = ]im e~ %
I*}%"’ T——00

= lim e” = o0,
Tr—r 00

so the limit does not exist.

lim tan~'(lnz) = lim tan~'x
r—0+ Tr——00
.
5

(a) 4 — 22 = 0 = 4 = 22 so we have vertical
asymptotes at x = £2.
fl@) > o0casz — —27

CHAPTER 1. LIMITS AND CONTINUITY

f(x) = —cc as ¥ — —27
f(x) > 0 asz— 2~
f(z) = —oc0 as & — 2T

Again, we have

X
lim ——~
z+oo 4 — g2

o m—lI:Eoo x2 (% — 1)

= lim _ =0.

r—too (% — )
So there is a horizontal asymptote at
y=0.
Vertical asymptotes at © = £2.
f(z) > o00casx — 27 and z — —27.
f(z) > —ccas z — 2T and x — —27.
Horizontal asymptote at y = —1.

Since 4 + 2 is never 0, there are no ver-
tical asymptotes. We have

lim ——
T—00 \/4 + 2
X

so there are horizontal asymptotes at
y=1and y=—1.

The function is only defined in (—2,2).
Two one-sided vertical asymptotes at
x==2. f(r) > oc0asz — 27, and

f(x) = —oc0 as x — —27.

No horizontal asymptotes.

25. The denominator factors:
22 -2r—3=(z—3)(z+1).

Since neither x = 3 nor x = —1 are zeros of
the numerator, we see that f(z) has vertical
asymptotes at x = 3 and x = —1.
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26.

27.

28.

29.

f(z) > —casx— 37,

f(z) = o0 as z — 3T,

fl@) > o0 asz— —17, and
flx

)= —ccasz — —1T.

xT

31.

‘We have
32241
im ——
zotoo 2 — 22 — 3
lim 3+1/2?
p— 1 —_—
z—doo 1 —2/x — 3/2?

So there is a horizontal asymptote at y = 3.

=3.

33.

Vertical asymptote at x = —2.

fl@) >0 asz — —27.
f(x) = —ccasz — —2T and z — —27.
Again, we have
. l—az
w—lrinoo J;Q +x — 2 o
So there is a horizontal asymptote at y = 0.

34.

The function is continuous for all x, so no ver-
tical asymptotes. We have

lim 4tan~'2z — 1 = 4( lim tan"'z) — 1
Tr—r00 T—>00
=4(r/2) — 1
=27 -1
and
lim 4tan 'z —1 35.
T—r—00
=4( lim tan"'az)—1
(,lim tan™"z) 36.
=4(-7/2) -1
=-2r—1,

so there are horizontal asymptotes

aty=2r—1and y = —27 — 1.

The function Inz has a one-sided vertical
asymptote at © = 0, so f(z) = In(1l — cosz)
will have a vertical asymptote whenever

1 —cosxz =0, i.e., whenever cosx = 1.

This happens when z = 2k7 for any integer k.
Since 1 — cosz > 0 for all z, f(x) is defined at
all points except for these vertical asymptotes.
Thus as f(x) approaches any of these asymp-
totes (from either side), it behaves like In a ap-
proaching 0 from the right, so f(z) = —oc as
x approaches any of these asymptotes from ei-
ther side.

Vertical asymptotes at x = +2.
The slant asymptote is y = —x.

30.

32.

37.

38.

61

Vertical asymptote at x = 2.

The slant asymptote is y = x + 2.

: _ —14+V17
Vertical asymptotes at ©» = —5--.

The slant asymptote is y = x — 1.

Vertical asymptote at z = —+/2.

The slant asymptote is y = z.

80z 3 + 60
lm ————— [ —
=0+ 27345 \x3

80 + 6023

= lim ————
r—0t 2+51173
= > =40 mm

80zx~34+60 60
Im —————— = — =12 mm
zo00 273 4+ 5 5

Re-write the function as
80 + 60293
f(z) =

8 + 15203
to see that the size with no light is

f(0) = 10 mm, and the size with infinite light
is lim f(x) =4 mm.
Tr—r o0

80z 93 + 60

F@) = 10:=93 1 30

g(z) =47 %4 4+ 4

_ 20z"°%*+16
= f(z) = S=oag
) ) 20294416).204
Therefore, lim f(z) = lim %
—0+ oot (Ar70% )
lim 20+162°% _ 20 _ 5 59
= T4dp0 T T L T
lim f(z) = lim % =4
T—00 rz—o0 =T +

As in Example 5.10, the terminal velocity is
Q When k = 0.00064, the terminal veloc-

ity is — Y 00064

the terminal velocity is —

Solv \/jk

ak

—224. When k = 0.00128,

32
00128 —158.

w

?2 Squaring both sides,

N[

1 32
= Zs0a=4
4:kSO

Looking at the graph, we estimate the time to
90% of terminal velocity is about 20 seconds.
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39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

The terminal velocity when k = 0.001 is 178.9,
and 90% of terminal velocity is 161.0. From
the graph we see that it takes about 8.2s to

reach 90% of terminal velocity.
t
o 5 10 15 20 25 30

-80

When =z is large, the value of the fraction is
very close to %

When z is large, the value of the fraction is
very close to 3.

When z is large, the value of the fraction is
very close to %

When z is large and negative, the value of the
fraction is very close to 2.

o ¥ +4x+5

lim ——— =0.
T—00 ex/Q

lim (%% — 2%) = cc.
r—r 00

r—1
lim € =1.
x—0 €T
1 2

lim n(z ) = —00
x—0 x

lim z2/m%) — ¢ ~ 2.71828

z—0t

. 1
lim z= =0
rz—0t

49.

50.

51.

52.

53.

54.

55.

56.

57.
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We multiply by
Vix? —2x + 1+ 2z
Var? —2x +1+ 2z
to get:
lim (/42?2 — 2z + 1 — 2x)
xTr—r00
. —2z+1 1)z
= lim L
z—oo \/4g? —2x +1+2x 1/x
—2+1/x

im
o0 \f4 — 2 /x4 1/22 + 2
1

-2
S Vivz 2

lim (V522 + 42 + 7 — \/ba + z + 3)

If we multiply by
Voa2 + 4z + 7+ Vb2 + 1 +3

Vo2 + 4z + 7+ Va2 +x +3
we get

lim (522 4+ 4z +7) — (5bz? + z + 3)

e=00 \/5x2 + 4z + 7+ V522 + x + 3)
3z +4

im
v—o00 /a2 +4x + 7+ Vbz2 + 2+ 3
4
, 3+4
= lim
HR Y R A Y R
3 35
T2y 10

Suppose the degree of ¢ is n. If we divide both
p(x) and ¢(z) by 2", then the new denomi-
nator will approach a constant while the new
numerator tends to oo, so there is no horizontal
asymptote.

If the degree of the polynomial in the denom-
inator is larger, the horizontal asymptote is
y=0.

When we do long division, we get a remainder
of x4 2, so the degree of p is one greater than
the degree of q.

If the horizontal asymptote is y = 2, the de-
grees of the numerator and denominator must
be the same.

The function ¢(x) = —2(z — 2)(x — 3) satisfies
the given conditions.

2

9
The function ¢(x) = % —5 satisfies the given
conditions.

The function g(x) = 2% + 3 satisfies the given
conditions.
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58.

59.
60.
61.
62.
63.
64.
65.
66.

67.

68.

69.

70.

FORMAL DEFINITION OF THE LIMIT

2
The function g(z) = =-tan~' z-(x —4) satisfies
™
the given conditions.
True.
False if b = 0; otherwise true.
False.
True
True.
False. For example, f(z) = 2z and g(z) = z.
g(z) =sinz, h(x) =z at a =0
(a) lim pu(z)
= lim (ana:" +ap_1z" 4+ ao)
r—r—00
= lim [m" (an pon=ly g af())}
T——00 T €T
= lim a,z"
r—r—00
When the degree n is odd, if a, is posi-
tive, the limit as * — —o0 is —oo, and if
a, is negative, the limit as * — —oo is
+0o0.

(b) As in part (a), we have
lim p,(z) = lim a,a”
T—>—00 T——00

When the degree n is even, if a, is pos-
itive, the limit as * — —oo is +o00, and
if a,, is negative, the limit as x — —oo is
—00.

300 300

= — =30 mm

MO =7 9(.8%) ~ 10

Length at ¢ = 0 is A(0) = 20 mm. Length
eventually is tlim h(t) = 50 mm.
— 00

. . It
lim vy = lim — =
t—o0 t—oo m
. . Fet
lim vg = lim —————
t—o0 t—o0 1/m262 + F2t2
. Fet
= lim —
tﬂoot mt2202 + 2
. Fec
= lim
t—00 mt2202 + F2
VE?
f(t) =2 0ast — 0 and t — oco. This makes

sense because the drug will require some time
to reach the muscles, and should wear off over
time.

71.

1.6 Formal Definition of

63

We must restrict the domain to vg > 0 be-
cause the formula makes sense only if the
rocket is launched upward. To find v, set
19.6R — v} = 0. Using R ~ 6,378,000 me-
ters, we get vg = V19.6R ~ 11,180m/s. If the
rocket is launched with initial velocity > ve, it
will never return to earth; hence v, is called
the escape velocity.

‘Hyw‘vvvvvvvvvvvvvvvvvﬁ’)v
2000 4000 6000 8000 10000

x

the
Limit

. We want |32z — 0| < ¢

< 3lzl <e
S lz|=|z—-0]<e/3
Take 6 = ¢/3.

. We want |3z — 3| < ¢

&3lr—1l<e
Slr—1<e/3
Take 6 = ¢/3.

. We want |3z +2—-8|<¢

&3z —6|<e
&3l —2|<e
e lr—2l<¢e/3
Take 6 = ¢/3.

. We want |3z +2—-5|<e

& 8r—-3|<e
&3lr—1l<e
Slr—1<e/3
Take 6 = ¢/3.

. We want |3 —4z — (-1)| <¢

| —dr+4<e
sd4l-—z+1l<e
sdlr—1l<e
Slr—1l<e/d
Take 0 = /4.
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6.

10.

11.

12.

13.

We want |3 — 4z — 7| <e
S| —dr—4|<e

sS4 —r—-1<e
sdlz+ll<e
Slr+1]<e/4

Take § = ¢/4.
2 -2
We want ]+3\ <e.
x—1
‘We have
ta—2 _ |(@+2)(==1)
=|z+2-3|
o -1
Take § = ¢.
x2—1
. W t — (=
e wan ’x—kl ( )‘<6
We have
r2—1 _ | (z+D)(z—1)
x+1 +2’ - r+1 +2‘
=|z—-1+2]
= e +1]
Take § = ¢.

. We want |x2—1—0|<5.

We have |22 — 1| = |z — 1||z + 1|. We require
that 0 < 1,ie., [t —1] <1800 <z < 2 and
|z 4+ 1| < 3. Then

|22 — 1] = |z — 1]z + 1] < 3]z — 1].

Requiring this to be less than e gives

|z — 1| < e/3, so § =min{l,e/3}.

We want |x27x+171| <e.

We have |22 — z| = |z||z — 1]. We require that
d<lie,|z—1<1lso0<z<2and |z| <2.
Then

|22 — 2| = |z||]z — 1| < 2]z — 1.

Requiring this to be less than ¢ gives

|z — 1| < e/2, s0 § =min{l,e/2}.

We want ’x2 —1—3| <e.

We have |22 — 4| = |z — 2||z + 2|. We require
that 6 < 1,ie, [z —1] <1s0ol <z < 3and
|z 42| < 5. Then

|22 — 4] = |z - 2||z + 2| < 5|z — 2|

Requiring this to be less than ¢ gives

|z — 2| < e/5, so 6 =min{l,e/5}.

We want 2% +1—1| <¢, ie., 2] <e.
Take 6 = ¥/e.

Let f(x) = mxz+0b. Since f(x) is continous, we
know that li_r>n f(z) = ma+b. So we want to

CHAPTER 1. LIMITS AND CONTINUITY

find a § which forces |mzx + b — (ma + b)| < e.
But
|ma + b — (ma + b)| = |ma — mal

= |mlfz — al.
So as long as |z —a| < § = ¢/|m/|, we will have
|f(z) — (ma + b)| < e. This § clearly does not
depend on a. This is due to the fact that f(x)
is a linear function, so the slope is constant,
which means that the ratio of the change in y
to the change in x is constant.

. Since the ¢ obtained in exercise 9 is different

from that of exercise 11, we see immediately
that the value of § for lim (22 +b) does depend
r—ra

on a. In this case the ratio of the change in y
to the change in z depends very much on the
value of a. Near the origin, the graph is not
very steep at all, while away from the origin
the graph can become very steep indeed.

(a) From the graph, we determine that we can
take 0 = 0.316, as shown below.

1.
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(b) From the graph, we determine that we can
take § = 0.223, as shown below.

(a) From the graph, we determine that we can
take § = 0.45, as shown below.
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(b) From the graph, we determine that we can
take § = 0.315, as shown below.

17. (a) From the graph, we determine that we can
take § = 0.38, as shown below.
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(b) From the graph, we determine that we can
take § = 0.2, as shown below.
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18. (a) From the graph, we determine that we can
take 6 = 0.02, as shown below.
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(b) From the graph, we determine that we can
take § = 0.01, as shown below.
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19. For a function f(z) defined on some open in-
terval (c,a) we say
lim f(z)=1L
r—a~—
if, given any number € > 0, there is another
number § > 0 such that whenever = € (c,a)
and a — 0 < z < a, we have |f(z) — L| <e.

For a function f(z) defined on some open in-
terval (a,c) we say
lim f(z)=1L

z—at
if, given any number £ > 0, there is another

number § > 0 such that whenever z € (a,c)
and a < x < a+ 9§, we have |f(z) — L| <e.

1—

x
see that 1 —z > 0 and « > 0 (we need not
consider negative values of ). Thus we need

1
20. Note that ‘ — 1‘ =
T

T
’. Asx — 17, we

1—
to solve the inequality T o0
x
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21.

22.

1—2z

<0.1

1—2<0.1x
1< 1.1
1
ﬁ <x
0.909090... < x
Thus we take
61 =1 —10.909090... = 0.090909.. ..
Similarly, as z — 1%, we have z — 1 > 0 and
x > 0. Therefore we need

=1 o1
x
r—1<0.1x
09x <1
1
r < @
r < 1.111111...
Thus we take
6o = 1.111111...—1=0.111111....

In the definition of the limit we need to take
the smaller § (41) to ensure that |f(x) —L| < ¢
on both sides of a = 1.

To prove that 1im1 1/z =1, we take § < 1/2,
r—
so that 1/2 < = < 3/2. Then

1—x 11—z
=2|1 — z|
=2z — 1]

To get this to be less than €, we take
0 =min{1/2,¢/2}.

(a) Asz — 17, 2 — 1> 0 so we compute

2
— > 100
1

2 > 100(x — 1)

l > 1
100~ "
So take ¢ = 2/100.

(b) Asz — 17, 2 —1 < 0 so we compute

2
— < —100
1 <

2> —100(z — 1)

- <z-1

L s a4l=r-1
00> et |z — 1]
So take § = 2/100.
(a) We look at the graph of cotz as # — 0

and we find that we should take
6 = 0.00794.

23.

24.

25.

26.

CHAPTER 1. LIMITS AND CONTINUITY

(b) We look at the graph of cotx as & — 7~
and we find that we should take

0 = 0.0098.

We want M such that if x > M,

x2 =2
—— 1/ <0.1
2?24+x+1 '
We have

i ‘

x2+x+1_1
22 -2 (2> +2+1)
- 2+x+1 ‘
—r—3
2 4+r+1
z+3

24+ z+1
Now, as long as x > 3, we have
x+3 ‘ 2

2+z+1 2+
2
x+1

We want

2
——| < 0.1. Since x — o0, we can
z+1

take x > 0, so we solve
x> 19, ie., M =19.

2
1 < 0.1 to get

We look at the graph of e: a 1;2 as x gets larger
and we find that we shoeuld txake M=T.
We have
?+3 1 22 4+3— (2% - 1)
@9—4_4’: 427 — 4 ‘
4
_4ﬁ—J
1
221

Since x — —oo, we may take z < —1 so that

1

o < 0.1. Solv-

ing for z gives |x| > V11 &~ 3.3166. So we can
take N = —4.

22 —1 > 0. We now need

We have
m@-2#&ﬁ-2-@ﬁ+ﬁw
2 +1 2+ 1
)
2241
. 5
__:r2+1’
We now need % < 0.1.
2 +1

Solving for z gives |z| > 7, i.e., N = —T.
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27.

28.

29.

30.

31.

32.

33.

34.

35.

FORMAL DEFINITION OF THE LIMIT

Let € > 0 be given and assume ¢ < 1/2.

Let N = —(2 —2)Y/2. Then if 2 < N,
1 35— (—3) = 1
x?+2 2242
1
< =€

(=2 =212)" +2

Let € > 0 be given and let M =&~ 1/2 4 7.

Then if z > M,
1
(z—7)

1
(=12 +7-7)°

Let N < 0 be given and let § = {/—2/N.
Then for any x such that |z + 3| < 4,

-2 -2 _ |N\
(@+3)' 7 |(/=2/N)|

Let M > 0 be given and let § = /3/M.
Then for any z such that |z — 7| < 4,

3 3
g ‘(J?TM)? =M

(x—17)?
Let € > 0 be given and let M = e~ /%,

Then if z > M,
L2 I R S
z* (e 1K) B

Let € > 0 be given and let N = —~1/2k,

Then if z < N,
1 1
—_— —_— = £
22k (7571/%)%

We observe that lim f(x) =2 and

r—1—
lim f(z) =4. For any z € (1,2),
z—1+

|f(x) — 2| :|x2+372| = |x2+1| > 2.
So if ¢ < 2, there is no d > 0 to satisfy the
definition of limit.

We observe that lim f(x) = —1 and

z—0~

lim f(z) = —2. For any z € (—1,0),

rz—0t

|f(z) — (=2)| = |ac2 —-14+2|= \x2+1| > 1.
So if ¢ < 1, there is no & > 0 to satisfy the
definition of limit.

We observe that lim f(z) =2 and

z—1-

36.

37.

38.

67

1i1{1+ f(z) = 4. For any z € (1,V/2),

= 2

|f(z) —2[=1[5—2" -2
=[3-2%>3-(V2)?* =1

So if ¢ < 1, there is no & > 0 to satisfy the

definition of limit.

We observe that lim f(z) =1 and

T2~

li =4.

Jim, f(2)

For any = € (2,3),

|f(z) — 1] = |2* — 1] > 3.

So if € < 3, there is no § > 0 to satisfy the
definition of limit.

Let L = lim f(z).
r—a

know there exists § > 0 such that whenever
0 < |z —al| <4, we have

€
[f(z) - L| < o
Here, we can take ¢/|c| instead of ¢ because
there is such a ¢ for any e, including €/|c|. But
now we have

e~ fz) —c- L] = |e| - |f(z) = L]

£
<|C|'H:€.

Therefore, lim ¢- f(z) = ¢- L, as desired.
Tr—a

Given any ¢ > 0, we

Let Ly = lim f(x). Then, given any ¢ > 0,
r—a
there exists 6; > 0 such that whenever 0 <
|z — a| < 01, we have
€
|f(z) — L1 < 3
Similarly, let Ly = lim g(x). Then, given any
r—ra
€ > 0, there exists do > 0 such that whenever
0 < |z — a| < d2, we have
13
l9(x) — La| < 3

Note that
|(f (@) + g(z)) — (L1 + L2)|

=|(f(z) = L1) + (9(z) — L)|

< |f(@) - La| + lg() — L
by the triangle inequality. So whenever § =
min{dy, d2}, we have

(f(z) + g(2)) = (L1 + Lo)|
< |f(@) = La| + [g(2) — Lo
< = + = €
as desired. The proof for f(z)—g(x) is similar,
noting that
(f(z) = g(=)) = (L1 = Lo)|
= [(f(2) = L1) + (=1)(g(2) — L2)|
< [f(2) = Laf + [g(x) = La.
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39.

40.

41.

42.

Let € > 0 be given. Since lim f(x) = L, there
r—a

exists 67 > 0 such that whenever

0 < |z —al| < d1, we have

[f(z) - L| <e.

In particular, we know that

L—¢< f(x).

Similarly, since ilg; h(zx) = L, there exists
d2 > 0 such that whenever 0 < |z —a| < d2, we
have

|h(z) — L] < e.

In particular, we know that h(x) < L + €.

Let § = min{dy,d2}.

Then whenever 0 < |z — a| < d, we have
L—e< f(z) <glx) <h(z)<L+e
Therefore

l9(x) = L} <e

and so liin g(z) = L as desired.

Let ¢ > 0 be given. If x < a, there exists
01 > 0 such that if 0 < |z — a|] < 4y, then
|f(z) — L| < e. Likewise, if © > a, there ex-
ists 92 > 0 such that if 0 < |z — a| < 2, then
|f(z) — L] < e. Let 6 = min{d1,d2}. Then
for any x such that 0 < |z — a| < §, we have
) - L <e.

We want to find, for any given € > 0,a d > 0
such that whenever 0 < |r — 2| < §, we have
|2r? — 8| < . We see that

12r? — 8| = 2|r? — 4] = 2|r — 2||r + 2|.

Since we want a radius close to 2, we may take
|r — 2| < 1 which implies |r 4+ 2| < 5 and so
12r2 — 8] < 10|r — 2|

whenever |r — 2| < 1. If we then take

0 = min{1,¢/10}, we see that whenever

0 < |r—2] <9, we have

€
2r? =8/ <10-6 <10 — =¢.
|27 | < < 0=°¢

We want to find, for any given € > 0, a d > 0
such that whenever 0 < |r — 1| < 4, we have
|377r3 — Z| < e. We see that

’4st _ 4 r_1Hr2+r+1‘

3 6 3 2 2 4
Since we want a radius close to 1/2, we may
take |[r —1/2] < 1/2 s0 0 < r < 1. Since the
function 7% +7/2 4 1/4 is increasing on the in-
terval (0,1), we see that
R RIFSES B
whenever |r —1/2| < 1/2.

If we then take § = min {1 32

— h
5 77T}, we have

2. The limit is —*.
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4 4 s 1
—7r? — — —|r—=
3 6 3 2
T 3
3 T

Limits and
Loss-of-Significance Errors

1. The limit is 1.

0.

N W Ry

We can rewrite the function as

flz) =

Var? +1+ 22

z(VA4z2 +1—-22) —/—/—————

( ) Vaxz? + 1+ 2z
r(42? +1 — 42?)

\/4,732;— 142z
Vaz?2 +1 4+ 22

to avoid loss-of-significance errors.

In the table below, the middle column contains
values calculated using

f(z) = z(v422+1 — 2z), while the third
column contains values calculated using the
rewritten f(x).

x old f(z) | new f(x)
1 0.236068 | 0.236068
10 0.249844 | 0.249844
100 0.249998 | 0.249998
1000 0.250000 | 0.250000

10000 0.250000 | 0.250000
100000 0.249999 | 0.250000
1000000 0.250060 | 0.250000
10000000 | 0.260770 | 0.250000
100000000 | 0.000000 | 0.250000
1000000000 | 0.000000 | 0.250000

4
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We can rewrite the function as

(V4zZ +1 - 22)
x(V/ 4x? —l—xl + 2x)m

C (VAxZ 1 - 22)

to avoid loss-of-significance errors.

3. The limit is 1.
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We can rewrite the function as

Vet d+yai2
\/E(\/x+4—\/a:+2)-\/m+\/m
_ Val@+4) - (z+2)]

Vr+44+ x4+ 2
I N
Vo t4d+VT 2

to avoid loss-of-significance errors.

In the table below, the middle column contains
values calculated using

f(@) =& (Vo +4— x+2), while the third
column contains values calculated using the
rewritten f(x).

x old f(z) | new f(x)
1 0.504017 | 0.504017
10 0.877708 | 0.877708
100 0.985341 | 0.985341
1000 0.998503 | 0.998503
10000 0.999850 | 0.999850
100000 0.999985 | 0.999985
1000000 0.999998 | 0.999999
10000000 1.000000 | 1.000000
100000000 | 1.000000 | 1.000000
1000000000 | 1.000000 | 1.000000
10000000000 | 1.000000 | 1.000000
1E+11 0.999990 | 1.000000
1E+412 1.000008 | 1.000000
1E+13 0.999862 | 1.000000
1E+14 0.987202 | 1.000000
1E+15 0.942432 | 1.000000
1E+16 0.000000 | 1.000000
1E+17 0.000000 | 1.000000
4. The limit is 4.

x

We can rewrite the function as

x2(\/m —z?) (Va' +8+a°)

T s )
8z
 (Vat+ 8+ a2?)

to avoid loss-of-significance errors.

. The limit is 1.
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We can multiply f(z) by

69
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VaZ +4+ Va2 +2
Va2 + 4+ V2242

to rewrite the function as

z[z? +4 — (22 + 2)]
Va? +4+ Va2 +2
2z

TV drVaRte

to avoid loss-of-significance errors.

In the table below, the middle column contains
values calculated using

f(z) = (Va¥+4— V22 +2), while the third
column contains values calculated using the
rewritten f(z).

CHAPTER 1.
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We can rewrite the function as
1 —cos2x 1+ cos2z

1222 1+ cos2x

sin® 2z

x old f(x) | new f(x)

1 0.504017 | 0.504017

10 0.985341 | 0.985341
100 0.999850 | 0.999850
1000 0.999998 | 0.999999
10000 1.000000 | 1.000000
100000 1.000000 | 1.000000
1000000 1.000008 | 1.000000
10000000 | 0.987202 | 1.000000
100000000 | 0.000000 | 1.000000
1000000000 | 0.000000 | 1.000000

6. The limit is 0.

TR N R .

|
)
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200000 40000

1000000

We can rewrite the function as

x(\/x37+8—x3/2)(

8x

Va3 4+ 84 28/2)

(Va3 + 8+ x3/2)

to avoid loss-of-significance errors.

7. The limit is 1/6.

(Va3 18+ 232)

B 1222(1 + cos 2x)
to avoid loss-of-significance errors.

In the table below, the middle column contains
1 — cos2x

1222
while the third column contains values cal-

culated using the rewritten f(z). Note that
f(x) = f(—=z) and so we get the same values
when x is negative (which allows us to conjec-

values calculated using f(z) =

ture the two-sided limit as z — 0).

x old f(x) | new f(x)
1 0.118012 | 0.118012
0.1 0.166112 | 0.166112
0.01 0.166661 | 0.166661
0.001 0.166667 | 0.166667
0.0001 0.166667 | 0.166667
0.00001 0.166667 | 0.166667
0.000001 0.166663 | 0.166667
0.0000001 0.166533 | 0.166667
0.00000001 | 0.185037 | 0.166667
0.000000001 0 0.166667
1E-10 0 0.166667

. The limit is %

L
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We can rewrite the function as
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(1 —cosz) (1 + cosx)
x? (14 cosz)
1= cos?
~ 22(1 +cosz)
sin? z

22(1 4 cosx)

to avoid loss-of-significance errors.

9. The limit is 1.

"
J

)
19 111

vvvvvvvvvvvvvvvvvvvvv

We can rewrite the function as
1 —cosz3 1+ cosz®
26 1+ cosx3
sin?(z?)

26(1 4 cosa3)
to avoid loss-of-significance errors.

In the table below, the middle column contains
values calculated using

flz) = 1_;%”3, while the third column con-
tains values calculated using the rewritten
f(z). Note that f(x) = f(—x) and so we
get the same values when x is negative (which
allows us to conjecture the two-sided limit as

x — 0).
x old f(x) | new f(x)
1 0.459698 | 0.459698
0.1 0.500000 | 0.500000
0.01 0.500044 | 0.500000
0.001 | 0.000000 | 0.500000
0.0001 | 0.000000 | 0.500000

10. The limit is 1.

11.

71

We can rewrite the function as

(1 —cosz*) (1 + cosz*)
a8 (14 cosz*)
_ 1—cos?z?
28(1 4 cos z*)
_ sin? 4
x8(1 + cos z*)

to avoid loss-of-significance errors.

The limit is 2/3.
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1= @ where

g(z) = (@® +1)3 + (2% +1)3 (a? — 1)3
+ (a2 - 1)8

to rewrite the function as %

to avoid loss-of-significance errors.

In the table below, the middle column contains
values calculated using

flz) = #*3(V22+1 — ¥xZ — 1), while the
third column contains values calculated using
the rewritten f(z).
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x old f(z) | new f(x) x old f(z) | new f(x)

1 1.259921 | 1.259921 1 2.969897 | 1.259921

10 0.666679 | 0.666679 10 2.307850 | 2.307850
100 0.666667 | 0.666667 100 2.326111 | 2.326110
1000 0.666667 | 0.666667 1000 2.332561 | 2.332561
10000 0.666668 | 0.666667 10000 2.333256 | 2.333256
100000 0.666532 | 0.666667 100000 2.333326 | 2.333326
1000000 0.63 0.666667 1000000 2.333333 | 2.333333
10000000 | 2.154435 | 0.666667 10000000 2.333333 | 2.333333
100000000 | 0.000000 | 0.666667 100000000 | 2.333332 | 2.333333
1000000000 | 0.000000 | 0.666667 1000000000 | 2.33337 | 2.333333

10000000000 | 2.333327 | 2.333333
1E+11 2.333253 | 2.333333

1E+12 2.3 2.333333
1E+13 2.320794 | 2.333333
12. The limit is 7/3. 1E+14 2.154435 | 2.333333
_ 1E+15 0.000000 | 2.333333
1 1E+16 0.000000 | 2.333333
2.4 2 -
. 13. fim ST * 2
:~ x—1 x—1
vo.d lim (x+2)(x—1)
i rx—1 x—1
1 = lim(z +2) =
2.2 m—>12
i —-2.0
] lim AT does not exist, since when x
i x—1 x—1
E L S A S LI A S N L A is close to 1, the numerator is close to —.01 (a
* small but non-zero number) and the denomi-
nator is close to 0.
We can multiply f(x) by 14. lim ~— 2
x—2 xz —4
. r—2 1
N ey 1
(+4)5 + (@ +4)5(x —3)5 + (z —3)F ey
(z+4)% + (2 +4)3(z—3)% + (z—3)F and limy o701 =
15. f(1) =0;9(1) = 0.00159265
to rewrite the function as f(10) = 0;4(10) = —0.0159259
£(100) = 0; g(100) = —0.158593
£(1000) = 0; g(1000) = —0.999761

T2/3

(z+4)5 4+ (z+4)3(x —3)5 + (z — 3)3

16. Answer depends upon CAS.

17. (1.000003 — 1.000001) x 107 = 20
On a computer with a 6-digit mantissa, the
to avoid loss-of-significance errors. calculation would be

(1.00000 — 1.00000) x 107 = 0.

In the table below, the middle column contains 18. The answer with a six-digit mantissa is 0.

values calculated using The exact answer is 50

f(z) = 2?/3(Yx + 4— /2 = 3), while the third Ch. 1 Review Exercises

column contains values calculated using the
rewritten f(x). 1. The slope appears to be 2.
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Second point | mgec
(3,3) 3
(2.1,0.21) 2.1
(2.01,0.0201) | 2.01
(1,-1) 1
(1.9, -0.19) 1.9
(1.99,-0.0199) | 1.99

2.

The slope appears to be 2.

Second point Mgec
(—0.2,—0.3894) | 1.9471
(—0.1,—0.1987) | 1.9867
(—0.01,-0.02) 2

(0.2, 0.3894) 1.9471

(0.1, 0.1987) 1.9876

(0.01, 0.02) 2

3.

(a) For the z-values of our points here we use

(approximations of) 0, {5, %, %, and 7.
Left Right Length
(0, 0) (0.2,02) | 0276
(0.2, 0.2) (0.39, 0.38) 0.272
(0.39, 0.38) | (0.59, 0.56) | 0.262
(0.59, 0.56) | (0.785, 0.71) | 0.248
’ \ Total \ 1.058

(b) For the z-values of our points here we use

1 3 o T w 3m w™ bSm 3w
(approximations of) 0, 35, 75, 35, § 35 16

4.

%, and 7.
Left Right Length
(0, 0) (0.1, 0.1) 0.139
(0.1, 0.1) (0.2, 0.2) 0.138
(0.2, 0.2) (0.29, 0.29) 0.137
(0.29, 0.29) | (0.39, 0.38) 0.135
(0.39, 0.38) | (0.49, 0.47) 0.132
(0.49, 0.47) | (0.59, 0.56) 0.129
(0.59, 0.56) | (0.69, 0.63) 0.126
(0.69, 0.63) | (0.785,0.71) | 0.122
’ \ Total \ 1.058 ‘
(a)
Left Right Length
_ (0, 0) (§7 0.1951) | 0.2768
(§7 0.1951) (g, 0.3827) | 0.2716
(15, 0.3827) | (1§, 0.5556) | 0.2616
(?{—g, 0.5556) | (%, 0.7071) | 0.2480
y |  Total | 1.058

73
Left Right Length
(0, 0) (%%,0.0980) 0.1387
(%12,0.0980) (g—g,o.l%l) 0.1381
(g—g,o.1951) (g—g,o.2903) 0.1368
(Z)—g,ozgos) (g—g,o.3827) 0.1348
(g—g,o.:ssz?) (g—g,o.4714) 0.1323
(55, 0.4714) [ (55, 0.5556) [ 0.1293
(%%, 0.5556) | (£3, 0.6344) [ 0.1259
(£2,0.6344) [ (%, 0.7071) [ 0.1222
y |  Total [ 1.0581
tan~! 22
5. Let f(x) = 2

x f(x)

0.1 0.999966669

0.01 0.999999997

0.001 | 1.000000000

0.0001 | 1.000000000

0.00001 | 1.000000000

0.000001 | 1.000000000

10.

Note that f(x) = f(—x), so the results for neg-
ative x will be the same as above. The limit
appears to be 1.

x? -1 _
a:1~>Inl 1111'2
T+ 2
. Let f(z) = ——.
f(@) |z 4 2|
T f(@)
-1.9 1
—1.99 1
—1.999 1
-2.1 -1
—2.01 -1
—2.001 -1
2
lim * does not exist.

rx——2 |:L’ —+ 2|

. lim (1 + 22)Y/7 = €2 ~ 7.389.
x—0

. Let f(z) = (1+ i)

x f(z)
10 6.1917
100 7.2446
1000 | 7.3743
10,000 | 7.3876

2 xr
lim (1 + ) =274
T—00 x€X

lim z2/* = 1.
xr—r0o0
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11.

12.

13.
14.

16.

17.

(a) lim f(z)=1.
(b) lim f(z)=-2.

)
) @1+
)
)

(@) lim f(z) =0,
(a) lim f(z)=1.
(b) lim f(z)=3.

(¢) lim f(z) does not exist.
—1

)
)._,1+
¥
)1

(d) lim f(z) =2.
—2
r=-1l,z=1

One possible graph:

2

lim f(z) does not exist.
z——1

but
x? +x
z—07 4/ 3}‘4 + 2.132
z(x +1)

18.

19.

20.

21.

22,

23.

24.

25.

CHAPTER 1. LIMITS AND CONTINUITY

Since the left and right limits are not equal,

2
. Ttz .
hrrb 4722 does not exist.
x—0 /o _|_ x

lm e~ %'% = lim e ®* =0
x—07t T—00

but

lim e % = lim e % =00
x—0— T—r—00

Since the left and right limits are not equal,

lim e~ °°*® does not exist.
x—0

linb(Q + ) sin(1/x)
—
= lim 2sin(1/z);
z—0
however, since lir% sin(1/x) does not exist, it

r—
follows that 1in%(2 + ) sin(1/x) also does not
r—

exist.

. sinz?

lim 5 = 1.
z—=0 X

;1_>rr12 f(z) =5.

lim f(z)= lim 2z+1)=3
r—1- r—1— )

li = i 1)=2
Jim f() =l (o7 + 1)

lim f(z) does not exist.
z—1

Multiply the function by
(1+42x)5 +(1+22)5 +1
(1+22)5 +(1+22)5 +1
to get

. V142 -1
lim ——

x—0 x

2 2
= lim S ; ==
e=0 (14+22)s +(1+22)s +1 3

z—1 VIO —2+3
z=1 /10— -3 10—z +3
(z = 1)(V10 —z + 3)

lim

r—1 10—2—9

L @ 1)(V10=z+3)
x—1 1—=2

L =) (VI =7 +3)
x—1 1—=x

lim (V10— 2 +3) = —6

lim cot(z?) = oo
x—0
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26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

lim tan~! [ ——
z—1 2 —2x+1

= li -1 T
R Y

. 1 ™
= lim tan” "z = —
z—>00 2

lim tan’z = +oo, it follows that

z—m/2

Since

lim In2z = lim (In2+ Inx)
Tr—r00 Tr—r00
=In2+ li_>rn Inz =00

lim In3z = —c©
rz—0t

. 2z
lim ——
z——oo 22 + 3x — 5
2z

lim ——————~

= lim —F/————= =0
A )

. 2z

w20 2% 4 37 4 2

2z
= lim —
z—=-2 (x+2)(z + 1)
does not exist. Approaches —oo from the left,

and oo from the right.

Let u = —i, so that 2 = —6u. Then,
3z T

lim (1 — 3z)%*

z—0t

< 1)—6u
14—
U——00 u

= lim
uq —6
1
{lim <1+>] ==
U——00 u

and

36.

37.

38.

(0]

= lim — =1
z—0t T
but
I 2z — |z
z—0- |3x| — 22
I 2z — (—x)
z—0- —3r — 2x

= —2|z| <

x
o] < 2|z

lim —2|z| = 0; lim 2|z| =0
z—0 z—0
By the Squeeze Theorem,

223
im ——— =
x—0 372 +1
The first two rows of the following table show
that f(z) has a root in [1,2]. In the following
rows, we use the midpoint of the previous in-
terval as our new x. When f(z) is positive, we

use the left half, and when f(z) is negative, we
use the right half of the interval.

[ @
1 -1
5
1.5 0.875
1.25 —0.2969
1.375 0.22246
1.3125 | —0.0515
1.34375 0.0826

The zero is in the interval (1.3125,1.34375).

@) = z—1 _ z—1
I e 3T w3z 1)
has a non-removable discontinuity at x = —3

and a removable discontinuity at z = 1.
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40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

z+1
r) = ———— is discontinuous at
f(@) (x —2)(x+2)
r = 2. Not removable.
lim f(z) = lim sinz =0
x—0— x—0— 9
li = 1i =0
oy )= g,
lim f(z) = lim 2 =
r—2~ r—2~
li =1l 4r—3) =5
A ) = g (b =9)

f has a non-removable discontinuity at x = 2.

f(z) = zcotx has discontinuities wherever
sinz is zero, namely x = k7m for any integer
k. The discontinuity at x = 0 is removable

because lin}) z cot z = 1. The other discontinu-
T—

ities are not removable.
T+ 2 T+ 2
@) = 22—z2-6 (r—3)(z+2)

continuous on (—oo, —2), (—2,3) and (3, 00).

f(x) is continuous wherever 3x —4 > 0 i.e., on
the interval (3, 00).

f(z) = sin(1+€*) is continuous on the interval
(—00, 00).

f(x) is continuous wherever 2 —4 > 0 i.e., on
the intervals (—oo, —2] and [2, c0).

r+1
NG Y
at r=1and x = 2.
x+1

has vertical asymptotes

So f(z) has a horizontal asymptote at y = 0.

Vertical asymptote at * = 4. Horizontal
asymptote at y = 0. (Removable discontinu-
uity at x = —2.)

z? z?

@)= T = -1
has vertical asymptotes at x = —1 and = = 1.

i 5
x—l>rinoo 2 —1

I v

= lim —————

z—+oo 2 (]_ — m%)
= lim T

r—Foo 1 — =

1
= - = 1

1

50.

51.

52.

53.

54.

55.

CHAPTER 1. LIMITS AND CONTINUITY

So f(z) has a horizontal asymptote at y = 1.

Vertical asymptotes at * = 2 and * = —1.
Long division reveals the slant asymptote
y=x+1.

lim 2e'/*

= O<)7
z—0t
so z = ( is a vertical asymptote.

lim 2% =2,  lim 2eY/* =2,
xTr—r0o0 r—r — 00

so y = 2 is a horizontal asymptote.

: _ 3
Horizontal asymptotes at y = 4==F.

f(z) has a vertical asymptote when e* = 2,
that is, z = In 2.

li =
$l>r{>lo et — 2 0
I 3 3
im =——
z——o00 e — 2 2

so y = 0 and y = —3/2 are horizontal asymp-
totes.

Vertical asymptote at x = 2. No horizontal or
slant asymptotes.

The limit is 1.

)

vvvvvvvvvvvvvvvvvvvvv

We can rewrite the function as

1—(3059(;_ 1—cosx 1+ cosx
222 222 1+cosz
2 sin® x

_ l—cos"x
~ 222(1 4 cosz)  222(1 4+ cosx)

to avoid loss-of-significance errors.

In the table below, the middle column con-
tains values calculated using f(z) = 1_2‘102”,
while the third column contains values cal-
culated using the rewritten f(x). Note that
f(x) = f(—z) and so we get the same values
when x is negative (which allows us to conjec-

ture the two-sided limit as z — 0).
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NN TN TN Y T © Y S o }

x old f(z) | new f(x)

1 0.229849 | 0.229849

0.1 0.249792 | 0.249792

0.01 0.249998 | 0.249998

0.001 0.250000 | 0.250000

0.0001 0.250000 | 0.250000

0.00001 0.250000 | 0.250000

0.000001 0.250022 | 0.250000

0.0000001 | 0.249800 | 0.250000

0.00000001 | 0.000000 | 0.250000

0.000000001 | 0.000000 | 0.250000
56. The limit is %

v 0 —_;M\PWW\I‘MM/

o
I

vvvvvvvvvvvvvvvvvvvvvvvvv

7

We can rewrite the function as

o (Va2 +1+x)
vet+1 )(\/m—ﬁ-m)

(Va2 +1+2)

to avoid loss-of-significance errors.



Chapter 2

Differentiation

2.1 Tangent Line and
Velocity

1. Slope is
o SR = 1)
h—0 h

(14+h)*—2—(-1)

= lim

2. Slope is
L SO+~ J(0)
h—0 h
2
— a2 =
Tangent line is y = —2.

. Slope is

i L5240 — f(=2)
h—0 h
(=2 + h)*> = 3(=2 + h) — (10)

= lim
h—0 )

— lim M = _7.
h—0 h

Tangent line is y = —7(z + 2) + 10

. Slope is

i LA — F()
h—0 h
(14+3h+3h>+h3)+ (1+h)—2

= lim
h—0 9 3
4h h? +
g S R sh e h2 =4
h—0 h h—0

Tangent line is y = 4(x — 1) + 2.

30

. Slope is



2.1.

TANGENT LINE AND VELOCITY

L F0R) = £
h—0 h
2 2
_ iy OFMFTL T THT
h—0 h
2 (2_(2+h))
= lim 2"~ — lim i
h—0 h h—0 h
i (zfé) -1 1
WSo . h hS02+h 2

1
Tangent line is y = fi(vc —1)+1lor

__z,3
Yy=79 Ty

6. Slope is
Lo £0+8) — £(0)
h—0 . h
—=—0
= lim =1
h—0
Y
Tangent line is y = —x.
4.0—
o] \\\
16-]
0.8:
[ T T T T T T T TOF T T T T T T T 1
-2 -1 R 2
X —0.8
e T
a2
a0
7. Slope is
Lo T2 ) = f(-2)
h—0 h
. (=2+h)+3-1
= lim
h—0 h
. Vh+1-1
= lim ———
h—0 h

. vh+1—-1 Vh+1+1
= lim .
h—0 h vh+1+1

79
: (h+1)-1
= lim ———
h—=0 h(vh+141)
1

1
= lim

o Vhrl4l 2

1 1
Tangent line is y = 5(33—&—2)—1—1 ory = §x—|—2.
4.0+
3,2:/

LN AN B B -~ N B B B N B e e |

- Z e : :
e
Y o]
—3.2
. Slope is
IO~ (@)
h—0 h
. VI +h)+3-y1+3
h—0 h
= lim Vht+4-2
h—0

h
oy VAFA-2 VA A2

70 h Vhtd+2
. h+4—4 1
= lim

W0 b Vh+4d+2
1 1

=lim — = -.
h=0 Vh+4+2 4
1
Tangent line isy:z(x—l)—l—z

f(z) =22z
No. Points (z, y) Slope
(a) (1,0) and (2,6) 6
(b) (2,6) and (3,24) 18
(¢) | (1.5,1.875) and (2,6) | 8.25
(d) | (2,6) and (2.5,13.125) | 14.25
(e) | (1.9,4.959) and (2,6) | 10.41
(f) | (2,6) and (2.1,7.161) | 11.61

(g) Slope seems to be approximately 11.
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10.

11.

12.

13.

14.

fl@)=va2+1
No. Points (z, y) Slope
(a) | (1,1.414) and (2,2.236) | 0.504
(b) | (2,2.236) and (3,3.162) | 0.926
(c¢) | (1.5,1.803) and (2,2.236) | 0.867
(d) | (2,2.236) and (2.5,2.269) | 0.913
(e) | (1.9,2.147) and (2,2.236) | 0.89
() | (2,2.236) and (2.1,2.325) | 0.899

(g) Slope seems to be approximately 0.89.

z—1
f@) = z+1
No. Points (z, y) Slope
(a) (1,0) and (2,0.33) 0.33
(b) | (2,0.33) and (3,0.5) | 0.17
(¢) | (1.5,0.2) and (2,0.33) | 0.26
(d) | (2,0.33) and (2.5,0.43) | 0.2
(e) | (1.9,0.31) and (2,0.33) | 0.2
(f) | (2,0.33) and (2.1,0.35) | 0.2

(g) Slope seems to be approximately 0.2.

f(z) =e"
No. Points (z, y) Slope
(@) | (1,2.718) and (2,7.389) | 4.671
(b) | (2,7.389) and (3,20.085) | 12.696
(¢) | (1.5,4.481) and (2,7.389) | 5.814
() | (2,7.389) and (2.5,12.182) | 9.586
(e) | (1.9,6.686) and (2,7.389) | 7.03
() | (2,7.389) and (2.1,8.166) | 7.77

(g) Slope seems to be approximately 7.4

C, B, A, D. At the point labeled C, the slope
is very steep and negative. At the point B,
the slope is zero and at the point A, the slope
is just more than zero. The slope of the line
tangent to the point D is large and positive.

In order of increasing slope: D (large nega-
tive), C (small negative), B (small positive),
and A (large positive).

15. (a) Velocity at time ¢t =1 is,

s(1+h)—s(1)

lim
h—0 h 9
—4. — (0.
~ lim 9(1+h)"+5—(0.1)
h—0 h )
— lim —4.9(1+2h+h*)+5—-(0.1)
h—0 h
. —9.8h — 4.9h2
= hm —_—
h—0 h
~ fim h(—9.8 —4.9h) _ 93
h—0 h

(b) Velocity at time ¢ = 2 is,

lim s(24+h) —s(2)
h—0 h

CHAPTER 2. DIFFERENTIATION

—4.9(2+h)* +5 — (—14.6)

= lim
h—0 h )
— lim —4.9(4+4h + h*) + 5 — (—14.6)
h—0 h
. —19.6h — 4.9k
= hm —_—
h—0 h
_ lim h(—19.6 — 4.9h) 196
h—0 h

16. (a) Velocity at time ¢t = 0 is,
lim s(0+ h) — s(0)
h—0 h
4h — 4.9h?
= lim ———
h—0 h
iy (=400
h—0 h
=4 — lim 4.9h = 4.
h—0
(b) Velocity at time ¢t =1 is,
lim s(14+h)—s(1)
h—0 h

= lim

4(1+ h) —4.9(1 + h)* — (=0.9)

h—0 h

44+ 4h —4.9—9.8h —4.9h2 +0.9

= lim

h—0 h
—5.8h — 4.9h2

17. (a) Velocity at time ¢t = 0 is,
lim s(0+ h) — s(0)
h—0

h
g VAEI6—4 VAT 1644

0 h VRt 1644
(h+16) — 16

m —-—
=0 h(y/I+ 16 + 4)
1 1

= 1' _— e —
W0 Vhr16+4 8
(b) Velocity at time ¢t = 2 is,
. s(2+h) —s(2)
lim ———————=

h—0 h
oy VISR - VIS
o h—0 h

Vh +18 4+ V18 .

Multiplying by
~ lim (h+18) — 18
h=0 h(v/h + 18 4+ V/18)
1 1

= lim =
h—=0+/h+ 18 + /18  2/18

18. (a) Velocity at time t = 2 is,
s(2+h) —s(2)

Jimy h
4 _9 4-4-2h
= lim (24h) = lim _(2Hh)

h—0 h h—0 h

—— g1V
vh 4+ 18+ V18 8

S
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19.

20.

21.

li _—2h _ li =2
h%h(?—l—h) W02+ h

(b) Velocity at time ¢ = 4 is,

4
— 1
lir s(4+h)—s(4) i (4+h)

h—0 h h—0 h
4—1(4+h) A—4—h
= lim ECLED N lim th)
h—0 h h—0
-1 1

:1. 7:1. —_—
hl—rﬁ)h(él—i—h) ho0 4+ h 4

(a) Points: (0, 10) and (2, 74)
—10

Average velocity: =32

(b) Second point: (1, 26)
74 — 26
1

Average velocity: =48

(c) Second point: (1.9, 67.76)
74 — 67.76

=624
0.1 6

Average velocity:

(d) Second point: (1.99, 73.3616)
74 —73.3616

=63.84
0.01 03.8

Average velocity:

(e) The instantaneous velocity seems to be
64.

(a) Points: (0, 0) and (2, 26)

26 -0
2-0
)

Average velocity: =13

(b) Second point: (1,

—4
Average velocity:

=22
2—1

(c) Second point: (1.9, 22.477)
26 —22.477

519 =35.23

Average velocity:

(d) Second point: (1.99, 25.6318)

Average velocity:
26 — 25.6318 _ 36.8903

2-1.99

(e) The instantaneous velocity seems to be
approaching 37.

(a) Points: (0, 0) and (2, v/20)
O -0
Average velocity: ——0 = = 2.236068
(b) Second point: (1, 3)
20 —
Average velocity: % = 1.472136

22,

23.

81

(c) Second point: (1.9, +/18.81)

Average velocity:

ﬂz__— 1198'81 — 1.3508627

(d) Second point: (1.99, 1/19.8801)

Average velocity:

2 —7 ;3 88 = 1.3425375

(e) One might conjecture that these num-
bers are approaching 1.34. The exact

6
~ 1.341641.
V20

(a) Points: (0, —2.7279) and (2, 0)
Average velocity:

0 — (—2.7279)
-2 13639
2-0

limit is

(b) Second point: (1, —2.5244)
Average velocity:

0—(-25244) _
2-1

(c) Second point: (1.9, —0.2995)
Average velocity:

0— (—0.2995)

(d) Second point: (1.99, —0.03)
— (—0.03)
2—-1.99

(e) The instantaneous velocity seems to be

3.

Average velocity: =3

A graph makes it apparent that this function
has a corner at x = 1.

Numerical evidence suggests that,
o J(14+h)—f(1) 1

f)
while lim fA+h) - fQ1) = 1.
h—0— h
Since these are not equal, there is no tangent

h—0t
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24.

25.

26.

line.

Tangent line does not exist at x = 1 because

the function is not defined there.
10—

From the graph it is clear that, curve is not
continuous at * = 0 therefore tangent line
at y = f(z) at © = 0 does not exist.

10.0—

= lim — = lim h=0
h—0— h—0—

Similarly,

L S0+ R) = £(0)

h—0t h ( ) b

h+1-—(1

= 1. —_— = l. - = 1

hig)lJr h hi% h

Numerical evidence suggest that,
L S0+h) — f(0)

h—0- h

0+ h) ~ £(0)

h—0t h '

Therefore tangent line does not exist at
x=0.

From the graph it is clear that, the curve of
y = f(x) is not smooth at z = 0 therefore
tangent line at = 0 does not exist.

27.

28.

29.
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_\51_141_131_121_11L-\41111?1?141J
Also,
g FOFM=FO) 220
h—0— h h—0— h

0+ h)— f(O
lim fO+1) — £(0) = lim (h—4)=—4.
h—0t h h—0t

Numerical evidence suggest that,

- f(O+h)— f(0)
O o) - 1)
# i I

Therefore tangent line does not exist at © =
0.

Tangent line at x = 7 to y = sinx as below:

Tangent line at 2 = 0 to y = tan~! 2 as be-
low:

L LA 7 B L L L L L
-10 -5 5 10

-5.0—

Since the graph has a corner at z = 0, tan-
gent line does not exist.
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30. The tangent line overlays the line:

- o N

o
o

I S T T S N B

(b)

(c)

32. (a)

(b)

(c)

vvvvvvvvvvvvvvvvvv

4)— f(2
FO=1C) _ g, 5
Since W is the average rate of

change of function f between a and b.
The expression tells us that the average
rate of change of f between a = 2 to
b = 4 is 21,034. That is the average
rate of change in the bank balance be-
tween Jan. 1, 2002 and Jan. 1, 2004 was
21,034 ($ per year).

2[f(4) — f(3.5)] = 25,036

Note that 2[f(4) — f(3.5)] = f(4) —
f(3.5)/2. The expression says that the
average rate of change in balance be-
tween July 1, 2003 and Jan. 1, 2004
was 25,036 ($ per year).

lim M = 30,000
h—0 h

The expression says that the instanta-
neous rate of change in the balance on
Jan. 1, 2004 was 30,000 ($ per year).

f(40) — f(38)

2
: f()—f(a)
Since I —

" is the average rate of
change of function between a and b. The
expression tells us that the average rate
of change of f between a = 38 to b = 40
is —2103. That is the average rate of de-
preciation between 38 and 40 thousand
miles.

f(40) — f(39) = —2040

The expression says that the average
rate of depreciation between 39 and 40
thousand miles is —2040.

lim LU0 R = JUO) _y00

h—0 h

The expression says that the instanta-

neous rate of depreciation in the value
of the car when it has 40 thousand miles
is —2000.

= —2103

33.

34.

35.

83
_ ) —f(r)
Vavg = ——
s—r
_ )= f(r)
vavg -
s—r
_as®+bs+c— (ar® +br +c)
B s—r
Ca(s?—r?) +b(s—7)
N s—r
_a(s+r)(s—r)+b(s—7)
B s—r
=a(s+r)+b
Let v(r) be the velocity at t = r. We have,
u(r) =
S h) ()
h—0 h
B lima(r+h)2+b(r+h)+c— (ar? + bh + ¢)
T o0 h
. a(r®*+2rh + h?) 4+ bh — ar?
= lim
h—0 h
. h(2ar +ah +1)
=lim —=
h—0 h

= lim (2ar +ah +b) =2ar + b
h—0

So, v(r) = 2ar + b.
The same argument shows that wv(s)
2as +b.

Finally
v(r) +v(s)  (2ar +b) + (2as + b)
2 B 2
_ 2a(s+r)+2b
B 2

=a(s+7)+ b= vy

f(t) = t3—t works with r = 0, s = 2. The av-

erage velocity between r and s is,

The instantaneous velocity at r is
0+h)>—(0+h)—0

fim (LFA Z O 0,

h—0

and the instantaneous velocity at s

3
oy 2R — (@4 h) 6
h—0 h
84+ 12h+6h2+h>—2—-h—6

= lim
h—0 h
= lim 11+ 6h+h2 =11

h—0

-0
— =3.
0

is,

so, the average between the instantaneous

velocities is 5.5.

(a) y=a23+32+1
y =322 +3

Since the slope needed to be 5, 3y’ = 5.

322 +3=5
=322=5-3
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2
=22==C
T3

2
NP
v 3

Therefore, slope of tangent line at z =

2 2 3
gandm:— gtoy:x +3x+1

equals 5.
(b) Since the slope needed to be 1, y' = 1.
322 + 3 = 1 which has no real roots.

Therefore slope of tangent line to y =
23 4+ 32 + 1 cannot equals 1.

36. (a) From the graph it is clear that y = z24-1

and y = = do not intersect.

[T T T T T T T T T T T [T TTT]

-10 -5 = 5 10
-
o]
(b) y=22+1landy=2x
y=224+1=y =22
y=z=19y =1
For, y = 2% + 1
y =2x=1.
2z =1
o=t
=5 1
Therefore, tangent line at =z = 5 to
y = x®+1 is parallel to the tangent lines
toy = x.

37. (a) y=2>+3zx+1

o S D) — f (@)
h—0 h3
:}Lh%(l—l-h) +3(1+h)+1-5

(143h+3R%+h3)+(34+3h)+1-5
h

. 6h+3h*+ h?
=lim—
h—0 h

h (64 3h + h?)
h—0 h
The point correponding to x = 1 is
(1,5). So, line with slope 6 through
point (1,5) has equation y = 6 (x — 1)+5
or y =6x — 1.

= lim
h—0

(b) From part (a) we have, equation of tan-

38.

39.

CHAPTER 2. DIFFERENTIATION

gent line is y = 6x — 1.

Given that y = 2 4+ 3z + 1.

Therefore, we write

23 +3x+1=06z—1

22 -3 +2=0
(z—=1)(a?4+2-2)=0
(r—1D(xz-1)(x+2)=0
(z—1)*(z+2)=0.

Therefore, tangent line intersects y =
22 + 3z + 1 at more then one point that

isatx =1and z = —2.
(c) y=2>+1
Lo Fet ) — ()
h—0 h
. (c+h)P2+1-(2+1)
= lim
h—0 h
. (P F2ch+h?)+1—(2+1)
= lim
h—0 h
. A4+2ch+h?P+1-c2—1
= lim
h—0
. 2ch+ h?
= lim ——
h—0
h
gy 2t h)
h—0 h
The point correponding to x = c is
(c, c?+ 1). So, line with slope 2c¢

through point (c, A+ 1) has equation
y=2c(z—c)+c+1lory=2cx—c*+1.
Given that y = 2% + 1

Therefore,

224+ 1=2cx—c?+1

22 —2cx+c2 =0

(x—c)> =0.

Therefore, tangent line intersects y =
2241 only at one point that is at z = c.

Let x = h4+ a. Then h = x — a and clearly
fla+h)— f(a) _ f(@) - f(a)

B T —a
It is also clear that, x — a if and only if
h — 0. Therefore, if one of the two limits
exists, then so does the other and
L flat ) = fa) @)~ f()

h—0 h T—a Tr—a

The slope of the tangent line at p = 1 is ap-

proximately
—90 —
—20-0_ _4

which means that at p = 1 the freezing tem-
perature of water decreases by 10 degrees
Celsius per 1 atm increase in pressure. The
slope of the tangent line at p = 3 is approx-
imately



2.2. THE DERIVATIVE

40.

41.

42.

43.

—11—-(-20
“1 (20 .
which means that at p = 3 the freezing tem-
perature of water increases by 4.5 degrees
Celsius per 1 atm increase in pressure.

The slope of the tangent line at v = 50 is
47 -28 95

60—40

This means that at an initial speed of 50mph
the range of the soccer kick increases by .95
yards per 1 mph increase in initial speed.

approximately

The hiker reached the top at the highest
point on the graph (aboutl.75 hours). The
hiker was going the fastest on the way up at
about 1.5 hours. The hiker was going the
fastest on the way down at the point where
the tangent line has the least (i.e most neg-
ative) slope, at about 4 hours at the end of
the hike. Where the graph is level the hiker
was either resting or walking on flat ground.

The tank is the fullest at the first spike (at
around 8 A.M.). The tank is the emptiest
just before this at the lowest dip (around
7 AM.). The tank is filling up the fastest
where the graph has the steepest positive
slope (in between 7 and 8 A.M.). The tank
is emptying the fastest just after 8 A.M.
where the graph has the steepest negative
slope. The level portions most likely repre-
sent night when waterusage is at a minimum.

A possible graph of the temperature with
respect to time:

1000

60

40

20

0

o]

vvvvvvvvvvvvvvvvvvvv

Graph of the rate of change of the tem-
perature:

85

44. Possible graph of bungee-jumpers height:

vvvvvvvvvvvvvvvvvvvvv

A graph of the bungee-jumper s velocity:

T

o
o

) &

aQ
o o
I AL S SN

2.2 The Derivative

1. Using (2.1):
fL+h) - F(1)

/ 1
(1) = Jim, h
~ im 3(1+h)+1—(4)
h—0 h
=lim — =1lim3 =3
h—0 h h—0
Using (2.2):
T =)
b—1 b—1
. 3b+1-(341)
=lim ———=

b—1 b—1
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o 203 . f0) - f(1)
= 1 —_— !/ — JNT) ST
b1 b— 1 S =l ==
= lim 3(b-1) 1 3
_Yima 3! T Bt 142
i 3 3
5
2. Using (2.1): CVa42 4
f'(1) = lim fA+h) - 1) 4. Using (2.1):
" h f2+h) - f(2)
3(14+h)*+1—4 f(2) = lim —=—————
= lim - - .
h—0 ! . OFRFT 1
i 6h + 3R pm 5
h—0 h 3 3+h
=}llin%6+3h:6 :’llii%zwhh:w
5
Using (2.2): %
) = 1y £ =) i B
7/(1) = tim 7
2 = 1 - _Z
iy B =4 lim o =3
el r—1 Using (2.2):
- — f(2
T— xr — P _
— — 3
z—2 1 —2
. Using (2.1): Since 3 x4l
fa+h) - 1) e
h P S
3(1+h)+1-2 . *J(L_ﬂ:l?)
= = lim ————
h =2 1 — 2
 VA+3h—2 VA+3h+2 I )
R VErah+? =l = 2
_ 443h-4 3h ;
h(VA+3h+2) h(vVAL3h+2) 5 P%M
3 3 —
= = 2 _ 2
VA+3h+2 VA 3h+2’ = lim 3(z +h) +1h (3(z)" +1)
we have -
— 2 2 1— 2 1
£ = ,{i%w _ %in% 3z + 6xh—|—3hh+ (3z*+1)
- —
3 6xh + 3h2
= lim — = lim ——
n=0\/A+ 3h + 2 h0
= lim (62 4 3h) = 6
= # — § h—0
VA+3(0)+2 4 e h) — flz
Using (2.2): Since 6. f'(z) = lim w
76— (1) SN
T -1 :1im(x+h) —2(x+h)+1— f(x)
Vv3b+1-—2 h—0 h
T b1 2zh + h? — 2h
— =lim ——
~ (VBb+1-2)(V3b+1+2) h—0 h
R S
— —
S (b—1DVBb+1+2 ) = f(x
30— 3 . %ﬂ%z()
(b—1)V3b+1+2 3b+1+42 b +20—1— (2% 422 1)
we have = lim

b—x b—x
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(b—a) (b* + bz +2? +2)

= lim
b—zx b — T
= lim % + bz + 22 + 2
b—zx
=322 +2
8. f(a) =
N ICEOEC)
h—0 h )
— i &t =20 th)? 41— f(x)
h—s0 h
= lim [4963 + 622h + 4zh? + b3 — 4o — 2h]
h—0
=4z — 4z
o 1 0= S)
b—x b—=x
3 _ 3
_ hm b+1 x+1
b—zx b—=x
3(z+1)—3(b+1)
— lim (b+1)(z+1)
b—zx b—=x
—3(b—
= lim 3( z)

b=z (b+1)(z+1)(b—x)
= G DD
3

(z+1)?

h) —
10. f’(ac) = ;ILIEB M
2 2
2(z+h)—1 2z—1
h—0 h
2(2z—1)—2(2z+2h—1)
(22+2h—1)(2z—1)

h—0 h
—dh
— lim (2z+2h—1)(22—1)
h—0 h
= i —4
T h50 (22 + 2k — 1)(2z — 1)
B —4
C (2r—1)2
11. f(t) =v3t+1
_f(b) — f(t)
AT
P = Jim =5 =5
. V3b+1—/Bt+1
= lim
b—t (b— t)
b+1 t+1
Multiplying by V3b+1+ 3t + gives

V3b+1+3t+1

12.

13.

L (Bb+1)—(3t+1)
) = i o0 (VB r 1+ vt e 1)

= lim 301

bt (b—t) (V3D 1+ VBt 1)

, 3
RV T Y
3

BENCES
fit)=v2t+4
f/(t):?ir%f(l()z);:g(t)

Y V2b+4 -2t +4

= (b—1t)

V2 + 442t +4

Multiplying by N B T gives

)t p ) 2t
b=t (b—t) (V20 + 4+ V2t +4)
. 2(b—1t)
= lim
b=t (b—t) (V2b+ 4+ V2t + 4)
li 2
= 11m
b=t /20 + 4+ /2t +4
2
V214 J2U+4
(a) The derivative should look like:

87

5.0
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a]
3]
>
. . . oO—4
14. (a) The derivative should look like: ]
5— rFrr 1 rrryrrr1vwv T
_ 5 -4 -3 -2 -1 T
4—| x -]
3: =]
vy 4
2: -]
: ul —a—
5
L L L LY B LY L BB L B B
-5 -4 -3 -2 1 : il 2 3 4 5
X _1%
o
vy 4
—3—
—4—
-5

16. (a) The derivative should look like:

(b) The derivative should look like:

4.0

3.2

15. (a) The derivative should look like: 2.4+

3 1.6—

0.8

> -
T T T T T T TP T T T T T T T

-4 -2 = 2 4

1 X —0.8—

1.6
y i
™ 2.4

_3.2

-4.0-

(b) The derivative should look like: 17. (a) The function should look like:
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(b) The function should look like:

18. (a) The function should look like:

(b) The function should look like:

89

20—
155[\
y .

FrrrrrrrT
-5.0

LIS I |

_s]

—107

19. The left-hand derivative is

D_f(0) = hlggi M
N s O
= ho- h N

The right-hand derivative is

h _
Do0) = 1y 1010
o BhElo1
T b0 h -

T T

-2.5 610 2.5 5.0

2

3

T
7.5

TTT T
10.0

Since the one-sided limits do not agree (2 #

3), f'(0) does not exist.

20. The left-hand derivative is
. f(h) = f(0)
D_f(0)=1
J0) = Jim ==
0-0
hgg* h

D, £(0) = 1351, f( );f(o)
. 2h
_hlgg‘*'%_2

Since the one-sided limits do not agree (0 #

2), f'(0) does not exist.

21. The left-hand derivative is

D,f(O):hl_igl_ S );f(o)
. h?-0
:hlggf h =0

The right-hand derivative is
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22,

23.

24.

— f(0
Doi(0) = iy F=IO
= g, =

Since the one-sided limits are same (0 = 0),
1(0) exist.

The left-hand derivative is

b_s(0) = 1 101 SO
. 2h
= T .

. — f(0
. h*+2h
= 1m
h—0t h
~ i h(h +2)
h—0t h

= lim h+2=2
h—0t

26.

Since the one-sided limits are same (2 = 2),
1(0) exist.

T

R TR F(OES ()
1.1 0.7399401 0.3283329
1.01 0.7106159 | 0.3509150

1.001 0.7074601 0.3532884
1.0001 | 0.7071421 0.3535268
1.00001 | 0.7071103 | 0.3535507

The evidence of this table strongly suggests
that the difference quotients (essentially) in-
distinguishable from the values (themselves)
0.353. If true, this would mean that f’(1)
~ 0.353.

flx) = xe”

28.

CHAPTER 2. DIFFERENTIATION

- PERRICES (¢
1.1 172.7658734 | 635.6957329
1.01 114.2323717 | 503.6071639
1.001 109.6888867 | 492.5866054
1.0001 109.2454504 | 491.5034872
1.00001 109.201214 | 491.3953621
1.000001 109.1967915 | 491.3845515
1.0000001 | 109.1963492 | 491.3834702
1.00000001 | 109.1963050 | 491.3833622

27.

The evidence of this table strongly suggests
that the difference quotients (essentially) in-
distinguishable from the values (themselves)
491.383. If true, this would mean that f'(2)
~ 491.383.

f(z) = cos 3z
. | e [T
0.1 0.9553365 | —0.4466351
0.01 0.9995500 | —0.0449966
0.001 | 0.9999955 | —0.0045000
0.0001 | 1.0000000 | —0.0004500
0.00001 | 1.0000000 | —0.0000450

The evidence of this table strongly suggests
that the difference quotients (essentially) in-
distinguishable from the values (themselves)
0. If true, this would mean that f/(0) ~ 0.

f(z) =In3z

- oy | [T
2.1 1.8405496 | 0.4879016
2.01 1.7967470 0.4987542
2.001 1.7922593 | 0.4998757
2.0001 1.7918095 0.4999875
2.00001 1.7917645 | 0.4999988
2.000001 | 1.7917600 0.4999999
2.0000001 | 1.7917595 | 0.5000000

The evidence of this table strongly suggests
that the difference quotients (essentially) in-
distinguishable from the values (themselves)
0.5. If true, this would mean that f'(2)
~ 0.5.

Compute average velocities:

Time Interval | Average Velocity
(1.7, 2.0) 9.0
(1.8, 2.0) 95
(1.8, 2.0) 10.0
(2.0, 2.1) 10.0
(2.0, 2.2) 9.5
(2.0, 2.3) 9.0

Our best estimate of velocity at ¢t = 2 is 10.

Compute average velocities:
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Time Interval | Average Velocity
(1.7, 2.0) 8
(1.8, 2.0) 8.5
(1.8, 2.0) 9.0
(2.0, 2.1) 8.0
(2.0, 2.2) 8.0
(2.0, 2.3) 7.67
A velocity of between 8 and 9 seems to be a
good guess.

29. (a) f(z)=|z|+ |z — 2|

FrrrTr T T TTY TT T T T T T T T
-6 -5 -4 -3 -2 -1 ©® 1 2 3 4 5 &
2

]

o

o]

—10]
f(x) is not differentiable at z = 0 and
T =2

(b) f(x) =[2* — 4a]

L LS A L L L L L |
-6 -5 -4 -3 -2 -1 i 2 3 4 5 6

2.
y

=5.

f(x) is not differentiable at z = 0 and
=4

30. (a) g(z) =e 2/*

—o—|

—3—|

—4—|

—5—

g(x) is not differentiable at z = 0.

91

(b) g(m) = 6_2/(963—96)

—3|

—4—

—5—

g(x) is not differentiable at z = 0 and

xr = =+1.
P _ gp D
31, tim OO P iy e
h—0 h h—0 h h—0

The last limit does not exist when p < 1,
equals 1 when p = 1 and is 0 when p > 1.
Thus f(0) exists when p > 1.

2242z <0

For h < 0, f(h) = h? 4+ 2h, f(0) =b

. f(h) = £(0)
D_f(0) = lim ————~=
JO=Dy 7
. h*+2h—b
= lim ———
h—0~ h
For f to be differentiable D_ f(0) must ex-
ist.

D_ f(0) exists if and only if b = 0.
Substituting b = 027 we get
2
D-1(0) = hl—iftr)lf - —it - hl—if(r)lf(h +2) =2
For h > 0, f(h) =ah+b, f(0) =10
_ f(h) — £(0)
D f(0) = ==
ah+b—b
h—0+ h
. ah
Tabor B
D, f(0) =2 if and only if a = 2.

33. Let f(z) = —1 — 2 then for all, we have
f(z) <z. But at = —1, we find f(-1) =

Ju—
=

—2 and ( ) 1)
. f(=14+h)—f(-1
/ — =
F(=0 }lg% h
s h)? — (=2)
h—0
. 1—(1—2h+h?)
T 50 h
_ 2
zlim2h h =lim (2—h)=2
h—0 —0

So, f’(x) is not always less than 1.
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34.

35.

36.

37.

38.

This is not always true. For example the
function f(z) = —a? + x satisfies the hy-
potheses but f’ (z) > 1 for all z < 0 as the
following graph shows.

_ @ _

2a a

Let u=ch so h = E. Then we have

fla+ch) — f(a)

e

AR (0

pyfee=

hmc(ﬂaiu>ﬂ@)
u—0 u

i flat0) = F(@)
u—0 u

= cf'(a)

Because the curve appears to be bending up-
ward, the slopes of thesecant lines (based
at x = 1 and with upper endpoint beyond
1) will increase with the upper endpoint.
This has also the effect that any one of
these slopes is greater than the actual deriva-

Therefore f'(1) < JA5) — 7 <

0.5
FR =S Aq to where f(1) fits in this

list it seems necessary to read the graph and
come up with estimates of f(1) about 4, and
f(2) about 7. That would put the third num-
ber in the above list at about 3, comfortably
less than f(1).

Note that f(0) — f(—1) is the slope of the
secant line from z = —1 to z = 0 (about),

tive.

39.

40.

43.

CHAPTER 2. DIFFERENTIATION

and that w

secant line from = = —0.5 to = = 0 (about-
0.5). f(0) =3 and f’(0) = 0. In increasing

order, we have f(0)— f(—1), w
f(0), and  f'(0). '
One possible such graph:

is the slope of the

109

One possible such graph:

WYy el
dx(m)dac(x )=l 2

We estimate tllle derivative at x = 2.5 as fol-

lows

= = 1.64516.
2.7—2.39 0.31 64516
For every increase of 1 meter in height of
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44.

45.

46.

47.

48.

49.

50.

serving point, there is an increase of 1.64516°
in margin of error.

We estimate the derivative at £ = 2.854 as

PSS 162 05
o Y 1.66666.
3—-2.7 0.3

For every increase of 1 meter in height
of serving point, there is an increase of
1.66666°in margin of error.

We compile the rate of change in ton-MPG
over each of the four two-year intervals for
which data is given:

Intervals | Rate of change
(1992,1994) 0.4
(1994,1996) 0.4
(1996,1998) 0.4
(1998,2000) 0.2

These rates of change are measured in Ton-
MPG per year. Either the first or second
(they happen to agree) could used as an es-
timate for the one-year “1994” while only the
is a promising estimate for the one-year in-
terval “2000”. The mere that all these num-
bers are positive that efficiency is improving,
the last number being smaller to suggest that
the rate of improvement is slipping.

The average rate of change from 1992 to 1994
is 0.05, and from 1994 to 1996 is 0.1, so a
good estimate of the rate of change in 1994
is 0.75. The average rate of change from 1998
to 2000 is —0.2, and this is a good for the rate
of change in 2000. Comparing to exercise 35,
we see that the MPG per ton increased, but
the actual MPG for vehicles decreased. The
weight of vehicles must have increased, if the
weight remained then the actual MPG would
have increased.

(a) meters per second
(b) items per dollar

c(t) will represent the rate of change in
amount of chemical and will be measured in
grams per minute. p’(z) will represent the
rate of change of mass and will be measured
in kg per meter.

If f'(t) < 0, the function is negatively sloped
and decreasing, meaning the stock is losing
value with the passing of time. This may be
the basis for selling the stock if the current
trend is expected to be a long term one.

You should buy the stock with value g¢(t).
It is cheaper because f(t) > g(t), and grow-

51.

52.

93

ing faster because f'(t) < ¢'(t) (or possibly
declining more slowly).

The following sketches are consistent with
the hypotheses of infection I'(t) rate rising,
peaking and returning to zero. We started
with the derivative (infection rate) and had
to think backwards to construct the function
I(t). One can see in I(t) the slope increasing
up to the time of peak infection rate there-
after the slope decreasing but not the values.
They merely level off.

0

//—

: :

0.5 1
1.5
2
0.5]

. \

0.5 1

0

One possible graph of the population P(¢):

40001
3000
2000
1000
LISLL I B
2 4 6 8 10 12 14
M
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53.

54.

Graph of P'(¢):

Because the curve appears to be bending up-
ward the slopes of the secant lines (based
at x = 1 and with upper endpoint beyond
1) will increase with the upper endpoint.
This has also the effect that any one of
these slopes is greater than the actual actual
derivative. Therefore

fAL5) - ) _ f2) =)
0.5 1 '

) <

As to where f(1) fits in this list it seems nec-
essary to read the graph and come up with
estimates of f(1) about 4, and f(2) about
7. That would put the third number in the
above list at about 3 comfortablyless than

fQ).

0.1tif0 <t <2-10%

f(t):{2-103+(t—2-104)0.161ft>2-1O4

This is another example of a piecewise lin-
ear function (this one is continuous), and
although not differentiable at the income
x = 20000, elsewhere we have
£ (z) = { 0.1 0 <t< 20000

0.16 t > 20000

2.3 Computation of
Derivatives: The Power Rule

2.

d

CF@) = @)~ () ()
9 d
=3z — 2%(96) +0
=32 —2(1)
=32” -2

f(z) = 92® — 152* + 8z — 4

CHAPTER 2. DIFFERENTIATION

d

3. () = L(3t%) — % (2v2)

Tdt
_ i 3\ i 1/2
=35 25 (t )

= 3(3t?) — 2 @tl/?)

—oz— L

Vit

. f(s) =5sY2 — 45213

5

f'(s)= 58_1/2—88
5

—ﬁ—&s

P =g (2) - g su+ oo
B d
:3d—( 1)—8%(w)+0
=3(-w?) -8(1)
3

20 (7Y - 4 () +0
=2(—4y7°) =3(y")
— 7% — 3y2

Yy

X
=10 (—;m_4/3> -2
 3ar
d d [ 3
8. I (x)=— (12 ) J—
(@) = 3z 120) (=) dx<3x2>
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9.

10.

11.

12.

13.

14.

15.

16.

/ _i 3/2_i 71/3
Fls) = ;% ds (35 )

o4 (3 d (i3
_2d5(8 ) 3ds(s )
=2 §51/2 -3 71574/3
2 3

=3s1/2 4 g74/3

1
=Vt
f/(t) =3mt™ 1 —2.6t03

_3a?—3x+1
a 2x
322 3z 1

f(x)

_ 402 —x +3
= 7\/5
:41,3/2 71:1/24»3%71/2

1 3 .
' (x) = 621/2 — 59571/2 _ ix’s/Q

f(x)

fla) = 2(32% — Va)
= 32° — /2

Fw) =3 (a%) — o («57)

=3(32%) — (2:01/2)

3

:91'275\/5

f(z) =323 + 322 — 4o — 4,
f'(xz) =92% + 62 — 4
£t =5 (432 - 2)

dt

= 4t° + 6t

d
" _ = 43
0] dt(t + 6t)
=12t +6

4
f(t) =42 — 12+ 7= 4% — 12+ 472

17.

18.

19.

20.

21.

22,

95

f'(t) = %(4t2 —12+4t7?)

=82 —0+4(—2t7%) =8> — 83
d

() = priCia 8t73) =8 —8(—3t™%)
=84 24t
d
() = a(8 +24t7%) = 0 + 24(—4t7°)
96
— =5 _
—96t 7" = ——
f(z) = 22* 3z~ 1/2
daf 3,3 3
dx St + 2
 _94g? 94502

i 4 (xf)‘ _ x1/2) — 625 — %x—l/Q

?f d 5 L i
deam(6x 5 >

1 1 _.
_ 4 LS 1 3/
30x 3 ( 2:17 )

= 302" + ix*?’/?

f'(z) = % <x4+3x2 - \2)

= 42% + 6z +273/2
" (z) = di (4:103 + 61 + x_3/2)
T

=122% 4+ 6 — g$_5/2
d 3
m _ 19242 _2..-5/2
" (x) dm( x“+6 5%

1
=24z + 153377/2

d 1
fA(z) = e <24z + 45x7/2>
_gq 105, —0p2

8

f/(x) =102 — 122° 42
f"(x) = 902® — 3622
" (x) = 72027 — 72z
fW(z) = 50402° — 72

P (x) = 302402°

s'(t) = —32t + 40
a(t) =2'(t) =s"(t) = =32

= —4.9t* + 12t — 3
s (t) = —9.8t + 12
=o' (t)=5"(t)=-9.8
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23.

24.

25.

26.

27.

28.

29.

s(t) = Vit + 262 = t1/2 4 24
1
o(t) = s'(t) = 515—1/2 +4t

a(t) = v/ (1) = 5 (1) = —%t‘g/Q +4

s(t) = 10 — 10t~ ! v(t) = §/(t) = 10t 2
a(t) = s"(t) = —20t73

h(t) = —16t* + 40t + 5
v(t) =h'(t) = =32t + 40
a(t)=2"(t)=hn"(t)=-32

(a) At time to =1
v (1) = 8, object is going up.
a (1) = =32, speed is decreasing.

(b) At time #y = 2
v (2) = —24, object is going down.
a (2) = —32, speed is increasing.

h(t) = 10t? — 24t
v(t)=h(t) =20t — 24
a(t)=2"(t)=hn"(t)=20

(a) At time ty =2
v (2) = 16, object is going up.
a (2) = 20, speed is increasing.

(b) At time to = 1
v (1) = —4, object is going down.
a (1) = 20, speed is decreasing.

f(x):x2_2va:27 f(2):27
fl(x) =2z, f'(2) =4

The equation of the tangent line is
y=4(x—2)+2o0ry=4x—6.

f2)=1, f'(z) =22 -2, f'(2) =2
Line through with slope 2 is
y=2(zx—2)+1

flx)=4yx — 2z, 0 =4

f4) =4V4—2(4) =0

flz) = % (4x1/2 - 2x)
20712 2 = % ~2

ffA)=1-2=-1
The equation of the tangent line is

30.

31.

CHAPTER 2. DIFFERENTIATION
y=-1l(zx—4)+0ory=—x+4.
3WVr+4,a=2

3V2 + 4
3
1/2 = — 71/2:
(i’)x —|—4) 23:

f(x
f2 ¢
! —_
3

!/ 2 — -
re=5
The equation of tangent line through

3
2, 3v/2 + 4) with slope
(2,3v2+4) be 5

(. —2) +3vV2+ 4.

) =
=
3
2/z

is

3
yi?\/i

(a) The graph of f’ is as follows:

_
o

3}

<

[T T T T T
-5.0 -2.5

TA T T T T T 1T
0 25 5.0

<?IIII(IFIICPI

1
Y

The graph of f” is as follows.

(b) The graph of f’ is as follows.
10

T T T T T T T T T
-10 -5

I I B
5 10

?IIIILITII.—L

|
—_
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The graph of f” is as follows.
1

T T T T TT1 L I I O
-10 -5 5 10

[T T T T T 11 TT T 1T T T 1]
-10 -5 5 10

-1
The graph of f” is as follows.

10
5
T T T T T T T IO T T T T T T 1T
-10 -5 -4 5 10
32. (a) The graph of f’ is as follows. ]
-5
107 .
: 10
>
u 33. (a) f(z)=2>—-3z+1
|||||||||w¥/||||||||| f(z) =322 -3
10 - ° 10 The tangent line to y = f(x) is horizon-
5 tal when
- f'(z)=0
] =322 -3=0
~10-1 =3(z*—1)=0
=3z+1)(xz—-1)=0
r=-—-1lorx=1.
The graph of f” is as follows (b) The graph shows that the first is a rel-
107 ative maximum, the second is a relative
] minimum.
5
L L L i
-10 -5 5 10 3
[TTTTTI T T T T I TR [ CPTT TT1TT]
-3 2 -1 K 1 2 3
&
“10-

(b) The graph of f’ is as follows. (c¢) Now to determine the value(s) of x for
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34. (a)

(b)

(c)

35. (a)

which the tangent line to y = f(z) inter-
sects the axis at 45° angle that is when

f(z)=1.
322-3=1
22 —-1)=1
By
42
ac-:l:\/g

Now to determine the value(s) of z for
which the tangent line to y = f () inter-
sects the axis at 45° angle that is when

fz)=1
32 -3=1
3(2*-1)=1
1
2 _ =
0=
2—7
T3
2
r=+—

V3

The graph shows that the function has
global minimum at (1, —1)

T T T T 17T T4
-10 -5

V7 I I B
5 10

<?IIII(I‘FII/L

1
-

Now to determine the value (s) of for
which the tangent line to y = f (z) inter-
sects the axis at 45 angle that is when
7 (@) =1

42 —4 =1

@ -1 =7

S

! _ 2 -1/3 _ 2

The slope of the tangent line to y =
f (z) does not exist where the deriva-
tive is undefined, which is only when

x=0.

CHAPTER 2. DIFFERENTIATION

The graphical significance of this point
is that there is vertical tangent here.

(b) f(z) =z -3

s, J 1 whenz >3
i) = {—lwhenx <3

f' (z) is not defined at x = 3.

5—

Though the graph of function is contin-
uous at x = 3 tangent line does not exist
as at this point there is sharp corner.

(c) f(a:):‘xz—?)x—4|
f,(x):{2x—3whenx>4or:ﬂ<—1
—2r+3when —1<z<4
f/(x) is not defined at z = —1, 4.

-10—

The graph shows that the function has
global minima at (—1,0) and(4, 0).
The function has relative maximum at
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36. (a)

(b)

(c)

3 2
2" 4 )

f(x) =2

! _ 1 —-8/9 _ 1
(@) = 9" ©0g8/9
The f’ (z) is not defined at x = 0.

2.0

T T T T T T T T9¥F T T 1 T 1T 1 1T

—1.24

~1.6—|

—2.0-
The graphical significance of this point
is that there is vertical tangent here.

flz) =z +2
, | 1whenz> -2
(@)= {—1 when z < —2
The f’ (z) is not defined at © = —2.

—5—

Though the graph of function is contin-
uous at x = —2, tangent line does not
exist as at this point there is sharp cor-
ner.

f(z)= |x2 +533—|—4| = |(z+4)(x+1)]
f' ()
The f'(x) is not defined at z = —4, —1.

_J2z+5whenz < —4orzx> -1
"l -2z —-5when —4 <2< -1

37. (a)

(b)

99

The graph shows that the function has
global minima at (—4, 0) and (-1, 0).
The function has relative maxima at
(—2.5, 2.25).

y=a>—3z+1

y =32 -3=3(2%-1)

The tangent line to y = f (z) intersects
the z-axis at a 45° angle when

f (@) =1

©3(*-1)=1

1
2
Srr=1+4+=
x +3
pa 2 2
r=-—F7=0rr=——7
V3 V3

The tangent line to y = f (z) intersects
the x-axis at a 30° angle when

) = =
<:>3(562—1)—1\/§

1\ /2
Sr=(1+— or
(1+5)

1\ /2
r=—1+——=
( 3\/3)

38. Answers depend on CAS.
39. f(z) =ax®> +bx +c, f(0)=c

[

)=2ax+b, f/(0)="b

[ (@) = 2a, f(0) = 2a

Given f”(0) = 3, we learn 2a = 3, or
a = 3/2. Given f'(0) = 2 we learn 2 = b,
and given f(0) = —2, we learn ¢ = —2. In
the end

3
f(a:)zaac2+ba:+c:§x2+2x—2

40. (a)

f@) = o =o'
f(w) = 5272

f”(m) — % <_;> .1373/2
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41.

42.

F ()
_ (_1)R_IWQC_(2H_1)/2
_ n—1 1.2.3... (27’L - 2) —(2n—-1)/2
RS T w
_ (_1)71—1.22(2711(—2)!1)'%_(%—1)/2
n—i(n—1)!

(b) f(x) =223

f"(z) =624

" (x) = —24x7°
The pattern is
(@) = (=1)"(n+ 1)l

Thus, the

1
slope of the tangent line at z = a is ——.

2
a
When a = 1, the slope of the tangent line at
(1, 1) is —1, and the equation of the tangent
line is y = —x 4+ 2. The tangent line inter-

sects the axes at (0, 2) and (2, 0). Thus, the
area of the triangle is %(2)(2) =2.

When a = 2, the slope of the tangent line
at <2, ;) is —i, and the equation of the

1 1
For y = —, we have y' = ——.
T T

1
tangent line is y = —7° + 2. The tangent
line intersects the axes at (0, 1) and (4, 0).
1
Thus, the area of the triangle is 5(4)(1) =2.

In general, the equation of the tangent line is

1 2
Yy =— (2) x 4+ —. The tangent line inter-
a a

2
sects the axes at (0, —) and (2a, 0). Thus,
a

1 2
the area of the triangle is 5(2(1) () =2.
a
L -2
Fory = — =277, we have
! 2
fla)= -2t =2

Thus, the slope of the tangent line at
r=alis —%.
When a = 1, the slope of the tangent line at
(1, 1) is —2, and the equation of the tangent
line is y = —2x + 3. The tangent line inter-

sects the axes at (0, 3) and (2, 0>. Thus

1,3, 9
the area of the triangle is 5(3)(7) =—.

When a = 2, the slope of the tangent line
1 1
at (2, 4) is T and the equation of the

43.

44.

45.

46.

47.

48.

49.
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tangent line is

1 L 3
= ——x+ -.
YT

the axes at (O7 %) and (3, 0). Thus the area

The tangent line intersects

1
of the triangle is 5(%)(3) =3

9
Since 1 # —, we see that the result for exer-

cise 41 does not hold here.

(2) ()= lim gz +h) —g(z)

—0 h
o1
= jm [mf () - max f <t>}

1
= lim - [f(x+h) = f(2)]

= f'(=)

= lim — max
h—0 h |a<t<z+h

1
= lim —[f(a) = f(a)] =0

h—0

16) - s 100

a<lt<z

(a) ¢'(x) = lim g(z + h})l —g9(x)

a<t<z+h

1
)

f6) -~ i f0)

1 o
tin L f() ~ f(a)] =0

(b) g'(x) = lim g(z + h}i —g(x)

= lim — min
h—0 h |a<t<z+h

1
= lim & [f(z +h) — £ (2)]
= f'(x)
Try f(x) = ca® for some constant c. Then

f'(x) = 4cx® so ¢ must be 1. One possible

answer is f(z) = 2%

)~ min )

a<t<z

Try f(x) = ca® for some constant c. Then

f'(x) = 5ca* so ¢ must be 1. One possible

answer is f(z) = 2°.

f'(@) = Vo =a'l?

f(z) = §x3/2 is one possible function

If f'(x) = 272, then f(z) = —x~ ' is one
possible function.
w(b) = cb®/?
b
w'(b) = %51/2 — %
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50.

51.

52.

w'(b) > 1 when
3cv/b
2

2
Vb > =
3¢

b> —
_9¢ .
Since ¢ is constant, when b is large enough

4
L After this point,

when b increases by 1 wcm't, the leg width w
is increasing by more than 1 unit, so that leg
width is increasing faster than body length.
This puts a limitation on the size of land an-
imals since, eventually, the body will not be
long enough to accomodate the width of the
legs.

World Record Times Mens Track

> 1,

b will be greater than

Dist. | Time | Ave. | f(d)
400 43.18 | 9.26 | 9.25
800 | 101.11 | 7.91 | 8.17
1000 | 131.96 | 7.58 | 7.86
1500 | 206.00 | 7.28 | 9.25
2000 | 284.79 | 7.02 | 6.95

Here, distance is in meters, time is in seconds
and hence average in metersper second.
The function f(d) is quite close to predicting
the average speed of worldrecord pace.
v'(d) represents the rate of change in average
speed over d meters per meter. v’(d) tells us
how much v(d) would change if d changed to
d+1.

We can approximate

, . 9039.5 —8690.7 .
£'(2000) ~ 2001 = 1999 — 174.4. This

is the rate of change of the GDP in billions

of dollars per year.

To approximate f”(2000), we first estimate
9016.8 — 8347.3

"1 N ————— = 334.

T 200007 5004 23 )

’ - P . _

and f'(1998) & — o= = 343.1

Since these values are decreasing, f”(2000)

is negative. We estimate
174.4 — 334.75

f(2000) ~ ————— =

= —160.35
2000 — 1999
This represents the rate of change of the rate

of change of the GDP over time. In 2000, the
GDP is increasing by a rate of 174.4 billion
dollars per year, but this increase is decreas-
ing by a rate of 160.35 billion dollars-per-
year per year.

f/(2000) can be approximated by the aver-
age rate of change from 1995 to 2000.

53.

101

, 4619 —4353
£'(2000) ~ 2000 1995 — 53.2
This is the rate of change of weight of SUVs
over time. In 2000the weight of SUVs is in-
creasing by 53.2 pounds per year.
Similarly approximate f’(1995) = 32.8 and
17(1990) ~ 26.8 The second derivative is def-
initely positive. We can approximate

53.2 - 32.8
7(2000) A s 220 4 08.
J7(2000) ~ 5556 7995 — 408

This is the rate of change in the rate of
change of the weight of SUVs. Notonly
are SUVs getting heavier at a rate of 53.2
pounds per year, this rateis itself increas-
ing at a rate of about 4 pounds-per-year per
year.

Newton’s Law states that force equals mass
times acceleration. That is, if F(t) is the
driving force at time t, then m - f”(t) =
m - a(t) = F(t) in which m is the mass, ap-
propriately unitized. The third derivative of
the distance function is then

FU(t) = a'(t) = L F'(1).

It is both the derivative of the accelera-
tion and directly proportional to the rate
of change in force. Thus an abrupt change
in acceleration or “jerk”is the direct conse-
quence of an abrupt changein force.

2.4 The Product and
Quotient Rules

1.

N

w

f(z) = (33; +3)(2® — 3z + 1)
f(z) = %(x2 +3) (23 =3z +1)
+(m2+3)-%(x3—3x+1)
= (2z)(2® — 32+ 1)
+ (2 + 3)(32% — 3)

. f(2) = (2 — 227 + 5) (2 — 327 + 2)

flx) = %(x?’ — 222 +5)(z* — 322 4+ 2)

+ (2 — 227 + 5)%
= (32% — 4x)(2* — 322 + 2)
+ (2* — 22% 4+ 5)(42® — 62)

(z* — 322 +2)

o) = (5 3 (522 2)

= (2% 4 3z) (522 — 3z71)
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10.

- g(t)

- fl@) =

- fle) =

- flu) = —~ =

f'(z) = (;xl/Q + 3) (522 — 3271)

+ (22 + 32)(10z + 3272)

. f(@) = (%% —da)(2* — 3272 +2)

f(x) = %(sc?’/2 —4z)(2x* = 3272 +2)

d
+ (2%/% - 490)%(374 — 3272 42)
3
= (5331/2 —4)(z* = 3272 +2)
+ (2%/% — 4z) (42° + 6273)
3t—2

~ 5t+1

(5t+1) L (3t—2))—((3t—2) & (5t+1)
g () = (oA o)
_ 3(5t+1) —5(3t —2)

B (5t +1)°
15t +3—15(+10 13

B (5t + 1)

(5t +1)°
P +2t45
25t +1

9(t)
g'(t) =
(82 =5t41) & (17 +2t45) ) — (12 +2t45) & (2 —5t+1))
(t2—5t+1)2
(t2 =5t +1)(2t +2) — (t2 + 2t + 5)(2t — 5)
(t2 — 5t +1)°
3z —6yx  3(x— 2z1/2)
502 -2  5x2—2

f'(x) =

3((5.’1)2—2)%(f£—2$1/2)—(3€;2£1/2)%(5362—2))
(5bx2—2)

(522 —2)(1 — 2~ Y/2) — (z — 221/2)(10z))

(522 — 2)°

=3

6x — 227!

22 + /2

f'(x)

_ ($2+11/2)%(69:721_1)7(6z72z_1)%(:1:2+11/2)

(a:2+z1/2)2

($2+m1/2)(6+2m’2)—(6m—2171)(21+%r71/2)

(124_11/2)2
2)  uwr-u-2

u?2 —5u+1

(u+1)(u

u? —5u+1
f(u) =
((u2—5u+1)ﬁ(u2—u—2))—((uQ—u—Q)ﬁ(uz—&H—l))
(u2—5u+1)2
(v —5u+1)(2u—1)—(u? —u—2)(2u—>5)
(u2—5u+1)?
202 —10u? +2u—u? +5u—1—2u> 420> +4ut+5u —5u—10

(u2—5u+1)2
—4u? + 6u — 11

(u? — 5u+1)°
~ (2u)(u+3)  2u®+6u
?(zl))_ w+1 w241
u) =

11.

12.

13.

14.

15.

CHAPTER 2. DIFFERENTIATION

((u?+1) & (2u”+6u) ) — ((2u”+6u) £ (u’+1))

(u?+1)*
(u? 4+ 1)(4u + 6) — (2u? + 6u)(2u)

(u? + 1)2

B 4ud + 6u? + 4u + 6 — 4u® — 1202
(u? +1)°

_ —6u?+4u+6

(u? +1)°
2(—3u? + 2u + 3)
(u? +1)°

We do not recommend treating this one as a
quotient, but advise preliminary simplifica-
tion.

2 +3zx—2

f(m):T
_:lc2 3z 2
IRV A

= 23/2 4 321/2 — 247 1/2

Fla) = 31/ g:v_l/2 42

2

22 -2z
f'(x) =
(22 + ba) L (22 — 22) — (22 — 22) 2 (2% + 52)

(2 + 5z)°
(2 +52)(22 — 2) — (2 — 22) (22 + 5)
(22 + 5z)°

We simplify instead of using the product

rule.
h(t) = t(Vt +3) =t*/3 + 3t
4
W(t) = §%+3
h(t) = i + 2Ll g
B 3 23
R (t) = 3t 10673

3 2
9 z° + 3z
=0T
l i 2 _ z° + 3z
Fy= L1 (0
d a3+ 322
2_1). =
We L + (= ) dac( $2+2)
e have
i(x‘?’—l—fﬂxz)_
de 22 +2 7
(22 +2) L (23 + 32?) — (2% + 322) L (22 + 2)
(2% +2)°
_ (@ +2)- (32% + 62) — (2® + 32?) - (22)
(22 +2)°

3" 4 622 + 62° 4 120 — (22" 4 62°)
(2% +2)°
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16.

17.

18.

19.

_ x* + 622 + 122

(22 +2)°
So, f'(z) =
3 + 322 x4 622 + 12z
e T
(x4 2)(z—-1)(z+1)
flw) = z(x+1)
B 224z —2
=
—z4+1-—2z7"1
flz)=14222
f(z) = (22 + 2z)(z* + 2% 4+ 1)

fl(z) = LZ:(JP + 23;)} (z* + 22 +1)

d
+ {daj(ﬂc‘1 + 2%+ 1)} (z? + 2z)
=2z +2)(z* + 22 + 1)

+ (4a® 4 2x) (2? + 22)
At x =a =0, we get:
f(0)=0
J(0) =
Threfore, the line with slope 2 and pass-
ing through the point (0, 0) has equation
y = 2z.

fl@)= @ +2+1)(32* +22 1)
fl(x) = LZJ(:E?’ +z+ 1)} (32% 422 — 1)

+ {2(31’2 + 2z — 1)} (®+24+1)

= (322 +1)(32% + 22 — 1)
+ (6 +2)(z® + 2 +1)

At z =a =1, we get:
(1) =12
(1) =0B+D)B+2-1)+(6+2)(1+1+1) =
40
Therfore, the line with slope 40 and pass-
ing through the point (1, 12) has equation
y=40(x — 1)+ 12.

flay =222

T+ 2
By The Quotient Rule, we have
f'(@)
_(@+2)Fg@+1) — (@ +1) (= +2)
- (z+2)°
C(x42)—(z+1) 1
(242 (z+2)
Atw= gflo’ 1
T0=5273

20.

21.

22,
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1
The line with slope 1 and passing through

1 1 1
the point (0, 2) has equation y = —x + —

4 2
z+3
fla) = 55
By The Quotient Rule, we have
f(x) =
(@ + 1) (@ +3)) = (@ +3) 7 (2* +1))
(a2 + 1)
B (22 +1) — (z + 3)(27)
- (a2 +1)°
(22 +1) — (222 + 62)
@y
_ 22 4+1—22% -6z
@y
_ —x2—6x+1
(a2 +1)°
Atz =a=1,
= 11;5;1 _62+ 1 6 3
f(l)*Wffz—*a

The line with
thzr)’ough the point (1,
—3 (x—1)+2.

h(z) = f(x)g(x)

W(z) = f'(z)g(z) + g'(z)f(z)
(a) Atz =a=0,

h(0) = £(0)g(0)
h'(0)

slope —3 and passing

2) has equation y =

(=D)B)=-3
= f'(0)g(0) + ¢'(0)£(0)
=(=DE) + (-)(=1) = -2
So, the equation of the tangent line is
y=—2x—3.
(b) Atz =a=1,
h(1) = F(D)g(1) = (~2)(1) = —2
h'(1) = f'(1)g(1) +¢'(1)f(1)
=B+ (=2)(-2)=T.
So, the equation of the tangent line is
y=T7z—-1)—2o0ry="7zr—-09.

f(z)
h(z) = @)
) - 20I) ~ @) @)
(9(x))
(a) Atz=a=1
h(1) Ja)_ 2 = -2



(9(1))*
_ (MB) = (=2)(=2)
= E
— ﬂ - 1.
1

So, the equation of the tangent line is
y=—(z—-1)—2.

(b) Atz =a=0,
h(0) =10 = 1

So, the equation of the tangent line is
4 1
=——x— .
V=797 73

23. h(z) = 2 f(x)

W (x) = 20f(2) + 2 (x)

(a) Atz =a=1,
h(1) = 12f(1) = -2
R'(1) =2 x 1 x f(1)+12f'(1)
=(2)(-2)+3)=—-4+3=-1.
So, the equation of the tangent is y =
—1l(z—1)—20ry=—z—1.
(b) Atz =a=0,
h(0) = 0%f(0) =0
h'(0) =2 x 0 x f(0) 4+ 0%2f'(0) = 0.
So, the equation of the tangent is y = 0.

24. h(z) = %
W (z) = 2zg(x) — zzg’(x)
(9(x))
(a) Atz =a=1,
12 1
e @ 1: ! Z)l 12¢'(1)
' _ X1 Xg — 179
W (1)
2)(1)@A) — (1)(-2)
12
242

So, the equation of tangent line is y =
4z —1)+1.

25.

26.

27.

28.

29.
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(b) Atz =a=0,

02 0
h(0) = —55 =3 =0 y
h/(o):2><0><g(0)—209(0)_
9(0))

So, the equation of the tangent line is
y=0.

The rate at which the quantity ) changes is
@Q’. Since the amount is said to be “decreas-
ing at a rate of 4%” we have to ask “4%
of what?” The answer in this type of con-
text is usually 4% of itself. In other words,
Q' = —0.04Q.

As for P, the 3% rate of increase would
translate as P’ = 0.03P. By the product rule
with R = PQ, we have:

R = (PQ) = P'Q+ PQ

= (0.03P)Q + P(—0.04Q)

= —(0.01)PQ = (—0.01)R.

In other words, revenue is decreasing at a
rate of 1%.

Revenue will be constant when the deriva-
tive is 0. Substituting, Q' = —0.04Q and,
P’ = aP into the expression for R’ gives,
R = —0.04QP + aQP

R = (-0.04+ a)QP.

This is zero when a = 0.04, so price must
increase by 4%.

R/ _ Q/P 4 QP/

At a certain moment of time (call it tg)
we are given P(tg) = 20 ($/item), Q(tg) =
20, 000(items)

P’'(ty) = 1.25($/item/year)

Q' (to) = 2,000 (item/year)

R'(to) = 2,000(20) + (20, 000)1.25

R'(ty) = 65,000 ( $/year) .

So, revenue is increasing by $65,000/year at
the time ¢g.

We are given P = $14, Q = 12,000 and
Q' =1,200. We want R’ = $20,000. Substi-
tuting these values in to the expression for
R’ (see exercise 25) yields:

20,000 = 1200 - 14 + 12,000 - P’

Solve to get P’ = 0.27 dollars per year.

 82.5m — 6.75

If u(m) =

m 4+ 0.15
tient rule,
d7u _ (m +0.15)(82.5) — (82.5m — 6.75)1

dm (m + 0.15)
19.125

(m +0.15)°

then using the quo-
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30.

31.

32.

33.

which is clearly positive. It seems to be say-
ing that initial ball speed is an increasing
function of the mass of the bat. Meanwhile,

19.12
w1y = 2 5N1446

19.12
u'(1.2) = Q~1049

which suggésts that the rate at which this
speed is increasing is decreasing.

(M +1.05)5%-(86.625 — 45]M)

u' (M) =

(M +1.05)
—4_(M + 1.05)(86.625 — 45]M)
(M +1.05)
_(—45M — 47.25) — (86.625 — 45M)
B (M +1.05)*
_ —133.875
(M +1.05)

This quantity is negative. In baseball terms,
as the mass of the baseball increases, the
initial velocity decreases.

14.11 282.2

fulm) = 2005 = qom + 10 hen
du  (20m 1) -0 — 282.2(20)
dm (20m + 1)°
5644
C(20m+ 1)

This is clearly negative, which means that
impact speed of the ball is a decreasing func-
tion of the weight of the club. It appears
that the explanation may have to do with
the stated fact that the speed of the club is
inversely proportional to its mass. Although
the lesson of Example 4.6 was that a heavier
club makes for greater ball velocity, that was
assuming a fixed club speed, quite a different
assumption from this problem.

.2822
u'(v) = % ~ 1.3. The initial speed of

the ball increases 1.3 times more than the
increase in club speed.

e = = (s
= (J(@)g(x)
= et

+h(z) (F(@)g' () + 9() 7 (@)
= ['@)g@)h(a) + [(@)g
+ f(@)a()H (@)

In the general case of a product of n func-
tions, the derivative will have n terms to be

added, each term a product of all but one of

l
x

)
W (x) +
h'(x)
) !
)

34.

35.

36.

37.

38.
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the functions multiplied by the derivative of
the missing function.

1 1.
The derivative of (g():ci . g((l"))dls .
d -1 g\xr dz 1)—(1 709 X
dx [g(x) ] - : g(z)? :
LR
@) (x)(g(x))

as claimed. The derivative of f(x)(g(x))” " is
then f(2)(g(z)) " + f(2)(=g'(2)(g(2)) ).

Fa) = | )| @ - 26 -4 )
+ z2/3 [di(x 2)] (2% — x4 1)
2?3 (22 — 2)%(953 —x+1)
= ggfl/?'(x? —2)(@® —x+1)
+ 223 (22)(2® — x + 1)
+ 223(2? - 2)(32% — 1)
fl(x) = 1(2® — 22 4+ 1)(3 — 2/x)

+ (x +4)(32% — 2)(3 — 2/x)
+ (z 4 4) (2 — 22 + 1)(2/2?)

flz+h) = f(z)

hg(h) =0
h—0 h
)

= im "9 _ i () = g(0)

Since, ¢ is continuous at x = 0. When
g(xz) = |z|, g(x) is continuous but not dif-
ferentiable at © = 02. We have
I R

T x>0
This is differentiable at x = 0.
flx) =

f' (@) =

I
=

(z—a)g(x)
)~ f )
h—0 h

— lim (a+h—a)g(a+h)

h—0 h

lim hg (a+h)

h—0 h

=1 h
lim g (a+h)
=g(a)
As g is continuous at = a, hence f(z) is
differentiable.
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39. f(x) =

40. f(x) =

T

) en)
y (= +1) —x (22
f(z) = ($2+1)2
_:r2+1—29c2
(@)

41
(@2 +1)

f(=)
_ (@4 1)7(<20) — (=22 +1) 2 (2 + 1) (22)

(22 +1)"
(22 +1) (—22) — (—2? + 1) (42)
(22 +1)°
_ —223 — 20 4+ 423 — 4z 223 — 62
(22 +1)° (@2 +1)°
At maxima or minima of f/, we have
f"(x) = 0. So, 223 — 62 =0

2z (2* —3) =0
20=0,22-3=0
=0, z=+V3

, —02+1

f (O)ZWzl

f (ix/é)z_(i\/g)QHQ
(123" 1)
-3+1 2 1

T @B+ 168

Therefore, —é <m=f(z) <1.

So, the function f has maximum slopem =1
at x = 0 and minimum slope m = —é at
Tr = i\/g.

In the graph of f(x) in below, the point
B(0, 0) has maximum slope 1 and the points

A(—V3, *@), C(V3, @) have minimum
slope —%.

VaZ +1

CHAPTER 2. DIFFERENTIATION

(\/x2 + 1) —x (ngﬂ X 2x>
(z2 +1)
IQ
(Va2 +1) - 7
(z2+1)
2 2
+1- -
S
<x2+1)§
Since 2 +1 >0, m > 0.

5
2

F() = —2 (@ +1) ¢ (20)

) =

[N

= —39:(:172 + 1)_% = -3z
For maxima or minima of f”(x), we have
f"(x)=0. So, z=0

3

F0)=(0*+1)"2=1
Therefore 0 <m = f/'(z) <1
In the graph of f(z) in below, the point
A(0, 0) has maximum slope 1.

1.0

0.8
0.6

0.4

41. Answers depend on CAS.

42. For any constant k, the derivative of
sin kx is kcos kx.
Graph of % sing :

[ ST T Y T TNV S ST T T L ° LI B N W
o

Graph of % sin 2x
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48. g(x) = f( (@), s0
y / g'(@) = f'@)[f(@)]* + f@)(2f (@) [ ()
= 3[f(@)]*f'(x)
The derivative of [f(z)]" is n[f(z)]" " f'(z).

LT

=

p : 49. lim f(z) = 0 and lim f(z) = 1. Without
3 z—0 T—00
] any activator there is no enzyme. With un-
g limited amount of activator, the amount of
1 enzyme approaches 1.
2 227
Graph of - sin 3z £(x) (1+227) (2.7) 2t — (2.7) 2?72 7
xT) =
(1+227)
_ 2. 7017
(1+227)°

The fact that 0 < f(z) < 1 when z > 0
suggest to us that f may be a kind of con-
centration ratio or percentage of presence of
the allosteric enzymes in some systems. If so,
the derivetive would be interpreted as rate of
change of concentration per unit activator.

50. lin%)f(x) = 1 and lim f(z) = 0. With-
r—r Tr—r 00
out any inhibitor the amount of enzyme ap-

43. CAS answers may vary. proaches 1. With unlimited amount of in-

44. The function f(x) simplifies to f(z) = 2z, hibitor, the amoun1t70f enzyme approaches
so f'(x) = 2. CAS answers vary, but should 0. f'(z) = — 2.7
simplify to 2. ' (1+ x2-7)2
For positive x, f’ is negative. Increase in
45. g/@()x) (())(;x) th(en) /(x) and the amount of inhibitor leads to a decrease
F'(z) = ( g)g(z) F(2)d (@) in the amount of enzyme.
f'(@)g () + f(2)g" (z) _ 1

)9 _[0.55 045771
_ Peno) 2 g+ fee ‘0-55;)-45‘[ A

F"(x) = f" (2)g(x) + f(2)g (x) a0 -
+2f"(2)g (z) + 2f'(2)g" (x) %(” ;i {055 * O.;ﬂ
+F(@)g" (@) + f(2)g" (z) -1 d[055 045
= f"(x)g(z) +3f"(x)g' (x) - [0-55+0~45]2d<3[ ¢ " Th }
+3f/(@)g" (@) + f(2)g" (). © oss

One can see obvious parallels to the bino- =
mial coefficients as they come from Pascal’s

Triangle: Therefore, from the above equation we
(a+b)* = a®+ 2ab + b?

(a+b)* = a® + 3a%b + 3ab® + b°.

2
2 0.55 + 0.45

dr
can say that T > 0, for every c.
c

: : ; dr 0.45
On this basis, one could correctl-y predict .the (b) Similarly, — —
pattern of the fourth or any higher deriva- dh h? [% + %]
tive. Hence, from the above equation we can
dr
46. FW(z) = fWDgraf”q +6f"g" +4f'g" + say that — > 0, for every h.
fg(4) 1
(©) r=om os
47, 1 (@) = [[@) = f@)f (@), then 55, 0
g'(z) = f'(@)f(x) + f(2)f'(z) = 2f (2) f'(2)- When ¢ = h, we get
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(d)

1
= 5E—oaE =h=c.
Rk

Ife<h
- ch

"~ 0.55h + 0.45¢
ro_ h - h _1
¢ 0.55h+0.45¢ =~ 0.55h + 0.45h
So, r > ¢. And
- ch

©0.55h + 0.45¢

r Cc C

— = 1
= 0555+ 045¢ ~ 0.55¢ + 0.45¢
So, r < h and hence ¢ < r < h.

Now, r is an increasing function and
h = ¢, we have r = f(h) = ¢. Hence for
any value of h greater than ¢, we have
the corresponding value of r greater
than c.

dr 0.55
dh ~ 27055 | 0.4572
dh- [0+ ]
0.45¢2 0.45¢2

(0.55h + 0.45¢) c
Also, from part (b),

dr 0.45¢2

dh  (0.55h + 0.45¢)>
and from part (d),
T c

B~ 0.55h + 0.45¢
r 2
N 0'45(5) <045

=r<h

Graph of r» with respect to h when ¢ = 20:

80—

LN L L L L L L L L B L
10 20 30 40 50 60 70 80 90 100

When c is constant, r remain stable for large

h.

2.5 The Chain Rule
1. f(z) = (z® —1)?

Using the chain rule:
fl(z) = 2(2® — 1)(32?) = 62%(2® — 1)

@) = @+ 1)

CHAPTER 2. DIFFERENTIATION

Using the product rule:

fz) = (2° - 1)(a® ~ 1)

(@) = (32%)(a® — 1) + (2 = 1)(32?)
= 2(32?)(2* - 1)
= 62%(2® — 1)

Using preliminary multiplication:

flz)=2%—223 41

f!(z) = 62° — 622

= 62%(2® — 1)

()= (2?20 + 1) (22 4224 1)

Using the product rule:

fl(x) = 2z +2)(z* 4+ 22 + 1)
+ (2% 4+ 22 + 1) (22 + 2)

Using the chain rule:

f(x) =2(z? + 22 +1)(2x + 2)

3

Using the chain rule:

Fl(z) =32 +1)° 22

Using preliminary multiplication:
flx) = 2% 4+ 32% + 322 + 1

f'(x) = 62° 4+ 1223 + 62

. flz) =2z +1)*

Using preliminary multiplication:
f(z) = 162 + 3223 + 242% 4+ 8z + 1
f(x) = 642> + 9622 4 48z + 8.
Using the chain rule:

f(x) = 42z + 1)3(2) = 8(2x +1)3

(a) By the chain rule:

2 d
f(z) =3(z* — 2) o (z* — 2)
= 3(373 — ac)2 (3962 — 1)
(b) By the chain rule:
/ _ 1 i 2
1 T
ovaZ+d . Vir+d
a) By the chain rule:
(a) By
flx)=4(z® +z - 1)3% (2 +2—1)
— 4P 2 —1)" (322 +1)

(b) By the chain rule:
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Fia) = — At (12

7. (a) f(t)=tVt3 +2
By the product rule:

#1324 t5% (\/t?’ n 2)

By the chain rule:
) =5tV +2+1°

=5t B 424+ —————

2v/ t3

TV

109

R e

241

_5tP 4413 4+ 2t

t2+1

(b) f(t) =t (t4/3 + 3)

By the product rule:
1
NG
2Vt

4
(#72 +3) + 5t/
(t4/3 +3) + ét1/3t1/2
3

1 (t4/3+3) +ét5/6
3

u?+1

By the quotient rule:
C (u+4) (2u) — (v +1)

1 3
YRRl (£ +2)

(u+4)>
2u? 4+ 8u—u?—1

_ (ot +2) (v + 2) + 3t7

2V13 +2
10t* (3 + 2) + 3t7
2Vt3 42
107 + 20t* + 3¢7

2Vt +2
13t7 + 20t*

2V/t3 + 2
(b) f(t)= (£ +2) Vi

By the product rule:
1
"(t) =3tV + (£ +2) —=

6P+t 42 TR 42
N NG

8. (a) f(t)=(t"+2)Vt2+1

By the product rule:

fl(t) =432 +1

+ (14 +2) jt( 21)
By the chain rule:
() =4t3V/12 + 1
+ (t'+2) 1
V12 +1
t(t*+2)
t2+1
A3 (12 +1) + ¢ (t* 4 2)
B 241

=432 + 1+

(u+4)*

u? +8u—1

(u+4)°

ud

(w2 +4)°
By the quotient rule:

_ (4" (3u?)— (w) o (w2 +4)°

(W)

By the chain rule:
(@4 4)7 (3u?) — 2u® (u? + 4) (2u)

(u? +4)*

B (u2 + 4) [3u2 (u2 + 4) — 4u4]

(u? +4)*

B 3u? (u2 + 4) — 4yt

(u2 +4)°

3ut + 12u? — 4u?

(u? + 4)°

1202 —ut w? (12 —u?)

10. (a) f(z) =
By the quotient rule:

@t ()

2 -1
z? + 1

22 +1) (2z) — (22 — 1) (22)

f'(x) = (

_ (2z) (22 +1—2?+1)

(21)

(@ +17

(a? + 1)
4z

(a2 +1)*
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z? +4
b )= ——75
() 1) =
By the quotient rule:
25 (2z) — (2% +4) (62°
iy - 220 (2 0) (50
(z°)
227 — 627 — 242
212
—4z7 — 2425
212
42° (2 + 6)
o 212
4 (2% +6)
27

11. (a) g(x) = ﬁ

By the quotient rule:

VaTH1- (o) (VT 0)

g (x) =

By the chain rule:

(x2+1)

Ve H T (@) (572 ) (20)

) —
gl=)= @ +1)
2
_ Vel - o
@)
- 22 4+1 —2?
22 +1(224+1)
- 1
Va?+1(z2+1)
_ 1
(22 +1)%2
x
b = _—
(b) 4() = | 5

By the chain rule:

N 1 d x
g(:r)—2 r dr \z2+1

2+ 1
By the quotient rule:

J(x) = 1 ((m + 1) — z(2x)

(22 +1)°

_ 1 22 +1— 222
(22 +1)°

)

)
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By the product rule:

J'(z) =22V + 1+ (2°) d

< (T

By the chain rule:

1
"(z) = 2zvx + 14 (2?) ———
g’ (x) VT (z)Q\/m
2

T
=22V + 1+ ——
2v/x + 1

4z (z + 1) + 22
2vVx +1
B 42% 4+ 4z + 22
IENCES]

_ 5x2 + 4z
NG

(b) g(@) = /@2 +1) (VE+1)°

By the chain rule:

4 {(m2 +1) (VT + 1)3}

2/(@2 +1) (VE +1)°

By the product rule:

() = ) ) e (V)

g 2\/(x2+1)(\/§+1)3 ’
By the chain rule:

, 1

g'(z) = -

2\/(:1:2 +1)(Vxz+1)

+3 (22 +1) (Va + 1)22\1%)

g'(x) =

(2e(vE+1)°

13. (a) h(z) = 6(a> +4)" "/
By the chain rule:
, -1 2 -3/2
h(x) =6 x 5 (2% +4) (22)
B —6x
(z2 + 4)3/2

(b) hiz) = Y24

By the chain rule:

h'(m)—l #i
6 222 +4dx
1 1
(%
6 2\/x2+4( )
x
6vx2+4

(* +4)

14. (a) h(t) = (E+4)

By the chain rule:
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W (t) = g( S 4)4% (* +4)

9,3 400
=g (7 +4) (3t%)

= B
(b) h(t) =8(t* +4)°

By the chain rule:
W (t) = 8 x (—5) (£ + 4)‘6% (% + 4)
= —40( +4)"° (3t

— 1202 (£ +4)°

-2
15. (a) f(z) = (\/ 3+ 24+ 2;16)
By the chain rule:
@) 3
=-2(Vzd+2+2z) "L (Vad+2+2z)
-3 22
= —2(Vz?+2+22) (2\/3;? + 2)
_ —2 (312+4\/m3+2)
(Vaitz+22)’ 22542
3z +4(Vz3+2)
(\/r3+2+2m)3\/m3+2
(b) f(z)=Vad+2+222

By the chain rule:

f(@) = X ;
a3 —2
= (33:2—4:573)

Va3 + 24202
_ 32 —4x~3
2V +2 + 222

16. (a) f(z) = \/422 + (8 — 22)°

By the chain rule:
8z — 4x (8 — 22
fw) = Chk)

2\/422 + (8 — x2)?

8z — 32z + 43

2¢/4x? + (8 — 22)

—24z + 423

2y/422 + (8 — x2)?

223 — 12z

422 + (8 — 22)°

2
(b) f(z) = ( 42 + 8 — x2)
By the chain rule:

fl(z) =
2(\/4372—&—8—9:2)%( 4x2+8—x2)
=2 (Viz? +8—2? (\/ﬁﬁ—h)

17.

18.

19.

20.

21.

22,

23.
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/ 4x—2x\/41248
_ 2x—x\/4x2+8
=4 (V422 + 8 — 2?) (7\/m+ )

4x — 1 is a one-to-one function
—1 and f/(0) = 4. Therefore

I+

f(z) = 2° 4+ 42 — 2 is a one-to-one function
with f(0) = —2 and f’(0) = 4. Therefore
g(—2) =0 and

f(z) = 2° + 32° 4 2 is a one-to-one function
with f(1) =5 and f'(1) =5+ 9+ 1 = 15.
Therefore ¢g(5) = 1 and

J(5) = ==

f(z) = 2% 4+ 22 + 1 is a one-to-one function
with f(—1) = —2 and f’(—1) = 5. Therefore
g(—2) = —1 and

f(z) = Va3 +2x+4 is a one-to-one func-

tion and f(0) = 2 so ¢g(2) = 0. Meanwhile,

f(z) = m(?’fﬁ +2)
f(0) = 1/21
q'(2) =

T e2) o)

f(z) = Va® + 423 + 3z + 1 is a one-to-one
function and f(1) = 3 so g(3) = 1. Mean-
while,

5xt 4+ 1222 +3

f(x)zga/xf’i&bélx?’—i-Sx—&-l
f’(1):€:§

oy 13
9O = FuE) ~ ) 10

f(z) = ilx”x‘l + 2z 4/ 968?

Use Chain rule to find the derivative of the
function. We can also use Product rule.
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24.

25.

26.

27.

28.

32 +2¢/a3 + 4
Use Quotient rule to find the derivative of

the function. We can also use Chain rule
and Product rule.

4 /8t+5\°
1= \/t2+t3(2t—1)

Use product rule to find the derivative of the
function. We can also use chain rule and
Quotient rule.

4vt2 +1
t)=|3t+ ——
) = 36+ = —

Use Chain rule to find the derivative of the
function. We can also use Quotient rule.

f(z)=v22+16, a=3, f(3)=5

Fle) = — e (22) =
T= 2\/1234—16 :g_ Va2 £ 16
I =755

So, the tangent line is y = g(az —3)+5o0r
3 16

yzEx—l—g.

The equation of the tangent line is

3 3
y=-(x+2)+-.

8 4
29. s(t) =Vt +38
, 2t t
v(t) =¢§'(t) = W = Nz +8m/s
@)= 2=y
v = \/ﬁ = \/g = 3 m/s
30. s(t) = \/%
V2 +1(60) — 60tﬁ2t
v(t) = o m/s
60+/5 — % 125
v(2) = 3 =— m/s
31. 1'(z) = f'(9(x))g (x)
h'(1) = f'(g(1))g'(1) = f'(2) - (-2) = 6
32. I'(z) = f'(9(x))g'(z)
W(2) = f(9(2)g'(2) = f(3)-(4) = -12

33.

34.

35.

36.
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As a temporary device given any f, set
g(x) = f(—z). Then by the chain rule,

g'(x) = f'(=2)(-1) = = f'(-2).
In the even case (g = f) this reads f/'(—x) =
—f'(x) and shows f’ is odd.
In the odd case (9 = —f and therefore
g = —f"), this reads —f'(z) = —f'(—x) or
f(xz) = f'(—x) and shows f’ is even.
To say that f(z) is symmetric about the line
x = a is the same as saying that f(a + z) =
f(a—x). Taking derivatives (using the chain
rule), we have

L flata) = [ata)

2 fa—2) = f'la—a)(-1) = ~fa—2)

Thus, f'(a+x) = — f'(a—=z) and the graph of
f'(z) is symmetric through the point (a, 0).

(a) Chain rule gives,

(c) Chain rule gives,

LF@) =7 ()

(a) Chain rule gives,
d /
- (Va) = ' (V) o= (Vo)

=f (Vo)

(b) Chain rule gives,

d 1 d
r ( f(ﬂU)) = W@f@)
_f (@)

2/F (@)

(c) Chain rule gives,

L1 wr @)

= I (@) A (@)

and product rule gives
— £t (@) + o)
= f'(@f (@) (f(z) + 2 f'(2)) .

1
2z
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37. (a) Chain rule gives,

EORIORTC

(b) Chain rule gives,

Ci(f&0<j€y>¢i“@

(c) Chain rule gives,

i |/ (7).

_f(ﬂ>>$(ffﬂ

and quotient rule gives,
:f(a:> f @) —af (2)
f (@) @)
38. (a) Chain rule gives,

d‘i(uf( ) =F @) (@)
=f (= )(2x)—2xf(2)

(b) Chain rule gives,

Ly paP
= 2[4 f(@)] = (1 + f(2)
=21+ 7)) (@) = 2 () 1+ F )]

(c) Chain rule gives,
Lira+s@)
£+ F(@) 5 (L ()
Fr+ fla ))f(x)

f@) (L + f().

(NS

(a) Atz=0: ¢'(0
2 Flg ) =

—1g(0) = 1,
(9(0))g' (0)

(1)-¢'(0)=3x1=3
(b) Atx—l g’ (1) does not exist.

)
&
=/
)
So - (g (1)) do

es not exist.
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(c) Atz =3:
9'(3)=3,903) =1

L FeB) =1 B) g ®)
— f'(1) - ¢'(3) =3x3=9

20. Lot @) =g (f @) f @)

dz
(a) Atz=0:
1'(0) does not exist. So %g (f(0)) does
not exist.
(b) Atz=1:
(1) =5, 1(1) =
LI W) =g (F W) (1)
—g(0)- f(1)=1x3=3
(c) Atz =3:
f:i< ) =0, f(3) =3,
I @) =9(f3) 1 (3)
=g'(3)-f(3)=3x0=0

41. (a) f(x)=vz?2+4

By the chain rule:

f () = d

2vVx2 + 4 dx

2x

T o/ + 4
X

(x —|—4) By the

V2t 4
quotient rule:
T2 +4 i(\/37:2—&—4)

'@ = @

2 _ 2x
2+ 4 Wi
(x2+4)

(b) f(t)=2(t>+4)""""

By the chain rule:

ft)=2 ;W+®3”§W+®
-1
—2t

IGCEYE
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42. (a)

(b)

43. (a)

By the quotient rule:

1) =
L[ g 4)3/2]

(t2+4)°

(3]
[ +4)*% —32(2 + 4)1/21

(2 +4)°

(224 v o2+ 4)t?
(12 + 4)° ]

(2 +4)"% [<2 (2 + 4) + 612]

I (82 +4)°

[ 22 84 612

(244

4t — 8

INCEE

4(t* -2)
(2 +4)5/2

By the chain rule:
d

W) =2 (¢ +3) o (£ +3)

=2 (t° +3) (3t?) = 6t° 4 18¢°
R (t) = 30t* + 36t
g(s) =3(s*+1) -
By the chain rule:

-3d

g(s) =3(=2) (s> +1) 3@ (s +1)

— —6(s>+1) " (29)

—12s

(2 +1)°
By the product and chain rule:

g" (s) = % (—12s(s> +1)7°)

=-12 ((52 + 1) 62 (82 + 1)_4) 46.

=—12(s*+1)7* (s* + 1 - 657)
_12(1—-5s?)
(s2 + 1)*
f(z) = (2® — 327 + 2x)1/3
d (.3 2
- —3z° + 2
f/ (LL') _ dzx (:E -z f/)s
3(x3 — 322 + 22)
3z — 62 + 2
3(23 — 322 + 22)*/°
The derivetive of f does not exist at val-
ues of z for which

44.

45.

47.
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23 =32+ 22 =0
(2 —3x+2)=0
z(z—1)(x —2) = 0.
Thus, the derivative of f does not exist
for z = 0, 1, and 2. The derivative fails
to exist at these points because the tan-
gent lines at these points are vertical.
(b) f(z) =zt — 323+ 322 — z
d (.4 3 2
= (z* =32+ 3z° — 2
fl(l') _ dx ( )
2Vt — 323 + 322 —x
423 — 922 + 67 — 1
2Vt — 323 + 322 —
The derivative of f does not exist at val-

ues of x for which

2t =323 4322 —2=0
x(m3—3x2+3w—1) =0

z(z—1)° = 0.

Thus, the derivative of x does not exist
for x = 0 and 1. The derivative fails to

exist at these points because the tangent
lines at these points are vertical.

Multiply numerator and denominator by
g(z+h)—gx)

lim (f(g(th))* (g(x))) <g(r+h)*9(z))

h—0 h g(z+h)—g(x)

The above step is not well documented and
in this step we use the assumption that
g () # 0. Since ¢'(x) # 0 implies that
glx +h) —g(x) # 0 for h # 0.

flz) = (2 +3)* 22

Recognizing the “2z” as the derivative of
22 + 3, we guess g(z) = c(x? + 3)3 where
c is some constant.

g'(x) = 3c(z® + 3)? - 2z

which will be f(x) only if 3¢ =1, so ¢ = 1/3,
and

g(z) =

(22 + 3)3

—

A good initial guess is (z° + 4)%/3, then ad-
just the constant to get

o(z) = £a® + 4P

f@) = —=

e
Recognizing the “z” as half the derivative
of 22 4+ 1, and knowing that differentiation
throws the square root into the denomina-
tor, we guess g(z) = cva? + 1 where ¢ is

some constant and find that

J (@)= ——

2vx? +1 (22)
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will match f(.’L’) if e = 1, SO 2x[csc4(2m)]74z2 [Csc3(2:v)][f csc(2x) cot(22)](2)
[csct (2x)]?
71 2z 8z? [csc* (2z) cot (2x)]
gl) = Vil - osct (2z) [esct (22))°
48. A good initial guess is (22+1)7!, then adjust _ 2 82 cot (2x)
the constant to get csct (2x) csct (22)
. 2z + 8a? cot (2x)
g(x) = 7§(x2 + 1)~ csct (2x)

f(t) = sin3tsec 3t = tan 3t
=2 an = sec?
2.6 Derivatives of () = g ltan (3¢)] (3t) (3)

. . . = 3sec? (3t
Trigonometric Functions (3)

10. f(t) = Vcosbtsec5t

1. f(z)=4sin3z —x
' (x) =4(cos3z) (3) — 1 cos5it .
=12cos3x — 1 (cos 5t)
2. f(x) =42 — 3tan2z f/(t)zﬁ() 0
f'(z) =4 (2z) — 3sec?(22) (2) 1
= 8z — 6sec?(2z) 1. f(w) = sin 4w
) ~1
3. f(t) = tan®2t — csc43t frw) = W cos 4w (4)
f'(t) = 3tan? (2t) sec? (2t) (2) A cos dw
— 4esc® (3t) [~ csc (3t) cot (3t)] (3) T sindw
= 6tan? (2t) sec? (2t) 12. f(w) = w?sec?3w
+ 12csc* (3t) cot (3t) f (w) = w? (2sec 3w) (sec 3w tan 3w) (3)
2 (3w) (2w)
4. f(t) =t* + 2cos?4t i S(ZC (2 )
f'(t) = 2t + 4 cos (4t) [~ sin (4t)] (4) = 6w“sec”3z tan 3w + 2w sec” 3w

= 2¢ — 16 sin (4¢) cos (4t) 13. f(x) = 2sin (2z) cos (22)
I’ (z) = 2 {sin (2z) [ sin (22)] (2)
+ cos (2z) [cos (22)] (2)}
= —4sin? (2z) + 4cos? (2z)
= 4cos? (2z) — 4sin” (2x)

5. f(z) = x cosbx?
f'(x) = (1) cos 5z? + z(— sin 5z?) - 10z

= cos 5z® — 1022 sin 522

6. f(2) = 2%secdx = )
f' (z) = 2? (sec 4x tan 4x) 4 + (sec 4z) 2z 14. f(x) = 4sin” (3x) + 4cos” (3x)
in2 . —
= 4a2” (sec 4x tan 4x) + 2z sec (4x) = 4d[sm (3z) + cos? (3z)] = 4
. fia)=—(4)=0
sin(z? dx
7. 1) = f() ;
22 cos(2?) - 2o — sin(a?) - 22 15. f(z) =tanva® +1
fa) = | F(z) = (sec® V22 + 1)
2 2Y i (2 1 _
_ 2zlx Cos(xz sin(x?)] ‘ <) (@2 +1) 1/2(2:6)
T 2
2[x? cos(z?) — sin(z?)] x 2 /3
- msec x
x? 16. f(z) = 42?sin x sec 3z
8. f(x) = csct (2z) f!(x) = 8z sinz sec 3z + 4x*[cos x sec 3z

fi(x) = + sin x sec 3z tan 3z(3)]
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17. f(x) = sin® (cos m)
f(z)= 3sin? (cos \/m)
- oS (cos m)
(- sin Va1 222)
: %(ms +202) % (322 + 4a)
= g (3% +4dx) (2° + 227)
+cos (cos /o + 222)
- (= sin Vi £ 202)
18. f(z) = tan® [sin® (2° + 22)]
f(z) = 4 [tan® (sin® (2 + 2z))]
. [sec2 (sim2 (m?’ + 235))]
. [2 sin (z?’ + 21)]
. [cos (mg + Zx)] . (3332 + 2)

~1/2

19. (a) f(z) =sina?
f' (z) = cos (2?) - (2z) = 2z cos (z?)

(b) f(z )—blna:

f'(x) =2sinzcosz

(c) f(x)=sin2x
I (z) = cos 2z (2) = 2cos 2z

20. (a) f(z) =cosyx .
J' (@) = (=sinva) .S(2) 7
(z) Y% sin vz
(b) f(z)= 1cos:c
() = §(cos 2)"Y2 (—sinz)

1 _
=-3 sin z(cos x) 1/2

() f(z) = cos (;x>
(@) = —sin (?) . (;)
— Lsin <;m>

21. (a) f(x) =sinz’tanz
f' (z) = sinz® (sec®z) + 2z cosz® tanx

(b) f(x) = sin? (tanz)

f' (z) = 2sin (tan ) - cos (tan z) - sec’x

(c) f(z)=sin (tan’z)

22.

23.

24.

25.

26.

27.

28.
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f'(z) = [cos (tan’z)] (2tan ) (sec’x)
= (2tanz) (sec’z) [cos (tan’z)]
(a) f(x) = secx?tanz?
[ (z) = sec® (2?) (22)
+ tan® (z%) sec (2?) (22)
= 2z sec z? [se(32 z? + tan? :cz]
c? (tan )

2 sec (tan x) [sec (tan x)

.tan (tan z)] (sec’z)

(b) f(x)
f' (@)

(e f ()

/

sec (tan’z)
[Sec (taan) tan (tangw)]
- (2tanz) (sec’z)

= (2 tan a:sech)

. [sec (tanzx) tan (tanQ:c)]

f (g) = sing =1
f’(x7)r = 4cos 4m7r

I (g) = 40085 =0

So, the equatlon of the tangent line is

f(0)=0

f'(x) = 3sec?3z,

f(0)=3

So, the equation of tangent line is y = 3z

7(3)=(5) == (3) =0
f'(z) = 2% (- sinx) + cos z (2z)

= —2? (sinz) + (2) cos

T 2 2

f(5) =Ty 2 gesgy=—"7
So, the equation of the tangent line is
2

_ LT
y=773 2)

™ 0
1(3)=3 _
f'(z) =sinx + xzcosz, so f (5) =1.
So, the equation of the tangent line is y = .

s(t) = t* —sin(2t), to =0

v(t) = §'(t) = 2t — 2 cos(2t)

v(0) =0—2cos(0) =0—2=—-2ft/s
s(t) =4+ 3sint, to =7

v(t) = s'(t) = 3cost

v(m) = =3 ft/s
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30.

31.

32.

33.

34.

35.

()=
U(']‘[‘) _ _Cj{iﬂ' _
_ 1 L= % ft/s

™ o7

= cost + 1(—sint)

sin

™

s(t) =tcos(t? +7), to =0
v(t) = §'(t) = cos(t? + 7)) — 2% sin(t? + 7)
v(0) =cosm — 0= —1 ft/s.

(a) f(t) = 4sin3t. The velocity at time ¢ is
f(t) = 12 cos 3t.

(b) The maximum speed is 12.

(c¢) The maximum speed of 12 occurs when
the vertical position is zero.

(a) The velocity is f’(t) = 12 cos 3t which is
0 when 3t = k—” ort= k—” for any odd
integer k.

(b) The location of the spring at these times

is given (for any odd integer k) by

f (k%) = 4sin(3kE) = 4sin (k) =

+4.

The spring changes directions at the top

and bottom.

(c)

sin 3z . 3sindx
(a) lim = lim
x—0 x x—0 3x
— 3. lim sin(3x)
z—0 (3x)
=3-1=3
. sint 1., sint 1 1
(b) fim - =i = =1 173
-1 -1
(¢) lim S TT  Cim BE T
z—0 15%4 5z—0 x

Let w = 2%: then ©v — 0 as z — 0, and
2

(d)

. sinz sinu
lim = lim =1
z—0 X u—0 U
2t . 2
(a) lim — = lim — =2
t—0 sint t—0 %
(b) Let w = x? : then u — 0 as x — 0, and
cosz? — 1 cosu — 1
lim ———=1lim — =0
x—0 x2 u—0 u
sin 6 Gsin 6z 6

(c) lim — = lim 22— —
z—0sindbxr z—0 % 5

in2x
tan 2z e
(d) lim = lim 2z
x—0 T x—0 x
2sin2x 1
= l1m == 2
z—0 2x cos2x

f (x) = sin (2z) = 2" sin (22)
f' (z) = 2cos 2z = 2! cos (2z)

36.

37.

38.
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"(z) = —4sin 2z = —2?sin (2z)
" () = —8cos 2z = —23 cos (2z)
@ (z) = 16sin 2z = 2*sin (22)

509 @) = (57) " @)

_ ( f(18-4))(3) (x)

— 272f/// (:E)
= 2" [-2° cos (2z)]

= —2" cos (2z)

£(150) (x) = (f(148))(2) ()

= (1479)" @)

— 2148f/l (il?)

= 2"18 [—225in (22)]
= —2'0gin (22)

f (x) = cos (3z) = 3° cos (3x)

f' (z) = —3sin3z = —3" sin (3z)
" (z) = —9cos 3z = —3%cos (3z)
" (x) = 27sin 3z = 3% sin (32)
@ (x) = 81 cos 3z = 3* cos (3x)

£ @) = (17) " (@)

- (f(19-4))(1) ()
=37f" ()

=37 [—3sin (3z)]
= —3""sin (3z)

F(120) (z) = <f(1zo)) (x)
= (r60) (@)

= 3120 cos (32)

Since, 0 < sinf < 0, we have
—f0 < —sinf < 0 which implies
—6 <sin(—0) <0,

so for _r <f#<0

we have 0 < sinf < 0.
‘We also know that

lim 6 =0= lim O,
6—0— 6—0—
so the Squeeze Theorem implies that

lim sinf = 0.
6—0—

Since cos?f + sin®f = 1, we have

cosf = /1 — sin?0. Then

lim cos® = lim v/1 — sin?0 = +1.

6—0 6—0

Since cos 6 is a continuous function and

cos 0 = 1, we conclude that gin’%} cosf =1
—
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39. If f(z) = cos(z), then

40.

41.

42.

43.

44.

45.

d

fle+h) - fz)

h
cos(x + h) — cos(x)
h
cosxcosh —sinxsinh — cosx
h
(cosx) (cosh—1) Z - _ (sinz) Slz L

Taking the limit according to lemma 6.1

f(x) = lim

flz+h) - f(z)
h—0 h

cosh—1
= . lim
(COS Z‘) hl b h

sin h

- ena)- iy %

=cosx-0—sinx-1=—sinx

%cotz = % (Cosac)

sinx
sinz(—sinx) — cos x cos ©
sin’x
1
=— = —csc’n

sin’z

isec:v—i 1
dx " dx \cosz

cosx -0 — 1(—sinx)
2

cos?x
sinx 1
= = secztanx.
cosx \ CosSx
d 1 sinx-0—1cosx
—cscr = — | — = —
dr \sinz sin“x
1 CcosS T
= —— - = —cscxcotx.
sinz \sinz

Answers depend on CAS.
Answers depend on CAS.
Answers depend on CAS.
Answers depend on CAS.

(a) If © # 0, then f is continuous by The-

orem 4.2 in Section 1.4, and f is differ-
entiable by the Quotient rule ( Theorem
4.2 in Section 2.4) Thus, we only need to
check x = 0. To see that f is continuous
at x = 0.

sinx
=1

2y () =

(By Lemma 6.3)

Since lirr%) f(x) = f(0), f is continuous
z—

at x = 0.

CHAPTER 2. DIFFERENTIATION

To see that f is differentiable at x = 0.

/ T f(x)_f(a)
flo=tn =
SN (O (V)
FO=lm ===
, e sigac -1
o=

In the proof of Lemma 6.3, equation 6.8
was derived:

sin x
1> > CcoS .
x .
sinx
Thus, 0 > —1>cosz—1 and
T
therefore if x > 0,
sine 1 cosz—1
0> —=%
oz x
and if x < 0,
sinz 1 eosz—1
0< =
x x
cosx — 1
By lemma 6.4, lim —— = 1.
x—0 x€X

By applyings squeeze theorem to previ-
ous two inequalities, we obtain
sinz _

1
lim +—— =1so, f'(0) =0.

x—0 x€X

(b) From part(a) and quotient rule we have,

/ _ O xZO
f (ZL‘) - {mcosx;sinfc 1'750

x

Thus to show that f’(x) is continous,
we need only to show that

lim f () = /' (0) = 0.

rcosxr —sinx

lim f' (z) = lim

x—0 x—0 x€X
. x (cos r— S8L )
= lim 5
x—0 X
. (cos r — SBL )
= lim =0
x—0 x€X

. .8
Since, lim
z—0

46. We use the assumption that z is in radians
in Lemma 6.3. The derivative of sinz =

sin(——z) is —— cos(z ). The factor of
- 180 180
IT80° comes from applying the chain rule.

47. The Sketch: y =z and y = sinzx
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48.

It is not possible visually to either detect or
rule out intersections near = 0 (other than
zero itself).

We have that f'(z) = cosz, which is less
than1for0 < z < 1. Ifsinz > x for some
x in the interval (0, 1), then there would be
a point on the graph of y = sinx which lies
above the line y = z, but then (since sinz is
continuous) the slope of the tangent line of
sin « would have to be greater than 1 or equal
to at some point in that interval, contradict-
ing f/(x) < 1. Since sinz < z for 0 < z < 1,
we have for —sinz > —z for 0 < z < 1.
Then —sinz = sin(—x) so sin(—z) > —z
for 0 < z < 1, which is the same as saying
sinx > x for —1 <z < 0.

Since —1 < sinz < 1, the only interval on
which y = sinz might intersect y = z is [-1,
1]. We know they intersect at z = 0 and we
just showed that they do not intersect on the
intervals (-1, 0) and (0, 1). So the only other
points they might intersect are x = £1, but
we know that sin(41) # £1, so these graphs
intersect only at x = 0.

0 < k£ < 1 produces one intersection. For
1 < k < 7.8 (roughly) there are exactly
three intersections. For k& = 7.8 there are
5 intersections. For k > 7.8 there are 7 or
more intersections.

2.7 Derivatives of
Exponential and Logarithmic
Functions

1.

2.

f(z) = 32%.e* +2%.e” = 22" (z + 3)

f'(x) = 2e** cosdx + e*®(—sin4x)4

3.

10.

11.

12.

13.

14.

15.
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ft)y=t+2*
f/(t) =1+2"1og2
f(t) =4
f(t) = 43 443" (In4) 3 = 43 (1 + 3t1In4)
F(z) = 2e47+1(4) = geto+l
flx)=e", so f'(x) = —e 7.
) = ()" 2
h (z)= ln(%) -2 - (%)x
—2z-In(L)- (1)
= —2z-n(3) - (3)"
h(z) =4~
W(z) =47% In(4) - (—2z)
=—2z-47" -In(4)

f) = e

f’(u) _ eu2+4u . %(uQ + 4u>

+4
= (2u +4)

f(l‘) — 3etanm
f'(z) = e~ . di(tan x)

x
= 3e' Tgec?y
flu) = <
f/(w) _ w - 4€4ww2 €4w 1
et (dw—1)
= —
J(w) = %5
, 1-e% —w-efv.6
) =
e —6we® (1 —6w)
(€5w>2 ebw
)= L ()= L
fla) = 5 2) = 1
f(z) = %ln8—|— %lnx
f(x) = %
f(t) = In(t> + 3t)
f(t) = Bt (3t +3)

C3t2+3 3(1P+1)
343t t(t2+3)
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16.

17.

18.

19.

20.

21.

22.

F(t) =3 In(t)
f(t) =32 - In (t) + 3

= 3t2In (t) + 2

g(z) = In(cos x)

IO
g(x) = cos T

g(x) = coszIn(z? + 1)

g (z) =In(z> +1) - (—sinz) +

_ 2rcosx
a2 41

(a) f(z) = sin(lnx?)
f'(x) = cos(Inz?)

_ 2cos(Inz

(b) g(t) = In(sin t?)

g'(t) =

sin ¢2
cost? - 2t

sin t2

(—sinz) = —tanzx

—sinz - In(x? + 1)

2x

2

?)

-cost? - 2t

= 2t cot(t?)

(a) h(zr) =¢€" lnx

W(z)=e¢"-— + Inxz-e®
T

(b) f(z) =e™" ,
f/(l‘) — elnx . ;

(a) h(z) = 2%
B (z) = 2° -e”-

(b) f() = 5

In 2

23.

24.

25.

26.

27.

28.

29.

CHAPTER 2. DIFFERENTIATION

_2%.e®—¢%-2%1In 2
- (2)°
e*(1—1n2)
=—
(a) f(z) =In(sinx)
f'@) = sulmc

f'(z)

-cosx = cotx

(b) f(t) =In(sect+ tant)
secttant + sec?t

/ _ _
f (t) o sect +tant = sect
(a) f(z) = Ve2r. a3
1 _2
f/(.T) _ g (62x . J,‘S) 3 (3.132621 T 2$3€2I)
2?2 e2 . (34 27)

3(e2 - 43)5
(b) f(w) = \{m
fl(w) = (" +w?) * - (2e* + 3w?)

3
f(z) = 3e™
F(1) =3¢ =3¢
F(x) = 3¢" 22

F(1) =3e"2(1) = 6e
So, the equation of the tangent line is,
y = 6e(z — 1)+ 3e.
fa)=3"
f(1)y=3" =3
f'(z) =3 In3-exl® Y
f(1)=3In3-e
So, the equation of the tangent line is,
y=3In3-e(xz—1)+3.
f1)y=0 X
f'(x)=2zInz+2> = =2zlna+z
x
ff)=2-1ln1+1=2-04+1=1
So the equation of tangent line is
y=1l(x—1)+0ory=2a—1.
f(z) =2In a3
2 6
/ _ 2 _
f(x) = -3 8=
Slope = f'(z) at z = 1.
6
Slope m = 1= 6.
Equation of the line passing through (z1,y1)
with slope m is y — y1 = m(z — x1).
Atz =1y, = f(1)=2.In13 = 0.
Therefore equation is y —0 =6 (v — 1) or
y = 6x — 6.
(a) f(x)=ze
Given that, the tangent line to f(x)
is horizontal. Therefore slope is zero.
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30.

31.

32.

33.

34.

Hence,
fl(x)=e2" =227 =0
e (1 —2z) =0
1
Ty

(b) fla)=a -
Given that, the tangent line to f(x)
is horizontal. Therefore slope is zero.

Hence,
fl(@) =2 (=3e3) +e3 =0.
= e (=3r+1)=0
=3z-1=0
1
== 3

(8) f(x) = a7 e
Given that, the tangent line to f(z)
is horizontal. Therefore slope is zero.

Hence,

f’(x)—:v (—2e72) 42z -7 =0
=-z+1=0

=zr=1

(b) f(z) = a?-e
Given that, the tangent line to f(x)
is horizontal. Therefore slope is zero.
Hence,
fl(x) =2 (=3e™") +2x-e37 =0
= -3x+2=0
=z=-.

73

v’ (t) = 100.3"In3

v’ () 100.3'In3

v(t)  100.3

So, the percentage change is about 110%

=In3~1.10

v’ (t) = 1004" (In4)
!
YY) In4~1.3863

The instantaneous percentage rate of change
is 138.6%

v (t) = 404
v’ (t) = 40e% (0.4) = 162
v (t) 1694

=2 4
v(t)  40e04 0

The instantaneous percentage rate of change
is 40%.

v (t) = 60e 02
v (t) = 60e” "% (-0.2) =
v

/(t) . 12¢—0-2t B
v = —goeoz = —0.2

The instantaneous percentage rate of change
is —20%.

—12¢702¢

35. p(

36.

37.

38.

39.

40.

41.

t) = 200.3"

In(p )) In (200) + ¢1n (3)

2l — 4 In(p(t))] = In3 ~ 1.099,

so the rate of change of population is about
110% per unit of time.

H = |

The population after ¢ days will be p(t) =

500.2"/%. The rate of change is p'(t) =

500.2/4 (In2) (1/4). So the relative rate of
2

change is HT ~ 0.1733. Therefore the per-

centage rate of change is about 17.3%.

6 -1

C(t) = 26—815 + ]_ = 6(26_8t + 1)

¢ (t) = —6(2e7 +1) " (~16e7™)
_ 96e 8
C(2e8t +1)?

Since e~ > 0 for any ¢ both numerator and
denominator are positive,so that ¢’ (t) > 0.
Then, since c¢(t) is an increasing function
with a limiting value of 6 (as ¢t goes to infin-
ity) the concentration never exceeds (indeed,
never reaches) the value of 6.

¢ () = —10(9e 1% +2) % (=906~ 1%)
90010t
(9e 100 1 92
Since e % > 0 for all ¢, ¢/ (t) > 0 for all ¢,

and c(t) is increasing for all ¢t. This forces,
c(t) < ltlim c(t)y=5
—00

f (.17) _ xsinz
In f(z) =sinz.Inz
J;((;C)) = (sinz.lnx)

sinx

=cosz.lnx +

oy =

x
xcosm.lnx—f—sinm)

((E) _ :L,4—ac2
1}1]2(.)23 =(4-2°)Inz

!/ T 9 l
f(x)——Zmlna:—&—(él—x)x 1
' (z) = 24— (—2£U Inz+ (4 - 2?) :1:)
f(z) = (sinz)”
h}/f((g)c) = gccl In (sin )

@) = (z.1n (sinx))

= x;zs;v + In (sinx)

=z cotz + In (sinz)
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42,

43.

44.

45.

1 (z) = (sinz)”. (zcot x + In (sinx))

fla)= sz)‘“”

Inf(z)=8xInz

f(z) 1
Flo) ~Ometsey

(@) = (%)™ 8Inz +8)
(l‘) :xlnr

Inf(z) =Inz.lnz = In’x

f'(@) d 2 2Inx
Tla) ()=

(@) = 2 |:211’11':| _ 9 lmo)—1nz

x

f(x) Zxﬁ

Inf(z)=+vzhnz

fx) 1

Fla) o et

Let (a,lna) be the point of intersection of
the tangent line and the graph of y = f(x).

flx) = hiac
f’(x):;
1

m=f"(a) = -

a
Since the tangent line passes through the ori-
gin,the equation of the tangent line is

Yy =mx = —2x.
a

Since (a,1lna) is a point on the tangent line
Ina=-a=1s0,a=ce.

Secondapart: Let (a, e*) be the point of in-
tersection of the tangent line and the graph
ofy = f(x).

fla)=e

F @) = e

m = f'(a) =e”

Since the tangent passes through the origin,
the equation of the tangent line is

so, a = 1. The slope of the tangent line in
y = Ilnx is 1/e while the slope of the tangent
line in y = e” is e.

CHAPTER 2. DIFFERENTIATION

h
46. We approximate lim a1 for a = 3.
- h—iO

a —

h h
0.01 1.10466919
0.001 1.09921598
0.0001 | 1.09867264
0.00001 | 1.09861832
-0.01 1.09259958
-0.001 | 1.09800903
-0.0001 | 1.09855194

The limit seems to be approaching approxi-
mately 1.0986, which is very close to In3 ~
1.09861

h
-1
Second part: We approximate lim a4
1 h—0
fora = —-.
3
a' —1
h
h
0.01 -1.09259958
0.001 -1.09800904
0.0001 -1.09855194
0.00001 | -1.09860625
—0.01 —1.10466919
—0.001 | —1.09921598
—0.0001 | —1.09867264

The limit seems to be approaching approx-
imately, —1.0986, which is very close to

lné ~ 1.09861228867

47. Answers depend on CAS.

48. Answers depend on CAS.

a+ bx
49. f(a:)=1+cx
0)=a
;o b(l4cx)—(at+br)e  b—ac
fi=)= (1+ cx)? (14 ca)
7 (0)=b—ac
" —2¢ (b — ac)
o) = (1+cx)®
1];” (0) = —2¢ (b — ac)
ow,
f(0)=1=a=1.
ff0=1=b-—a=1=b—c=1
f7(0)=1= —2c(b—ac)=1
=2c(b—c)=-1
= 2c=—1
1
=c=—
So,azl,b:1+c:1,c:—land

2 2



2+
x) = .
x
The graphs of ¥ and 5 + are as follows:
—x

20—
1s:
12:
o]
]

= TP T L L L L

-0 -8 -6 -4 -2 T 8 10
o]

y
—12+
1]
0]
(x) = €e*, then
g (x) =¢€" and ¢g" (z) = €” s0
/

f(0) =
"(x) = 2¢
(0) =2¢

In summary,a = 1, b = 1, ¢ = 3 and

1
gx) = 1+xz+ 5:1:2. The graphs of the
1
functions e”,1 + x + 53:2 and the Pade ap-

T
are as

proximation of e”, which is

follows:

T T T [ T T T 1]
5

52.

53.

54.

55.
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@)= e/ (~22/2)
= —ge /2

" (z) = — [m (_xe—.»ﬁ/z ) + 1.6_9”2/2}
= pe=2"/2 (1’2 — 1)

This will be zero only when x = +1

J@)=e /P (@) = (~a/4)e "/

and

(@) = (=1/4) ™5 + (/16 ) e /8
=e " /8 ((—1/4) +22/16).

This is zero when « = £+2. The graph is flat-

ter in the middle, but the tails are thicker.

It helps immensely to leave the name f as
it was in #51 and give a new name g to the
new function here, so that

g(x) = e @ m 2" = fy)

in which v = m. Then

g'(:c):f'(u)d—u _ fl(u) _ _uf(u)
— (& —m)

dx c c
67(:1(:7771)2/202

c2

_d <f'(u)> )

dw c c
) (@ =1) f(w)
2 c2

<(x —m)® — 02) e~ (@—m)?/2¢?
= 4
This will be zero only when, x = m + c.

f (x) _ e—(ac—m)2/202

Vi (z) = — (@ 2— m)e—(x—m)2/202’
and this is equal to zero when = = m.
f(t)=e"cost
v(t)=f (t) = —e 'cost+e " (—sint)

= —e ' (cost + sint)

If the velocity is zero, it is because
cost = —sint, so
o Sm Tm (B3+4n)7

- ) 4 ) 9 4 )
Position when velocity is zero:
f(3m/4)=e 3" cos (3m/4)

= e/ (“1/v2 ) & —.067020
f(Tr/4) = e /% cos (Tr/4)

= T (<1/v2 ) ~ 002896
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56.

57.

58.

59.

Graph of the velocity function:

AAAAAAAAAAAAAAAAAAAAAAAA

[/ (t) = —2e~ 2t sin 3t + 3e 2! cos 3t
= e 2" (—2sin 3t + 3 cos 3t)

The velocity of the spring is zero when
it is changing direction at the top and
bottom of the motion.This occurs when
3cos3t =2sin3t or tan3t = 3/2, The

1
ie., att= gtan_l (3/2) =~ 0.3276
position of the spring at this time is ap-
proximate.
Graphically the maximum velocity seems to

occur at,t =m .

Graphically,the maximum velocity seems to
occur at t = 0; the maximum velocity is not
reached on t > 0.

Consider f (z) Az”

i = orian
f(@)= W
Inf(z)=InA—1In {(0)71 + 1]
On diffrentiating with rggspect to x
' @) = g (D" ()

0\

for Ajn,0 >0

CHAPTER 2. DIFFERENTIATION
f (z) > 0if and only if z > 0 (A,n,0 > 0)

Also, lim f(x) = lim {A} =A
x—0

20 | (£)"+1
o (_f@)a
v=l (1—f(x)/A)
=1In 1_(2)1”4;1

=-n(nf —Inzx)
=-nlnf+nlnz

=nv—nlnb
Therefore, u is a linear function of v.

Graph of (z, y) in below:

o

L1

[o] T

=0

T T L B R B R |
4 5 6
X

T T
2 3

From the graph, we can see that y = f(x) —
100 as x — oo.

The table gives (u, v) values as follows:

g

x|y u-lnlooiy v=Ilnx
1] 2 -3.8918 0
2|13 -1.9009 0.6931
3|32 -.75377 1.098
4 | 52 .80012 1.3863
5| 67 70818 1.6094
6 |77 1.2083 1.7918
7| 84 1.6582 1.9459
8 | 88 1.9924 2.0794
9191 2.3136 2.1972

The graph of (u, v) points are as below
which are almost linear.
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60.

Comparing the line passing through the
points (u, v) with v = %u—!—ln@, we get % =
0.3679, Inf = 1.3458 and hence n = 2.7174,
0 = 3.8413.

Answers very depending on source.Linear
growth corrseponds to constant slope. In
other words the population changes by the
same fixed amount per year. In exponen-
tial growth, the size of the change depends
on the sizeof the population. The percent-
age change is the same though from year to
year.

2.8 Implicit Differentiation
and Inverse Trignometric
Fuction

1.

Explicitly:
4y* =8 —2°

V8 — 22
y= i% (choose plus tofit(2,1))

V8 —x2

Fory = ——,

1 (—2z) = —=x
22\/337952 2v8 — 22’

y'(2) = 9

Implicitly:

!

Y

. Explicitly:

4V

[

y= D)

T dx

(2% — 2?) % — 4y/z (32? — 22)

73— x2)2
Implicitly differentiating:

y:

2
3x2y—|—x3y’ _ ﬁ _ 2xy+a:2y',
And we solve for 3 to get
o 2xy+%—3952y

- 23 _ 32
Substitute £ = 2 into the first expression,

and (z, y) = (2, \/5), into the second to

get y' = _TV2
4
. Explicitly:
y(1 — 32%) = cosx
_ cosw
s
() = (1 —3a*)(—sinx) —2cos x(—6x)
(1 —3x?)
_ —sinz + 32?sinz + 6z cos x
(1 — 322)*
y'(0) = 0.
Implicitly:
%(y — 32%y) = %(cos x)

y' — 32y — 6xy = —sinz
y' (1 —32%) = 62y —sinx
, by —sinx
 1-3a?
At (0,1) : ¥/ = O(again)

. Explicitly:

y=—-c+tvVr2-4
At the point (—2,2), the sign is irrelevant,
so we choose
y=—-c+Varz-4

SRS TR
Y N Va? 1
Implicitly differentiating:
Y +2y+ 22y =0,
and we solve for v’ :

o —2y

C 2r+2y

Substitute z = —2 in the first expression and
(z,y) = (—2,2) in to the second expression
to see that ¢’ is undefined. There is a vertical
tangent at this point.

d 2,2 d
— +3y)=—4
(z7y” + 3y) lx( z)

a1y + 222yy’ + 3y =4

Y (22%y +3) = 4 — 229°
, 4 —2xy?

4= 272y + 3

6. 3y° + 32(3y%)y — 4 = 20yy’
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10.

11.

12.

(92 — 20y)y = 4 — 3y
;. 3y3 —4

v= 20y — 9xy?

(V- 4?) = 12)

1 d
R —8y-y =0
NG 7 (y) =8y y
1

(zy —8y-y =0
N (xy" +y) — 8y -y
(zy' +y) — 16y -y 2y =0
Y (x — 16y/Ty) = —y

—y

o _ Yy
v= (x — 16y /Ty) 16y /Ty —

. cos(zy)(y + xy’) = 2z

,  2x —ycos(zy)

x cos(xy)

x4+ 3=day+y°
d
1= ——(dzy +y°) = 4(zy +y) + 3y°y

dx
1 — 4y = (4o + 392y’
.
3y? + dx
4y
3 P 2 = 1027
x +y o x

Diffrentiating with respect to x,

d 4y d
— (32 +¢y* - —= ) = — (1027
dm<x+y x+2) dx( +)
By the Chain rule and Product rule,
3+3 2.1
v (z+2)
3(z +2)” + 3y%y/ (z + 2)°
—4y (z +2) + 4y = 20z(x + 2)°
3%y (z +2)° — 4y (z +2)

= 20x(x+2)° —3(z +2)* — 4y
Y (x+2) [3y% (z +2) — 4]

= (z+2)° (202 — 3) — 4y

, (2 +2)° (202 - 3) — 4y

(2 +2)[3y2 (v +2) — 4]

d, 2 d
eV — W) =
dz (ed e’ dz ()
(V) — ey =1
eIQy(Qxy +ay) —e¥y =1
y (226" — V) =1 — 2aye” Y

, 1-— Qxyef”z

vy = (x2er®y — e¥)

eV + xe¥y’ — 3y sinx — 3ycosx =0
,  3ycosx —e¥

xe¥ — 3sinx

2) 4y’ — 4
(z+2)4y y] _ 20z

13.

14.

15.

16.
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yzx/m +y— 422 = Y
Diffrentiating with respect to z,
d d

Ir (y2vx+y - 4902) = I (y)

By the Chain rule and Product rule,

T V) — 4 @) = 1)
# ()]

+2yy'Vr+y—8x =y

v* + 9%y + 4y (z +y) — 162zt y
=2y'Vrty

vy 4y (e +y) - 20/ Ve +y

=16z/z +y — y°
v [v* +4y(z +y) — 2Vz + 9]
= 1627 + y — o>

, 162/ +y — y?

YT iyt - 2/ry
zcos(z+y)—y? =8
Diffrentiating with respect to z,
d d
o (xcos(x—i—y) - y2) == (8)
By the Chain rule and Product rule,

2 (weos (@ +9)) ~ - (57) = = (8

cos(z+y)—zsin(z+y) (1 +y')—2yy’ =0
cos(x +y) —wsin(z +y) —zsin(z +y)y
—2yy’ =0
y' (—zsin (2 +y) - 2y)
=zsin(z+y) —cos(z+y)
, _wsin(x+y) —cos(z +y)
- —zsin(z+y) -2y
,  cos(x+y)—wsin(z+y)
B zsin (z 4+ y) + 2y

e —In (yQ + 3) =2z
Diffrentiating with respect to z,

L +3) = & o

By the Chain rule and Product rule,
d d d
2yy
4y AN _
e™ (4y') 713 2
4e™ (y* +3) y' —2yy' =2 (y* + 3)
y (4e4y (y* +3) —2y) =2 (y* +3)
,__ 2(+3)
e (y2 +3) — 2y

emzy—3\/y2—|—2:x2—|—1

Diffrentiating with respect to =z,

Y
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17.

18.

d d
e (e$2y —-3vVy?+ 2) = (z® +1)
By the Chain rule and Produt rule,

5 (70) i (V) -

e* (2x)y + ey — 3 2y =2z
2/y? +2
3 /
2aye” + ey — L
Y2 +2

2ye” VY2 + 2+ " y'\/y2 + 2 — 3y’
= 2x\/y? +2

y (e‘”2\/y2 +2— By) = 2z/y? + 2
—2xyex2\/y2 +2

2z4/y2 + 2 (1 —ye$2)
r_

y =
ey +2 -3y

Rewrite: 2% = 433
Differentiate by z : 2z = 12y%y’
2z

122
At (2,1):y =52 =3
The equation of the tangent line is

1 1
y—lzg(x—Q)ory:§(x+l).

O0F—T—T T T T T T T T T T T T T T T T T T
(o] 1 2 3 4

4 — 2xy?

222y
y' at (1,2) is —1, and the equation of the
lineisy = —1(x — 1) + 2.

22y% + 222y = 4,50y =

19.

20.

2?y? =3y +1
Diffrentiating with respect to z,

d 20y _ 4
dx(zy)idm(Serl)

By using the Product Rule we have,
2x1? 4 2yy'z? = 3y
o 2$y2
3 —2ya?
, 4
The equation of the tangent line is given by
4
—1l=——(z—-2).
y p@—2)

3.0

23y? = =22y — 3

Diffrentiating with respect to z,
d , 5 5 d

— =—(—2zy—3

dx (xy ) dx (—2zy )

By using Product Rule,

322y 4+ 2yy'a® = —2y — 2/

y' (22%y + 22) = —2y — 32%y?
;o 2yt 32y

223y + 22
Substituting * = —1 and y = —3,

2(—3) +3(—1)*(—3)*

V) = P Sy 2 )
6427 21
6-2 4

The equation of the tangent line is

(v +3) =2 (@+1).
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21.

22,

49 = 4a% — 2*
8yy' = 8x — 4z
,_33(2—.73)

2y

The slope of the tangent line at (1, ?) is

S 12-1) 1 V3

2.(48) V3 37

The equation of the tangent line is

V33
)

3
y:: —|—

2

zt — 82?2 = -8y
423 — 162 = —16yy’
, —(42® —16x)  4x(4—2?)
VTS ey T 16y
The slope of the tangent line at (2, —v/2) is
_2(4-2%)
4(=v2)

The equation of the tangent line is y = —v/2.

23 i
T dx

24.

25.

26 i
T dx
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d
(#2y? + 32— 4y) = =(5)

222y + 2y +3 -4y =0
Differentiate both sides of this with respect
to x :

T2 @2y + 20y +3 —4y) = %(0)
2(2zyy’ + 22(y')* + 2Pyy”) + 2(2xyy’ + )
— 4y =0.
Y +22(y) + 2Py’ + 2zyy +y7 — 2" = 0.
v +22(y) +y? =y (2 - 2y)
g = ey + 22(y)* + ¢
2 — a2y

d 23, 23 _ @

2 43,2 ~1/3,

= =0

33@ + 3y

Multiply by 2 and implicitly differentiate

) 2
again:

_lx_4/3 N 1y-4/3y/y/ + y—1/3y// -0
503 3

"_ .1?_4/3 +y—4/3(y/)2
Yy 3y-1/3

d

d
%(yQ) = %(a@?’ — 62+ 4cosy)

2uy’ = 32% — 6 — 4siny.y/.

Differentiating again with respect to x :
29y" +2(y ’)2 =6z —4 {siny y" + cosy. ')2}

(y
yy "+ (y ) =3z — 2siny.y” — 2cosy.(y ’)2
y"(y + 2siny) = 3z — (2cosy + 1) (y)°
y_ 3z —(2cosy+ 1) (y)°
= Y+ 2siny

d
(e™ 42y — 3z) = d—(sin Y)

x
eV(y+axy)+2y —3 =cosy.y
Differentiating again with respect to x :
ey +ay)’ + ey +y +ay’) + 2"

= —siny(y ) + cosy.y”
and



) = e (y +xy')? + 2e™Vy’ + siny(y')”

cosy — xery — 2

27. (y—1)° = 3zy + e
Diffrentiating with respect to x,

d 2_i 4y
%(y 1) v (3zy + )

By the Chain and Product rule,
2(y— 1)y =3y + 3y’ + 4™y
Diffrentiating with respect to x,

d d
— (2 —1 n—_ / 44y/
2 2w —1yl=— [3y + 3zy’ + 4e™y']

By the Chain and Product rule,
2(y— 1)y’ +2(y)*

=3y + 3zy” + 3y + 4e™y" + 16e* (i)

2(y—1) v — 3wy’ — 4e4yy//
= 6y/ () +16¢ (/)" — 2(y/)°
Y [2(y —1) — 3z — 4e"]
=2y (3+8e™y — /)
" 2y/ (3 + 864yy/ _ y/)
2(y—1) — 3z — 4eW

28. (z+y)° —eVtl =32
Diffrentiating with respect to x,

% [z +y)* —ert] = 4 (32)

) dz
By the Chain rule,
2(x+y)(L+y) -’y =3
Diffrentiating with respect to x,

d /
%[2(x+y)(1+y/)76y+1y] =0

By the Chain and Product rule,

2@ +y)y" +21+y) - ety

— e (y) =0
Y [2(x+y)— e’
=t y) — 20+ )’
_ety)? =21 4y
2(x+y) —evtt

29. (a) f(z)=sin"" (2 +1)

Diffrentiating with respect to z,

d
f(z) = 7 [sin™! (2® + 1)].
x
By the Chain rule we get,
1

f(x) = 4 (z® +1)

1_ (m3—|—1)2 dx

. —)
1-(x341)?
32

1— (23 41)°
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(b)

30. (a)

(b)

31. (a)

(b)

f(z) =sin™" (V)
Diffrentiating with respect to z,
d . _
fl(x) = e [sin™" (vz)] .
By the Chain rule, we get
1 d
f(z) = T s dr (\/5)
V1- (V)
-7 (28)
CVI—z \ 2V
_ 1
2z (1—x)
f(2) =cos™" (2 + )
Diffrentiating with respect to =z,
' (z) = di [cos™! (2® +2)].
Z
By using Chain r1111e, p
f/ (1,) — 7—d7 (1,2 +1‘)
1— (22422
= (2z+1)
1— (22 42)°

-t (2)

Diffrentiating with respect to z,

)

By using Chain rule,

f’ (z) = 1:1(2)2;; (i)

_ = -2
B 1_<4)<$2>

Va2 —4

f(z) =tan™' (V)

Diffrentiating with respect to x,
d _

f(z)= I [tan™! (V)]

By the Chain rule,

0 P .

-t ()

2v/x (14 )
1
=tan" ! =
f(z) = tan (x
Diffrentiating with respect to z,

[y = [tan_l (i)] .

By the Chain rule,

129
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F(z) = Hl();i (3)

- (=)

32. (a) f(z)=+V2+tan"lz

Diffrentiating with respect to z,

f(z)= di (\/2 +tan_1x> .
x
By the Chain rule,
/ 1 d —1
r)= ——--o—— (2+tan" 'z
) = AT s | )

1 1
2\/2—|—tan x <1+x2>

= 35.

) (1+22)V2+tan~ o
an"lz
(b) f(z)=e"
Diffrentiating with respect to z,
d -1
/ — tan™ "z
By the Chain rule,

= () (1)

1+ 22
33. (a) f(z) = 4sec(z?)

Diffrentiating with respect to z,

f (z)= % (4sec (z4))

By Chain rule, p

f' (z) = 4sec (z*) tan (z*) - (z)
=4sec ( ) ta (334) (4:53)

n
= 162> sec (;v4) tan (:c4)

(b) f(z)=4sec™! (z*)

Diffrentiating with respect to z,

f(z)= % (4sec™ (z)) .
By Chain rule,

1 d, .
B 41;4\/ (z4)* — 1£ )
1 3
A= )
16
VAt — 1
34. (a) f(x)=sin"! <i)

Diffrentiating with respect to x,

36.

37.
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rio- e (2)

By the Chain rule,
1 d (1
oA ()
1-(3)

_ x —1
C VrZ—1 \ 2?2

1
_x\/;v2 —1

(b) f(z)=csc™ (2)
Diffrentiating with respect to x,
d
fl(x) = e csc b (x).
By the Chain rule,

, _ 1
P =7

In example 8.6,we are given
2(—130)
0'(d) = ——~
(@) 4+ d?
Setting this equal to -3 and solving for d

gives d> = 82 = d = 9 feet. The better can
track the ball after they would have to start
swinging(when the ball is 30 feet away),but
not all the way to home plate.

From example 8.6, the rate of angle is

oL (20
e(t)_wd(;)f( )

Given a maximum rotational rate of ¢'(t) =
—3 (radians/second), the distance from the
plate at which a player can track the ball can
be obtained by solving the equation

L 2d(t)
A+ ()]
for d(t) in terms of d’(¢) This leads to
~6.d'(t) — 36

d(t) =

if d'(t) < —6 which may be reasonable since
the distance is decreasing as the ball ap-
proaches the plate. We get d(t) = 4 for
d (t) = =30 ft/sec and d(t) = 9.45 for
d'(t) = —140 ft/sec. This would mean a
player can track the ball to within 4 feet from
the plate in slowpitch, but only to within
9.45 feet from the plate in the major leagues.

Suppose that d is the distance from ball
to home plate and 6 is the angle of gaze
Since distance is changing with time, there-
fore d = d (t). The velocity 130 ft/sec means
that d' (t) = —130

0 (t) =tan* d(t)

3
The rate of change of angle is then
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38.

39.

/ 1 d (1)
0 (t) = 5
)
34 (¢)

= ———— radians/second
9+ [d(t)]

when d”’ (t) = 0.

The rate of the change is then

0 (t) = @ = —43.33 radians/sec.

Let d is the distance from ball to home plate
and @ is the angle of gaze, Since distance is
changing with time therefore d = d (¢). The
velocity 130 ft/sec means that d’' (t) = —130,

0(t) =tan* [d(t)

x
The rate of change of angle is then
1 d (t
9/ (t) — 3 ( )
()
d (t
= L)Q radians/second
z? 4 [d ()]
when d (t) = 0,
The rate of the change is then
-1
0 (t) = L;)O)radians/second
x

_ o180 —3 radians/second

x
Therefore, x = %go =43.33

d , 4 9 _ d
@(m +y —3y)—%(0)

Horizontal tangents:

From the formula, 3’ = 0 only when z = 0.
When x = 0 we have 0+ y? — 3y = 0. There-
fore y = 0 and y = 3 are the horizontal tan-
gents.

Vertical tangents:

The denominator in ¢y’ must be zero.

3—-2y=0

y=1.5

When y = 1.5,

2%+ (1.5)> = 3(1.5) = 0

r? =2.25

r==1.5

x = =£1.5b are the wvertical tangents.

40.

T T T T T
-5 -4 -3 -2

d, o 5 d
— —2y)=—(3
L@y 2y = 2 (3)
2x +2yy' — 2y’ =0
z+y(y—1)=0
y(y—-1)=-x

;X
Yy 1-v Y
Horizontal tangents:
The curve has horizontal tangents when y' =

0 7.e. when x = 0.

2+ 4/4—4(-3 2+4
Atz =0,y = 5 (=3) =
which gives y = 3 or y = —1. Therefore
y = 3 and y = —1 are the horizontal tan-

gents to the curve.

Vertical tangents:

The curve has vertical tangents when the de-
nominator in ' is 0 which gives y = 1.
Aty=1 =42

Therefore, x = 4+2 are the vertical tangents
to curve.

41. (a) 2%y* +3y =4x

To find the derivative of y, we use Im-
plicit differentiation.

(b) 2%y + 3y = 4z
The derivative of y can be found directly
and implicitly.

(c) 3zy + 62%cosz = ysinx
The derivative of y can be found directly
and implicitly.

(d) 32y + 622 cosy = ysinx
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42.

43.

44.

By using Implicit differentiation we can
find the derivative of y.

f(x) =sin!
! (sin [2n7 — (2n7 — 2)))

= sin™! (—sin (2n7 — 2))

(sinx)

=sin~

= —sin~! [sin (2n7 — 2)]

In the interval (2n7r — g, onm + g>’
™ ™
—— <2nmr—x < —.
2 2
So, f(z) =—(2nm — ) =z — 2nm.
Again,
f(z) =sin~! (sinx)
=sin~*! (sin [(2n7 + 7) — (2n7 + 7 — )])

= sin~*! (sin (2n7 4+ 7 — x))
= sin" ! [sin (2n7 + 7 — 2)]
In the interval [2717'{' + 7 — I,

—g <nm+mwm—x< %

T
2n7r+7r+§},

So, f(z)=(2n+1)7 —z.
Therefore f'(z) = 1 for all z €
(2nm — %, 2nm+ %) and f/(z) = —1 for

all x € (2n7r—|—7r— ER 2nﬂ'—|—7r—|—§). At
the points = nm &+ 7, f' () is not defined.
Here n is any integer.

From the graph of f(x) in below, we can
check the above values of f/(z).

2.0

1.6

—-2.0—

Let y = sin~ 'z + cos 'z

dy 1 n -1
de  V1—22 1—2a2
Therefore, y = ¢, where c¢ is a constant. To
determine c, substitute any convenient value
of x, such as z =0

sin 'z +cosTlz=¢

. _ T
sin™t0 + cos ™10 =c, soc:§

Thus sin~ 'z + cos 'z = g
Let y = sin™! (x)
2 +1

45.
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( ) (@)

(\/12-‘,-1 x(1/2)(x%41)~ 2(21))

241

< 2+1

- 2+1 \Va4 ].

1— 2 1'2 + 1
241

22
1—- 241 (\/1'2 +1>

2+1 \VaZ+1
1
T 1ta?
Thus sin ™! <x) =y = /#dx
2 +1 1+ 22

= tan~!(z) + ¢ for some constant c.
Substitute = 0 in to the above expression
to find ¢ = 0 and so
-1 o _ 1
sin =tan "z
x2+1

d d
%(9521/ —2y) = %(4)
20y + 2%y — 2y =0
y'(¢? - 2) = —2xy
J = L@/Z

2—a?)

The derivative is undefined at = ++/2, sug-
gesting that there might be vertical tangent
lines at these points. Similarly, ' = 0 at
y = 0 suggesting that there might be a hor-
izontal tangent line at this point. However,
plugging = +v/2 into the original equa-
tion gives 0 = 4, a contradiction which shows
that there are no points on the curve with x
value ++/2. Likewise, plugging y = 0 in the
original equation gives 0 = 4. Again,this is
a contradiction which shows that there are
no points on the graph with y value of 4.
Sketching the graph, we see that there is a
horizontal asymptote at y = 0 and vertical
asymptote at x = ++/2

10

(&
|
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46.

47.

48.

49.

50.

51.

For the first type of curve, y + zy’ = 0 and
! -y
V==
For the second type of curve, 2z — 2yy’ = 0
x
and ' = =.
At any point of intersection, the tangent line

to the first curve is perpendicular to the tan-
gent line to the second curve.

If y, = € then y = —% Y
T T T
If 1,2 = 2% + k then 2ypy0’ = 2z and
Yo = i. If we are at a particular point
Y2

(20, yo) on both graphs, this means y; (z¢) =
Yo = y2(xo) and
— x
'y = <y0> . (O> =-1L
Lo Yo
This means that the slopes are negative re-

ciprocals and the curves are orthogonal.

For the first type of curve, 2z +2yy’ = c and

, c—2z
Yy = D)
Y
For the second type of curve, 2z +2yy’ = ky/’
d4 2z
and y = .
4 k—2y
Multiply the first /2 and the second by y/y.
— 92 2 _
This gives v’ = £ V-7 , and
2xy 2xy
;. 2my 2wy
Y Ty T R

These are negative reciprocals of each other,
so the families of the curve are orthogonal.

For the first type of curve, v = 3cz?.
For the second type of curve, 2z + 6yy’ = 0,
;. 2x x x 1
6y 3y  3cx®  3ca?’
These are negative reciprocals of each other,

so the families of the curve are orthogonal.

For the first type of curve, y' = 4cxz®.

For the second type of curve, 22 + Syy’ = 0.
, 2z  —x -z -1
8y 4y 4dext  Adcad’
These are negative reciprocals of each other,
so the families of the curve orthogonal.

Conjecture: The family of functions
{y1 = ca™} is orthogonal to the family of
functions {;132 +ny? = k} wherever n # 0.
n—1 __ %
=
If ny? = —a 4+ k, then 2nys. (yo') = —2x
and yo’ = %
If we are at a particular point (zg,y0) on
both graphs, this means yi(xzo) = yo =

ya(zo) and

If y; = c2™, then y1’ = ncx

52.

’o nYo Zo
yl 'y2 B () . <_) B _1.
Lo Yo
This means that the slopes are negative re-
ciprocals and the curves are orthogonal.

The domain of the function sin~'z is
[-1,1] and the domain of the function
sec 'z is (—oo0, —1)U(1, 00). Therefore, the

function sin~'x + sec” 'z is not defined.

53. (a) Both of the points(—3,0) and (0, 3) are

on the curve:
02 = (—=3)° —6(—3)+9

32=0%-6(0)+9
The equation of the line through these

points has slope=

=1 and y-

—-3-0

intercept 3, so y =z + 3.

This line intersects the curve at:

Yy =a3—6z+9

(z+3)°=a2—62+9

22+ 6x+9=a>—6z+9

22 =120 —22=0

x(mQ—x—IZ) =0

Therefore z = 0,—3 or 4 and so third

point is (4, 7).
10—

N I I e s I B
X

(b) 3% = (—1)> = 6(—1) + 4 is true.

322 — 6
2uy’ = 322 — 6, so y = v and
2y
1
at (—1, 3) the slope is -5 The line is

y=-1(x+1)+3.
To find the other point of intersection,
substitute the equation of the line in to
the equation for the elliptic curve and
simplify: ,

-1 5 3
< 5 T =+ 2) =z"—6x+4
2% — 10z + 25 = 42® — 242 + 16
4o — 2% — 142 — 9 = 0.
We know already that x = —1 is a so-
lution(actually a double solution) so we
can factor out (z 4+ 1). Long division
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54.

55.

56.

yields (z + 1)*(422 — 9).
The second point has z-coordinate %,

which can be substituted into the equa-

11
tion for the line to get y = 3

The equation of the circle is 2 + (y — ¢)* =
r?. Differentiating implicitly gives
20+ 2(y—c)y' =0s09y = i

(c—y)
At the point of tangency, the derivatives
must be the same. Since the derivative
of y = x? is 2z, we must solve the equa-
T
(c—y) 2’
as desired. Since y = z?, plugging, y =

tion 2z = This gives y = ¢ —

1
c—5 into the equation of the circle gives

1+1 9
c—-+-=r
2 41
— 2 =
c=r —|—4

The viewing angle is given by the formula

6 (z) =tan™* <i) —tan~! <i)

This will be maximum where the derivative
is zero.

1 — 1 -1
0 () = 2'737 2" 2
1_|_(%) x 1+z% x
o 3
1+ a? 9+1:r2' 5
This is zero when o2 =052 = 2 =
3=>2=13

If A is the viewing angle formed between
the rays from the person’s eye to the top of
the frame and to the bottom of the frame,
and if x is the distance between the person
and the wall, then since the frame extends

from 6 to 8 feet, we have tan A = 2, or

2 "
A = arctan (>
T

Then

dA 1 AN

dr 14 (2)*' \a2?) 2?44

Since the derivative is negative, the angle

is decreasing function of x. Strictly speak-

2
ing arctan () is undefined at = 0 but
x

57.
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x
continues to enlarge(upto a right angle) as z
decreases to zero. In this case, the maximal
viewing angle is not a feasible one.

2
arctan (> — g as ¢ — 0. The angle a

2?4+ =9

Differentiating the above equation implic-
itly, we get 2x + 2yy’ =0
fc+yy’=0$y’=—§

At (2.9,0.77), v’ gives slope of the tangent.

Yl (2007 = W = —3.77

Therefore the equation of the tangent line is
y—077=-371(x—-29)=y=-37Mx+
11.7

Let (z1,y1) be any point on the line such
that the distance is 300 feet. Therefore

(21 —2.9)° + (y1 —0.77)> = 300%. Sub-
stitute the value of = as z; and y;, as
y1 = —3.77z1 +11.7 into the above equation
we get,

(21 —2.9)% + (=3.77z; +11.7—0.77)° =
90000

(xy1 — 2.9)2 + (=3.7Tx1 + 10.93)2 = 90000
15.2121% — 88.41x, — 89872.13 = 0

Solving the above quadratic equation, we
get 1 = 79.83, 1 = —74.02

Since the sling shot is rotating in the counter
clockwise direction, we have to consider the
negative value of x1. Therefore substituting
the negative value of z; into the equation,
1= — 3.77x + 11.70

we get y; = —3.77(=74.02) + 11.7 = 290.75
Therefore (—74.02,290.75) is the required
point.



2.9. THE HYPERBOLIC

2.9 The Hyperbolic
Functions

1. Graph of f(z) = cosh(2z) is:

2. Graph of f(z) = cosh(3x) is:

rr1r 117 T T Iim=g T T 1T 177 T T 170
-1 1
x —

3. Graph of f(z) = tanh(4x) is:

4. Graph of f(x) = sinh(3z) is:

FUNCTIONS
5.0—
2.56—
||||||||||‘1-~r|_|||||||||||||
-2 -1 —( 1 2
o
Ls.o—

5. (a) [f'()

(b) f'(x)

6. (a) f'(x)

7. (a) [f'()

(b) [f'(2)

d
=— (cosh4
(COS x)

d
=sinh4x— (4
sin xdw(m)

= 4sinh 4z

d
= @coshllz

d
= (coshz)*

= 4(cosh z)® (sinh z)

= 4sinhz - cosh®z

d .
== (sinh (v/)

1 d (sinh )
—————— — (sinhz
2+v/sinh x dz

1
= ———(coshzx
2+y/sinh x ( )

cosh x
2/sinh
= % (tanh xz)
— 2,2, i 2
= sech“z . (J; )
= (sech2x2) - (2z)
= 2z sech?x?

d
%(tanh z)?
= 2tanh x sech’®z
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d
8. (a) f'(z)= ﬁ(sech?)m)
d
= —sech 3z tanh 3z— (3
sech 3z tan mdm( x)
= —3 sech 3z tanh 3z

(b) f(x) = = (escha)’

d
2
(csch’z) . (csch x)

3
3 (cscth) (—csch x coth x)

= —3 csch®z coth z

9. (a) f(z)= di (2? sinh 52)
x
= z2i (sinh 5z) + sinh 5:vi (z?)
dx dz

d
= 22 cosh 5xd— (5x) + sinh 5z (2z)
x

= 522 cosh 5z + 2z sinh 5z
-'172 +1 2 . 13
(b) f(x)= 57— = (" +1)sinh’ x
csch”zx

f'(z) = 2z sinh® z + (2% + 1) dd (sinh® z)

dx
= 2zsinh® z + (2% + 1)3sinh® z cosh x

= 2xsinh® 2 + 3(x% + 1) sinh® z cosh x

10. () () =
d (coshdx
de \ = +2
(z +2) £ cosh 4z — coshda 4L (z + 2)

(z 4 2)°
(x + 2) sinh 4 (4) — cosh 4z (1)

(z +2)°
4 (z + 2) sinh 4z — cosh 4z

(z+2)°

(b) f'(x) =

(o tanh (s + 4))

= xQ% tanh (x3 + 4)
+ tanh (2% +4) - (%)
= x2sech? (1;3 + 4) (3332)
+ tanh (z° 4 4) (2z)
= 3a*sech? (:E3 + 4) + 2z tanh (m3 + 4)
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11. (a) f'(x) = % (cosh™'27)

- ()
(20)2 =14
- 2
VA2 —1
(b) f'(z)= di (sinh~'2?)
z
_ 1 d ( 2)
V1t atde
_ 2x
V1424
12. (a) f'(z)= di (tanh™'32)
o
1 d
=T (3:0)2 o (3z)
B 3
T 1— 922
(b) f'(z) =
. (x2005h714x)
= xzi (COSh_14£E) + cosh_1439i (xz)
dx L dx
= 22— (4) 4 cosh™ "4z (2z)
(42)> =1
4$2 1
= ————=+ 2z cosh™ 4z
V16z2 — 1
d d [e*+e "
13. ﬂ(coshx) = (2)
] = ¢ ;e =sinhx
— h
x(tan x)

B i sinh x
~ dx \coshzx
_ cosh x% (sinh ) — sinh z% (cosh )

5 2COSh21‘
cosh“z — sinh“x 1 9
= 5 = 5— = sech”z
cosh“z cosh“z

14. i[cothac]: d {

dzr dx
sinh z - sinhx — cosh z - cosh x
(sinh x)2

sinh?z — cosh?z

cosh x
sinh z

sinh?z
-1
sinh?z
= csch’z



2.9. THE HYPERBOLIC

15.

16.

17.

18.

4 igecha) = {

1
dx cosh x

= —————sinhx
cosh“z
1 sinh x

coshx coshzx
= —sechx tanh x

i 1
dr |sinhz

cosh x

. [eschz] =

)
sinh“x
1 cosh x

sinhx sinhzx

= —cschz cothx

First, e > e ™ if £ > 0 and e < ™7 if
et —e "

5 , we have
that e —e ™ >0ifz>0and e* —e™* <0
if x < 0. Therefore sinhx > 0 if x > 0 and
sinhx < 0if z <O0.

z < 0. Since sinhz =

cosh?z — sinh?x

B €x+e—x 2_ em_e—x 2
o 2 2

— [(eQI +2+e—2m) _ (eQz _2+e—2z)]

If y = cosh™ 'z then = coshy and z =

eV +e7Y
2

Y _ oY
Also sinhy = ——

5 . Then
€Y = coshy + sinhy

= coshy + /sinh?y

= coshy + 1/ cosh?y — 1
=z++vVz?-1
So, y = cosh 'z =1In (x + Va2 — 1)

If y = tanh™ 'z then z = tanh y and
ey — 6774

eY +eY
Applying Componendo and Dividendo Rule,

FUNCTIONS 137
1+z 2
1—xz 2V
1+ _ o
1—2x
1+
2y:
€ 1—2z

19.

20.

21.

22,

23.

711 1+
Y=y 1%

et +e ¥ e —e7"

coshz +sinhz = =e”
+ 2 + 2
e '+ e*
cosh(—z) = T—i_ = coshz
et —e”
sinh(—z) = 5 = —sinha
Since e~ * term tend to 0 as z tend to oo.
er — e
lim — =1,
z—o0 €T + e~ %
et —e ® e " —e”
lm ——— = lim — = -1

z——oc0 e¥ 4 e~ ¥ z—oo e~ % 4 et

7’2”'2671 2eT  e2r ]
tanhy = ——+  — = ——
eie” 2eT 2 41
Given, y = acosh (%) The hanging cable is

as shown in the figure: From figure, a = 10
and y = 10 cosh (%). The point B (20,20) is
on the catenary.

= 20 = 10 cosh (2bo>

2
= 2 = cosh (bo)

= % = cosh™!(2) = In(2 + V3)

[cosh_l(ac) =In (ac +Va? — 1)}

=b= 720
"~ In(2+V3)
Y,
A 40m B
20m 10m 20m
0 x

24. Given, y = acosh (%) The hanging cable

is as shown in the figure: From figure,
a =10 and y = 10 cosh (%) Let
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A = (—21,30) and B = (z2,20) such that
AB = 40.
d(A,B) = \/(wl + )% + 100
1600 = (1 + 2)° + 100
x1 + x5 = V1500 (1)

The point A (—z1,10) is on the catenary.
30 = 10 cosh

b
3 = cosh (%1)
= x; = bcosh™1(3)
= x; = bIn(3 + V8)
The point A (z2,20) is on the catenary.

20 = 10 cosh (%)

2 = cosh (?>
= 5 = bcosh™(2)
= x5 =bIn(2 + V/3)
By using (1),
bIn[(3 4+ V8)(2 + V3) = V1500
v 1500

T B+ V82t V3

30m 10m 20m

25. (a) Given that

1=

Now, find terminal velocity(V
V= thm v(t)
—00

:—leim tanh{\/kg t}
k t—oo m
:71/ ’ tlggo tanh {ct}

[k
By putting 59 _ c,
m
mg .. sinhct
V== /-1
k s cosh ct

CHAPTER 2. DIFFERENTIATION

B mg i e2ct -1
o ki imoo €2 41
2ct -1
— _ mg lim dal\t {6 }
koo L ezt 11}
By L’ Hospltal’s rule

2062075
<x> 2662Ct

mg
1
™ )
__ /Mg
A=y
(b) From (

2_

(a), w
\/>
”}i

2

26. For the first skydiver:

Terminal velocity is -80m/s.
Distance in 2 seconds is 19.41m.
Distance in 4 second is 75.45m.
For the second skydiver:
Terminal velocity is -40m/s.
Distance in 2 seconds is 18.86m.
Distance in 4 seconds is 68.35m.

27. For an initial velocity vg = 2000, we set the
derivative of the velocity equal to 0 and solve
the resulting equation in a CAS. The maxi-
mum acceleration of -9.797 occurs at about
206 seconds.

2.10 The Mean Value
Theorem

1. f(x)=2"+1,[-2,2]
f[(=2) =5=f(2).
As a polynomial f(z) is continious on
[—2, 2], differentiable on (-2, 2), and the
condition’s of Roll’s Theorem hold. There
exists ¢ € (—2, 2) such that f'(¢) = 0. But
flle)=2c=c=0
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. f(z) =2%+1,]0,2]
f(z) is continuous on [0, 2] and differen-
tiable on (0, 2), so the conditions of the
Mean Value Theorem hold. We need to find
¢ so thatf@) 0 51

!
M= =30 %
f(x)=2r=2whenz=1,s0 c=1.

O T T T 1T T T T T [ T T T T T T T T T T
0.0 0.5 1.0 1.5 2.0

. f(x) = 2® + 2% on [0, 1] with f(0) = 0,
f(1) = 2. As a polynomial, f(z) is contin-
uous on [0, 1] and differentiable on (0, 1).
Since the conditions of the Mean Value The-
orem hold, there exists a number ¢ € (0, 1)
such thaJtc(l) 0 20
!
Fo="—¢ =1-0°%
But f'(c) = 3¢* 4 2c.
=3 +2c=2=3%+2c—2=0.
By the quadratic formula,

—24 /22— 4(3)(-2)
o 2(3)
—2+28

6
—2+27  —1+V7

6 3
= c~ —1.22 or c~ 0.55
But since —1.22 ¢ (0, 1), we accept only the
—14+V7
3

other alternatives: ¢ = ~ 0.55
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2.0

0.5

0.0 T T T T T T T T T T T T T T T T

—0.!

. fz) =23+ 2% on [-1, 1]

f(z) is continuous on [—1, 1] and differen-
tiable on (—1, 1). So the conditions of the
Mean Value Theorem hold. We need to find
¢ so that

iy S —f(=1)  2-0

fie) = —Cp - 2~

f'(z) = 32*4+22 = 1 when z = —1 orx:é,
soc:é

1572 E A R B R B B |
0.5 1.0

. f(z) =sinz, [0, 7/2],

f0)=0, f(z/2) =1.

As a trig function, f(x) is continuous on
[0, 2] and differintiable On (0, 7/2). The
conditions of the Mean Value Theorem hold,
and there exists ¢ € (0,7/2) such that

f'(e) = ngj“”
2

1-0 2

I 0

But f’(¢) = cos(c), and ¢ is to be in the
first quadrant, therefore ¢ = cos™* (2) ~ .88
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[OR€hy o o o S N N N N N N N N
0.0 0.25 0.5 0.75 1.0 1.25 1.5
X

. f(z) =sinz, [-7,0)

f(z) is continuous on [—, 0], and differen-
tiable on (—m, 0). Also, sin(—7) = 0 =
sin(0). So the conditions of Roll’s Theorem
hold. We need to find ¢ so that f'(c) = 0.

i
f'(z) = cosz =0, on (—m,0) when z = —5
™
soc=——.
2
X
-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

VI Y R A

. Let f(z) = 2 + 5z + 1. As a polynomial,

f() is continuous and differentiable, for all
x, with f’(z) = 322 + 5, which is positive for
all z. So f(x) is strictly increasing for all x.
Therefore the equation can have at most one
solution. Since f(z) is negative at z = —1
and positive at = 1 and f(x) is continuous,
there must be a solution to f(x) = 0.

. The derivative is 322+4 > 0 for all z. There-

fore the function is strictly increasing, and so
the equation can have at most one solution.
Because the function is negative at x = 0
and positive at x = 1, and continuous, we
know the equation has exactly one solution.

. Let f(x) = 2* + 32® — 2. The derivative is

f'(xz) = 42® + 6x. This is nagative for neg-
ative x, and positive for positive x so f(x)
strictly decreasing on (—oo, 0) and strictly
increasing on (0, co). Since f(0) = —2 # 0,
f(z) can have at most one zero for z < 0

10.

11.

12.

13.

14.

CHAPTER 2. DIFFERENTIATION

and one zero for x > 0. The function is con-
tinuous everywhere and f(—1) = 2 = f(1),
f(0) < 0. Therefore f(z) = 0 has exactly
one solution between x = —1 and z = 0, and
f(z) = 0 has exactly one solution between
xz =0 and x = 1, and no other solutions.

Let f(x) = x* + 62% — 1. The derivative is
f'(x) = 42® 4 12z. This is nagative for neg-
ative z, and positive for positive x so f(z) is
strictly decreasing on (—oo, 0) and strictly
increasing on (0, co). Since f(0) = —1 # 0,
f(x) can have at most one zero for z < 0
and one zero for x > 0. The function is con-
tinuous everywhere and f(—1) = 6 = f(1),
f(0) < 0. Therefore f(z) = 0 has exactly
one solution between r = —1 and = = 0, ex-
actly one solution between x = 0 and z = 1,
and no other solutions.

f(z) = 2*+ax+b,a > 0. Any cubic(actyally
any odd degree) polynomial heads in oppo-
site directions (+o00) as = goes to the op-
positely signed infinities, and therefore by
the Intermediate Value Theorem f(z) has
atleast one root. For the uniqueness, we look
at the derivative, in this case 322 + a. Be-
cause a > 0 by assumption, this expression
is strictly positive. The function is strictly
increasing and can have at most one root.
Hence f(z) has exactly one root.

The derivative is f'(x) = 42® + 2ax. This
is nagative for negative x, and positive for
positive z so f(x) is strictly decreasing on
(—00,0) and strictly increasing on (0, 00), So
can have at most one zero for x < 0 and
one zero for x > 0. The function is contin-
uous everywhere and f(0) = —b < 0 and

lim f(x) = oo, therefore f(z) has exactly
r—+oo

one solution for < 0, and similarly exactly
one solution for > 0, and no other solu-
tions.

f(z) =2° +ax® +bx +c,a>0,b> 0. Here
is another odd degree polynomial(see #11)
with atleast one root. f’(x) = 52* 4 3ax?+b
is evidently strictly positive because of our
assumption about a, b. Exactly as in #11,
f(z) has exactly one root.

A third degree polynomial p(z) has atleast
one zero because

i plo) = 2 Jim pla) =+

and it is continuous. Say this zero is at
x = c¢. Then we know p(z) factors into
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15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

p(z) = (x—c)g(x), where ¢(x) is a quadratic
polynomial. Quadratic polynomial have at-
most two zeros so p(z) has atmost three ze-
ros.

flx) =22

One candidate: go(x) = ka®.

Because we require x° = gi(z) = 3kx?, we
must have 3k =1, k = 1/3.

Most general solution: g(z) = gy(z) + ¢ =
23 /3 + ¢, where c is an arbitrary constant.

9
If ¢’(z) = 92*, then g(z) = 5x5 + ¢ for any
constant c.

Although the obvious first candidate is
go(x) = —1/z, due to disconnection of the
domain by the discontinuity at =z = 0, we
could add different constants, one for nega-
tive x, another for positive . Thus the most
general solution is:

—1/z+a whenz>0
9(z) = {—1/x—|—b when 2 < 0

2
If ¢'(z) = V/z, then g(z) = §x3/2 + ¢ for any
constant c.

If ¢'(x) = sinx, then g(z) = —cosx + ¢ for
any constant c.

If ¢’'(z) = cosx, then g(z) = sinz +c¢ for any
constant c.

4
If ¢’ (x) = —— then g(x) = 4tan™*(z) +c.

1422

If ' (x) = 2 then g(z) = 2sin~ ' (x) +
V1—2a?

c.

If derivative ¢'(z) is positive at a single point

x = b, then g(z) is an increasing function
for = sufficiently near b, i .e., g(x) > g(b)
for x > b but sufficiently near b. In this
problem ,we will apply that remark to f’ at
2 = 0, and conclude from f”(0) > 0 that
f'(x) > f/(0) = 0 for > 0 but sufficiently
small. This being true about the derivative
f', it tells us that f itself is increasing on
some interval (0, a) and in particular that
f(z) > f(0) =0 for 0 < z < a. On the other
side(the nagative side) f’ is negative, f is de-
creasing(to zero) and therefore likewise posi-
tive. In summary, x = 0 is a genuine relative
minimum.

The function cosx is continuous and differ-
entiable everywhere, so for any u and v we
can apply the Mean Value Theorem to get

25.

26.

27.

28.
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COSU — COS U .

——————— = sinec for some ¢ between u
U —v

and v. We know —1 < sinz < 1, so taking

COSU — COSv

absolute values, we get <1,

u—v
or |cosu — cosv| < |u —v|.

Consider the function g(x) = x —sin x, obiv-
iously with ¢(0) =0 and ¢'(z) = 1—cosx. If
there was ever point a > 0 with sin(a) > a,
(g(a) <0), then by the MVT applied to go ¢
on the interval [0, a] , there would be a point

¢ (0 < ¢ < a) with g’(c):%g(o)
:MSO.

This would read 1 — cosc < g(c) <0 or
cosc > 1. The latter condition is possible
only if cos(c) = 1 and sin(c) = 0, in which
case c(being positive) would be at minimum
m. But even this unlikelycase we still would
have sin(a) <1 <7 < ¢ < a.

Since sina < a for all a > 0, we have
—sina > —a for all a > 0, but —sina =
sin(—a) so we have sin(—a) > —a for all
a > 0. This is the same as saying sina > a
for all a < 0 so in absolute value we have
|sina| < |a| for all a # 0.

Thus the only possible solution to the equa-
tion sinz = x is « = 0, which we know to be
true.

The function tan™'z is continuous and dif-
ferentiable everywhere, so for any a # 0 we
can apply the Mean Value Theorem to get

tan"ta — tan—10 1
= 5 for some ¢ be-

a
tween 0 and a. Taking absolute values, we
. tan"la 1

(§ =
& a 1+ c2
|a| for a # 0. This means that the only so-
lution to tan™'z = x is = 0.

< 1, so ‘tan_la‘ <

Since the inverse sine function is increasing
on the interval [0, 1) (it has positive deriva-
tive) we start from the previously proven
inequality sinz < z for 0 < z. If indeed
0 < x < 1, we can apply the inverse sine and
conclude x = sin™*(sinz) < sin™*(z).

The function tan x is continuous and differ-
entiable for |z| < 7/2, so for any a # 0 in

(—7/2, w/2), we can apply the Mean Value

tana — tan0

Theorem to get = sec?c for

a
some ¢ between 0 and a. Taking absolute
tana

values, we get

‘ = |se020] > 1, so
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29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

[tana| > |a| for a # 0. Of course tan0 = 0,
so [tanal > |a| for all |a| < 7/2.

If f'(x) > 0 for all  then for each (a, b) with
a < b we know there exists ¢ € (a, b) such

that
f(b) — f(a)
b—a
a < b makes the denominator positive, and

so we must have the numerator also positive,
which implies f(a) < f(b).

= f'(¢) > 0.

Let a < b. f is differentiable on (a, b) and
continuous on [a, b, since it is differentiable
for all z. This means that

f(0) = f(a)

L

for some ¢ € (a, b). Therefore f(b) — f(a) =
f'(c) (b — a) is negative, and f(a) > f(b).

f'(x) = 32% + 5. This is positive for all z, so
f(z) is increasing.

f'(z) = 52" +92% > 0 for all . f/ =0 only
at © =0, so f(z) is increasing.

f'(z) = —32% — 3. This is nagative for all z,
so f(x) is decreasing.

f'(x) = 42® + 4a is negative for negative x,
and positive for positive z, so f(z) is nei-
ther an increasing function nor a decreasing
function.

f'(x) = €*. This is positive for all z, so f(z)
is increasing.

fl(x) = —e™® < 0 for all z, so f(z) is a
decreasing function.
1
! —
Fie) =1

f'(z) > 0 for x > 0, that is, for all z in the
domain of f. So f(z) is increasing.
, 1 2, . .
f'(r) = — .20 = — is negative for negative
x x

x, and positive for positive x, so f(x) is nei-
ther an increasing function nor a decreasing
function.

The average velocity on [a, b] is

5(b) — s(a)
- .
By the Mean Value Theorem, there exists a
b) —
c € (a, b) such that s'(c) = w
Thus, the instantaneous velocity at ¢ = ¢ is

equal to the average velocity between times
t=aand t =0

40.

41.

42.

43.

44.
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Let f(t) be the distance the first runner has
gone after time ¢t and let g(¢) be the distance
the second runner has gone after time ¢. The
functions f(t) and g(¢t) will be continuous
and differentiable. Let h(t) = f(t) — g(t).
At t=0, f(0) =0 and g(0) =0 so h(0) = 0.
At t = a, f(a) > g(a) so h(a) > 0. Sim-
ilarly, at ¢ = b, f(b) < g(b) so h(b) < 0.
Thus, by the Intermideate Value Theorem,
there is time t = to for tg € (a,b) where
h(top) = 0. Rolle’s Theorem then says that
there is time ¢t = ¢ where ¢ € (0, tg) such
that h'(c) = 0. But h'(t) = f'(t) — ¢'(t),
so h'(c) = f'(¢) — ¢'(¢) = 0 implies that
f'(c) = ¢'(¢), i.e., at time t = ¢ the runners
are going exactly the same speed.

Define h(z) = f(x) — g(x). Then h is dif-
ferentiable because f and g are, and h(a) =
h(b) = 0. Apply Rolle’s Theorem to h on
[a, b] to conclude thet there exists ¢ € (a,b)
such that h/(¢) = 0. Thus, f'(c) = ¢'(c),
and so f and g have parallel tangent lines at
T=c.

As in #41, let h(z) = f(z) — g(x). Again,
h is continuous and differentiable on the
appropriate intervals because f and g are.
Since f(a) — f(b) = gla) — g(b) (by assump-
tion), we have f(a) = g(a) — g(b) + f(b).
Then,
h(a) = f(a) — g(a)

=g(a) —g(b) + f(b) — g(a)

= f(b) = g(b) = h(b).
Rolle’s Theorem then tells us that there ex-
ists ¢ € (a, b) such that h'(c) =0 or f'(c) =
g'(c) so that f and g have parallel tangent
lines at x = c.

f(z) = 1/z on [-1, 1]. We easily see that
f(1) =1, f(=1) = =1, and f'(z) = -1/
If we try to find the ¢ in the interval (—1, 1)
for which

1—(-1) 1—(-1) 7

the equation would be —1/c¢> = 1 or ¢ =

—1. There is of course no such ¢, and the ex-
planation is that the function is not defined
for x = 0 € (-1, 1) and so the function is
not continuous.
The hypotheses for the Mean Value Theorem
are not fulfilled.

f(z) is not continuous on [—1, 2], and not
differentiable on (—1, 2). Can we find
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45.

46.

47.

48.

"(¢) = = =_-7
=== 3 1
2 1
f(x) = - 3= when x = 2. This is not

in (—1, 2), so no ¢ makes the conclusion of
Mean Value Theorem true.

f(x) = tanz on [0, 7], f'(x) = sec’z. We
know the tangent has a massive discontinu-
ity at x = /2, so as in #44, we should not
be surprised if the Mean Value Theorem does
not apply. As applied to the interval [0, 7]
it would say

86020: f,(C) _ f(ﬂ-ﬂ)-:g(o)
tanm — tan0
ziﬂ_o =0.

But secant = 1/cosine is never 0 in the in-
terval (—1, 1), so no such ¢ exists.

f(z) is not differentiable on (—1, 1). Can we
find ¢ with

JO =) 1=,
1—(-1) 2 '

f'e) =

1 _ 3/2
f(z) = 37 23 =1 when z = +(3)7".

These are both in (—1, 1), so we can use ei-
ther of these as ¢ to make the conclusion of
Mean Value Theorem true.

Fz) = 2x when z <0

22z —4 when x>0
f(z) = 2z — 4 is continuous and differen-
tiable on (0, 2). Also, f(0) =0 = f(2). But
f'(xz) =2 o0n (0, 2), so there is no ¢ such that
f'(¢) = 0. Rolle’s Theorem requires that
f(x) be continuous on the closed interval,
but we have a jump discontinuity at x = 0,
which is enough to preclude the applicability
of Rolle’s.

f(x) = 22 is counter-example. The flaw in
the proof is that we do not have f’(c) = 0.

Ch. 2 Review Exercises

1.

2.

3.

34-26 08
15-05 1
C (large negative), B (small negative), A
(small positive), and D (large positive)

fI(Q) _ f(2+h]z_f(2)

gy 2?22+ 0) - (0)
= h50 h

0.8

8. f'(z) = lim it

143

. 4+4h+h*—4-2h
= lim

h—0

. 2h+ A2
= lim

h—0

=lim2+4+h=2
h—0

i vVi+h—-1 V/1+h+1
hIE%) h

Vith+1
. 1+h—1
th—
h=0 h(v/I+ h + 1)
1 1
R0 VITh4l 2
f(x) — f(0)

(x+h)3+(z+h)— (23 +2)

h
o 322h+3zh® P+ R34+ h
lim
h—0 h
lim 322 +3zh + h% + 1
h—0

322 +1

h—0 h
3
xT

. h
= lim &t
h—0 h
3z—3(xz+h)
— lim =@+
h—0 h

h—0 h
-3 -3

:1. _— = —
hli%a:(x—i—h) z?

9. The point is (1,0). ¥’ = 423 — 2 so the slope

at = 1 is 2, and the equation of the tangent
lineisy —0=2(x —1) or y =2z — 2.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

The point is (0,0). y' = 2 cos 2z, so the slope
at x = 0 is 2, and the equation of the tangent
line is y = 2x.

The point is (0,3). ¥’ = 62, so the slope at
x = 0 is 6, and the equation of the tangent
line is y — 3 = 6(x — 0) or y = 62 + 3.

The point is (0,1). v/ = , so the

2vVx? +1
slope at z = 0 is 0, and the equation of the

tangent line is y = 1.
Find the slope to y — z?y? = x — 1 at (1,1).

d ) d
oy — — “(r—1
dx(y ey’ = ——(z—1)

y —2axy? — 2?2y =1
y' (1 —2%2y) = 1 + 2z9°

, 1+ 229>
L 222y
At (1,1):

,1+2()(1)* 3 3

C1-2(1)2(1) -1

The equation of the tangent line is
y—1=-3x—1)ory=—-3z+4.

Implicitly differentiating:
2yy’ + e¥ + ze¥y' = —1, and

, —1—-eY
V=5

y + xe¥

At (2,0) the slope is —1, and the equation
of the tangent line is y = —(z — 2).
s(t) = —16t% + 40t + 10
) =s'(t) = —32t + 40
) =1'(t) = —32
s(t) = —9.8t2 — 22t + 6
) = s'(t) = —19.6t — 22
)
)
)

t
a(t) =s"(t) = —19.6
s(t) = 10e~2tsin 4t
v(t) = $'(t)

=10 (—2e~ sin4t + 4e~ 2" cos 4t)
a(t) = v'(t)
=10+ (—2) [-2e 2" sin 4t + e~ "4 cos 4t
- [—2e7% cos 4t — e 4 sin 4t
= 160e~2* cos 4t — 120e~2* sin 4t

s(t) =v4t+16 — 4
L4
o) =50 = 516
T VAt1 16
a(t) = s"(t)
—2.4 —4

T 204t +16)3/2 (4t + 16)3/2

v(t) = §'(t) = =32t + 40
v(l) =-32(1)+40=38

20.

21.

22,

23.

24.

25.

26.

27.

28.
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The ball is rising.
v(2) = =32(2) + 40 = —24
The ball is falling.

v(t) = s'(t) = 20e~2(2 cos 4t — sin 4t)
v(0) = 40 and v(7) = 40e~2" ~ 0.075. The
mass attached to the spring is moving in the
same direction, much faster at ¢t = 0.

_f2)-f@)
(a) Msgec = T o_1

(C) Mgec =

V2.1 -2
=——7 7 .349

Best estimate for the slope of the tangent
line: (c) (approximately .349).

Point at « =1 is (1, 7.3891).

£(2) - f(1)
2250

- Ie ~ 47.2091

f(5) — (1)
5 1.52— 1
=5 ;e ~ 25.3928
S - (1)
) 21.1 5 1
= % ~ 16.3590
Best estimate for the slope of the tangent

line: (c) (approximately 16.3590).
f(z) =423 — 922 + 2

(a) Msec =

(b) Mgec =

(C) Mgec =

2
f(z)= gx_l/?’ — 8z
1 3 —3/2 -3
flx)=—=x — 10z
_ 3 1
PN
;o V/r(=342x)
e
x

fr(t) =2t(t+2)° +1*-3(t +2)*- 1
= 2t(t + 2)% + 3t2(t + 2)?
=t(t+2)*(5t +4)

() =2t(t> — 3t +2) + (£2 + 1)(3t% - 3)
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(322 —1)-1— 2(6x)

!/ — 72
29. ¢'(x) Ba2 =172 48. f'(z) = cos (cos™* (2?)) - 7x2
_ 32162 1= ()
322 — 1) _
B4l e
T (322 —1)2
49 v (—2sin 2x)
1 ' 2
30. g(z) = 32— 1 1+ (cos2z)
X
g () =3+=% 50.

1
—_— .61‘
3224/(322)2 - 1

31. f'(x) = 2xsinz + 2% cosx
( 51. The derivative should look roughly like:

32. f'(z) = 2w cosa?
1 109
33. f(z) =sec® Vo —=
f(x) = sec® Vx NG
34. f'(z) = 1 sec’ x
2+/tanz
5 i Y ~~~ 3
35. f/(t) =csct-1+4+t-(—csct-cott)
=csct —tcsctcott ]
36. f'(t) = 3cos3tcosdt — 4sin 3t sin 4t
37. u/(z) = 2e7%" (—22) = —dze
38. u/(x) =2(2e7")(—2e7") = —8e ™" 52. The derivative should look roughly like:
39. f(z)=1-Ina?+z- % 2
=1Inz? +2
1 1
40. f(2) = —— . —
J@) 2ylnz+1 = ;K
AR R/ O
41. f’(a:):i-sinélx~cos4x~4:2cot4:1: )
42. f'(z) = etan(e?+1) | gac? (2 +1) -2 -2
— 2xetan x +1 ( ) 10
z+1\ d [z+1
43. f'(z) =2 —
Fz) (x—l)dx(x—l) 53. f(z)=a% - 323+ 222 -2 —1
{1\ (z—-1)—(z+1) () =423 — 922 + 42 — 1
CT\z -1 (x —1)2 f(z) =1222 — 18z + 4
rz+1 -2
=2 _ 1/2
x_1> @—17 54. f(z) (916+1)
Az 1) fl(z) = 5@+
- (z—1)3 —1
(l' ) f//(l‘) _ T(x_‘_ 1)—3/2
3
44. f'(z) = V3w 3 _
/ (l‘) 2\/%(3 f”/(x) = g(x + 1) 5/2
45. f'(t) = e* -1+ tet -4 = (14 4t)e* 55. f(z) = xe®”
1 2x 2x 2x 2x
— 126 — 62 - 2z — 1 fl(x)=1-e** +xe*® -2 =e** + 2xe
46. f'(x) _ ( ) ( — 1)4 ( ) f”(.’L‘) — ech .2492. (er +2x62x)
. = 462“” + dwe?®
47. The given function is well defined only for [ (x) = 4€2® - 2 4+ 4 (€2 + 2ze7)

x = 0. Hence it is not differentiable. = 1262“" + 8re?®
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56.

57.

58.

59.

60.

61.

62.

63.

flz) =4z + 1)~

7(x) = ~4(a +1)°2

f(x)=8(x+1)73

" (z) = 2-2-sec(2z) - sec (2z) tan (2z) - 2
= 8sec? (2z) tan (2z)

Let f(x) = [p(z)]?, where

p(r) =25 —32% + 223 —Tx + 1
p(z) = 62° — 1223 4+ 622 — 7
p"(z) = 302* — 3622 + 12z
p"(z) = 12023 — 722 + 12

p® (z) = 36022 — 72

Then

fOx) = 6" (@) + 8 (@) ()] +
2[p(2)][p™ ()]

f(z) =sin3z

f'(x) = cos3x -3 =3cos3x

f"(z) = 3(—sin3z - 3) = —9sin 3z
f"(x) = —9cos3x -3 = —27cos 3z
0 (z) = —3%6sin 3z

For f(z) = e~ 2%, each derivative multiplies
by a factor of —2, so

f(?’l)(x) ( 2)316_29”.

R(t) = P(H)Q(1)

RI(t) = Q'(1) - P(t) + Q(t) - P'(t)
P(0) = 2.4(9)

Q(0) = 12 (thousands)

Q' (t) = —1.5 (thousands per year)
P’E ) = 0.1 ($ per year)

t
0) = (—1.5) - (2.4) +12- (0.1)

= —2.4 (thousand $ per year)
Revenue is decreasing at a rate of $2400 per
year.

The relative rate of change is % v'(t) =
200(2)*In 2, so the relative rate of change is
ln% ~ 0. 4055 giving an instantaneous per-
centage rate of change of 40.55%.

f{t) =4cos2t
v(t) = f'(t) = 4(—sin2t) - 2
= —8sin2t

(a) The velocity is zero when
v(t) = —8sin2t = 0, i.e., when
2t =0,m,27, ... so when
t=0,7/2,7,31/2,...
f(t)=4fort=0,m2nx,...
f(t) = 4cos2t = —4 for
t=m7/2,31/2,...
The position of the spring when the ve-
locity is zero is 4 or —4.

(b) The velocity is a maximum when
v(t) = —8sin 2t = §, i.e., when

64.

65.

66.

67.

68.

69.
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2t =3m/2,77/2,... 80

t=3n/4,Tn/4,...
f(t) =4cos2t =0 for
t=3m/4,7r/4,...

The position of the spring when the ve-
locity is at a maximum is zero.
(c) Velocity is at a minimum when
v(t) = —8sin 2t = —8, i.e., when
2t =7/2,5m/2,... 80

t=m/4,5m/4,...
f(t) =4cos2t =0 for
t=m/4,5m/4,...

The position of the spring when the ve-
locity is at a minimum is also zero.

The velocity is given by

f'(t) = —2e~ 2! sin 3t + 3e 2! cos 3t.
d d
Lty —at) = L)
20y + a2y —3-3y* -y =2
Y (2% — 9y?) = 22 — 2y

I 2x(1 — y)

x2 — 9y?

d d

£ (sin(ay) +2%) = L —y)

cos(zy)(y +zy') + 22 =1 -y
;1 =22 —ycos(xy)

Y xcos(zy) + 1

i itannc
dx x+ 1 dzx
(z+1y —y- )

— 3y =sec’z
(z +1)2 v =

y'(x+1) —y = (z+1)*3y +sec’z)
;o osecta(z+ 1) +y
(x4 1)[1-3(x+1)]

d d
2 — 242 = —(3e%/Y
d:c(x v dx( c )/
1—2yy = 3e™/Y. %
z/y T/Y o)
1oy = 3e*Y e 2xy
, Y Y
y/ _ 3ey -1
39:;3/1/ _ 2y
When ¢ =0, =333 =1, y = ;715 (call this

a).
From our formula (#65), we find 3’ = 0 at
this point. To find y”, implicitly differenti-
ate the first derivative (second line in #65):
ey’ +y) + 22y +2°y")

—9[2y(y)? +y2y"] =2
At (0,a) with ¢y’ = 0, we find
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2a — 9a%y" = 2,

Below is a sketch of the graph of 2%y —3y% =
22 +1.

70. Plugging in x = 0 gives —2y = 0 so y = 0.
Plugging (0, 0) into the formula for 3’ gives a
slope of —1/2. Implicitly differentiating the
third line of the solution to #37 gives
Y@+ +y =y
= 2(x + 1)(3y’ + sec? )

+ (z +1)%(3y” + 2secx - sec x tan )
Plugging in ¢ = 0, y = 0 and ¢y = —1/2
gives
y" =2(=3/2 + sec?(0))

+ (1)2(3y" + 2sec?(0) tan(0))
y// — 1 _,’_ Sy//.
Soatx=0,y" =-1/2.
The graph is:

71. y = 322 — 12z = 3x(x — 4)

(a)y =0forx =0(y=1), and z =4
(y = —31) so there are horizontal tan-
gent lines at (0,1) and (4, —31).

(b) v is defined for all x, so there are no
vertical tangent lines.

72. y' = gafl/?’

73.

74.

75.

76.

7.
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(a) The derivative is never 0, so the tangent
line is never horizontal.

(b) The derivative is undefined at z = 0 and
the tangent is vertical there.

d o d _»
@ g = &
&y —dy) =
20y + 2%y — 4y’ = 2
Y (2% —4) = 2z — 22y
,:2x—2xy:2x(1—y)

2 —4 x2 —4

(a) ¥y =0whenz=0ory=1.
Aty=122-1-4-1=22
2% — 4 = 22
This is impossible, so there is no x for
which y = 1.
At2=0,0%-y—4y=0%,s0y =0.
Therefore, there is a horizontal tangent
line at (0, 0).

(b) v’ is not defined when 2% — 4 = 0, or
=42, Atz =42, 4y —4y = 4 so
the function is not defined at = = +2.
There are no vertical tangent lines.

y' =43 — 22 = 22(22% — 1).

(a) The derivative is 0 at z = 0 and = =

i\/g , and the tangent line is horizontal

at those points.

(b) The tangent line is never vertical.

f(z) is continuous and differentiable for all
x, and f'(x) = 322 + 7, which is positive
for all xz. By Theorem 9.2, if the equation
f(z) = 0 has two solutions, then f'(z) =0
would have at least one solution, but it has
none. We discussed at length (Section 2.9)
why every odd degree polynomial has at
least one root, so in this case there is exactly
one root.

The derivative is 52% + 922. This is non-
negative for all z. f(x) is increasing func-
tion so can have at most one zero. Since
f(0) = =2, f(1) = 2, f(z) has exactly one

solution.

f(x) = 2° + 223 — 1 is a one-to-one function
with f(1) =2, f/(1) = 11. If g is the name
of the inverse, then g(2) =1 and

, - 1 1
0= F@y " Fm
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78.

79.

Since e*°+20 = 1, the derivative of the in-
verse at x = 1 will be one over the deriva-
tive of €*" 2% at 2 = 0. The derivative of
e’ +2 s (372 4 2)e” 727 and this is 2 when
z = 0. Therefore the derivative of the in-
verse to e? +2% at z =1 is 1/2.

The graph is the graph of e” 727 reflected
across the line y = x.

-0.:

o

I AR A A S T A o S|

<
”

Let a > 0. We know that f(z) = cosx — 1
is continuous and differentiable on the inter-
val (0,a). Also f/(x) = sinxz < 1 for all z.
The Mean Value Theorem implies that there
exists some ¢ in the interval (0, a) such that
f'(¢) =sinec. But

cosa —1— (cos0—1)
a—0
cosa—1

f'(e) =

a

Since this is equal to sinc and sinc¢ < 1 for
any c, we get that

cosa—1<a

as desired. This works for all positive a, but
since cos ¢ — 1 is symmetric about the y axis,
we get

|cosx — 1| < |z

They are actually equal at x = 0.

80.

81.

82.

83.

84.

85.
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This is an example of a Taylor polynomial.
Later, Taylor’s theorem will be used to prove
such inequalities. For now, one can use mul-
tiple derivatives and argue that the rate of
the rate of the rate of change (etc.) increases
as one moves left to right through the in-
equalities.

To show that g(z) is continuous at = a, we
need to show that the limit as x approaches
a of g(x) exists and is equal to g(a). But
lim g(z) = lim flz) = f(a) f(a),
T—a r—a Tr—a
which is the definition of the derivative of
f(z) at = a. Since f(x) is differentiable
at * = a, we know this limit exists and is
equal to f’(a), which, in turn, is equal to
g(a). Thus g(z) is continuous at z = a.

We have
f(z) =T(z)
= f(z) = f(a) - f'(a)(z — a)
_ <f(l‘) — f(a) . f’(a)) (z —a)

Tr—a

f(z) = f(a)

Letting e(z) = — f'(a), we ob-

tain the desired form. Since f(x) is differen-
tiable at * = a, we know that

i 210 _
N L
=0.
f(z) =22 — 2z on [0,2]
f(2)=0=f2(0) .

then 2¢—2 = f'(¢) =0soc=1.

f(z) is continuous on [0, 2] and differentiable

on (0,2), so the Mean Value Theorem ap-

plies. We (n(;ed t(z f)ind ¢ so that
, f(2)— f(0 6-0

=== =30°%

f'(z) = 322 —1 = 3 when z = \/4/3, so

c=2v3/3.

f(z) = 32% — cosz
One trial: g,(z) = k23 —sinz
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86.

87.

88.

g (z) = 3kx? — cosx

Need 3k = 3, k = 1, and the general solution
is

9(z) = go(x) + c =23 —sinz + ¢

for ¢ an arbitrary constant.

If ¢/(z) = 2® — €2, then g(z) must be

1

1954 - 562” +c,

for any constant c.

x =1 is to be double root of

flx) = 17?—!—1)— [m(x — 1) + 2]

(

(
=(2®—-1)—m(x—1)

(=1 [z +2+1-m)]
Let g(x) = 2> + 2+ 1 —m. Then z = 1 is
a double root of f only if (x — 1) is a factor
of g, in which case g(1) = 0. Therefore we
require 0 = ¢g(1) = 3 —m or m = 3. Now
g@)=2>+2-2=(v—1)(z+2),
fl@) = (z—1)g(z) = (z - 1)*(z +2)
and = = 1 is a double root.
The line tangent to the curve y = 23 + 1 at
the point (1,2) has slope ¢/ = 322 = 3(1) =
3(= m). The equation of the tangent line is
y—2=3(x—1)ory =3z—1(=m(z—1)+2).
We are asked to find m so that
23+ 20 — [m(x — 2) + 12]
=234+ (2—m)z + (2m — 12)
has a double root. A cubic with a double
root factors as
(z —a)*(z —b)
=23 — (2a + b)2% + (2ab + a®)x — a®b.
Equating like coefficients gives a system of

equations

2a+b=0,

2ab + a® =2 —m, and

—a?b =2m — 12.

The first equation gives b = —2a. Substi-

tuting this into the second equation gives
m = 2+ 3a?. Substituting these results into
the third equation gives a cubic polynomial
in a with zeros a = —1 and a = 2. This gives
two solutions: m = 5 and m = 14.

f'(z) = 32% + 2, so f'(2) = 14. The tangent
line at (2,12) is y = 14(z — 2) + 12.

The second solution corresponds to the tan-
gent line to f(x) at = —1, which happens
to pass through the point (2,12).

89. Given,f = —\/= = =

149

1 /T df 1 )

ot P 7 ar T arypr
T is an independent variable and p , L are
constants. Tightening the string means in-
creasing the tension, resulting in decrease
in %, which means there is a decrease in
the rate of change of frequency with re-
spect to the tension in the string. On the
other end, loosening the string means de-
creasing the tension, resulting in increase
in %, which means there is a increase in
the rate of change of frequency with re-
spect to the tension in the string. Also,

VT 1 [T
= /2 =2 o [ wn
F=s5\p ™ aL 512\ When

the guitarist plays the notes by pressing
the string against a fret; he is increasing
the length and hence decreasing the rate of
change of frequency of vibration with re-
spect to the length of the string.




Chapter 3

Applications of
Differentiation

3.1 Linear Approximations
and Newtons Method

1. (a) f(2) = V.20 = 1
Flao) = F(1) = VI =1

f(w) = 5272

Flao) = 1) =1

So,

L(z) = f(xo) + f'(x0) (x — x0)
=1+ % (x—1)
11
REREE

(b) Using the approximation L(x) to estimate
V1.2, we get V1.2 = f(1.2) = L(1.2) =
1 1
S+ -(12)=11

2 2

2. () flz0) = f(0) = L and
F@) = 2@+ 1)
So, f(0) = =

The Linear approximation is,
1 1
L(:z:)=1+§(x—0):1—|—§x

(b) Using the approximation L(x) to estimate

V1.2, we get V1.2 = £(0.2) = L(0.2) =

+ %(0.2) = 1.066
3 (a) f(x:\/m;x():o
f<wo>:11‘(0)=m:3
J' (@)= 5 2e+9)72 2
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CY

- 1

F(o) = 1(0) = (2 0+9) 72 = 2

So,

L(x) = f (xo) + f' (z0) (z — 20)

1
=3+ (x—-0)

(b) Using the approximation L(z) to esti-

mate V8.8, we get V88 = f(—0.1) =

1
L(=01) = 3+ 5(-0.1) = 3~ 0.033 =
2.967

C @) J@)= 2 m=1

f(zo) :f(%) =2
fl(z) = = and so f/(1) = =2
The linear approximation is
Lz)=2+(-2)(z—1)

(b) Using the approximation L(x) to estimate

2

i 2 = £(0.99) ~ L(0.99) =
099’ e &t 5og £(0.99) (0.99)
2+ (~2)(0.99 — 1) = 2.02

(a) f(z) =sin3z, 29 =0
f(zo) = sin(3-0) =0
f'(x) = 3cos 3z
é/(%) f'(0) =3cos(3-0)=3
L(,x) = f(zo) + f'(z0) (x — o)
—0+3(z—0)
=3z

(b) Using the approximation L(z) to esti-
mate sin(0.3), we get sin(0.3) = f(0.1) ~
L(0.1) = 3(0.1) = 0.3

f(z)=sinz, xg=m

f(zo) =sinT =0

1 (x) = cosx

f(xo) = f'(m) =cosm = -1

The linear approximation is,

L(z) = f(z0) + f'(z0) (z — z0)

=0+ (-)(z—m)=7m—=x

(b) Using the approximation L(z) to esti-
mate sin(3.0), we get sin(3.0) = f(3.0) =
L(3.0) =7 — 3.0

. (a) flx)=V16+x,290=0
f(0)=vV16+0=2
F'(w) = 1016+ 2) %/

1
£(0) = 1(16+0)7 3/4:3—2



3.1.

8.

10.

LINEAR APPROXIMATIONS AND NEWTONS METHOD

L(z) = £(0) + f/(0)(z — 0)

1

1
=2+ —(0.04) = 2.0012
2+ 55(0.04) = 2.00125
1
(b) L(0.08) =2+ 55(0.08) = 2.0025
1
(¢) L(0.16) = 2+ -(0.16) = 2.005

(a) f(x) =sinx, 2o =0

_ V3 (m_%>
2 3
TOREIC R
(a) L(x) = f(20) + >~ 13 (5 —90)

4
L(24) ~ 18 — E(M —20)
=18 -10.4(4)
= 16.4 games
14 —12
230 —40
f(36) = 12 — E(% —40)
=12-0.2(—4)
= 12.8 games

120 — 84
80 — 60

(b) L(x) = f(40) + (x — 40)

(a) L(z) = f(80) + (z — 80)

L(72) =120+ %(72 —80)
=120 + 1.8(—8)
= 105.6 cans
168 — 120
L = f(1 -1
() o) = £000)+ Sy o= 100)
L(94) = 168 — %(94 —100)
=168 — 2.4(—6)
= 182.4 cans
142 — 128
. L = f(2 —(x — 2
11. (a) L(z) = f(200) +12420_ 200(37 00)
L(208) = 128 + %(208 —200)
=128 4+ 0.7(8) = 133.6
142 — 136
(b) L(x) = f(240) + (z — 240)

220 - 240
L(232) = 136 — (232 — 240)

— 136 — 0.3(—8) = 138.4
14-38

, 10-5
L(®) =14+ ;(-2) =116

12. (a) L(z) = f(10) +

(x — 10)

1438
;105
L(12) = 14+ -(2) = 164

(b) L(x) = f(10) + (z —10)

13. f(x)=234+322-1=0,20=1
f'(z) = 32% + 6z

_ f (o)
R Ty
71713+3~12f1
N 3:12+46-1
.3 2
)
J— — 1'1
To = T1 f’(!L‘l)
2 (3°+3(3) 1
- 2
5 3(3) +6(3)
:%z0.5486
(b) 0.53209

14. f(x)=a3+42? -2 — 1,39 = -1
f(x) =32%+8x—1

151
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X9 = T1 —

(b) The root is x ~ —0.4064206546.

15. f(z) =2 -322+1=0,20 =1
f(z) = 423 — 62

(a) 1 =z — /(o)
fll‘ExO):s 12+1 1
! ( 4.13-6-1 >_2
I f(z1)
f'(@1)
_1 ((5)4—3(5)2“)
2 4(3)°-6(3
5
]
(b) 0.61803

=5 =
2y — 2y — LD
f'(1)
1 0.3125
= —5 — 25 = —0.625

(b) The root is x &~ —0.6180339887.

- ]{,((Z"_)) with
f(x) =23 + 422 — 3xl—|— 1, and
f(x) =32 +8x—3

17. Use ;41 = x;

CHAPTER 3. APPLICATIONS OF DIFFERENTIATION

18.

19.

X

TTTT T T T T T T TTTT]
-5/0 -2.5 610 2.5 5.0

Start with zg = —5 to find the root near —5:
r1 = —4.718750, x5 = —4.686202,
r3 = —4.6857796, x4 = —4.6857795

From the graph, we see two roots:

f(xi)

Use xj41 =4 o) with

flx) =a* —42% + 2% — 1, and

f(z) = 423 — 1222 + 22

Start with 2o = 4 to find the root below 4:

x1 = 3.791666667, xo = 3.753630030, z3 =
3.7524339, x4 = 3.752432297

Start with = —1 to find the root just above
—1:

x1 = —0.7222222222,

x9 = —0.5810217936,

x3 = —0.5416512863,

x4 = —0.5387668233,

x5 = —0.5387519962

- J{((Zi_)) with
flx)=a2°+323+2 “ 1, and
f'(x) =5zt + 922 + 1

Use xj4+1 =
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10 r1 = —0.644108, x5 = —0.636751

r3 = —0.636733, x4 = —0.636733

Start with zg = 1.5 to find the root near 1.5:
x1 = 1.413799, x5 = 1.409634

r3 = 1.409624, x4 = 1.409624

o 22. Use Tj41 = T; — ;,((g;ii)) with
f(x) = cosx? — x, and
f(z) = 2xsina? — 1

3

Start with o = 0.5 to find the root near 0.5: v
21 = 0.526316, o2 = 0.525262,
x3 = 0.525261, x4 = 0.525261

fG)
20. Use zj41 = z; — with x
f'(wi)
f(x) =cosz — x, and
f'(x)=—sinz—1 2

5.0
Start with zg = 1 to find the root between 0
and 1:

r1 = 0.8286590991, x5 = 0.8016918647,

x3 = 0.8010710854, x4 = 0.8010707652

(T T T Tger T s
-5 -4 -3 -2 -1 _g
. _
- 2
y —2.5—] y
] 1
-5.0—
Start with 2y = 1 to find the root near 1: 2 - 2

1 = 0.750364, zo = 0.739113,
3 = 0.739085, 4 = 0.739085

21. Use x;41 = @3 — Fzi) with

HED)
f(z) =sinz — 2% + 1, and fla:)
"(2) = cosx — 21 23. Use Tit1 =T — d with
K3
> f(z) =e®+ 1z, and
] flx)=e"+1

2.5—

5 -4 3 -2
X

Start with o = —0.5 to find the root near
—0.5: Start with zg = —0.5 to find the root between
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24.

25.
26.

27.
28.

29.
30.

31.

32.

CHAPTER 3. APPLICATIONS OF DIFFERENTIATION

0 and -1:
r1 = —0.566311, x5 = —0.567143
r3 = —0.567143, v, = —0.567143

Use xj4+1 = x; — J{/((Z)) with
f(z) =e"* —\/x, and
) = o= _ L

““““““““

o

I
o
TR R A ST AT o N R A  A BT R
o
o
o
N

Start with o = 0.5 to find the root close to
0.5:

21 = 0.4234369253, x5 = 0.4262982542,

x3 = 0.4263027510

f(z) = 2% —11; 29 = 3; V11 ~ 3.316625

Newton’s method for /2 near z = 23 is 41 =
(xy + 23/x,). Start with zp = 5 to get:
r1 = 4.8, x5 = 4.7958333, and x3 = 4.7958315.

fz) =% —11; zg = 2; V11 ~ 2.22398

Newton’s method for ¢z near z = 23 is
Tny1 = (23, + 23/22). Start with zp = 3
to get:

x1 = 2.851851851, xo = 2.843889316, and

x3 = 2.884386698

f(z) = %% —24; 29 = 2; V24 ~ 2.059133

Newton’s method for *&x near z = 24 is
Tni1 = 15 (3.62,+24/230). Start with zg = 2
to get:

r1 = 1.995417100, x5 = 1.995473305, and

r3 = 1.995473304

flx)=42® - 722 +1=0,20=0

f(z) = 1222 — 142

flwo) o_1

f'(@o) 0

The method fails because f’(zg) = 0. Roots
are 0.3454, 0.4362, 1.659.

Tr1 = g —

Newton’s method fails because f' = 0. As long

as the sequence avoids z,, = 0 and x,, = 5 (the

33.

34.

35.

36.

37.

38.

zeros of f’), Newton’s method will succeed.
Which root is found depends on the starting
place.

fl@)=2?+1,20=0

J(@) =20
f (o) 1
= — = 0 —_ =
DT @) 0
The method fails because f’(xg) = 0. There
are no roots.

Newton’s method fails because the function
does not have a root!

422 —8x +1

flw) = 472 — 31— 7 =0 @=-1

Note: f(zg) = f(—1) is undefined, so New-
ton’s Method fails because zq is not in the do-
main of f. Notice that f(z) = 0 only when
422 — 8z +1 = 0. So using Newton’s Method
on g(z) = 42% — 8x + 1 with zg = —1 leads to
x = .1339. The other root is x ~ 1.8660.

The slope tends to infinity at the zero. For ev-
ery starting point, the sequence does not con-
verge.

(a) With zp = 1.2,
x1 = 0.800000000,
z2 = 0.950000000,
zg = 0.995652174,
x4 = 0.999962680,
x5 = 0.999999997,
z¢ = 1.000000000,
7 = 1.000000000

o = 2.200000, z1 = 2.107692,
T2 = 2.056342, x5 = 2.028903,
x4 = 2.014652, x5 = 2.007378,
xe = 2.003703, z7 = 2.001855,
xg = 2.000928, zg = 2.000464,
210 = 2.000232, x1; = 2.000116,
212 = 2.000058, x13 = 2.000029,
z14 = 2.000015, x15 = 2.000007,
x16 = 2.000004, x17 = 2.000002,
x18 = 2.000001, x19 = 2.000000,
290 = 2.000000

The convergence is much faster with zg =
1.2.

Starting with zg = 0.2 we get a sequence that
converges to 0 very slowly. (The 20th itera-
tion is still not accurate past 7 decimal places).
Starting with g = 3 we get a sequence that
quickly converges to w. (The third iteration is
already accurate to 10 decimal places!)
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39.

40.

41.

42.

(a) With o = —-1.1
x1 = —1.0507937,
9 = —1.0256065,
x3 = —1.0128572,
24 = —1.0064423,
x5 = —1.0032246,
26 = —1.0016132,
x7 = —1.0008068,
xg = —1.0004035,
xg = —1.0002017,
z10 = —1.0001009,
11 = —1.0000504,
x12 = —1.0000252,
x13 = —1.0000126,
z14 = —1.0000063,
15 = —1.0000032,
z16 = —1.0000016,
x17 = —1.0000008,
x13 = —1.0000004,
x19 = —1.0000002,
x20 = —1.0000001,
z91 = —1.0000000,
92 = —1.0000000

(b) With 2o =2.1
xo = 2.100000000,
1 = 2.006060606,
9 = 2.000024340,
x3 = 2.000000000,
x4 = 2.000000000
The rate of convergence in (a) is slower
than the rate of convergence in (b).

From exercise 37, f(z) = (z—1)(x —2)%. New-
ton’s method converges slowly near the double
root. From exercise 39, f(z) = (z —2)(x +1)2.
Newton’s method again converges slowly near
the double root. In exercise 38, Newton’s
method converges slowly near 0, which is a zero
of both x and sinz but converges quickly near
7, which is a zero only of sinz.

f(z) =tanz, f(0) =tan0 =10

f'(z) =sec® z, f'(0) =sec’0=1

L(z) = f(0) + f'(0)(z — 0) L(0.01) =0.01
=0+1(z—0)=2x

£(0.01) = tan 0.01 ~ 0.0100003

L(0.1) = 0.1

£(0.1) = tan(O 1) ~ 0.1003

L(

I

The linear approximation for v/1+z at x =0
is L(z) = 1+ £z. The error when = 0.01 is
0.0000124, when = = 0.1 is 0.00119, and when
z =11s 0.0858.

1) =
1)—tan1~1557

44.

45.

x)=+V4d+z
f0)=vVa+0=2
F(w) = gd+a)7?
F0) = 5+0) 2= 2
L(z) = f(0) + f/(O)(x —-0)=2+ ix
L(0.01) =2+ = (0 01) = 2.0025
£(0.01) = m ~ 2.002498
L01) =2+ - (0 1) =2.025
f(0.1) = m ~ 2.0248
L(1) =2+ %(1) =2.25

(

F(1) = VAT 1~ 22361

The linear approximation for e* at z = 0 is
L(z) = 1+ z. The error when z = 0.01 is
0.0000502, when = = 0.1 is 0.00517, and when
x=11s 0.718.

(a) £(0) = g(0) = h(0) = 1,
through the point (0, 1).
F1(0)=2(0+1) =2,

9'(0) = 2cos(2-0) =2, and

h'(0) = 220 = 2,

so all have slope 2 at z = 0.
The linear approximation at = = 0 for all
three functions is L(z) = 1 + 2z.

so all pass

(x+1)2:

(b) Graph of f(x) =

Graph of f(z) =1+ sin(2x):



156 CHAPTER 3. APPLICATIONS OF DIFFERENTIATION
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Graph of h(z) = sinhx:

BEEEEERRRERVAC"RERENEREREREEEE!
-3 -2 -1 1 2 3
X —

sin z is the closest fit, but sinh x is close.

47. (a) V16.04 = 2.0012488
L(0.04) = 2.00125
[2.0012488 — 2.00125| = .00000117
46. (a) f(0) = g(0) = h(0) = 0, so all pass

through the point (0, 0). (b) v/16.08 = 2.0024953

f/(0) =cos0 =1, L(.08) = 2.0025

q(0) = o —1, and [2.0024953 — 2.0025| = .00000467
W(0) = cosh0 =1, (c) V/16.16 = 2.0049814

so all have slope 1 at z = 0. L(.16) = 2.005

The linear approximation at z = 0 for all |2.0049814 — 2.005| = .0000186

three functions is L(z) = z.

(b) Graph of f(x) =sinz: 48. If you graph |tana — x|, you see that the dif-
ference is less than .01 on the interval —.306 <
z < .306 (In fact, a slightly larger interval
would work as well).

] 49. The first tangent line intersects the z-axis at a
2 AT (O point a little to the right of 1. So x; is about

1.25 (very roughly). The second tangent line
intersects the x-axis at a point between 1 and
x1, 80 X is about 1.1 (very roughly). Newton’s
Method will converge to the zero at x = 1.
Starting with o = —2, Newton’s method con-
Graph of g(z) = tan~! a: verges to x = —1.
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50.

51.

52.

53.
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vvvvv

-2

Starting with x¢p = 0.4, Newton’s method con-
verges to x = 1.

It wouldn’t work because f'(0) = 0. zo = 0.2
works better as an initial guess. After jumping
to x; = 2.55, the sequence rapidly decreases
toward x = 1. Starting with zq = 10, it takes
several steps to get to 2.5, on the way to z = 1.

ey = 1 fzn)
f'(xn)
x% —c
= x’ﬂ, — _—
2z,
x% c
=z, — v
2x, 2z,
Iy c
2 2,

1 + c
=—|x, J—
2 Ty
If 2o < +/a, then a/xzy > v/a, so xg < Va <
a/xg.

The root of ™ — c is /¢, so Newton’s method
approximates this number.
Newton’s method gives

Tit1 = T o), m e

() onal

= —(nz; —x; +cx} ™),

as desired.

(a) f)=a2®>—-2—-1

flx)=2z-1
At(EO:g ,

3 3 1
f(mo)—<2 *5*1:*1
and

By Newton’s formula,
flzg) 3 -3 13
2

r1 = X9

© fwe) 2

(b) f(z)=2*—-2—1
flx)=2x—-1

By Newton’s formula,

f(zo)
f'(o)

T = Ty —

By Newton’s formula,

f(xo)

f' (o)

-2 8 1 89

X1 =g —

T 575 5

o] oo

(d) From part (a),
sincexrg = & hence z; = iy
Fy’ Fs

From part (b),
since xg = & hence z; = =9
Fy Fyg

From part (c),

. Fys F1q
since rg = — hence 1 = —.
Fy Fio
. . 1
Thus in general if zy = nt , then 1 =

n
F2n+1

implies m =2n+ 1 and k = 2n
2n

F,
e ven g = —, then lim will be
Gi 2 hen li 1 will b
n—oo n
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54.

55.

56.

57. W(x
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the zero of the function f(x) = 2?2 —

x — 1 which is 1.618034. Therefore,
. Fn+1

1 = 1.618034

im Ia 61803

n— oo n

The general form of functionf(x) is,
1 1 1
Hence a2 ) )
2
f(z) = f./'(x) = E for o <% < gy
By Newton’s method,
_3 S _
XrK = — — =

3
(3 4
3
8

LW
—

3/5)

8/5)
Similarly, x5 = % = % and r3 = —

Continuing this, we get, x,_1
also be observed that, for each f,(z)
(1/2n) + (1/2n+1) 3

2 = on+1’
Zo 3 .
Ty = 27 = W m Wthh
is the zero of F. Therefore Newton’s method
converges to zero of F.

e
—

s
= 2731 It may

= .’17n+1 =

For small x we approximate e by x + 1

(see exercise 44)
LeZﬂ'd/L _ 6727rd/L

e2mnd/L + e—2md/L

o0 (1 2]
(150 + (1~ 59)

S8mhex ™
If f(x) = ehc/(kTz) _
approximation we see that
h -5
flz) =~ &T* = 8rkTz™*
1+ 57%) -1
as desired.

, then using the linear

B PR?
(z) = mv Lo
.\ —2PR?
Wia) = (R+x)3
L(x) = W(xo) + W' (20)(x — o)

PR? —2PR2
~@wmroe <<R+O>3> w=0)

=0

=P - —
R

58.

59.
60.

61.

62.

1.

2P
L(z) = 120 — .01(120) = P — Tx
190 2-120x
2x
0l="
R
z = .005R = .005(20,900,000)
= 104,500 ft

If m = mo(1 —v?/c*)'/2, then

m' = (mo/2)(1 — v?/c?)"%(=2v/c?), and
m’ = 0 when v = 0. The linear approxima-
tion is the constant function m = mg for small
values v.

The only positive solution is 0.6407.

The smallest positive solution of the first equa-
tion is 0.132782, and for the second equa-
tion the smallest positive solution is 1, so the
species modeled by the second equation is cer-
tain to go extinct. This is consistent with the
models, since the expected number of offspring
for the population modeled by the first equa-
tion is 2.2, while for the second equation it is
only 1.3

The linear approximation for the inverse tan-
gent function at x = 0 is
f(x) = f(0) + f(0)(z = 0)

210N =1 i
tan™" (z) ~ tan™" (0) + 175

(z —0)
tan~1(z) =~
Using this approximation,

b — tan-! (3[1 —d/D] - w/2>

D—d
_3[1—-d/D]-w/2
¢~ D—d
If d = 0, then ¢ =~ %. Thus, if w or D
increase, then ¢ decreases.

d'(0) = D(w/6sin )
d(0) = D(1 —w/6) so
d(0) ~ d(0) + d'(0)(6 — 0)
=D(1 —w/6)+0(0) = D(1 —w/6),
as desired.

3.2 Indeterminate Forms and

L’Hopital’s Rule

T+ 2

1m
z—-2722 -4
_ T+ 2

= e =)




3.2. INDETERMINATE FORMS AND L’HOPITAL’S RULE

10.

. lim

. lim

lim&
z—=2 12 — 3z + 2
:hmw
z—=2 (x — 2)(z — 1)
Clim 2y
=21 — 1

32242
lim
z—oo ¢ — 4
. 3+ 32
= lim T
:xv—)ool—w—2

z+1

I is type —;
soo 22 + Az +3 P oo

we apply L’Hopital’s Rule to get

li =

o2t _

is type 9
t—0 18 WPe
we apply L’Hopital’s Rule to get

lim 7% (€2t _ 1)

) 0
tgr(l)e?)t—l 1s type o
we apply L’Hopital’s Rule to get

% (sint) cost 1

——— = llm — =
d (.3t 3t
t—0 5 (e — 1) t—0 3e 3

. tan=1t ¢ 0
im is e —;
t—0 sint YPe
we apply L’Hopital’s Rule to get
d -1 2
= (tan™ "t 1/(1+1t¢
lim M — lim M -1

t—0 % (sin t) t—0 cost

sint

0

is type —;

t—0sin~ ¢ yp 0
we apply L’Hopital’s Rule to get

lim % (sint) cost B

A |
=0 4 (sin™'t) =0 1/(vV1 —12)

sin 2x

. 0
m — 1s type —;
z—m Sinx 0

we apply L’Hopital’s Rule to get

2cos2x  2(1)
im
T—T  COSXT -1

cos™!

lim
-1 12 —
7, denominator goes to 0).

&€ .
T s undefined (numerator goes to

11.

12.

13.

14.

15.

16.

17.

159
i sinz —x . ¢ 0
Jim 75— istype
we apply L’Hopital’s Rule thrice to get
cosx — 1 —singx

= JIlm ——— = l1m

xz—0 3x2 z—0 6x

lim — cosx 1
= lim =—=

z—0 6 6
I tanx —x . ¢ 0
im —— i —;
L 3 S type 0
we apply L’Hopital’s Rule to get
o osec’z—1
lim ——.
x—0 31’2

Apply L’Hopital’s Rule twice more to get
2

. 2sec®xtanz
lm ———
x—0 6x
o 4sec?ztan®z + 2sectz 1
= lim = -.
x—0 6 3
V-1 . WVEt—1 i+l
im ——— = lim .
t—1 t—1 t—1 t—1 Vi+1
(=1
=1 (t—1)Vt+1
I 1 1
=lim— = -
t=1+/t+ 1 2
e e G

we apply L’Hopital’s Rule to get
d 1
£ (Int =
7;”( ):hmizl
t=1 & (t — 1) t—1 1

. a o0
lim — is type —;
r—o00 ¥ o0

we apply L’Hoépital’s Rule thrice to get

. 3a? . bz
lim — = lim —
rx—oo er rz—o00 et
= lim — =0
z—o0 e¥
. v 00
lim — is type —;
T—00 I 00

we apply L’Hoépital’s Rule four times to get
X xr

. € .
lim — = lim
T—>00 x3 T—00 12372
. e’ e*
= lim — = lim — = 0.

100 2r mlﬁoo 24

. rcosx —sinz . 00

limg o ————5—— is type —;
rsin® x e

we apply L’Hopital’s Rule twice to get

CoSx — rsinx — cosx

hmm’*)O . 92 .

sin” x + 2z sinx cos T

. —xsinz

= lim — -
=0 sin x (sin x 4 22 cos z)
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18.

19.

20.
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—Z

im —
z—0 sinx + 2z coix

lim -
Iqo cosT + 2cosx — 2xsinx

3

Rewrite as one fraction, we have

. 1 . rcosr —sinx
lim | cotx — — = lm|———F—
z—0 €T z—0 Trsmax

which is of type g

we apply L’Hopital’s Rule to get
<cosac —xsinx — cosx)

= lim

z—0 sinx 4+ x cosx

d
xsinz
= lim dz (= )
z=0 \ < (sinz + z cosz)

< —sinx — zcosx

= lim

. =0
COSZT + CcosST —xsmx)

Rewrite as one fraction, we have

. rz+1 2
lim — —
z—0 T sin 2x
. (x+1)sin2z — 22 , 0
= lim - is type —;
z—0 T sin 2x 0

we apply L’Hopital’s Rule four times to get

) (2 +1)sin2z — 22
lim L -
=0 4= (zsin 2x)
B sin 2z + 2(x + 1) cos 2 — 2
z—0 sin 2z + 2z cos 2z
_ 4 s1n2m+2(x—|—1)cos?x—2)
= lim
z—0 (sin 2z + 2x cos 2x)
i 2 cos 2z+2c082x74(x+ 1) sin 2z
= lim
z—0 2cos2z + 2cos 2z — 4x sin 2z
_ 4
=1
1
(14 525)
lim (tanx + P
=5 Tr — bl

In thls case the limit has the form (oo - 00).

. sin x
Rewrite tanz as and then as one frac-

(O

)
"3

. sin x 1
= lim + —
e—F \cosTr T — 35

. (x—5)51nx—|—cosx . 0
= lim is type =
z—% (:v — 5) cosx 0

we apply L’Hopital’s Rule to get

(sinx + (:1: — 5) coszT — s1nx>

COST — (3? — 5) sinx

tion, we get

lin}r (tan T+

z—%

= lim
TG

21.

22.

23.

24.

25.

26.

27. lim

28.

(x — g) cosx
= hnqr —— =0
z—=3 \ COST — (m— 5) sinz
Inz 0
lim —- is type —
T—00 Jj 0,9]
we apply L’Hopital’s Rule to get
.1/ 1
lim *— = lim — =
T—00 2(E T—>00 2.’E2

. Inx . ¢ 00

S, 5 e tvpe

we apply L’Hopital’s Rule to get
1

lim % = lim — =0.
r—00 \/T

.t 00
lim — is type —
t—ooe (0. 9]
we apply L’Hopital’s Rule to get
d
7 (1) 1 1

hrgO T is typea

t
we apply L’Hoépital’s Rule to get
1 1
iy 295
t—o00 _ L
t2
In(Int
lim n(In?)
t—1 Int
As t approaches In from below, Int is a small
negative number. Hence In (Int) is undefined,
so the limit is undefined.

lim (sm (sint)

= lim cos— =1.
t—o0 t

0
is type —
t—0 sint P 0

we apply L’Hopital’s Rule to get

lim (cos (sint) cost) 1

t—0 cost
. sin (sinh ) | ; 0
—— 2 ) is e —
z—0 \ sinh (sin ) YPED

we apply L’Hopital’s Rule to get
I cos (sinh x) cosh z
cosh (sinx) cos z

. <sinxsinhx>
lim | —m——

x—0

z—0 \ cosx — coshz
. 2sinx —e* + e %
= lim
z—0 \2cosx —e* —e™®
2¢"sinz —e®* + 1) . ¢ 0
is e —
2e* cosx — e2r — 1 P 0
we apply L’Hopital’s Rule twice to get
< 2¢% cos T + 2e%sinx — 2e%* )

—2e*sinx + 2e* cos v — 2e2*
. cosx +sinx — 1Y . 0
=lim (————— ] is type =

= lim
x—0

lim

z—0 \cosx —sinz — 1 0
. —sinx + cosx

=lim (—mm | =-1
z—0 \ —sinxz — cosx
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29.

30.

31.

32.

33.

34.

INDETERMINATE FORMS AND L’HOPITAL’S RULE

00
we apply L’Hopital’s Rule to get
1/x
lim
z—0+ —csc2 x

= lim ( sinx -

z—0t

Si;“) — (0)(1) =0.

T
lim i —
z—0+ Inx

nominator goes to —oo).

lim (\/352 +1- ac)

(numerator goes to 0 and de-

T—00
Vrz+1l+z
= lim (\/xz—kl—x)i
$—)DO< ‘/x2+1_~_m

= lim <x +1—a >
T—>00 ‘/x2 +x

Inz _
x

T = —o00 since the

Iim Inz — 2 = lim
Tr—r o0 T—r0o0

x
numerator goes to —1 and the denominator

goes to 07. (Recall Example 2.8 which shows
Inz

lim — =0.)

r—0o0 I

1 x
Let y = <1+>
x
1
=lhy=zln (1—1—). Then
x

1
lim Iny = lim xIn (1—1—)
x

In (141
= lim 7n( + 1)
T—00 1/x
i (—22)
= lim &
T—00 —1/x2
= lim T =L
z—oo | 4 =

Hence lim y = lim e™Y =e.

Notice that the limit in question has the inde-
terminate form 1°°. Also, note that as x gets

1 z+1 r+1
arge = .
ol =2 T2 -2
Vr2—4
1
Define y = (w—i— ) . Then
r—2
1
Iny =+vz2—4In <x+2) and
T —

lim Iny = hm
r—00

2

(v ()

35.

36.

37.

38.

39.

40.

161
<x + 1>
In
. z—2
= lim | ———
r—r 00 513274
This last limit has indeterminate form —, so

we can apply L’Hopital’s Rule and simplify to
find that the above is equal to

3(x2 — 4)3/2
lim M and this is equal to 3. So
z—oo —x3 + 22 + 21
lim Iny = 3.
xr—r0o0
Thus lim y = lim ™Y = e® ~ 20.086.
T—r00 Tr—r0o0

Jn (- 2)
=i ()
o (W—x>

we apply L’Hopital’s Rule to get
o 3(5—2) 2=

lim <

S I —2) (1)

gy VO E 8

B r—1 5—=x B 2

Let y = (1/x)". Then Iny = xIn(1/z). Then
lim zln(l/xz) = 0, by Exercise

27. Thus hm y= lim ™Y =1.
0+

z—0t

Let y = lim+(cos 2)'/*. Then
-0

1
Iny= lim —Incosz
z—0t T
In(cosx) . ; 0
—— is type =
z—0t x P 0
so apply L’Hopital’s Rule to get

z—0t 1
Therefore the limit is y = €® = 1.

t
lim =3y lim (t= 3)t
t—oo \ t + 2 t=o0 ({ +2)

. t

o, 0= im0
- t . t

e +3) Jim (143)

. _ 3\t

tlirgo (1 + 73) e -5
= o0~ a2 —¢

Jm (1)

t—3\" —3
lim = lim f
t=vo0 \ 2t + 1 100 \2+ L
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' (1 - %)t e=3 we apply L’Hopital’s Rule to get
:thm 7 —thm 912
00 1/2 —oo 2te
ot (1+ ) i JrCoSnE _ n
z—=0mecosme  m
41. L’Hopital’s rule does not apply. As z — 0, the sin 2 97 cos 12
numerator gets close to 1 and the denominator 50. (a) }12% 2 }13}] o

is small and positive. Hence the limit is oco.
= lim cosz? =1,

ev — 0 e* =0 .
. — — Do . sinz
42 ;lli% x2 is type g, but hmo is not, so which is the same as lim .
L Hopltal s Rule does not apply to this limit. =0 w
. . 1—cosz?
43. L’Hopital’s rule does not apply. As z — 0, the (b) ili% A
numerator is small and positive while the de- ~ 2rsina?  sina?
nominatorZioes to —oo. Hence the limit is 0. = alclgb T4l Py 922
Also lim ———, which Is lim 22, i f L. sinz” 1
so lim 3/ which equals lim 27, is not o _ 5}011)% =5 (by part (a))

0
the form 0 so L'Hopital’s rule doesn’t apply

hil
here either. e
44. 1 sinx . ¢ 0 but i cosx ¢ I 1—cosx sin x 1( ) 1
. — im = lim ==(1)=<
xl—r>n xr2 15 type 0’ v aclg%) T 18 Dot, 80 z—0 2 =0 2z 2 2
L’Hopital’s rule does not apply. This limit is so both of these limits are the same.
undefined because the numerator goes to 1 and (c) Based on the patterns found in exercise
the denominator goes to 0. 45, we should guess
: 3 1— 3 1
45. lim e lim S 1 and lim e =.
s—0+ /T =0 T =0 6 2
In this case limit has the form o L’Hospital’s (¢ +1)(2 +sinz)
Rule should not be used. 51. (a) 2(2 + cosz)
—3/2 T
46. lim = is type i. In this case (b) —
z—0+ In — e
L’ Hospltal’s Rule should be used. © 32+ 1
¢
2 _ 3 1 Xr — 7
47. lim % = 00. In this case limit has 3 _ Sz
r—oo  tan (d)
the form oo. So L’Hoéspital’s Rule should not 1422
be used.
) 52. (a) lim =z —Inx = oo (see exercise 32).
€T T—00

1
48. lim n( ) is type —. So L’Hospital’s Rule
z oo’

r—o00 e /3

(b) lim va?+1— 2 =0 (see exercise 31).

should be used. T—00
in3 c¢) lim Va2 +4z — 2
49. (a) Starting with  lim ST we cannot © &—>00
z—0 sm 2z’ = lim (V22 + 42 — 2)
“cancel sin”to get hn}) —. We can cancel zlﬁoo dx
r— — 1
the 2’s in the last limit to get the final an- or00 V2 i dxr + o
swser of 3/2. The first step is likely to give _ g 4:El
im

a correct answer because the linear ap-
proximation of sin 3z is 3z, and the linear

U (Va? ¥ A+ x)f
x

approximation of sin 2z is 2z. The linear — lim 4 —9
approximations are better the closer x is zeo f1 44 4 ’
to zero, so the limits are likely to be the L

where to get from the second to

sin na the third line, we have multiplied by
(b) lin}) : is type 9; (Va? +4z + )
z—0 sin mx —_
(Va2 + 4z + x)

same.
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53.

54.

55.

56.

57.

58.

INDETERMINATE FORMS AND L’HOPITAL’S RULE

lim e* = lim 2" = 0o

Tr—r00 T—r00
xT
. € . . .
lim — = oo0. Since n applications of
r—o0 M

L’Hopital’s rule yields

z—00 Nl
Hence e* dominates x".

lm Inz = lim 2P = oo.
xTr—r00 Tr—r 00

. Inz 00
lim — is of type —
z—oo P 00

we use L’Hopital’s Rule to get
1

1
lim 7 = lim — =0 (since p > 0).
T—00 pxp— T—00 pxp

Therefore, P dominates In x.

lim (e% —t3) Since ez dominates 3. So
t—00

lim (e% —t3> =00

t—o0

lim VT —Inz
r—00

we apply 1L’Hé}i)ital’s Rule to get

T —2

lim <2fl >= Jim (”” ﬁ)

T—00 —_— ZT—>00 x
2V

2
= lim (1-—=)=1.
s (1- %)

In (333 + 22 + 1)
z—oo In(22+x+2)
we apply L’Hopital’s Rule
((idz (ln (acg + 2z + 1)))

% (In (2?2 + 2+ 2))

32242
BT r34+2x+1
= Jm (2

z24x+2

3zt + 323 + 822 + 20 +4\ 3
<2x4—|—m3+4x2+4x—|—1) 2
In general, for numerator and denominator the
highest degee of polynomials p and ¢, such that
p(z) > 0 and g(z) > 0 for x > 0,

should be the lim 2@
00 1n(q(z))

. 00
1s type —.
00

lim

= lim
Tr—r 00

In (6395 —i—x) . 00
z—o0 In (€27 + 4) s
we apply L’Hopital’s Rule

o ( (n <e3x+x>>>

s \ L (n(e +9)

3e3% 41
= lim ( e te >
z00 \ _2e2%

e2r 44

. (3659” + 12e3% 4 27 4 4)
= lim -

3
2

500 2e5% 4 2xe2w

59.

60.

61.

62.

63.

163

In general,when the degree of exponential term
in the numerator and dggominator are differ-
ent, then the lim M

e T (e + q(a))
mials p and g and positive numbers. k£ and c
will be the fraction of degrees that is %

for polyno-

f(z)

— 0, so if lim ——= =L
20 g(x)

If  — 0, then 22

2
then lim LQCQ) = L (but not conversely). If
20 g(x?)

a # 0 or 1, then lim f(@)

involves the be-
r—a g(l’)

2
x
havior of the quotient near a, while lim 1 2)
z—a g(x?)
involves the behavior of the quotient near the
different point a?.

Functions f(z) = |z| and g(z) = x work.

x
lim M does not exist as it approaches —1
x—0 g(;L‘

from the left and it approaches 1 from the

2
right, but lim 1) =1.
-0 g(z2)

2.5(4wt — sin 4wt)

w—0 402
2.5(4t — 4t cos dwt)

= lim

w—0 28(4)

2.5(1 in 4

— lim 5(16t* sin dwt) _o

w—0 8

) ™
2.5 — 2.5 sin(4wt + 5)

ul)lg}] 12 is type §;

we apply L’Hopital’s Rule to get
—10t cos(4wt + F)

lim
w—0 8w
2 o T

B 40t sin(dwt + 3) o
= lim = bt“.

w—0 8

5]

1.5:

n

0.55

o]

o) 0.1 0.2 0.3 0.4 0.5 0.6

The area of triangular region 1 is
(1/2)(base)(height)
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64.

65.

CHAPTER 3. APPLICATIONS OF DIFFERENTIATION

= (1/2)(1 — cos8)(sinb).
Let P be the center of the circle. The area of
region 2 equals the area of sector APC minus
the area of triangle APB. The area of the
sector is 0/2, while the area of triangle APB
is
(1/2)(base)(height)
= (1/2)(cos6)(sin0).
Hence the area of region 1 divided by the area
of region 2 is

(1/2)(1 — cos H)(sin 0)
0/2 — (1/2)(cos0)(sin )
_ (1 —cosf)(sind)
~ #—cosfsinf
sinf — cosf#sin 6

= 79 _cosfsinf
_ sinf — (1/2)sin 260
0 — (1/2)sin 20
sin@ — (1/2) sin 260
0 —(1/2)sin 26
cos 6 — cos 20

Then limy_,o

= lim
60 1 —cos26
. —sinf + 2sin 260
=lm—————
0—0 2sin 26
. —cosf +4cos20
= lim
6—0 4 cos 260
-1 +4(1) B §
41 4
160z~°4 4+ 90

lim ———
w0+ 8z 04 4 100 .,

. 160 4 90z" 160
— L sqog0r — g 20 e
is no light, the pupils will expand to this
size. This is the largest the pupils can get.

1602794 +90 90
zli)n/olo m = E =0. As the amount

of light grows, the pupils shrink, and the size
approaches 6mm in the limit. This is the small-
est possible size of the pupils.

(a) V = /40mgtanh (\/32-t), therefore
lim V

t—o0
— -9 ¢
40m — e 40m
= hm \/40m,
(e\/ 40mt+€ 40mt>
(1 —e —2y 4Umt>

t

40mg lim

t—>oo

= +/40mg

ast — oo; 2

S,
1+e 2V om

Lt—)oo and

40m

e 2V @mt — 0 This means, when the time
increases indefinitely, its velocity reaches

/40mg.

66.

(b) limV

m—0

1. \/407 eV ﬁtfei\/ ﬁt
= lim mg
m—0 e,/ﬁt_keﬂ/ﬁt

1— 6_2\/%75
= lim /40mg [ —————
m—0 ]_ + 6_2 40771
1— _2\/ 40m t
hm v/40mglim | ———
m—>0 1 +e” ﬁt
=0

2/ -t — oo and
e~2Vmmt 5 0. This means, when the
mass is negligible, its velocity is 0.

as m — 0

(¢) lim V
m—co
eV ﬁt_ei\/ ﬁt
= lim 4/40mg
m—o0 e‘/wimt{-e_‘/ﬁt

. 2/ 2om —1
= am_ v/ 40mg (ezm +1>
as m — 00; 24/ g5t — 0 and
eVamt 1
. 1 GE R
= (ez\/gt +1> e (1) A0mg)

_ . 2V b
=(1/2) (2\/2:31t)—>0 ( 24 t 1) (2v51)
— /gt

This means, when the increases indefi-
nitely, its velocity reaches /gt.

c—00

)

lim § = lim {83”02 {(152 +

2[(q2416¢2)%/? —64c?
c— 00
d24+16c2)*” —64c?
= g5 lim [( <) c} is type E;
c—00 o0

we apply L’Hopital’s Rule to get
3 1/2
5 (@ +16¢%) 7" (32¢) 192(;2]

=2rlim ¢ [(d®+16¢%)* - 4¢?]
Cc— 00
which on rationalising gives
d? +16¢%) — 16¢2 2
o tim CLEF C)2 ] _
S (@ 16 ac] A




3.3. MAXIMUM AND MINIMUM VALUE

3.3 Maximum and Minimum
Values

% on (0,1)U (1, 00)

, —2x

@)=

x = 0 is critical point.

f(0) = —1 is absolute maximum value but
0 is not included. Hence f has no absolute
extrema on interval (0, 1) U (1, 00).

1

flx) = a0 (-1,1)
—2x
!
)= —"
0=
x = 0 is the only critical point.
f(0) = —1 is absolute maximum value of

f(x). Hence f has no absolute minimum
on interval (—1, 1)

No absolute extrema. (They would be at
the endpoints which are not included in
the interval.)

f@) = —— on {_éﬂ

(22 — 1)

r = 0 is critical point.

f has an absolute maximum value of
f(0) = —1. f assumes its minimum at

two points x = £— and minimum value is
1 1 4
1(-3)=7(2) =5

f(l') = 2 on (_007 1) U (1700)
(x—1)

2x(x —1)? — 222 (z — 1

iy = 2= 20t @
(z—-1)

x = 0 is critical point.
f has an absolute minimum value of
f(0) = 0 at = 0 and no absolute maxi-
mum occurs.

72

S = e (1D

Fl) = 2a(x —1)% — 2x42 (x—1)
(z—1)

x = 0 is critical point.

f has an absolute minimum value f(0) =

0 at x = 0 and there is no absolute maxi-

mum.

=0

=0

The function does not have a maximum
or minimum. The minimum would be at
2 = 0 (not included in this interval) while

165

the asymptote at x = 1 precludes an ab-

solute maximum.
2

(d) f(z) = ——5 on [-2, -]
(z—1)
o 2a(r— 1) =222 (z — 1)

fl(z) = (@ — 1)4

_ —2x(x—1)

=L <0on [-2, —1]
f(z) is decreasing function on [—2, —1] .
f(z) is maximum at x = —2 and mini-
mum at x = —1.

(a) f(x) =a?+5x—1
fl(x)=2x+5
2r+5=0
x = —5/2 is a critical number.
This is a parabola opening upward, so we
have a minimum at * = —5/2.

(b) f(x) = -2+ 4z +2
f'(x) = —2x+4=0 when z = 2.
This is a parabola opening downward, so
we have a maximum at x = 2.

(a) f(x)=a% -3z +1
f(z) =322 -3
=3(z2-1)
=3xz+1)(z—-1)=0
x = %1 are critical numbers and f(1) =

-1, f(-1)=3.
This is a cubic with a positive leading co-
efficient so x = —1 is a local max, x = 1

is a local min.

(b) f(z) = —23 + 622 +2
f'(z) = =322+ 120 = —3x(x +4) = 0
when z = 0 and z = —4.
f(0) =2, f(—4) = 162.
This is a cubic with a negative leading
coefficient so x = 0 is a local min and
x = —4 is a local max.

(a) f(x) =23 —32% +6x
() =322 —6x+6
322 62 +6=3(2>-20+2)=0
We can use the quadratic formula to find
the roots, which are x =1+ +/—1. These
are imaginary so there are no real critical
points.
(b) f(x)=—2®+32% - 3z
' (x) =322+ 62 -3
:3(—3324—250—1)
= —3(962 —2x+1)
= —3(x—1)
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f'(z) =3(x—1)°= 0 when z = 1.
Since f(x) is a cubic with only one critical
number it is neither local min nor max.

=dz(z—-1)(z+1)
f'(x) =0 when = = 0, +1.
r = 0, £1 are critical numbers. z = 0
is local maximum and z = =+1 are local
minimum.

=22 (42 —9)
fl(x )f()whenxf()
x =0, § are critical pomts T = 4 is local
mlnlmum and x = 0 is neither max nor
min.

. fle)=a2* -3z +2
f’( )—43: — 922
4a3 — 92% = 2%(42 - 9) =0
x = 0,9/4 are critical numbers

107

|
?lllllflllnl

x =9/4 is a local min; z = 0 is neither a local
max nor min.

. flz) =2 +62% -2
f'(z) = 423 + 122 = 0 when z = 0 (minimum).

4—

[TTTTTTNPTI/IT T TTTT]
-2 -1 _ 1 2

. fx) = 23/% — 4ot/

1
@)= gim ~ an
If © # 0, f/(xr) = 0 when 3234 = 421/4
x =0, 16/9 are critical numbers.
x =16/9 is a local min, = 0 is a local maxi-
mum.

Lo
Lo
N
Lo
Lo
I
Lo
Lo
[.

o

| IR °
it o

wllll?llll‘fllll’?llll

. flx) = (m2/5 — 3951/5)2

2 3
/ _ 2/5 _ 1/5 _
Pla) =2 = 307%) (5 - =5
f'(x) = 0 when z = 3% (minimum) and
5
=5 (maximum).

f'() is undefined when z = 0 (minimum).

b berr b b b b

LS e e e e e e B B L o |
50 100 150 200 250 300

o
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11.

12.

f(z) =sinz cosz on [0, 27]
f'(z) = cosxcosz + sinz(—sinx)

=cos?z —sin’ x

cos?x —sin?z =0

cos?z =sin?z

cosx = *sinx

x=m/4,3n/4,57/4,Tr /4

are critical numbers.

x = w/4,57/4 are local max, ¢ = 3n/4,7r/4
are local min.

Also z = 0 is local minimum and z = 27 is
local maximum.

f(z) =/3sinz + cosx

f'(z) = V3cosz—sinz = 0 when tan(z) = /3
or x = /3 + kn for any integer k (maxima for
even k and minima for odd k).

X
3 4 5
e bec b e b e/

N

PUNEERENE!

-

o

=
]
2 -2
Note that = —2 is not in the domain of f.
2z)(z 4+ 2) — (2% — 2)(1
f,(m):( )(z +2) (2 )1
(x+2)
22 Az — a4 2
B (x+2)2
_a:2—|—4a:+2
(2 +2)

f'(z) = 0 when 2% 4+ 42 4+ 2 = 0, so the critical
numbers are x = —2 + /2.

167

x:—2+\/§isalocalmin;x:—2+\/§isa
local max.

p0—
o]
[TT T T 7T w;/r|||||||||
-10 -5 B 5 10
/\-10:
P
22—z +4
14. = —
fl) =T 2
(z—1)2z—-1)—(z* —2+4)
! —
f (1‘) - ((L‘— 1)2
_(x=3)(x+1) _0
o (z—-1)2
when z = —1 (maximum) and z = 3 (mini-

mum). f'(z) is undefined when z = 1 (not in
domain of f).

FTTTTTTTTY [TTTTTTTT

-10 -8 -6 -4 2 4 6 8 10
—10—

—-20—

f'(z) = 0 when e = ¢7%, that is, x = 0.
f'(z) is defined for all x, so x = 0 is a critical
number. x = 0 is a local min.
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f'(z) is undefined at & = 0 (neither)

[TT T T[T IO T T T T[T 1T 1]
-5.0 —2.5 o 2.5 5.0 -10 -8 —
—2.

—5.

16. f(z) = re~2*
f'(z) = e — 2ze7%" = 0 when z =  (max-

imum).
5.0
19. f(z) =22vx + 1 =2zx(x+1)/2
e 4 s s s 4 s Domain of f is all z > —1.
[ Ll f/(x):2($+1)1/2+2$(%(x+1)71/2)
2@+ 1)+
 Vz+1
3z +2
Vot
f'()=0for 3z +2=0,z=-2/3.
x = —2/3 is critical numbers.
f'(z) is undefined for x = —1.
17. f(z) = 243 + 421/3 4 4272/3 =
f is not defined at x = 0. 20
4 4 8
roy o130 % 273 O _5/3
fl(z) = ix + 3% 3% "
= gx_5/3(x2 +x—2) .
4
= 3P - D@ +2) :
xr = —2, 1 are critical numbers.
= —2and z = 1 are local minima. LTLTLT _‘2‘_? R
50—
‘“’i x = —2/3 is a local min. x = —1 is an end-
. point and local maximum.
30—
10
x
g 20. = —
RCET 22
2?2+ 1 - ——
f'(w) = -
18. f(z) = 27/3 — 2821/3 22 +1
7 28
fl(x) = §x4/3 - gx”/?’ = 0 when z = —2 BCEE # 0 for any z, and f(z)

(local maximum) and z = 2 (local minimum). has no critical points.
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21.

22,

Because of the absolute value sign, there may
be critical numbers where the function 2 — 1
changes sign; that is, at * = +£1. For « > 1
and for x < —1, f(x) = 2% — 1 and f/(z) = 2=,
so there are no critical numbers on these in-
tervals. For —1 < x < 1, f(z) = 1 — 2% and
f'(z) = —2x, so 0 is a critical number.

The graph confirms this analysis and shows
there is a local max at x = 0 and local min
at x = £1.

1
f(z) = /(2 — 322) = (¢® — 32?)°
, 1 322 —6x 1 322 —6x

f ([L‘) = g . 3 = g . 3

(23 — 322)3 (23 — 322)3
when x = 2.
x = 2 is critical number. x = 2 is local mini-
mum. x = 0 is local maximum.

23.

24.

25.

169

First, let’s find the critical numbers for x < 0.
In this case,

flx)=22+22 -1

flz)=224+2=2(x+1)

so the only critical number in this interval is
r = —1 and it is a local minimum.

Now for z > 0,

flz) =2 -4z +3

fllx)=20—-4=2(x—-2)

so the only critical number is x = 2 and it is a
local minimum.

5

Finally, since f is not continuous and hence not
differentiable at x = 0. Indeed, z = 0 is a local
maximum.

fl(x) = cosz for —m < z < m, and f'(z) =
—sec? x for |z| > 7.
f'(x) = 0 for x = —n/2 (minimum) and
x = /2 (maximum).

10.0—

7.5

PP AT T T T T INT T T IS [T T TN
_2. oo 25 5.0 4 10.0
_2.5 X

J'(x) is undefined for z = (2k+1)7 for integers
k # —1 or 0 (not in domain of f).

fx)=23 -3z +1
fl(z) =322 -3=3(22-1)
f'(x) =0 for z = £1.

(a) On [0,2], 1 is the only critical number.
We calculate:
£0) =1
f(1) = —1 is the abs min.
f(2) = 3 is the abs max.
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(b) On the interval [—3,2], we have both 1
and —1 as critical numbers.
We calculate:
f(=3) = —17 is the abs min.
f(= ) = 3 is the abs max.
f() =
f(2)= 3 is also the abs max.
26. f(x)=a* — 822 +2
f'(z) =423 —162 = 0 when z = 0 and = = +2.

(a) On [-3, 1]:
f(=3) =11, f(=2) = =14, f(0) = 2, and
f(1) =-5.

The abs min on this interval is f(—2) =
—14 and the abs max is f(—3) = 11.

(b) On [-1, 3]:
F(=1) = —5, f(2) = —14, and f(3) = 11.
The abs min on this interval is f(2) = —14
and the abs max is f(3) = 11.

27. f(z) = 2%/3
f/ I) _ Sx—l/S — 3%\/5
f'(z) # 0 for any «, but f’(x) undefined for
x =0, so x = 0 is critical number.
(a) On [—4, —2J:
0 ¢ [—4, —2] so we only look at endpoints.
( 4) = V16 ~ 2.52
(=2) = V4~ 1.59
So f(=4) = V16 is the abs max and
f(=2) = V/4 is the abs min.
(b) On [—1, 3], we have 0 as a critical num-
ber.
f(-1)=1

f(0) =0 is the abs min.
f(3) = 3%/ is the abs max.

28. f(z) =sinz + cosz
J'(z) = cosz —sinz = 0 when x = 7§ + k7 for

integers k.
(a) On [0, 27]:
and f(27) = 1.

The abs min on this interval is f(57/4) =

—+/2 and the abs max is f(7/4) = V2.
(b) On [r/2, «]:

fm/2) =1, f(m) = -

The abs min on this interval is f(7) = —1
and the abs max is f(7/2) = 1.

29. f(z)=e
f(z) = —2ze
Hence z = 0 is the only critical number.

(a) On [0, 2J:
f(0) =1 is the abs max.
f(2) = e~* is the abs min.
(b) On [-3, 2]:
f(=3) = e7? is the abs min.
f(0) =1 is the abs max.
f2)=e

30. f(x) = x26_4”3
f'(w) = 2ze”
x=1/2.

(a) On [-2, 0]
f(=2) =4e8, £(0) = 0.
The abs min is f(0) = 0 and the abs max
is f(—2) = 4eb.

(b) On [0, 4]:
f(1/2) =e72/4, f(4) = 16e~16.
The abs min is f(0) = 0 and the abs max
is f(1/2) = e 2/4.

3z2
z—3
Note thaéc x = 3 is not izrzlt)he domain of f.
, x(z —3) — 3z
f (:L') - (J} _ 3)2
622 — 18z — 322
(z —3)?
322 — 18z
(z—3)?
3z(x — 6)
(z —3)?
The critical points are x = 0, z = 6.

(a) On [-2,2]:
f(=2) = —12/5
f(2) =-12
f(0)=0
Hence abs max is f(0) = 0 and abs min
is £(2) = —12.

(b) On [2,8], the function is not continuous
and in fact has no absolute max or min.

4w _ fp2e=4 = () when z = 0 and

31. f(x) =

32. f(x) = tan"1(2?)
fl(x) = 1+x4:0whenx:0.
(a) On [0,1]:

f(0)=0and f(1) =n/4.
The abs min is f(0) = 0 and the abs max
is f(1) = n/4.

(b) On [-3,4]:
f(=3)~ 146, f(0) =0, and f(4) =~ 1.51.
The abs min is f(0) = 0 and the abs max
is f(4) = tan~! 16.
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x
33. = -
f@) =
oy Y 1o (@)
(2 +1)°
(2 4+1)-1—2z-(22) —2?+1
(2 +1)° (a2 +1)*
when x = £1.
x = %1 are critical numbers.
(a) On [0, 2]:
0
f(0) = 21 0 is the abs minimum.
2 2
2 = — = —
f2) 715
fay = 5 is the abs maximum.
(b) On [-3, 3]
&=
f(=1) = ~5 is the abs minimum.
f(y) = 3 is the abs maximum.
3
3)=—
=1
3T
4. = =
34. f(x) 22+ 16
) = (2% 416) -3 — 3z - (2z)
(22 4+ 16)°
(2% +16) -3 — 3z - (22)
B (22 + 16)° B
—3x2 + 48
= 7( ;—&-1_6)2 =0 when z = £4.
x
x = %4 are critical numbers.
(a) On [0, 2]:
f(0) = 02 _?_ T 0 is the abs minimum.
2 3 . .
f(2)= Pl 108 the abs maximum.
(b) on [0, 6]:
£(0) = 0 is abs minimum.
f4) = % is abs maximum.
9
6) = —

35. f'(x) = 423 — 62 + 2 = 0 at about = = 0.3660,
—1.3660 and at x = 1.

(a) f(=1)=-3, f(1)=1L
The absolute min is (—1,—3) and
the absolute max is approximately
(0.3660, 1.3481).
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(b) The absolute min is approximately
(—1.3660, —3.8481) and the absolute max
is (—3,49).

36. f'(z) = 62° — 122 — 2 = 0 at about —1.3673,
—0.5860 and 1.4522.

(a) f(=1) =1, f(1) = =3. f(-0.5860) =
1.8587.
The absolute min is f(1) = -3
and the absolute max is approximately
f(—0.5860) = 1.8587.

(b) f(=2)=21and f(2) =13. f(—1.3673) =
—.2165 and f(1.4522) = —5.8675.
The absolute min is approximately
f(1.4522) = —5.8675 and the absolute
max is f(—2) = 21.

37. f'(x) =sinz + xcosx =0 at x = 0 and about
2.0288 and 4.9132.

(a) The absolute min is (0,3) and the abso-
lute max is (£7/2,3 + 7/2).

(b) The absolute min is approximately
(4.9132, —1.814) and the absolute max is
approximately (2.0288,4.820).

38. f'(x) = 2z + e = 0 at approximately z =
—0.3517.

(a) £(0) = 1 and f(1) = 1 + e ~ 3.71828.
f'(z) # 0 on this interval, so the absolute
min is f(0) = 1 and the absolute max is
F(1) =1+ e ~ 3.71828.

(b) f(~2) ~ 4.1353 and f(2) ~ 11.3891.
£(—0.3517) = 0.8272.
The absolute min is approximately
f(—0.3517) = 0.8272 and the absolute
max is approximately f(2) = 11.3891.

39. On [—2,2], the absolute maximum is 3 and the

absolute minimum doesn’t exist.
5.0

[T T T T T90
-2 -1
X
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40.

41.

42.

43.

CHAPTER 3. APPLICATIONS OF DIFFERENTIATION

On (—2,2) minimum is 2 and the maximum
does not exist. (The maximum would exist at
the endpoints which are not included in the in-
terval.)

On (—2,2) the absolute maximum is 4 and the
absolute minimum is 2.

Absolute extrema do not exist because of the
vertical asymptote.

fl@)y=a3+cx+1

fl(x) =322 +c¢

We know (perhaps from a pre-calculus course)
that for any cubic polynomial with positive
leading coefficient, when z is large and posi-
tive the value of the polynomial is very large
and positive, and when z is large and negative,
the value of the polynomial is very large and
negative.

44.

Type 1: ¢ > 0. There are no critical numbers.
As you move from left to right, the graph of f
is always rising.

Type 2: ¢ < 0 There are two critical numbers
x = ++/—c/3. As you move from left to right,
the graph rises until we get to the first critical
number, then the graph must fall until we get
to the second critical number, and then the
graph rises again. So the critical number on
the left is a local maximum and the critical
number on the right is a local minimum.
Type 3: ¢ = 0. There is only one critical num-
ber, which is neither a local max nor a local
min.

The derivative of a fourth-order polynomial
is a cubic polynomial. We know that cubic
polynomials must have one root, and can have
up to three roots. If p(z) is a fourth-order
polynomial, we know that

lim p(z) =00

r—r—00

lim p(z) =

r—00

if the coefficient of z* is positive, and

is —oo if the coefficient of z* is nega-
tive. This guarantees that at least one of
the critical numbers will be an extremum.

® N
h

IN

TS S B W A B




3.3. MAXIMUM AND MINIMUM VALUE

45.

46.

47.

flx)=a+bx® +cx+d

f'(z) =322 +2bx + ¢

The quadratic formula says that the critical
numbers are

—2b + V4b% — 12¢

6

—b+Vb? -3¢

3 .
So if ¢ < 0, the quantity under the square root
is positive and there are two critical numbers.
This is like the Type 2 cubics in Exercise 53.
We know that as x goes to infinity, the poly-
nomial % + bx? + cx + d gets very large and
positive, and when x goes to minus infinity, the
polynomial is very large but negative. There-
fore, the critical number on the left must be a
local max, and the critical number on the right
must be a local min.

fl(z) = 322 +2bz + ¢ = 0 when z =

—2b + V4b% — 12¢

6
gether yields —2b/3.

Adding these values to-

fl@)=a*+ca®+1
f'(z) = 423 + 2cx = 22(22% + ¢)
So x = 0 is always a critical number.

Case 1: ¢ > 0. The only solution to 2x(2x2 +
¢)=01isz =0, so z = 0 is the only critical
number. This must be a minimum, since we
know that the function z* + cx? + 1 is large
and positive when |z| is large (so the graph is
roughly U-shaped). We could also note that
f(0) =1, and 1 is clearly the absolute mini-
mum of this function if ¢ > 0.

Case 2: ¢ < 0. Then there are two other crit-
ical numbers z = +1/—¢/2. Now f(0) is still
equal to 1, but the value of f at both new crit-
ical numbers is less than 1. Hence f(0) is a
local max, and both new critical numbers are
local minimums.

48.

49.

50.

51.
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f'(z) = 423 + 3cz®> = 0 when # = 0 and
x = —3c¢/4. Ounly z = —3c¢/4 will be an ex-
treme point (an absolute minimum). z = 0
will be an inflection point.

Since f is differentiable on (a,b), it is continu-
ous on the same interval. Since f is decreasing
at a and increasing at b, f must have a local
minimum for some value ¢, where a < ¢ < b.
By Fermat’s theorem, c is a critical number for
f. Since f is differentiable at ¢, f'(c) exists,
and therefore f’(c) = 0.

Graph of f(x) = 2?2 + 1 and g(z) = Ina:

5.0—

[TTT T[T AT T T 11T
-5.0 -2.5 0 25 5.0
X

%IIII?IHDI

hz)=f(z) —g(x) =22 +1—Inzx
Wz)=2x—-1/z=0

222 =1

v =+/1/2

T = \/m is min

fl(z) =2z

J(e) =1/

7 (ViR) =212 =3
()= =

So the tangents are parallel. If the tangent
lines were not parallel, then they would be
getting closer together in one direction. Since
the tangent lines approximate the curves, this
should mean the curves are also getting closer
together in that direction.

Graph of f(z) = 21
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52.

53.
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2z(z% +1) — 2%(2x
oy = 20 1) =)
(2 4+1)

- 2z

T (a2 +1)2
() = 2(x2 +1)2 — 22 -2(z2 +1) - 22

(22 + 1)1

C2(x® +1) [(z2 + 1) — 422

B (22 4+ 1)4

_2[1— 347

o (x2 4+ 1)3

" (x) =0 for z = :t%,

1
r=—-—— 0,00
g ¢ 0
T = is steepest point.

V3

2

Graph of f(x) =e *":

f(z) is steepest where f'(z) = —2ze™®" is
maximum.

2 2
f'(x) = —2e7% + 422%™ = 0 when =

+4/2/2. This is where f(x) is steepest.

With ¢ =90 and r = 1/30, we have
377/

P(n) = —|e_3. We compute P for the first few
n

values of n:

54.

55.

56.

3
3e~3
4.5¢=3
4.5¢73

3.375¢ 3

%W[\DHOH

Once n > 3, the values of P will decrease as
n increases. This is due to the fact that to
get P(n + 1) from P(n), we multiply P(n)
by 3/(n + 1). Since n > 3, 3/(n+1) < 1
and so P(n + 1) < P(n). Thus we see from
the table that P is maximized at n = 3 (it
is also maximized at n = 2). It makes sense

that P would be maximized at n = 3 because
(90 mins) <

30 goals/min | = 3 goals.

flp) =pm (1 —p" ™"
f'(p) = mp™ =1L —p)"

= o —m)(1 — pyrm
To find the critical numbers, we set f'(p) =0
which gives
mpm_l(l _ p)n—m

—p"(n—m)(1—p)" "t =0
mpmfl(l _ p)nfm

— p"(n—m)(1 - p)
m(l —p) = p(n —m)
m—mp=pn—pm
p=m/n.
Since this is the only critical number, f(p) is
continuous, f(0) = f(1) =0 and f(m/n) > 0,
p = m/n must maximize f(p).

n—m—1

y=2a°—42° —2+10, 2 € [-2,2]

y =5zt — 1222 — 1

x = —1.575, 1.575 are critical numbers of y.
There is a local max at z = —1.575, local min
at x = 1.575.

xr = —1.575 represents the top and x = 1.575
represents the bottom of the roller coaster.
y"(z) = 2023 — 242 = 42(522 — 6) = 0

x =0, :I:\/% are critical numbers of y'. We
calculate 3" at the critical numbers and at the
endpoints x = +2:

y'(0) = -1

v (2075) - a1/

y (£2) =31

So the points where the roller coaster is mak-
ing the steepest descent are x = :I:\/%7 but
the steepest part of the roller coast is during
the ascents at +2.

To maximize entropy, we find the critical num-

bers of H.
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57.

58.

59.

Hz)=—-lnz—14+n(l-2)+1=0

where Inz = In(1—z), or where z = 1—x. That
is x = 1/2. This maximizes unpredictablility
since for this value, errors and non-errors are
equally likely.

—t

W(t)=a-e b

as t — oo, —be~ " — 0, so W(t) — a.

W/ (t)=a-e " be !

as t — 0o,be”t — 0, so W'(t) = 0.

W/ (t) = (a-e b " bet) . bet
Fa e - (“bet)

=a-e " pet [het — 1]
W"(t) =0 when be™t =1

e t=b1
—t=1Inb""
t=1Inb

—1Inb

W/(Inb) = a-e b - be~Inb
=a-e () ~b~%=ae‘1

Maximum growth rate is ae™! when ¢ = Inb.

(K + [S) R — [SIR
R/([S]) =
(1) I+ (]2
function doesn’t have a true maximum, but

lim R = R,,. The rate of reaction ap-
[S]—o0

proaches R, but never reaches it.

™ £ 0. The

Label the triangles as illustrated.

A
B

X
tan(A+ B) =3/«
A+ B =tan"!(3/x)

tanB =1/z
B =tan"!(1/x)
Therefore,

A=(A+B)-B
A=tan"! (3/x) —tan~! (1/x)
dA -3/ B —1/2?
dv = 1+ 3/a7 1+ (1/2)
1 3
2241 2249
The maximum viewing angle will occur at a
((:ir}{tical value.

dzr

60.

175

T 3
z24+1 2249
2> +9=32"+3
212 =6
=3
=3t~ 1.73 ft
This is a maximum because when x is large
and when z is a little bigger than 0, the angle
is small.

(a) For the hockey player, mZAHB is the
shooting angle 6.

A 6 B 1
d
H
Therefore,
7 1
6 = tan~* (d) —tan~! (d)
Hence,
@)@
L+ () \ /) 1+ (z) \ &
-7 1

T R

To get the maximum angle,

0 = =0
d? +49 + dz+1

T —T4+d*P+49=0

6d> = 42
d=+7

(b) For the hockey player, mZAHB is the
shooting angle 6.

A 5 B 1




CHAPTER 3. APPLICATIONS OF DIFFERENTIATION

Therefore,

6 = tan~ " <2) + tan~! (;)

Hence,

e (@) ()

1
— T dZF25 ~ 4241

The function is decreasing as the deriva-
tive is negative. Hence the angle is maxi-
mum when 6 is minimum = 0.

(¢) For the hockey player, mZAHC is the
shooting angle, 6.

A 2 C 4 B 1
d
H
Therefore,
0 = tan~! <;) — tan~! (Z)
Hence,

ot

7 4 _5
= —rrm T 7

To get the maximum angle,

/

= — :O
2149 a2+
—7d%? — 175+ 5d%> + 245 =0

2d% = 70
d=+/35

3.4 Increasing and Decreasing

Functions

1l.y=a%-32+2

Yy =322 -3=3(z%-1)
=3xz+1)(z—-1)

x = +1 are critical numbers.

(x+1) > 0on (-1,00), (x+1) < 0 on

(_OO’ _1)

(x—=1) >0on (1, o), (x—1) < 0 on

3(x+1)(x—1) > 0on (1, co) U (—

(_007 _1)
00, —1) so

y is increasing on (1, co) and on (—oo, —1)
3(x+1)(x—1) <0on (-1, 1), so y is decreas-

y'=—-6<0atz=-1

Hence the function is a local maximum at
r=—1.

y" =6>0at z=1. Hence y(1) = 0 is a local

minimum.
40—

N
o

[ TTTT T TV FTTTTTTTT]
-4 -2 2 4
X

J<fllll%lll\l

Ly=a3+222+1

y' =322 + 4z = 2(3x + 4)

The function is increasing when z < —%, de-
creasing when f% < x < 0, and increasing
when > 0.

y' =6x+4

y”:—12<Oatx:—%

Hence f(—3) is a local maximum at 2 = —
y'=4>0atx=0

Hence y(0) is a local minimum at z = 0.

Wl

Ly=a2*—822+1

y' =423 — 162 = dx(2? — 4)

=dz(x —2)(x +2)
r = 0,2, —2 are critical numbers.
42 > 0 on (0, c0), 4 < 0 on (—o0, 0)
(x—2)>0o0n (2, ), (x—2) < 0on (—o0, 2)
(x4+2) > 0on (-2,00), (x+2) < 0 on
(—OO, _2)
4(x —2)(x +2) > 0 on (—2,0) U (2, x0), so
the function is increasing on (-2, 0) and on
(2, 00).
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4(x—=2)(z+2) <0 on (—oc0, —2)U(0, 2), so y
is decreasing on (—oo, —2) and on (0, 2).
y" =122% — 16
At 2 =0, y” < 0. Hence y(0) is a local maxi-
mum at z = 0.
y" = 12(£2)2 — 16 > 0 at * = +2. Hence
y(£2) are local minima at = +2.

40—

N
o
EEEENEEN
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Ly=x2-322 -9z +1

Yy =322 — 62 —9=3(x—3)(z+1).

The function is increasing when z < —1, de-
creasing when —1 < x < 3, and increasing
when z > 3.

y' =6x—6
y”’ = —12 < 0 at x = —1. Hence the function
is a local maximum at x = —1.

y”" =12 > 0 at x = 3. Hence the function is a
local minimum at = 3.

Ly=(z+ 1)2/3
Y =3@+1)7 = 2
1y’ is not defined for z = —1

2 ot .
3Yarl ~ 0 on (—1,00), y is increasing

?,S‘/%ﬁ < 0 on (—o00,—1), y is decreasing
The graph has minimum at = —1.

177

L L T T T T T T T
-4 -2 2 4
X

6. y=(z—1)/°
y =3@—1)7%5
The function is increasing for all z. The slope
approaches vertical as x approaches 1.
The graph has no extrema.

7. y=sinx +cosx

y =cosx —sinz =0

cosT = sinzx

x =m/4, br/4, 91 /4, etc. cosx —sinx > 0 on
(=3n/4,7/4)U (b /4,97 /4) U . ..

cosz — sinz < 0 on (w/4,5m/4) U
(97/4,13n/4) U . ..

So y = sinx + cosx is decreasing on
(w/4,57/4), (97/4,137/4),

etc., and is increasing on

(=3n/4,7/4), (57/4,97/4), etc.

y’ = —sinx — cosx

2

1!
y' = ﬂ<0atx—7r/4,x—97r/4,etc.
Hence the function is local maximum at
x =m/4, x =9 /4, etc.
y'=v2>0atz= 5n/4, x = 137/4 etc.
Hence the function is local minimum at
x = 5n/4, x = 137 /4 etc.
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L

vA:vgw

8. y=sin’z

y' = 2sinx cos .

The function is increasing for 0 <z < 7, and
decreasing for § < x <, and this pattern re-
peats with period .

y" = 2cos2x

y'=-2<0at z=mn/2, x=3n1/2, etc.
Hence the function is local maximum at x =
w/2, x = 3mw/2, ete.

Yy =+v2>0at z=0,z=m, etc.

Hence the function is a local minimum x = 0,
xr =T, etc.

yzezgfl

2 2
y =e® 1. 22 =2ze® 1
z=0

2z¢* =1 > 0 on (0, o0), y is increasing
22"~ < 0 on (—00,0), y is decreasing

Yy = 2% 1 [222 + 1]

y”" = 0.736 > 0 at * = 0. Hence the function
is a local minimum at z = 0.

10.

11.

12.

13.

"
o © o
L3

IS

N

"
I T A B B S A
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y=In(z? — 1)
, 2z
Y=r_1

The function is defined for || > 1. The func-
tion is decreasing for x < —1 and increasing
for z > 1.

The graph has no extrema.

N

N

A

e e T Ty Ty
N
IS

y=at+ 423 -2

y' =423 + 1222 = 422 (x + 3)

Critical numbers are x =0, z = —3.

422(x 4+ 3) > 0 on (—3,0) U (0, 00)

4z%(z +3) < 0 on (—o0, —3)

Hence z = —3 is a local minimum and x = 0
is not an extremum.

y=a"—5x%+1

y' =5zt — 10z = 5z (2® — 2).

At ¢ = 0 the slope changes from positive
to negative indicating a local maximum. At
x = +/2 the slope changes from negative to
positive indicating a local minimum.

y=ze 2
Yy =1-e 2 4x. e22(-2)
—e 2 _9pe 2
= e 2%(1 - 21)
r=t
e”2%(1 —2x) >0 on (—o0,1/2)

e (1 —2x) <0on (1/2,00)
So y = xe~ 2% has a local maximum at z = 1/2.
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14.

15.

16.

17.

18.

19.

INCREASING AND DECREASING FUNCTIONS

y = x2e—x

Yy =2ze % — 2% = ze % (2 — ).

At x = 0 the slope changes from negative to
positive indicating a local minimum. At x = 2
the slope changes from positive to negative in-

dicating a local maximum.

y = tan~1(z?)
;L 2z
4= 14 24
Critical number is z = 0.
2x f
1 —2|—x4 >0forxz >0
=Y < 0forz < 0. Hence = 0 is a local
14 24
minimum.
y =sin* (1 — x—lg)
, 2 1
y =—=-

5 T
w i hp
The derivative is never 0 and is defined where

the function is defined, so there are no critical
points.

Yy = L Note that the function is not de-
1423
fined for z = —1.
1(1+ 23) — 2(32?)
(1+a7)
1423 — 323
_1—248
- P
Critical number is z = \S/m
y' >0 on (—oo,—1)U(-1,—/1/2)
y' < 0on ({/1/2,00)
Hence z = 3/1/72 is a local max.

/

- T
Yot
, (42t -4 132"
1T+t~ (1 4ah?

At z = —f/m the slope changes from nega-
tive to positive indicating a local minimum. At
T = {‘/1/73 the slope changes from positive to
negative incicating a local maximum.

y = Va3 + 322 = (23 + 322)1/?
Domain is all x > —3.
1 .
y = i(m3 + 32%)71/2(322 + 6x)
3z? + 6x

2V a3 + 322
_ 3z(z+2)
2V a3 + 322
x = 0,—2,—3 are critical numbers.
y’ undefined at z = 0, —3

20.

21.

22.
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y' > 0on (—3,—2) U (0,00)

y' < 0on (—2,0)

So y = va3 + 3x2 has local max at x = —2,
local min at x = 0, —3.

y = a%/3 4+ 421/3

4 4 4 z+1
r_ =..1/3 — =
Yy TN s T3 s
At x = —1 the slope changes from negative to

positive indicating a local minimum. At z =0
the slope is vertical and is positive on positive
side and negative on negative side, so this is
neither a minimum nor a maximum.

y' = 4a3 — 4522 — 4z + 40

Local minima at z = —0.9474,11.2599; local
max at 0.9374.

Local behavior near x = 0 looks like

5,000

2,500

—-5,00

Global behavior of the function looks like
40—

n
o
NEEEEEEE

TT T T T TTT T[T TR

1 2

ToiiiTr

Yy = 423 — 4822 — 0.2z + 0.5 = 0 at ap-
proximately © = —0.1037 (local minimum),
2z = 0.1004 (local maximum), and z = 12.003
(local minimum).

Local behavior near x = 0 looks like
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23. ¢ = 5x* — 600z + 605
Local minima at x = —1.0084,10.9079;
maxima at x = —10.9079, 1.0084.
Local behavior near x = 0 looks like

10°

[T
—20

T T T 1o
—10
X

T 1
10

|
20

'THHTI‘HL

Global behavior of the function looks like

24.

25.

local

500—

N

(ol

o
RN NN

TNT T T T
-2 -1

TrA T T T T T T TTV ]
1 2

X

%IIII%IIL

Yy = 4a3 — 1.52% — 0.04x + 0.02 = 0 at ap-
proximately z = —0.1121 (local minimum),
x = 0.1223 (local maximum), and z = 0.3648
(local minimum).

1.04

o
@
I T T T T T T YT T N S S B

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Y = (224 1)e 2" + (2% + 2 + 0.45)(—2)e **
Local min at =z —0.2236; local max at
x = 0.2236.

Local behavior near z = 0 looks like

10°

-

[T T T T rTo T
5 -4 -3 -2 -1
X

Yot

Global behavior of the function looks like
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26. y = 5zt In(82?) + x5;67§
= 2*(5In(82%) + 2) = 0 at approximately
x = £0.2895 (a local maximum and local min-
imum). The derivative and the function are
undefined at x = 0, but the slope is negative
on both sides (neither a minimum nor a maxi-
mum).
Locally, near x = +0.2895, the function looks
like

0.002

vvvvvvvvvv T — T
-0.4 -0.2 2 0.4
X

-0.001

-0.002

Globally, the function looks like a quintic

q

vvvvvvvvvvvvv

&
<)
T SN

o
o
s}
Q

27. One possible graph:

181

Qi P

|
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28. One possible graph:

5

IN

(4]

31. One possible graph:
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32. One possible graph:

10—

o
[ 1]

-5.0 25 do 5 5.0
-5
10
22 —1
,x?—1—x(22)
TSI
- 22 +1
@ =1
There are no values of z for which ¢y = 0.

There are no critical points, because the values
for which ¢’ does not exist (that is, z = £1)
are not in the domain.

There are vertical asymptotes at x = 41, and
a horizontal asymptote at y = 0. This can be
verified by calculating the following limits:

X o0 xz _ 1
=
z——172 —1
. X
lim = —00

34.

35.

2

y=— 1 has vertical asymptotes at x = £1
72 _
and horizontal asymptote y = 1.
, (2® = 1)2z — 22(a?) —2x

RGN
At x = 0 the slope changes from positive to
negative indicating a local maximum.

Wty
-
N A
w

z? x?

22 —dz+3 (x —1)(z —3)
Vertical asymptotes = 1, = 3. When |z| is
large, the function approaches the value 1, so

y = 1 is a horizontal asymptote.
2z(2? — 4z + 3) — 2%(2x — 4)

y:

/

y:

(22 — 4z + 3)2
_ 223 — 822 + 61 — 223 + 422
N (22 — 4z + 3)?
_ —42% + 6
"W mrap
_ 2x(—2x+3)
(22 — 4 + 3)2
. 2x(—2x+3)
[(z =3)(z - 1]?

Critical numbers are x = 0 (local min) and
x = 3/2 (local max).
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-0 -8 -6 -4 -2 7 2 4 6 8 10 -3 —2 -1 A 1 2 3
e e
2
2
38. y = % has a vertical asymptote at
x . €T
36. y = 1= 2 has vertical asymptotes at z = +1 x = —1, and a horizontal asymptote at y = 1.
~ 2 2
and horizontal asymptote y = 0. p_ 2w(r+ 1) — (27 4+2)2(x + 1)
, (-2 4+42* 14 32° 0 f (z 4 1)*
vy = 1—242  ~ (1-a%)2 # 0 for any _2(@-2)(z+1)
x and is defined where the function is defined. (x+1)*
x = 2 is the only critical number. Since

x
37. Yy = ——
Y 2+ 1 39
, Va2 +1-a2?/Va?+1 ’
n 2+ 1
T (@2t 1)32

The derivative is never zero, so there are no
critical points. To verify that there are hori-

zontal asymptotes at y = +1: y =

R 2 +1
Va2 1+ 5
B x
j2l\/1+ 3
Thus,
limg o0 _r 1
|2]y/1+ 3%
lim =-1
r—r—00

[l /1+ 2=

f(0) < 0 and f'(3) > 0, we see that f(2)

is a local minimum.

y3
2
1
L e e e e e L o e e LA e e e e o e e e
-4 -2 o 2 4 6
v

The derivative is

=3zt +1202° — 1

T @iy

We estimate the critical numbers to be approx-
imately 0.2031 and 39.999.

The following graph shows global behavior:

500—

/

400—]

300—]

200—

100—]

T T T T T

—-100—]

—200—]

y
—-300—]

—-400—|

-500—

The following graphs show local behavior:
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vvvvvvvvvvvvvvvvvvvvvvvvv

2
38 41. The derivative is ¢y’ = w
(22 +1)2
2= We estimate the critical numbers to be approx-
imately 0.008 and —120.008.
= The following graph shows global behavior:

The derivative is

_ —2x° +322° — 2
R o

We estimate the critical numbers to be approx-

imately £0.251, £3.992 and  =0.  _____—" 1 =

The following graph shows global behavior: N

w w W
w ° 2 C
t ‘

o
o
=
o
N
o
w
o
IS
o
«

/

x L
—-400 -350 -300 -250 -200 -150 -100 50

The following graphs show local behavior:

L 1004E
F0.04
C )
[o.02 002E
— — 0 6E1
-5 -4.5 -4 -3.5 .5 42
x L
F-0.0
o 1998E
F-0.0
£ 1996E

vvvvvvvvvvvvvvvvvvvvv
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43.

44.

45.
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—2? + 120z — 1
x? —1)2
We estimate the critical numbers to be approx-
imately 0.008 and 119.992.
The following graph shows global behavior:

500—

The derivative is 3/ =

250—]

[N
N
@

IIII%

—-500—

The following graphs show local behavior:

1004E

1002E

6E1

1998E

vvvvvvvvvvvvvvvvvvvvv

Let f(x) = 3+ e~ *; then f(0) = 4, f'(x)
—e % < 0, so f is decreasing. But f(x)
3+ e~ = 0 has no solution.

Let y1 and ys be two points in the domain
of f~! with y; < y». Let 2y = f~!(y1) and
2o = f71(y2). We want to show z; < xo. Sup-
pose not. Then x5 < x;. But then, since f
is increasing, f(z2) < f(x1). That is yo < y1,
which contradicts our choice of y; and ys.

The domain of sin™' z is the interval [—1,1].
The function is increasing on the entire do-
main.

46.

47.

48.

49.

50.
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sin ! <2tan1 a:) is defined for all x. The

™
derivative,

>0
m(1+22),/1— (2 tan~! z)?
for all . The function is increasing every-
where.

TRUE. If 21 < z2, then g(z1
g is increasing, and then f(g(
since f is increasing.

) < g(z2) since

1)) < fg(z2))

We can say that g(1) < ¢g(4) and g(f(1)) <
g(f(4)), but it is not possible to determine the
maximum and minimum values without more
information.

fz) = f(0)

£(0) = limy_yo
f(@)

= lim —=
x—0 X

= lim |:1+2:ESiH (1>} =1
x—0 x

For « # 0,
f'(z)
=1+2 [stin <

o+ ()2

=1+4xsin — 2cos

For values of = close to the origin, the mid-
dle term of the derivative is small, and since
the last term —2 cos(1/x) reaches its minimum
value of —2 in every neighborhood of the origin,
/' has negative values on every neighborhood
of the origin. Thus, f is not increasing on any
neighborhood of the origin. This conclusion
does not contradict Theorem 4.1 because the
theorem states that if a function’s derivative
is positive for all values in an interval, then it
is increasing in that interval. In this example,
the derivative is not positive throughout any
interval containing the origin.

We have f'(z) = 322, s0 f/(x) > 0 for all z # 0,
but f/(0) = 0. Since f'(z) > 0 for all z # 0, we
know f(z) is increasing on any interval not con-
taining 0. We know that if zq < 0 then 23 < 0
and if o > 0 then 23 > 0. If 1 < 0 and
29 = 0 then 23 < 03 =0, so f(z) is increasing
on intervals of the form (z1,0). Similarly, f(z)
is increasing on intervals of the form (0, z3).
Finally, on intervals of the form (z1,z2) where
1 < 0 < 29, we have 23 < 0 < 23 so f(x) is
again increasing on these intervals. Thus f(z)
is increasing on any interval.

This does not contradict Theorem 4.1 because
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51.

52.

53.

54.
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Theorem 4.1 is not an “if and only if” state-
ment. It says that if f(z) > 0, then f is in-
creasing (on that interval) but it does not say
that if f/(z) is not strictly positive that f is
not increasing.

f is continuous on [a,b], and ¢ € (a,b) is a
critical number.

(i) If f'(z) > Oforallz € (a,c) and f'(x) <0
for all = € (¢,b), by Theorem 3.1, f is in-
creasing on (a, ¢) and decreasing on (c, b),
so f(c) > f(x) for all z € (a,c) and
x € (¢,b). Thus f(c) is a local max.

(ii) If f'(x) < Oforallz € (a,c)and f'(z) >0
for all z € (¢,b), by Theorem 3.1, f is de-
creasing on (a, ¢) and increasing on (¢, b).
So f(c) < f(z) for all z € (a,c) and
x € (¢,b). Thus f(c) is a local min.

(iii) If f'(x) > 0 on (a,c¢) and (c,b), then
fle) > f(z) for all z € (a,c) and f(c) <
f(z) for all z € (¢,b), so ¢ is not a lo-
cal extremum. If f/(z) < 0 on (a,c) and
(¢, b), then f(c) < f(z) for all z € (a,c)
and f(c) > f(x) for all z € (c,b), so ¢ is
not a local extremum.

If f(a) = g(a) and f'(z) > ¢'(x) for all z > q,
then f(z) > g(z) for all x > a. Graphically,
this makes sense: f and g start at the same
place, but f is increasing faster, therefore f
should be larger than g for all z > a. To prove
this, apply the Mean Value Theorem to the
function f(x) — g(x).

If x > a then there exists a number ¢ between
a and x with

1e) - g = U =9(0) = U0 = gle))
Multiply by (z —a) (and recall f(a) = g(a)) to
get (z —a)(f'(c) — g'(c)) = f(z) — g(x). The

lefthand side of this equation is positive, there-
fore f(x) is greater than g(x).

Let f(z) =2z, g(x) =3 —1/x.
Then f(1) =21 =2, and g(1) =3 -1 =2,

o [0 =)

@)= )=

So f'(z) > ¢'(x) for all x > 1, and
f(x):2\/§>3—%=g(x) for all z > 1.

Let f(z) =z and g(x) = sinz.

Then f(0) = ¢(0). f'(z) =1. ¢'(x) = cosx.
cosz < 1 for all z, therefore exercise 52 implies
that = > sinz for all z > 0.

55.

56.

57.

58.

59.

60.

Let f(z) =e*, g(x) = 1.

Then f(0) = e =1, g(0) = 0+ 1 = 1, so
f(0) = g(0).

Fla)= e, o (2) =1

So f'(z) > ¢'(x) for > 0.

Thus f(z) =e* >z + 1= g(z) for x > 0.

Let f(z) =z —1 and g(z) = Inz.

Then (1) = g(1). f'(z) = 1. g'(x) = L.

1/ < 1 for all z > 1, therefore exercise 52
implies that z — 1 > Inz for all x > 1.

flx)=a®+ba? +cx+d

f'(z) =322 +2bx + ¢

f'(z) > 0 for all z if and only if
(2b)* = 4(3)(c) <0

if and only if 4b% < 12¢

if and only if b? < 3c.

Using the quadratic formula, we find

,  —3b++/95% — 20¢
xrs = .

10
Thus, if 95 < 20c, then the roots are imagi-
nary and so f’(z) > 0 for all x. If this is not
the case, then we need to consider

oy B VOB 20c
- i :

Now we need the expression inside the square
root, to be less than or equal to 0, which is the
same as requiring the numerator of the expres-
sion inside the square root to be less than or
equal to 0. So we need both

—3b < vV9b%2 — 20c and
—3b < —v9b2% — 20c.

Of course, both are true if and only if the lat-
ter is true. In conclusion, f(x) is an increasing
function if 96? < 20c or —3b < —v/9b% — 20c.

TRUE. (fog) (¢) = f'(g9(c))g (c) = 0, since ¢

is a critical number of g.

sty =Vt+4d=(t+4)"?

! ]‘ —
s(t) = S(t+4) 12 = N

So total sales are always increasing at the rate

>0

1
of ——— thousand dollars per month.

2Vt +4

, 1
s'(t) =
2Vt +4
resents the total sales so far, then s cannot
decrease. The rate of new sales can decrease,
but we cannot lose sales that already have oc-
curred.

> 0 for all ¢t > 0. If s rep-
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0.0048 — 0.0043
=10 —MF———
(a) p'(-10) 2= (=8)

~0.0005
-]
= —0.000125

0.0048 — 0.0043
b) /' (—6) 8 —————
(0) (-6)~ "2

~0.0005

4

= 0.000125

Whether the warming of the ice due to
skating makes it easier or harder depends
on the current temperature of the ice. As
seen from these examples, the coefficient
of friction p is decreasing when the tem-
perature is —10° and increasing when the
temperature is —6°.

62. We find the derivative of f(¢):

a? + 1% —t(2t)
(aZ 1 t2)2
a2 _ t2
T (@@ F )2
The denominator is always positive, while the

numerator is positive when a? > 2, i.e., when
a > t. We now find the derivative of 6(x):

o (2) = 1 2 (-2;25)

29.2
1+( 9 5)
X
- 1 (—10.75)
<10.75)2 z?
1+

f1t) =

x
—29.25 10.75
2+ (29.25)2 * 22 + (10.75)2°
We consider each of the two terms of the last
line above as instances of f(t), the first as
—f(29.25) and the second as f(10.75). Now,
for any given x where z > 30, this z is our a
in f(t) and since a = x is greater than 29.25
and greater than 10.75, f(¢) is increasing for
these two t values and this value of a. Thus
£(29.25) > f(10.75). This means that
0'(x) = —f(29.25) + £(10.75) < 0
(where @ = z) and so 0(x) is decreasing for
x > 30. Since 6(x) is increasing for z > 30, the
announcers would be wrong to suggest that the
angle increases by backing up 5 yards when the
team is between 50 and 60 feet away from the
goal post.
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3.5 Concavity and the Second

Derivative Test

. fl(x) =32% -6z +4

f”(x) =6r—6=6(x—1)
f"(z) > 0on (1,00)
f"(z) <0on (—o0,1)
So f is concave down on (—oo, 1) and concave
up on (1, co).
x = 1 is a point of inflection.

. f'(x) =42® — 122+ 2 and f"'(x) = 1222 — 12.

The graph is concave up where f”(z) is pos-
itive, and concave down where f”(z) is nega-
tive. Concave up for £ < —1 and = > 1, and
concave down for —1 < x < 1.

x = —1, 1 are points of inflection.

f@)=r+l=a+a!

Py =122

f(z) =223

f"(z) > 0 on (0, 00)

f"(x) <0 on (—o0, 0)

So f is concave up on (0, oo) and concave down
on (—oo, 0).

x = 0 is a point of inflection.

Ly =1-(1—-2)"?Pand y" = F(1 —a) 5/

Concave up for x > 1 and concave down for
z <1
r = 1 is a point of inflection.

. f'(x) =cosz +sinx

f"(x) = —sinx + cosx
f'(z) <Oon... (%, %) U
f"()>0on...(3, 2)U

f is concave down on . ..

(%

\_//\

concave llp on .

x = km+ 7 are the points tion for any
interger k.
2z 2 - 695
L f _ d " _

Concave up for — \/7 {‘/7 and concave
down for z < —il/»andx > \/7
41 L)1 . . .
“\3\3 are the points of inflection.

) = 48 g:c’2/3

3
f”(.’l?) _ gl,—Q/S + gx—ﬁo/ﬁi

42
T 9g2/3 o
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10.

11.

12.

13.

. fl(x) = e 4 —4ge~® and f"(z)
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2 _

The quantity 0278 is never negative, so the 14. f(x) = z 1
x
sign of the second derivative is the same as the , (2%;)(33) — (22 = 1)(1)
. 2 o F@) = :
sign of 1 — —. Hence the function is concave ) x
x
up for z > 2 and x < 0, and is concave down _r —g 1
x

for0<x<2.
x = 02 are the points of inflection.

= 8e 4% (22—

Concave up for z > 1/2, and concave down for
x <1/2.
x = 1/2 is the point of inflection.

f@) =2t 43 -1

f(z) = 423 + 122% = 2% (42 + 12)

So the critical numbers are x = 0 and =z = —3.
(z) = 1222 + 24z

f"(0) = 0 so the second derivative test for
x = 0 is inconclusive.

f"(=3) =36 > 0so z = —3 is a local mini-
mum.

flx)=a*+42% +1

f(z) = 423 + 8x

So the only critical number is z = 0.

f(z) = 1222 + 8

f7(0) =8> 0so z =0 is a local minimum.

f(x) = ze™®

fllx)=e*—ze " =e"(1—2x)

So the only critical number is z = 1.
flla)y=—e*—e*+ze®=e*(-2+2zx)
f"(1)=e1(~1) < 0so x = 1 is a local maxi-
mum.

fla)=e

f(x) = —2ze

So the only critical number is x = 0.

f(x) = —2e=%" 4 4g2e~"

f7(0) = =240 < 0soz =0 is a local maxi-
mum.

16.

x? —
floy= =202

(E‘—IE xr — (E2—.’I}
fley = (22 =B)e = (2 =5+ ()

2

T
x2—4

22
So the critical numbers are x = +2.

(2z)(2?) — (2?2 —4)(2z) 8z
f//(x) = 74 = ﬁ
f"(2) =1>0so zx=2is alocal minimum.
f"(-2) = =1 < 0 so z = —2 is a local maxi-
mum.

15.

There are no critical numbers and so there are
no local extrema.

y = (22 +1)%3

Y =2+ 1))
2 -1/3

) = dr(x® + 1)

So the only critical number is x = 0.
1/

y =
4 9.2
3 [(az? + 1)V 4 (x ) (2 + 1)4/3]
4@ +1-2%) 4327 +3-2?)
3 (@243 9 (224 1)4/3

4 (2 +3)

9 (22 +1)4/3

So the function is concave up everywhere, de-
creasing for x < 0, and increasing for = > 0.
Also x = 0 is a local min.

f(z)=zhzx

fl(z)=Inz+1

So the only critical number is e~ !.
F(w) =1/

f"(e7!) =e > 0so f(z) has a local minimum
at ¥ = e~ L.

The domain of f(z) is (0, 00).

f'(z) < 0on (0,e7t) so f(z) is decreasing on
this interval. f’(z) > 0 on (e~ !, 0), so f(z) is
increasing on this interval.

f"(z) > 0 for all z in the domain of f(z), so
f(x) is concave up for all z > 0.

Finally, f(z) has a vertical asymptote at = 0
such that f(z) = oo as z — 0%,



17. f(z) =

18. f(z) = .

2 -9
poy L 2x(2? —9) — 2?(2x)
f (‘T) - ($2 _ 9)2
13z
(22 -9)?
—18z
{(z+3)(z—3)}?

—18(2? — 9)? + 18z - 2(2? — 9) - 2w
(@2 - 9yt
54z2 + 162

N FEE

_ 54(x? 4 3)

= ooy
() >0 on (—oo0,—3) U (-3,0)
() <0on (0,3)U(3,00)
f"(x) >0 on (—o0,—3) U (3,00)
f(@) < 01%% (=3,3)

1"

f (0) - (_9)3
f is increasing on (—oo, —3) U (—3,0), decreas-
ing on (0, 3)U(3, ), concave up on (—oo, —3)U
(3,00), concave down on (—3,3), z =0 is a lo-
cal max.

f has a horizontal asymptote of ¥y = 1 and ver-
tical asymptotes at x = £3.

fl
fl

xT

+2
The domain of f(z) is {z|z # —2}.
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19.

189

There is a vertical asymptote at x = —2 such
that f(z) — oo as x — —27 and f(z) = —o0
as T — 721.2 )

, x —x
I =Gy vy
So there are no critical numbers. Furthermore,
f'(z) > 0 for all x # —2, so f(x) is increasing
everywhere.
F(2) = —A(z +2)3
f"(x) > 0on (—o0, —2) (so f(x) is concave up
on this interval)
f"(x) > 0on (-2, o) (so f(z) is concave down
on this interval)

—10

f(z) =sinz 4 cosx

f'(x) =cosz —sinx

f"(x) = —sinx — cosx

f'(z) = 0 when & = w/4 + kr for all integers
k. When k is even, f"(r/4 +km) = —v/2 < 0
so f(x) has a local maximum. When k is odd,
(/4 +kr) = v/2 > 0 so f(x) has a local
minimum.

f'(z) < 0 on the intervals of the form (7/4 +
2km,w/4+ (2k + 1)m), so f(x) is decreasing on
these intervals.

f/(z) > 0 on the intervals of the form (w/4 +
(2k+1)m, /44 (2k+2)7), so f(x) is increasing
on these intervals.

f"(z) > 0 on the intervals of the form (37/4+
2km,3n/4+ (2k + 1)) so f(x) is concave up
on these intervals.

f"(z) < 0 on the intervals of the form (37/4+
(2k+ 1), 37 /4 + (2k +2)7) so f(x) is concave
down on these intervals.
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N

T
\

g
]
o

20. y=e *sinx
/

21.

y = —e Tsinx + e Fcosx = 0 when z =
/4 + kr for integers k.

Yy’ = —2e " cosx = 0 at w/2+ 2k for integers
k. These are inflection points. The function is
concave up for —7/2 < x < 7/2 and concave
down for 7/2 < x < 37/2, and the pattern re-
peats with period 27. The critical values are
all extrema, and they alternate between max-
ima and minima.

LIS S e e - e s

flx) = a3/4 — 4gt/4
Domain of f(z) is {z|x > 0}.
3 Sz —1
roN 2 —1/4 __—3/4 _ 4
fi(x) = Vi x ="

So x = 0 and = = 16/9 are critical points, but

because of the domain we only need to really

consider the latter.

/(1) = —1/4so0 f(x) is decreasing on (0,16/9).
0.5

) = o

(16/9, 00).

Thus z = 16/9 is the location of a local mini-

mum for f(x).

f”(l‘) _ %g)x75/4 + %1‘77/4

VIt g

L7/4

The critical number here is * = 16. We find

that f”(z) > 0 on the interval (0, 16) (so f(z)

is concave up on this interval) and f”(z) < 0

> 0 so f(z) is increasing on

22,

23.

on the interval (16,00) (so f(x) is concave
down on this interval).

L B e o s
20 25 30

f(z) = x2/3 — 4x1/3

f’(l‘) _ %zfl/S _ %1372/3

e g
22/3

So x = 0 and = = 8 are critical numbers.

f'(—=1) < 0so f(z) is decreasing for x < 0.

/(1) < 0so f(x) is decreasing for 0 < z < 8.

f/(27) > 0 so f(z) is increasing on 8 < z.

f”(a:) — —%$_4/3 + %IIJ_5/3
S Y
25/3
The critical numbers here are x = 0 and
T = 64.
f"(-1) < 0 so f(x) is concave down on
(—00,0).

(1) > 0 so f(z) is concave up on (0,64).
f"(125) < 0 so f(x) is concave down on
(64, 00).

50

The easiest way to sketch this graph is to no-
tice that

x2 x>0
f@)ﬂﬂ{_ﬁ e
Since
2x x>0
, _ >
f(z) —2x =<0

there is a critical point at x = 0. However, it is
neither a local maximum nor a local minimum.
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24.

25.

Since
2 x>0
f(z) =
-2 <0
there is an inflection point at the origin. Note
that the second derivative does not exist at

z=0.
30

20

The easiest way to sketch this graph is to no-
tice that
x* <0

() = a?la] = {‘ "

since
-322 <0
flle)y =9,
3z x>0
there is a critical point (and local minimum)
at x = 0. Since
—62x <0
[ (@) =
6x x>0
there is a critical point at the origin but this is

not an inflection point.
30

fz) =252 4+ 1) = 25/5 4 21/5
f/($) _ gxl/S + %x—4/5

= %x74/5(6x +1)
f”(x) — %x_4/5 _ %x—9/5

= %x_9/5(3x -2)
Note that f(0) = 0, and yet the derivatives
do not exist at x = 0. This means that there
is a vertical tangent line at x = 0. The first
derivative is negative for x < —1/6 and posi-

26.

27.

191

tive for —1/6 < < 0 and « > 0. The second
derivative is positive for z < 0 and = > 2/3,
and negative for 0 < z < 2/3. Thus, there is
a local minimum at x = —1/6 and inflection
points at © = 0 and = = 2/3.

fla) =
The domain of f(z) is {z|z > 0}.

Lo 2(1 + VE) - Va(da V)

!
€Tr) =
F@) (x 4+ Vx)?
r—1/2
21+ Va)?
The only critical point is * = 0, which we

need not consider because of the domain. Since
/(1) > 0, f(x) is increasing on (0, 00).

f(w) =
—z32(1 + 2)? — 20~ V2(1 + )2~ /?
4(1+ /x)*
—(z~1/2 4 3)

a1+ /x)?
The critical numbers are z = 0 (which we again
ignore) and x = 1/9. Since f”(1) < 0 and
f"(1/16) < 0, f(z) is concave down on (0, 00).

flx) =2 — 2623 +

f(z) =423 — 7822 + 1

The critical numbers are
—0.1129, 0.1136 and 19.4993.
f'(=1) < 0 implies f(z) is decreasing on

approximately
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28.

CHAPTER 3.

(—00, —0.1129).

f/(0) > 0 implies f(x) is increasing on
(—0.1129,0.1136).

/(1) < 0 implies f(z) is decreasing on
(0.1136,19.4993).

f'(20) > 0 implies f(z) is increasing on
(19.4993, 00).

Thus f(z) has local minimums at x = —0.1129
and x = 19.4993 and a local maximum at
z = 0.1136.

f"(x) = 1222 — 1562 = x(12x — 156)

The critical numbers are = 0 and x = 13.
f"(=1) > 0 implies f(x) is concave up on
(—00,0).

f"(1) < 0 implies f(z) is concave down on
(0,13).

f”(20) > 0 implies f(z) is concave up on
(13, 00).

10°

30
25

20

T T
20 40

o]

T T
—20

flx) =22% — 1123 + 1722
f'(z) = 823 — 3322 + 34z

=28z —17)(z —2)
The critical numbers are x = 0, z = 2 and
x=17/8.
" (x) = 2422 — 66z + 34
£7(0) > 0 implies f(z) is concave up at z =0
so f(z) has a local minimum here and f(z) is
decreasing on (—o0,0).
f”(2) < 0 implies f(z) is concave down at
x = 2 so f(x) has a local maximum here and
f(x) is increasing on (0, 2).
f7(17/8) > 0 implies f(x) is concave up at
x =17/8s0 f(z) has a local minimum here and
f(z) is decreasing on (2,17/8) and increasing
on (17/8,00).
F'(x) = 2(1222 — 33z + 17)
The critical numbers are

= % = 2.0635, 0.6866.

So f(x) is concave up on (—o00,0.6866) and
(2.0635,00) and f(x) is concave down on
(0.6866,2.0635).

29.

30.

APPLICATIONS OF DIFFERENTIATION

L S B B L T
-10 -8 -6 -4 -2 0 2 4 6 8 10
x

y= 2 —1

A
Y T 3@a2 —1)2/3

fined at z = £4/1/2.
2

"_ w is never 0, and is undefined
where ¢/ is.
The function changes concavity at = =
++4/1/2, so these are inflection points. The
slope does not change at these values, so they
are not extrema. The Second Derivative Test

shows that x = 0 is a minimum.

=0 at £ = 0 and is unde-

Vad +1
f(x) is defined for z > —1.

fz) =

F@) = Sa® +1)712(322)

The critical numbers are x = —1 (which we ig-

nore because of the domain) and = = 0.

f'(=1/2) > 0 so f(x) is increasing on (—1,0).

f'(1) > 0 so f(x) is also increasing on (0, c0)
(

so f(x) has no relative extrema.
f(w) =
3 2a (2% +1)1/2 — 221 (23 + 1)71/2322
2 3 +1
2z(x3 +1) —
T (@34 1)32
f%x‘l + 22
(@34 1)3/2
The critical numbers are z = 0 and = = 4'/3
(and x = —1, which we need not consider).
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f"(=1/2) < 0 so f(x) is concave down on

0.04-

]

IS

TN T T T A B

w

2 The
/_f global behavior looks like this:
! o i 2 : 100000
31. f(z) = 2* — 162% 4 4222 — 39.6x + 14
f'(z) = 423 — 482% + 841 — 39.6
f(x) =122 =96z +84 s T Ta s e T 0
= 12(332 —8r + 7) -50000
=12(x —7)(z—1)
f/((E) >0 on (8952, 1106) U (99987, OO) -100000
#'(z) < 0 on (—oc,.8952) U (1.106,9.9987)
f"(x) >0 on (—o0,1) U (7,00)
f"(z) <0on (1,7)
f is increasing on (.8952,1.106) and on
(9.9987, 00), decreasing on (—o0,.8952) and on
(1.106,9.9987), concave up on (—oo, 1)U(7, 00),
concave down on (1,7), x = .8952, 9.9987 are
local min, x = 1.106 is local max, x = 1,7 are
inflection points.
200000] 33. f(z) = 2vx? — 4; f undefined on (-2, 2)
] fl@) =va? -4
300000] + (%) (1‘2 - 4)_1/2(21})
] 72
j =Vaz—4+
20000; 332 —4
i 222 —4
100000] xz —4
] f”(x) _
,,,,,,,,,, 1 42v2? — 4 — (22% — 4) (2 — 4)7V/2(22)
=20 -10 (] . 10 20 30 x2 _ 4
_ Aw(a® —4) — (227 — Az
32. y = + 3243 — 0.022% — 0.8z , @4
y = 4a3 + 9622 — 0.04z — 0.8 = 0 at approxi- _ 2x° — 12z _ 2z (2" — 6)
mately = = —24, —0.09125, and 0.09132. (22 —4)3/2 (22 —4)3/2
Y’ = 122% + 192z — 0.04 = 0 at approxi- f(@) >0 on (—o00, —2) U (2,00)
mately z = 16.0002 and 0.0002, and changes f"(x) >0 on (=v/6,2) U (V6,0)
sign at these values, so these are inflection f"(z) <0 on (—007— 6) U (2,\/6)
points. The Second Derivative Test shows f is increasing on (—oo,—2) and on (2,00),
that x = —24 and 0.09132 are minima, and concave up on (—\/6,—2) U (\@700)7 concave
that = —0.09125 is a maxima. The extrema down on (—oo, —\/6) U (2, \/6), x = +6 are

near = 0 look like this: inflection points.



194

34.

35.

CHAPTER 3.

100—

2x
0= ez
ooy Va4 = 2a(3) (2% + 4) 722
@A

f'(z) is always positive, so there are no critical
points and f(x) is always increasing.
f'(x) = 8(=3)(a® + 4)7°/2(22)
—24x

(22 4 4)5/2
The only critical point is « = 0. Since
f"(=1) > 0, f(x) is concave up on (—o0,0).
Also f"(1) < 0, so f(x) is concave down on
(0,00) and & = 0 is an inflection point for f.

2.0—

The function has horizontal asymptote y = 0,
and is undefined at =z = +1.

;L —2x -
v = x4 — 222 +2 =0
only when = = 0.

v 2(3zt — 227 - 2)

(2t — 222 4 2)2

at approximately x = £1.1024 and changes
sign there, so these are inflection points (very
easy to miss by looking at the graph). The
Second Derivative Test shows that x = 0 is a
local maximum.

=0

APPLICATIONS OF DIFFERENTIATION

36. f(z) =e **cosz
f(x) = —2e %% cosw — e sinx
=e *(—2cosx —sinx)
f'(x) = —2e72*(—2cosx — sinx)

+e 2 (2sinx — cosx)
= e 2%(4sinz + 3cos )
f'(x) = 0 when sinz = —2cosz so when
x = kr + tan~!(—2) for any integer k.
f"(2km + tan™'(—2)) < 0 so there are local
maxima at all such points, while f”((2k+1)7+
tan~!(—2)) > 0, so there are local minima at
all such points. f”(z) = 0 when 4sinz =
—3cosz or ¥ = km + tan~1(—3/4) for any in-
teger k. All such points x are inflection points.

37. One possible graph:

10—

1

38. One possible graph:
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There are two distinct solutions to the previous
equation (and therefore two inflection points)
if and only if 3% — 8ac > 0.

42. Since f'(0) = 0 and f”(0) > 0, f(z) must have
a local minimum at = 0. Since we also know
that f(0) = 0, this means that there is some
neighborhood (possibly very small) of 0 such
that for all z in this neighborhood (exluding
x=0), f(z) > 0.

Similarly, ¢’(0) = 0 and ¢”(0) < 0 implies that
g(x) must have a local maximum at z = 0.

39. One possible graph: Again we know that g(0) = 0, so there is some
10 neighborhood of 0 such that for all x in this
s neighborhood (exluding = = 0), g(z) < 0.
© On the smaller of these two neighborhoods, we
‘ know that g(z) < 0 < f(z).
— 43. Let f(z) = —1 — 2. Then
5 fl(z) = -2z
J(@) = 2

so f is concave down for all x, but
—1 — 22 = 0 has no solution.

44. The statement is true.

45. f(r) is concave up on (—oo, —0.5) and
(0.5, 00); f(z) is concave down on (—0.5, 0.5).
f(z) is decreasing on the intervals (—oo, 1) and
(0, 1) ; increasing on the intervals (—1, 0) and
(1,00). f(x) has local maxima at 0 and min-
ima at -1 and 1. Inflection points of f(z) are
—0.5 and 0.5.

46. f(x) is concave up on (1, co); f(x) is concave
down on (—o0, 1). f(z) is increasing on the in-
tervals (—oo, 0) and (2, 00); decreasing on the
intervals (0, 2). Inflection point of f(z) is 1.

47. (a) For #45:

41. f(r) =a2® +bx? +cx +d

#(x) = 3az? + 2ba + ¢ The interval of incrfsase is (—o0, —1.5)
7"(z) = 6azx + 2b fmd (1.5, 00). Ijhfa interval of decrease
Thus, f”(z) = 0 for = —b/3a. Since f” 15(71.5, 1.5) . Minima a.t z = 1.5 and
changes sign at this point, f has an inflection Maxima at z = —1.5. It is concave up for
point at = = —b/3a. Note that a # 0. (=1,0)U (1, co0). It is concave down for

(=00, =1) U (0, 1). The points of inflec-

For the quartic function (where again a # 0), tion are # — 0 and + 1

f(x) =az* +bad + ca® +dv +e
f/(z) = dax® + 3ba? + 2cx +d
I (z) = 12az* + 6bx + 2c¢

= 2(6ax? + 3bx + c)

For #46:

The interval of increase is (—%, %) U

The second derivative is zero when (3, 00). 1The 11nterva'l .Of decreas;e 15
(—oo, —f) U (5, 3) Minima at z = jand

o —3b+ V9b?% — 24ac 2

Maxima at x = —2,3. It is concave
12a 2

 —3b+ /3(30% — 8ac) up for(—oo, 0) U (2, c0). It is concave

1%a down for(0, 2). The points of inflection
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48.

49.

50.
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are x =0 ,2..

(b) For #45:
It is concave up for (—oo0, —1.5) U
(1.5,00). It is concave down for
(=1.5, 1.5). The points of inflection are
z=0and +1.5.
For #46:
It is concave up for (f%, %) U (3, c0). It
is concave down for (—oo, —% U (% 3)
The points of inflection are x :I:%7 3..

If f(¢) < 0, then f’ is decreasing at ¢. Because

f'(c) =0, this means that f' > 0 to the left of
cand f/ < 0 to the right of c. Therefore, by the
First Derivative Test, f(c) is a local maximum.
The proof of the second claim is similar.

Add and subtract 16 to complete square.

zt — 822 +10

= 2% —82% + 16+ 10 — 16

— (2> —4)" -6
Therefore, absolute minimum occurs when
(x2 — 4)2 = 0. That is absolute minimum is
—6 and occurs when x = £2.
Similarly, add and subtract 9 to 2% — 622 + 1.
zt — 62 +1

=2~ 622 +9+1-9

— (2 —3)" =8

Therefore, absolute minimum occurs when
(ﬂc2 — 3)2 = (0. That is absolute minimum is

—8 and occurs whenz = ++/3.

f(x) =a* +ba® 4+ ca® +de+2
f'(z) = 42® +3b2® + 2cx +d
F (@) = 122° + 6bx + 2¢

To find inflection points, solve f”' () = 0.

_ —6b % /36b% — 96¢

24
x is real only if 365

—96¢c >0
3
=c< =b?

The critical numbers are

~ —6b+ /3662 — 96¢

24
and
_ —6b— 36b% — 96¢

24
Therefore sum of z-coordinates

51.

52.

53.

54.

55.

56.

_ —6b+ /3602 — 96¢ N —6b — /3602 — 96¢
- 24

24
~ —6b+ /360> — 96¢ — 6b — v/36b> — 96¢
h 24

—12b

b
24 2

We need to know w’(0) to know if the depth is
increasing.

We assume the sick person’s temperature is too
high, and not too low. We do need to know
T’(0) in order to tell which is better.

If 7(0) = 2 and T" > 0, the person’s temper-
ature is rising alarmingly.

If 77(0) = —2 and T" > 0, the person’s tem-
perature is increasing, but leveling off.
Negative T" is better if 77 > 0.

If 7(0) = 2 and T” < 0, the person’s temper-
ature is decreasing and leveling off.

If T(0) = —2 and T” < 0, the person’s tem-
perature is dropping too steeply to be safe.
Positive T" is probably better if 77 < 0.

s(x) = =323 + 2702% — 3600z + 18000

s'(x) = =922 + 540z — 3600

s"(x) = —18x +540=0

x = 30. This is a max because the graph of
s'(z) is a parabola opening down. So spend
$30,000 on advertising to maximize the rate of
change of sales. This is also the inflection point

of s(x).

Q' (t) measures the number of units produced
per hour. If this number is larger, the worker
is more efficient.

Q'(t) = —3t2 + 12t + 12 will be maximized
where

Q" = —6t+12 =0, or t = 2 hours. (This
is a maximum by the First Derivative Test.)
It is reasonable to call this inflection point the
point of diminishing returns, because after this
point, the efficiency of the worker decreases.

C(x) = .012% + 40x + 3600
el C(z) -1
Clx) = == = 01z + 40 + 3600

C'(z) = .01 — 3600272 = 0

x = 600. This is a min because C”(x) =
7200z~ > 0 for = > 0, so the graph is con-
cave up. So manufacture 600 units to minimize
average cost.

Solving ¢’ = 0 yields t = 19.8616. The Sec-
ond Derivative Test shows this is a maximum.
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57.

Solving ¢’ = 0 yields ¢t = 41.8362. Suppose a
second drug produced a similar plasma concen-
tration graph, with the same maximum, but a
later inflection point. Then the plasma concen-
tration decays faster for the second drug, since
it takes longer for the rate of decay to level off.

Since the tangent line points above the sun, the
sun appears higher in the sky than it really is.

3.6 Overview of Curve

1.

Sketching

f(x) =23 —32% + 3x
= x(2? — 3z +3)
The only z-intercept is x = 0; the y-intercept
is (0,0).
f'(z) =32% — 62+ 3
=3(2%-20+1)=3(x—1)2
f'(z) > 0 for all z, so f(x) is increasing for all
2 and has no local extrema.
f'(z) =6z —-6=06(zx—1)
There is an inflection point at x = 1: f(x) is
concave down on (—o0,1) and concave up on
(1,00).
Finally, f(z) — oo as ¢ — oo and f(z) = —c0
as r — —oo.

50—

25—

L L | L DL I L D B |
-24 -16<08 00 08 16 24 32 40 48

—_o5+

. fle) =2t -32% + 22

=x(x® — 3z +2)
The z-intercepts are x = —2, x = 1 and x = 0;
the y-intercept is (0, 0).
f(z) =423 — 62 + 2

=2(22% =3z +1)
The critical numbers are x = —1.366, 0.366
and 1.
f'(x) > 0 on (—1.366,0.366) and (1, c0), so
f(x) is increasing on these intervals. f'(z) <0
on (—oo, —1.366) and (0.366, 1), so f(x) is de-
creasing on these intervals. Thus f(z) has local
minima at * = —1.366 and z = 1 and a local
maximum at z = 0.366.

197

f(x) =1222 — 6 = 6(22% — 1)

The critical numbers here are z = +1/v/2.
f"(z) >0 on (—oc0,—1/y/2) and (1/v/2,0) so
f(z) is concave up on these intervals. f”(z) <
0 on (—1/v/2,1/v/2) so f(z) is concave down
on this interval. Thus f(z) has inflection
points at x = +1/v/2.

Finally, f(z) — oo as © — %o0.

3. f(x)=a%—-223+1

The z-intercepts are © = 1 and x ~ —1.5129;
the y-intercept is (0, 1).

f'(z) = 5x* — 62% = 2?(522 — 6)

The critical numbers are z = 0 and z =
:I:\/%. Plugging values from each of the
intervals into f/(x), we find that f'(x) > 0
on (—o0,—/6/5) and (1/6/5,00) so f(z) is
increasing on these intervals. f/(z) < 0 on
(—=1/6/5,0) and (0,+/6/5) so f(z) is decreas-
ing on these intervals. Thus f(z) has a local
maximum at —m and a local minimum at
V/6/5.

f"(z) = 2023 — 122 = 4x(52% — 3)

The critical numbers are z = 0 and z =
:I:\/%. Plugging values from each of the in-
tervals into f”(x), we find that f”(z) > 0
on (—+/3/5,0) and (1/3/5,00) so f(z) is con-
cave up on these intervals. f”(xz) < 0 on
(—00, —/3/5) and (0,+/3/5) so f(x) is con-
cave down on these intervals. Thus f(x) has
inflection points at all three of these critical
numbers.

Finally, f(z) — o0 as ¢ — oo and f(z) - —o0
as r — —oo.
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Cf@) =2t 4423 1

The z-intercepts are x ~ —4.01541 and =z =~
0.6012; the y-intercept is (0, —1).

f(x) = 423 + 1222 = 422 (z + 3)

The critical numbers are x = 0 and * = —3.
Plugging values from each of the intervals into
f'(z), we find that f'(x) > 0 on (-3, 0) and
(0, 00) so f(x) is increasing on these intervals.
f'(x) < 0on (—o0, —3) so f(z) is decreasing
on these intervals. Thus f(z) has a local min-
imum at —3.

" (z) = 122% + 24z = 12z (z + 2)

The critical numbers are * = 0 and * = —2.
Plugging values from each of the intervals into
" (x), we find that f”(x) > 0 on (—o0, —2)
and (0, c0) so f(x) is concave up on (—oo, —2)
and (0, c0). f”(x) < 0 on (—2,0) so f(z) is
concave down on (—2, 0). The graph has in-
flection points at —2 and 0.

Finally, f(z) — oo as x — oo and f(z) — oo
as x — —00.

x 5
-5 4 -3 -2 - 1 2 3 4 5
L TN T I N 1788 T I T i |

2
f@)=ay =T

This function has no x- or y-intercepts. The
domain is {z|z # 0}.

f(z) has a vertical asymptote at z = 0 such
that f(x) > —oco as ¢ — 0~ and f(z) — oo as
x— 07,

flx)=1—427% =

x?—4
72

6. fla) = —

The critical numbers are x = 2. We find
that f'(x) > 0 on (—o0,—2) and (2,00) so
f(z) is increasing on these intervals. f/(z) <0
on (—2,0) and (0,2), so f(z) is decreasing on
these intervals. Thus f(z) has a local maxi-
mum at z = —2 and a local minimum at x = 2.
f”(x) = 83

f"(x) < 0on (—o0, 0) so f(x) is concave down
on this interval and f”(z) > 0 on (0,00) so
f(x) is concave up on this interval, but f(z)
has an asymptote (not an inflection point) at
z=0.

Finally, f(x) - —oc0 as * — —oo and f(z) —
00 as T — 0.

21 1
= Tr— —

There are x—interceptg at x = +1, but no y-
intercepts. The domain is {z|x # 0}.

f(z) has a vertical asymptote at x = 0 such
that f(x) > oo asz — 0~ and f(z) = —oc0 as
x — 0.

f'(x) = 1+ 272 > 0, So there is no critical
numbers. f(x) is increasing function.

f”(l‘) = 92473

f"(x) > 0on (—o00,0) so f(z) is concave up on
this interval and f”(x) < 0 on (0,00) so f(x)
is concave down on this interval, but f(z) has
an vertical asymptote (not an inflection point)
at r = 0.

Finally, f(z) — —o0 as ¢ — —oo and
f(z) = 00 as x — 0.
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5 -4 -3 1 2 3 4 5
x ]
—4—
,
—6—
—8—
—10—
2
x 44 .
7. f(x) = has no z-interscept and no y-
23

interscept. The domain of f includes all real
numbers z # 0. f(z) has a vertical asymptote

atx:O2 . 2\ 1) (322
oy = 26 =60 307
(%)
—(x2—|—12)

24
Since f’(2) =0 has no real roots, the graph
has no extrema. f/(z) < 0 on (—o00,0) and
(0,00) so f(x) is decreasing on these inter-
ot (2z) — (22 +12) (42°)

(4)?

vals. [ (z) = —

2 [2? 4 24]

25
f"(z) < 0on (—00,0) so f(zx) is concave down
on this interval and f”(x) > 0 on (0,00) so
f(x) is concave up on this interval, but f(z)
has an asymptote (not an inflection point) at
z=0.
Finally, f(z) = 0asz — —oo and f(z) — 0 as
x — oo. Therefore, the graph has horizontal
asymptot y = 0.

100—

r—4

8. f(x) = 23

The graph has x-intercepts at x = 4, but no
y-intercepts. The domain of f includes all real
numbers z # 0. f(z) has a vertical asymptote
atz =0

199

3 2
' (2) = x° — (x 42) (322)
(2?)
2z +12
o

The critical numbers is * = 6. We find that
f'(z) > 0 on (—00,0) and (0,6) so f(z) is
increasing on these intervals. f/(z) < 0 on
(6,00), so f(z) is decreasing on these intervals.
Therefore, the graph has a local maximum at
r = 6.

f'(x) =

_ 6r—48
25

f"(x) > 0 on (—00,0) and (8,00) so f(z) is
concave up on this interval and f”(z) < 0 on
(0,8) so f(z) is concave down on this interval,
but f(x) has an inflection point at x = 8.
Finally, f(z) = 0 as z — —oco and f(z) — 0 as
x — oo. Therefore, the graph has horizontal
asymptote y = 0.

(z%) (=2) = (=22 + 12) (42?)

(a)”

o
I L L L L A A LIS e
-75 -50 -25 7 25 50 75
—4
e
]
o]
.
- 2x
f@)=—5—
) 2 —1

The graph has x-intercept and y-intercept at
(0, 0). The domain of f includes all real num-
bers x = £1. f(x) has vertical asymptotes at
r = =£1.

2 (2% — 1) — (2z) (22)

fl() = o
B —2 (x2 + 1)
(@2 -1)

Since f’(x) = 0 has no real roots, the graph
has no extrema. f’(z) < 0 on (—o0, —1),
(=1, 0), (0, 1) and (1, o0) so f(x) is decreasing
on these intervals.

£ () = —2 [Qx (932 — 1) [JC2 —1—222— 2]

(@2 - 1)"
Az [w2 + 3]
o @2-1)?
f"(z) > 0 on (—1,0) and (1,00) so f(x) is
concave up on this interval and f”(z) < 0 on
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(—o0,—1) and (0,1) so f(x) is concave down on
this interval, but f(x) has an inflection point
at x = 0.
Finally, f(z) - 0 as ¢ — —oo and f(z) — 0 as
x — oo. Therefore, the graph has horizontal
asymptote y = 0.
T T T T T 77
322

10. = ——

F@)=

The graph has z-intercept and y-intercept at
(0, 0). The domain of f includes all real num-
bers.

2172 xr) — $2 T
oy (1) 00) = (3) 20

(22 +1)

_ 6z
(a2 + 1)
f'(z) <0 on (—00,0) so f(x) is decreasing on
these intervals and f’(x) > 0 on (0, 00) so f(z)
is increasing on these interval.
() = (2% +1) [6 (2% 4+ 1) — 2427

(22 +1)"
66— 182

(2 +1)°

The critical numbers are x = :I:\/g . We find

that f”(z) > 0 on (—\/g, \/g> so f(x) is

concave up on this interval and we find that

f"(z) < 0 on (—oo,— %) and (\/g, OO) SO

f () is concave down on this interval, but the

graph has inflection points at x = :I:\/g .

Finally, f(x) — 3 as 2 — —oc and f(x) — 3 as
x — oo. Therefore, the graph has horizontal
asymptote at y = 3.

11.

12.

f(x) =(x +sinx)

The graph has z-intercepts and y-intercepts at
(0, 0). The domain of f includes all real num-
bers.

f'(x) = 14 cosz > 0,therefore the graph has
no extrema and f(z) is a increasing function.
f"(z) =—sinzx

f"(z) < 0on (2nm, (2n+ 1) 7) so f(z) is con-
cave down on this interval and we find that
f"(x) >0on (2n+1)m2(n+1)7w) so f(x)
is concave up on this interval, but the graph
has inflection points at x = nmx.

Finally, f(z) - —o0 as & — —oo and f(z) —
oo as x — o0. Therefore, the graph has no
horizontal asymptote.

5—

f(x) =sinx — cosx
f'(x) = cosx + sinz is zero for x = nw — Z.

s
4

f" () = —sinx + cosx

When n is even, f”(z) > 0 and so f is mini-
mum at x = nmw — 7.

When n is odd, f”(z) < 0 and so f is maxi-
mum at x = nmw — 7.

J"(x) = 0 for x = nm+ F. So inflection points
are nmw + 7.

f"(z) < 0on (Z+nm 3 +nm) so flz) is
concave down on this interval and we find that
f"(z) > 0 on (3 +nm, & +nr) so f(x) is
concave up on this interval.
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13.

14.

fl@)=zlnz

The domain is {z|z > 0}. There is an z-
intercept at x = 1 and no y-intercept.
fl(z)=Inz+1

The only critical number is z = e~ 1. f/(z) <0
on (0,e7!) and f'(z) > 0 on (e"!,00) so
f(x) is decreasing on (0,e~1) and increasing
on (e71,00). Thus f(z) has a local minimum
at x =e 1.

f"(x) = 1/x, which is positive for all = in the
domain of f, so f(z) is always concave up.
f(z) = 00 as x — 0.

f(x) = zInx?

The domain is {z|zr # 0}. There are z-
intercepts at x = 1 but no y-intercept.

fl(z) =Inz?+2

The critical numbers are z = +e~ 1. f"(z) =
2/z, so x = —e~! is a local maximum and
r = e~ 1 is alocal minimum. f(x) is increasing
on (—oo,—e~1) and (e~ !, 00); f(x) is decreas-
ing on (—e~1,0) and (0,e~1). f(x) is concave
down on (—00,0) and concave up on (0, 00).
f(z) - —oc0 as @ — oo and f(z) — oo as
T — 00.

15.

16.
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flz)=+vaz+1

The y-intercept is (0,1). There are no x-

intercepts.
fl@) = 2(? +1)"Y2%22 = == The only

critical number is x = 0. f/'(z) < 0 when z < 0
and f'(z) > 0 when = > 0 so f(x) is increas-
ing on (0, c0) and decreasing on (—o0,0). Thus
f(z) has a local minimum at z = 0.
() = 2 +1-— .’Lé(’l}z +1)"1/222

4 +1

(224 1)3/2
Since f”(x) > 0 for all x, we see that f(x) is
concave up for all z.
f(x) = o0 as x — +o0.

flz) =2z -1

The domain is {z|z > 1/2}. There is an a-
intercept at x = 1/2.

F(e) = (2w - 1) V2= L

f'(z) is undefined at = 1/2, but this is an
endpoint of f(z) and there are no other criti-
cal points. Since f’(x) is positive for all z in
the domain of f, we see that f(z) is increasing
for all z in the domain.

fl(a) = =522 -1)7?2 = 5=k

f"(x) <0 for all z in the domain of f, so f is
concave down for all = for which it is defined.

flx) = 00 as © — 0.
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17. f(z) = (2% — 322 + 22)1/3
322 — 62+ 2
() —
J) = 3(x® — 322 + 21)2/3
+v3
There are critical numbers at z = 3\[, 0,
1 and 2. )
—62° + 122 — 8
" _
J )= 9(a® — 322 + 22)5/3
with critical numbers x = 0, 1 and 2. f"(x)
changes sign at these values, so these are in-
flection points. The Second Derivative test
3 3
shows that = = V3 is a minimum, and
3-V3. .

x = is a maximum.
f(z) = —o0 as x - —oo and f(z) — oo as
T — 0.

18. f(z) = (z* — 322 4 22)1/?

(z) =
(x) is defined for 0 < z < 1 and z > 2.
(x)—>ooasa:—>oo

322 — 6z + 2

f
f
f
/ 2(x3 — 322 4 22)1/2

() =

There are critical numbers at ©z =

1 and 2. . 5 )

F(2) = 3z — 122° + 122* — 4

4(x3 — 322 + 21)3/2

with critical numbers z = 0, 1 and 2 and
x ~ —0.4679 and 2.4679. f(z) is undefined at
x = —0.4679, so we do not consider this point.

19.

f"(z) changes sign at x = 2.4679, so this is an
inflection point. The Second Derivative test

shows that z = is a maximum.

At =0, 1, 2, f(x) is minimum.

109

A :
f(x)= z5/3 — 5p?/3
The domain of f includes all real numbers.
@) = 2at - Do
-3 3

= g (x% — Qx_%)

5 (x—2

e ( g )
Critical number is z = 2.
f'(z) > 0 on (—o00,0) and (2, 0).
increasing on these intervals.
f'(x) < 0on (0,2) and so f(z) is decreasing
on this interval.
Therefore f(x) is maximum at = 0 and min-
imum at x = 2.

2 2
f'(x) = g (Sxé + 3z§>

So f(x) is

= Dt )
9

10 fx+1
9 \ 43

The critical number is at z = 0, —1. f"(z)
changes sign at these values, so these are in-
flection points. f(z) = —o0 as & — —oo and
f(z) = 00 as x — .
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20. f(x):x?’—ix:xx

2 R —
400 ( 400)
The y-intercept (also an z-intercept) is (0,0)

and there are also z-intercepts at 2 = 4+/3/20.
3

! 2

f() = 32" — 100

The critical numbers are x = +1/20.

f"(x) =6z, s0 x = —1/20 is a local maximum

and z = 1/20 is a local minimum. f(z) is in-

creasing on (—oo,—1/20) and (1/20,00) and

decreasing on (—1/20,1/20). It is concave up

on (0,00) and concave down on (—o0,0), with

an inflection point at x = 0.

fl@) = —oc0 as ¢ — —oo and f(z) — oo as

T — 00.

-1

21. f(z) =e %/

f’(l‘) _ e—2/x <2) — %e—Q/x

x2 T
—4 2 2
f”(i) _ 736—2/w + 76_2/'% <2>
x x X
— ée—Q/:L' _ %6—2/1‘

f(z) > O:l(:)n (—oo,O)xU (0, 00)

f"(x) >0 on (—o00,0)U(0,1)

f"(z) <0on (1,00)

f increasing on (—o0,0) and on (0,00), con-
cave up on (—o0,0) U (0,1), concave down on
(1,00), inflection point at & = 1. f is unde-
fined at x = 0.

lim e 2" = lim —— =0 and

x—0+ z—0+ €2/

lim e %% = 00

z—0—

So f has a vertical asymptote at =z = 0.
lim e~ 2/* = lim e 2/*=1

Tr—r o0 r—r—00

So f has a horizontal asymptote at y = 1.
Global graph of f(x):

22.
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-10 -5 4 5 10
3
-5
10
Local graph of f(z):
0.
0.
y o —rT
0.5 1 1.5 2 2.5 3
-0.
-0.
f(a) =€/

The function has a vertical asymptote at x = 0
such that f(x) — oo as x approaches 0 from
the right or left. There is a horizontal asymp-
tote of y = 1 as x — Fo0.

-2
fll@)=—- et/

x
f'(x) > 0 for < 0, so f(x) is increasing on
(—00,0) and f'(z) < 0 for z > 0, so f(x) is
decreasing on (—o0,0).

2e1/7 (322 4 2)
f(x) = 6
is positive for all  # 0, so f(z) is concave up
for all x # 0.

101
y| s
AR S
: x
5]
10:
23. f(x) !
. f(z) = —
x3—3x22— 9z +1
3x° —6x—9
fl(z) =~

(23 — 322 — 9z + 1)*
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The critical numbers are x = —1, 3.
() 6 (62* — 4% — 72% + 122 + 2)
€T) =
(23 — 322 — 9z + 1)°
The Second Derivative test shows that the

graph has a local minimum at x = —1 and
a local maximum at z = 3. The graph has
a vertical asymptote at x = —1.9304. Sim-

ilarly, the graph has vertical asymptotes at
x = 0.1074 and 4.8231.

f(z) > 0asz — —oo and f(z) — 0asz — oo.
Therefore, the graph has horizontal asymptote
y=0.

=
@)

L L T o9 1 T T T
-6 -5 —4_:'}2 -1 :ﬁz 3 4

1
f(x)_x3+33322+4x—|—1
3z° + 6x +4
f(x) =~

(23 + 322 + 4z + 1)°
Since f’(x) = 0 has no real roots, the graph
has no extrema.
£ (2) = 122% + 4823 + 7822 + 66x + 26

(23 + 322 + 4z 4+ 1)°
The Critical number is =z = —0.316722.
/" (xz) > 0 on (—0.3176722,00) so the graph
is concave up on this interval. f”(z) < 0

on (—o0,—0.3176722) so the graph is concave
down on this interval. the graph has a vertical
asymptote at © = —0.3176722. f(z) — 0 as
x — —oo and f(z) — 0 as x — 0.

Therefore, the graph has horizontal asymptote
y=0.

26.

2(322 — 6z + 2)
3(x3 — 322 + 2x)1/3

@) =

3+v3
There are critical numbers at x = 3\[
1 and 2.

1 18x% — 7223 + 8422 — 242 — 8

fr(x) =
9(x3 — 322 + 22)%/3
with critical numbers z = 0, 1 and 2 and
x ~ —0.1883 and 2.1883. f”(x) changes sign
at these last two values, so these are inflection
points. The Second Derivative test shows that

34+3
xr =

occur at x =0, 1 and 2.
f(x) = 00 as © — +o0.

’07

are both maxima. Local minima

f(x) = 25 —102° — 72t + 8023 + 1222 — 192x
f(z) = 00 as x — +oo.

f(z) = 6x° —502* — 2823 + 24022 + 242 — 192
Critical numbers at approximately =z =
—1.9339, —1.0129, 1, 1.9644, and 8.3158.

" (x) = 30x* — 2002 — 8422 + 480z + 24
Critical numbers at approximately =z =
—1.5534, —0.0496, 1.5430, and 6.7267, and
changes sign at each of these values, so these
are inflection points. The Second Derivative
Test shows that x = —1.9339, 1, and 8.3158
are local minima, and x = —1.0129 and 1.9644
are local maxima. The extrema near z = 0

look like this:

vvvvvvvvvvvvvvvvvvvvvvvvvv

The inflection points, and the global behavior
of the function can be seen on the following



28. f(z) = —
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graph.
10000
X
4 2 1 2 4 6 8 ‘Io
-10000
-20000
-30000
-40000
-50000
2

- +1

27. f(2) = o5
3z2 -1

Note that z = +4/1/3 are not in the domain

of the function, but yield vertical asymptotes.
~ 2z(32% — 1) — (2® + 1)(6x)

f (l’) - (3I2 o 1)2
(62 — 2z) — (62° + 6x)
N (322 —1)2
_ —8x
N (3z2 —1)2

So the only critical point is x = 0.

f'(x) >0forz <0

f(x)<0forz>0

so f is increasing on (—oo0,—+/1/3) and on
\/7 0); decreasing on (0, \/7 and on

( 1/3,00). Thus there is a local max at x = 0.

1 922 + 1

f (‘T) =38 (31_2 — 1)3

1) > 0on (e 1/3) U (v/1/3.0)

F1(2) < 0 on (—/1/3,/1/3)

Hence f is concave up on (—oo, —4/1/3) and on

(v/1/3,00); concave down on (—/1/3,/1/3).

Finally, when |z| is large, the function ap-
proached 1/3, so y = 1/3 is a horizontal asymp-
tote.

5x

o —x+1
Looking at the graph of z3 — z + 1, we see

205

that there is one real root, at approximately
—1.325; so the domain of the function is all x
except for this one point, and =z = —1.325 will
be a vertical asymptote. There is a horizontal
asymptote of y = 0?;
1—-2x

"(2) =brs—"=
F@) (3 —x —1)2
The only critical point is « = {/1/2. By the
first derivative test, this is a local max.

3x% 4+ 2% — 627 4+ 1

§(@) =102

(23 —z+1)3
The numerator of f” has three real roots,
which are approximately z = —.39018, x =

43347, and 2 = 1.1077. f’(x) > 0 on
(—00, —1.325) U (—.390,.433) U (1.108, 00)
F"(z) < 0 on (—1.325,—.390) U (.433, 1.108)
So f is concave up on (—oo0,—1.325) U
(—.390,.433) U (1.108,00) and concave down

n (—1.325,—.390) U (.433,1.108). Hence z =
—.39018, z = .43347, and x = 1.1077 are in-
flection points.

-10—

29. f(z) = 2®V22 -9

f is undefined on (-3, 3).

f/(ac) =22\ 22 — 94 22 <;($2 _ 9)71/2 . 233)

3
=22V22 -9+ ———
vaz -9

2z(z% — 9) + 23

Va2 -9
_ 32® — 18z 3x(2? —6)
V22— 9 0 V229
_ 3u(o+ V)@ - V)
B Va2 -9

Critical points £3. (Note that f is undefined

at x =0, +£16.)
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(92% — 18)Vz2 — 9

" .
f (ZL’) - xQ -9
_ (32° —18x) - §(2* - 9)7V/? - 2
x2 -9
~ (92% —18)(2* —9) — x(32® — 18x)
(22 — 9)3/2
(62" — 81?4 162)
(22— 9)3/2
f"(x) = 0 when
, 81+ /812 —4(6)(162)
B 2(6)
1++v2 1
_ 817 V2673 = (27 V29T)

So x =~ £3.325 or z &~ +1.562, but these latter
values are not in the same domain. So only
+3.325 are potential inflection points.

f'(z) >0 on (3,00)

f'(z) <0 on (—oo,—3)

f"(x) > 0 on (—o0,—3.3) U (3.3,00)

f"(x) <0on (-3.3,-3)U (3,3.3)

f is increasing on (3,00), decreasing on
(—00,—3), concave up on (—o00,—3.3) U
(3.3,00), concave down on (—3.3,—3)U(3, 3.3).
x = £3.3 are inflection points.

Global graph of f(z):

T T
-10 -5 o 5 10

Local graphs of f(z):

N w »

AT STAETETE. SR AT R AT

-

o
[N T I

vvvvvvvvvvvvvvvvvvvv

30.

31.
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]
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f@) = VIT=1

, 4z
F@) = 3o 1y
f'(z) = 0 at + = 0 and is undefined at
x=14/1/2.
() = —4(222 + 3)

9(222 — 1)5/3

f"(z) is never 0, and is undefined where f’
is. The function changes concavity at x =
+4/1/2, so these are inflection points. The
slope does not change at these values, so they
are not extrema. The Second Derivative Test
shows that x = 0 is a minimum.
f(z) = o0 as x — +o0.

f(x) =e *sina

f'(z) = e ?*(cosw — 2sin )

f(x) = e 2*(3sinx — 4cosx)

f'(x) = 0 when cosxz = 2sinx; that is,
when tanz = 1/2; that is, when z =
km +tan~1(1/2), where k is any integer.

f'(z) < 0, and f is decreasing, on intervals of
the form (2km + tan™*(3), (2k + 1)7 + tan='(3))
f'(z) > 0 and f is increasing, on intervals of
the form ((2k — 1)m + tan~'(3), 2km + tan='(3))
Hence f has a local max at =z = 2km +
tan=!(1/2) and a local min at x = (2k +
)+ tan~1(1/2).

f"(x) = 0 when 3sinz = 4cosx; that
is, when tanz = 4/3; that is, when z =
km + tan=1(4/3). The sign of f” changes at
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each of these points, so all of them are inflec-
tion points.

32. f(z)=sinz — isin2x
f(z) = cosx — cos 2x
f'(x) = 0 when z = 2km, 27/3 + 2km, or
47 /3 + 2km.
f"(x) = —sinx 4 2sin 2z
f"(x) = 0 when x = 0, 7 and approximately
+1.3181, and the pattern repeats with period
2m. f" changes sign at each of these values, so
these are inflection points. The First Deriva-
tive Test shows that x = 2k is neither a min-
imum nor a maximum. The Second Derivative
Test shows that the other critical numbers are
extrema that alternate between minima and
maxima.

33. f(z) = 2t — 1623 + 4222 — 39.62 + 14

f/(x) = 4a3 — 4822 + 84z — 39.6

f(x) = 1222 — 96x + 84

= 12(22 — 8z +7)

=12(x—T)(z-1)
#/(x) > 0 on (.8952,1.106) U (9.9987, o)
F/(x) < 0 on (—o0,.8952) U (1.106,9.9987)
f"(x) >0 on (—o0,1) U (7,00)
f"(x) <0on (1,7)
f is increasing on (.8952,1.106) and on
(9.9987, 0), decreasing on (—o0,.8952) and on
(1.106,9.9987), concave up on (—oo, 1)U(7, 00),
concave down on (1,7), x = .8952, 9.9987 are
local min, x = 1.106 is local max, x = 1,7 are

207

inflection points.
f(x) = 00 as © — +o0.
Global graph of f(z):

4000
3000
2000

1000

vvvvvvvvvuvvwvvvvvvv
-10 -5 ]I) 5 15 20
x

Local graph of f(z):

vvvvvvvvvvvvvvvvvvvvvvvvvvv

34. f(x) = 2* + 322% — 0.022% — 0.8z
f'(z) = 423 + 962% — 0.042 — 0.8
f'(x) = 0 at approximately =z = —24,
—0.09125, and 0.09132.
f(x) = 1222 + 192z — 0.04
f"(z) = 0 at approximately = = 16.0002 and
0.0002, and changes sign at these values, so
these are inflection points. The Second Deriva-
tive Test shows that x = —24 and 0.09132 are
minima, and that x = —0.09125 is a maxima.
The extrema near x = 0 look like this:

0.08

The global behavior looks like this:
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35.

CHAPTER 3.

100000

50000

vvvvvv

-50000

-100000

25— 50V/22 +0.25

f(z)
X
1—2vVa2 1 o.25>
X

=25

_ o5 1—+v4z?2 +1
N x
Note that x = 0 is not in the domain of the
function.
1—V4x? +1
") =25 | ————rr
F@) x2V/4r2 + 1
We see that there are no critical points. In-
deed, f’ < 0 wherever f is defined. One can
verify that

f"(z) > 0 on (0,00)

f"(z) < 0on (—0,0)

Hence the function is concave up on (0, c0) and
concave down on (—o0,0).

25 — 5022 + 0.25

lim
T—r00 x
I 25  50v22+0.25
- lim —— —
r—00 I Xz
T /1+ 0;:25
= lim 0 - 50—
Tr—r00

T
0.25
= lim —501/1+ —5 = —50
T—00 €T

25 — 50v/x2 + 0.25

lim
T——00 x
~ lim 25 50vx2 + 0.25
I e x
(—x)4/1+ %
= lim 0—- 50—
T——00 T

0.25
= lim 504/1+ —5 = 50
T—00 €T

So f has horizontal asymptotes at y = 50 and
y = —50.

36.

37.

38.

APPLICATIONS OF DIFFERENTIATION

f(r) =tan™? (le_1>

The function has horizontal asymptote y = 0,
and is undeﬁneQd at = +1.

, —2x
) = x4 — 222 + 2
f'(x) =0 only when z = 0.
() = 2(3x* — 222 - 2)

(zt — 222 + 2)?

f"(z) = 0 at approximately x = =+1.1024
and changes sign there, so these are inflection
points (very easy to miss by looking at the
graph). The Second Derivative Test shows that
x = 0 is a local maximum.

f(x) = 2* + ca?

f(z) = 423 + 2cx

" (z) =122 4+ 2¢

¢ =0: 1 extremum, 0 inflection points
¢ < 0: 3 extrema, 2 inflection points

¢ > 0: 1 extremum, 0 inflection points
¢ — —oo: the graph widens and lowers
¢ — 4o00: the graph narrows

flx)=a*+ca® +

f(z) =423 + 2ca + 1

' (x) = 1222 + 2¢

If ¢ is negative, there will be two solutions to
f"” =0, and these will be inflection points. For
¢ > 0 there will be no solutions to f” = 0,
and no inflection points. For ¢ = 0, f” = 0
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40.

41.

42.
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when z = 0, but does not change sign there,
so this is not an inflection point. f’ = 0 has
one solution, corresponding to a minimum, for
all ¢ > —1.5. For ¢ = —1.5, there is a second
critical point which is neither a minimum nor
a maximum. For ¢ < —1.5 there are three crit-
ical points, two minima and a maximum. As
¢ — oo the curve has one minimum, and nar-
rows. As ¢ — —oo, the two minima get farther
apart and drop lower. The local maximum ap-
proaches (0,0).

2
f(l‘) - 1’2 + 022
, 2c°x
f (Z‘) - (1’2+C2)2
F(2) = 2c¢* — 6c22?

(2 4 ¢?)3
If c=0: f(x) =1, except that f is undefined
at x = 0. ¢ < 0, ¢ > 0: horizontal asymp-
tote at y = 1, local min at = = 0, since the
derivative changes sign from negative to posi-
tive at x = 0; also there are inflection points at
r = +c/V3. As ¢ = —o0, ¢ — +oo: the graph
widens.

fla)=e /e
-2
fla) ===l
Cc
—2c + 422
[y = = e

For ¢ > 0 the graph is a bell curve centered
at its maximum point (0, 1), and the inflection
points are at z = :tm. As ¢ — oo, the
curve widens.

The function is not defined for ¢ = 0.

For ¢ < 0, there are no inflection points, and
x = 0 is a minimum. The graph is cup shaped
and widens as ¢ — —o0.

When ¢ =0, f(z) =sin(0) = 0.

Since sinz is an odd function, sin(—cx) =
—sin(cz). Thus negative values of ¢ give the
reflection through the z-axis of their positive
counterparts. For large values of ¢, the graph
looks just like sinz, but with a very small pe-
riod.

When ¢ = 0, we have f(z) = 2?v/—22, which
is undefined.

Since z2v/c2 — 22 = 22,/(—c)? — 22, the func-
tion is the same regardless of whether c¢ is neg-
ative or positive. The function is always 0 at
x = 0 and undefined for |z| > |¢|. Where it

43.

44.

45.
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is defined, f(xz) > 0, attaining its minimum
at ¢ = 0. It reaches its maximum value at
x = £4/2¢%/3. At these points, f attains the
value 2v/3|c[3/9. The function looks generally
the same as |c| gets large, with the domain and
range increasing as |c| does.

322 —1 1
= =3z — =

fla) === -

y = 3x is a slant asymptote.

15—

3
,105
3x2 -1 2
- =3z +3+——
fla) =2 =3+ —,

so the slant asymptote is y = 3x + 3.

3 — 222 +1 1

fla) = =

y = x — 2 is a slant asymptote.
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so the slant asymptote is y = x.
y
6 a4 | 2 4 2. 6
5
10:
4
T
7. f(x) = ¥——=2— —4/——
/(@) 3 +1 x4+ 1
y = x is a slant asymptote.
5.0:
25—
[TTTT T T T T[T TT T T[T T T T TTT1T1]
-3 -2 _/: 1 2 3
2.5
-
-s.0|
4 2
5 —1 —z“ -1
48. f(a) = H—— =a 4+ —,
x° +x 2+

49. One possibility:

322
1@ =@y
50. One possibility:

x
2 —1

fz) =

CHAPTER 3. APPLICATIONS OF DIFFERENTIATION

51.

52.

53.

One possibility:

2x

T e

One possibility:

222
T@) = @3
. xt— 2% +1 9
Jgﬂo[ma_l‘x}
, {x4—x2+1—x2(m2—1)]
= lim 5
T—00 2 —1
1
= 1- :0
zgr;o|:x —1]
4 2
- 1
Thus f(z) = xQL has 22 as an asymp-
22 —
tote.
6,000:
5,000:
1,00:
(xxwx[xwxvjxwxwywxwx\
4
x
@ @)=
_x4—1+1
x4+
_(1:2—|—1)(:v+1)(x—1) 1
N r—1 z+1
1
2
= 1 )+ ——
(% +1) (z+ )+a:+1
One possible polynomial is p(x) =
(2 +1) (x+1). Then |f(z) —p(z)| =
1
m‘—>0asw—>oo.
|
b -
0) f@) =2
2412
x4+
4 3 2 2
=z -2+ —z+1—- ——
x+1

One possible polynomial is p(z) = z* —

23+ 2% —x+ 1. Then |f(z)—p(z)| =

2
m‘%Oasx—M)o.
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6

© fla) =2

(mg—l)(:cqul)fl i

- z+1 4°§

(*=1)(@+1) (22 —2x+1) -1 E

B z+1 20%

3 2 L E
e SN

One possible polynomial is p(z) =
(2 — 1) (2* =2+ 1). Then |f (z) — p(z)| =
Ll 5 0as z — oo

z+1
56. For y = sinhz we need to use —e™" instead
of %e*m. To explain the enveloping behavior,
note that:
T __ ,—T
) T _ @ lim sinhz = lim ——
55. f(x) =sinha = BT 500 x50 2
—x
e +e 7 _ . _ €
flay= T Az =
f'(x) > 0 for all x so f(x) is always increasing L . et —e "
and has no extrema. Ill{‘;o sinhz = JE{&O
. et —e™® o
() = S5 .
f"(z) = 0 only when z = 0 and changes sign FTree
here, so f(z) has an inflection point at = = 0. a2
2.4:
3 1.6:
2 0.8:
I———
1 [T T T T 17 T T T T T T
-2 -1 = 1 2
x —0.8—
o]
.
.

To explain the enveloping behavior for y =
cosh x, note that:

et +e " @ -z

f(z) = coshz = 9 lim coshz = lim ete”
et e T——00 T——00 2
f'(@) = R
= lim —
f'(z) = 0 only when z = 0. z——o00
i) = S lim cosha = Tim &
)= - S coshr = Jim,

f"(z) > 0 for all z, so f(z) has no inflection s
points, but x = 0 is a minimum. = lim —
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57. f(z) = xe™
)=0

f(0
f(x) >0 forxz>0

. —bx 9 i T _
Jim ze™t = Jim o = lim 2 =0

(by L’Hopital’s rule)

f'(z) = e7% (1 — bx), so there is a unique crit-
ical point at = 1/b, which must be the maxi-
mum. The bigger b is, the closer the max is to
the origin. For time since conception, 1/b rep-
resents the most common gestation time. For
survival time, 1/b represents the most common
life span.

58. From the graph we can count 15 maxima and
16 minima in the range 0 < x < 10. Using a
CAS to solve
f'(x) = —sin(10z + 2 cos ) (10 — 2sinz) = 0,
we find the following values of x at the extrema.

Minima | Maxima
0.11549 | 0.44806
0.80366 | 1.18055
1.57080 | 1.96104
2.33793 | 2.69353
3.02610 | 3.33776
3.63216 | 3.91326
4.18477 | 4.45009
4.71239 | 7.97469
5.24001 | 5.51152
5.79261 | 6.08702
6.39868 | 6.73125
7.08685 | 7.46374
7.85398 | 8.24422
8.62112 | 8.97672
9.30929 | 9.62094
9.91535

X

59. f(z) = A = tan"! (295525> T (10.75)

60.

fi(z) =

x? (—29.25)
22 + (29.25)° \ 2?2

22 (—10.75)
22+ (10.75)> \ 2

—99.95 10.75

22 + (29.25)°
x=17.73 ft.
Substitue z = 17.73 in f ().

29.25 10.75
A=tan ' | == ) —tan"! [ ——
o (17.73) o (17.73)
— 58.78 — 31.23
= 27.55°

22 4 (10.75)%

Now z is increased to (x + 15).
fle+15)=A

- 2025\ - 10.75
h x4+ 15 x4+ 15

[ (x+15)

B 1 ( —29.25 )
B 1+(29.25)2 (z +15)°

x+15

1 < ~10.75 )
- 2 2
, 15
e () e
~29.25
(z +15)% + (29.25)
10.75

(z 4+ 15)° + (10.75)*

fl@)=0=2=273 ft.
Substitute x = 2.73 in f (x).

29.25 10.75
_ -1 [ &2=v ) -1 ( Y-
A= tan ( 2.73 > tan ( 2.73 )
= 84.67 — 75.75

= 8.92°
Therefore, A decreases by 18.63°.

2. 2.
z(t) = —515 - —52 sin 4wt
w w
Since 0 < ¢ < 0.68. Hence

0<az(t) < (M ~ 25 g (dw (0.68)))

w 4w?
1.7 2.5 o:
< (7 — 4oz sin (2.72w))
< 6.8w—2.5sin(2.72w)
4w?

Taking limit as w — 0
lim 0 < lim () < lim (w>
w—

w—0 w—0 dw?

(by L’Hopital’s rule)
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. 6.8w — 2.5sin (2.72w)
lim
w—0 4’LU2
. 6.8—6.8cos(2.72w)
= lim
w—0 Sw

(by L’Hopital’s rule)
18.496 sin (2.72w)

lim =0
w—0 8

Hence

lim 0 < lim z(¢) < 0.
w—0 w—0

As w — 0, z(t) — 0 that is the knuckleball
will move in a straight direction.

3.7 Optimization

1. A=2y=1800

1800
y:

v 1800
P:2x+y:2x—|—7
P,:2_18(2)0:O

X
222 = 1800
r =30

P'(z) >0 for z > 30
P'(z) <0for 0 <z <30
So x = 30 is min.
1800 1800
So the dimensions are 30" x 60’ and the mini-
mum perimeter is 120 ft.

. If y is the length of fence opposite the river,
and x is the length of the other two sides, then
we have the constraint 2z + y = 96. We wish
to maximize

A =zy = x(96 — 2z2).

A’ =96 — 4x = 0 when z = 24.

A" = —4 < 0 so this gives a maximum. Rea-
sonable possible values of z range from 0 to 48,
and the area is 0 at these extremes. The maxi-
mum area is A = 1152, and the dimensions are
=24,y =48

. P=2x+3y=120
3y =120 — 2x

2

—40- =

Y 0 395
A=uzxy

213
2
Alx) ==z (40 - -z
3
2 2
4
4
=30

A'(x) >0 for 0 <z <30
A’(z) < 0 for x > 30.

2
Sox=30ismax,y:40—§~30220.

So the dimensions are 20" x 30’.

. Let = be the length of the sides facing each

other and y be the length of the third side.
We have the constraint that xy = 800, or
y = 800/z. We also know that z > 6 and
y > 10. The function we wish to minimize is
the length of walls needed, or the side length
minus the width of the doors.
L=(y—10)+2(z—6)=800/x + 2z — 22.
L' = —800/2% +2 = 0 when x = 20.

L" = 1600/z3 > 0 when x = 20 so this is
a minimum. Possible values of = range from
6 to 80. L(6) = 123.3, L(80) = 148, and
L(20) = 58. To minimize the length of wall,
the facing sides should be 20 feet, and the third
side should be 40 feet.

A=uzxy
P=2x+2y
2y =P —2x
P
y:§*$

x
() >0for 0 <z < P/4
)

A/
A'(z) <0 for x > P/4

So x = P/4 is max,

P P P P
L T
So the dimensions are % X %. Thus we have a
square.
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6. We have a rectangle with sides = and y and

9.

area A = xy, and that we wish to minimize
the perimeter,

A
P=2x+2y=2c+2-—.

T
24

P'=2—- = =0 when z = VA
T

P" = 4A/2® > 0 here, so this is a minimum.

Possible values of x range from 0 to co. As x
approaches these values the perimeter grows
without bound. For fixed area, the rectan-
gle with minimum perimeter has dimensions
=y =+/A, asquare.

V=I1l-w-h
V() =(10-2z)(6 —2x) -2, 0<x <3
V(@) = =2(6 — 22) - + (10 — 22)(=2) -
+ (10 — 2z)(6 — 2x)
= 60 — 64x + 1222
= 4(3z* — 16z + 15)

=0

16+ /(—16)2 —4-3-15
€r =

6

_8 V19

373

8 V19

=-+-— >3

3773

X
V'(x) >0 for x < 8/3 —/19/3
V'(z) <0 for > 8/3 —/19/3
8 V19

Soxr =- — —— is a max.

3 3

. If we cut squares out of the corners of a 12” by

16” sheet and fold it into a box, the volume of
the resulting box will be

V =212 — 2z)(16 — 2x)
= 423 — 5622 + 192z,

where the value of x must be between 0 and 6.
V' =1222 — 11224192 =0
when x = % ~ 7.07 and 2.26. The crit-

ical value xz = % V13 s outside of the rea-

sonable range. The volume is 0 when z is 0
or 6. The First Derivative Test shows that
T = 714%@ gives the maximum volume.
(a) V=1l-w-h
The volume of the first box (without top)
is
Vi = Vi(z) = (6 —2z2)%(x) = 42(3 — z)?
where 0 < =z < 3. The volume of the
second box (without top and bottom) is
Vo = Va(x) = a3,
Thus, we find the absolute maximum of

10.

the continuous function
V =V(z)=Vi(x)+Va(x) = 42(3 — 2)°+
3

x

on the interval 0 < x < 3.

V'(z) =43 — 2)? + 42 (2 (3 — z) (1)) + 32
=4(9—6x+2%) —8z(3—x)+32”
= 152 — 487 + 36
= (x —2) (152 — 18)

Now compare the value of the function at

the critical points.

V(1.2) = 17.28

V(2) =16

Therefore, the value x = 1.2 maximizes

the sum of volumes of the boxes.

(b) The volume of the first box (without top)

is

Vi =Vi(z) = (6 — 22)(4 — 22)(x)

=423 —x)(2 — ), where 0 < z < 2

The volume of the second box (without

top and bottom) is

Vo = Vo(x) = a3.

Thus, we find the absolute maximum of

the continuous function

V=V(z)=Vi(x)+ Va(x)

= 42(3 — z)(2 — =) + 2°, on the interval

O<z <2

We have,

Viiz)=4B—2)(2—2)+4x(2—2)(-1)
+4x (3 — ) (—1) + 322
=4(6 -5z +2%) — 4z (2 —x)
—4x (3 —x) + 322
= 1522 — 40z + 24

Now compare the value of the function at

the critical points.
V(0.91169) = 9.0

V(1.75496) = 5.4
Therefore, x = 0.91169 maximizes the
sum of volumes of the boxes.

The volume of the first box (without top) is
Vi =Vi(z) = (6 — 22)(d — 2x)(z),

where 0 < z < min{%, 3}

The volume of the second box (without top and
bottom) is

Vo = Va(x) = a3,

Thus, we find the absolute maximum of the
continuous function

V =V(z) =Vi(z) + Va(z)

= 2(6 — 2x)(d — 2x) + 2*, on the interval

0 <z < min{¥, 3}

We have,
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13.
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V'(z) = (—2x)(d — 2z) — 22(6 — 21)

+ (d — 2x)(6 — 2x) + 322

= 152” — 24z — 4dx + 6d

= 152 — (24 + 4d) + 6d = 0
To get real values of z, (24+4d)?—4-15-6d > 0
and this is ture for all d > 0.

Therefore for each d > 0, we can find = such
that V' is maximum.

d=/(x—0)2+(y—1)
y=a’
d= /224 (22 - 1)2
— ($4 — 22 + 1)1/2
d'(z) = %@;4 — 1) M2 (40P — o)
_ 2z(22% — 1) —0
2t — a2 +1
z=0,++/1/2;

F0) =1, f(/1/2) = 3/4, f(=V1/2) = 3
Thus ¢ = +4/1/2 are min, and the points on
y = x? closest to (0,1) are (1/1/2,1/2) and

7\/Wa 1/2)

Points on the curve y = x° can be written
(z,2?). The distance from such a point to (3, 4)

D:\/(x—3)2+(x

2

2 4)2
= Vat — 722 — 6z + 25.
We numerically approximate the solution of
223 — Tz — 3
D = < < = 0 to be z ~
—7x2 — 6z + 25

2.05655, and two negative solutions. The neg-
ative critical numbers clearly do not minimize
the distance. The closest point is approxi-
mately (2.05655, 4.22940).

d=+/(z —0)2+ (y —0)2
Y = COST
= /22 +cos?x
d'(z) = 2z — 2coszsinz _ 0
2vVx? + cos? x
T =cosxsinx
x=0

So x = 0 is min and the point on y = cosx
closest to (0,0) is (0, 1).

Points on the curve y = cosx can be written
(x,cosx). The distance from such a point to

(1,1) is

15.

16.

17.

18.
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D= -1+

= \/:1:2 —2x +cos2x — 2cosx + 2
We numerically approximate the solution of
D z—1—cosxsinz + sinx

Va2 — 2z + cos?2x — 2cosT + 2

=0
to be x ~ 0.789781. The First or Second
Derivative Test shows that this is a minimum
distance. The closest point is approximately
(0.789781,0.704001).

For (0,1), (1/1/2,1/2) on y = 22, we have

y =2z, (/1/2) =2-/1/2 = V2 and
-1 1
m=———=—.
v
For (0,1), (—/1/2,1/2) on y = 2%, we have
Y (—/1/2) = 2(—+/1/2) = —V/2 and
For (3,4), (2.06,4.2436) on y = 22, we have
¥/ (2.06) = 2(2.06) = 4.12 and
4.24

(cosx —1)2

N[

=

. — 1
=BT 02501~ -
YT N T
For (3,9), (1,8) on y = 9 — 22, we have
Qxy() —2-1=-2and
m_8—9 1
1-3 2

For (5,11), (0.79728,8.364) on y = 9 — 22, we
have y'(0.79728) = —2(0.79728) = —1.59456
and

8.364

—11

Cost: C = 2(2mr?) + 27rh
Convert from fluid ounces to cubic inches:
12floz =12 fl oz - 1.80469 in®/fl oz

1.59456°

= 21.65628 in®
Volume: V = 7r2h s
V2L 65628
o 7r70221 65628
C =dnr? + 2nr | ——— 5 )
nr

C(r) = 4mr? + 43.31256r 1
C'(r) = 8mr — 43.31256r 2
 8mr® — 43.31256

r2

[43.31256
r={/——— =1.1989"
8

when C’(r) = 0.
C'(r) < 0 on (0,1.1989)
C'(r) > 0 on (1.1989, c0)

Thus 51:6 %612%89 minimizes the cost and
h=—"—""""—=14.7957".
7(1.1989)2

If the top and bottom of the cans are 2.23 times
as thick as the sides, then the new cost func-
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tion will be

21.6562
C(r)=2n (2.23r2 + 6568) .
wr
21.65628
Then C'(r) = 27 (4.46r — 2) =0
mr

/21.65628
h = ¢/ A 1.156.
when r 146m 56

The First Derivative Test shows this is a mini-
mum, and we can verify that the cost increases
without bound as r — 0 and r — oo.

Let x be the distance from the connection
point to the easternmost development. Then
0<z <5
f(x) = VB + (5 —2)2 + V42 + 22,

0<x<5h
fl@)==09+6-2)*)""*06-1)

- %(16 + 227 V2(21)

_ r—5 n T
VI+(B5—2)2 V16 + 22
=0
20
= ~2.857
=7

£(0) =4+ V34 ~ 9.831

f (270) = /74 ~ 8.602
f(5) =34+ V41 ~ 9.403

So x = 20/7 is minimum. The length of new
line at this point is approximately 8.6 miles.
Since f(0) =~ 9.8 and f(5) ~ 9.4, the water
line should be 20/7 miles west of the second
development.

Say the pipeline intersects the shore at a dis-
tance x from the closest point on the shore
to the oil rig. Then x will be between 0
and 8. The length of underwater pipe is then
W = v/22 + 252, and the length of pipe con-

structed on land will be L = /(8 — x)2 4 52.

The total cost will be C = 50W + 20L.

We numerically solve
50x 10(2z — 16)

V625 + 22 /22 — 162 + 89
to find x =~ 5.108987. The first derivative test
shows that this gives a minimum. The cost at
this value is $1391 thousand. The cost when
x = 0 is $1439 thousand, and the cost when
x = 8 is $1412 thousand, so x = 5.108987 gives
the absolute minimum cost.

/

21.

22.

(a) C(z) =516+ 22 4 21/36 + (8 — z)2
0<z <8

C(z) = 5v/16 + 22 4 21/100 — 162 + 22

C'(z) =5 (;) (16 + %) 712 . 2

1
+2 (2> (100 — 162 + 22)~Y/2(22 — 16)
5x 2x — 16

 V16+22 V100 — 16z + 2
=0

z ~ 1.2529

C(0) = 40

C(1.2529) ~ 39.0162
C(8) ~ 56.7214

The highway should emerge from the
marsh 1.2529 miles east of the bridge.

(b) If we build a straight line to the inter-
change, we have x = (3.2).

Since C(3.2) —C(1.2529) ~ 1.963, we save
$1.963 million.

(a) Say the road intersects the edge of the
marsh at a distance z from the closest
point on the edge to the bridge. Then
x will be between 0 and 8. The length of
road over marsh is now M = vx2 + 42,
and the length of road constructed on dry

land will be L = /(8 — )2 + 62. The to-

tal cost will be C' = 6 M + 2L.

We numerically solve
, 6z 2z — 16

V16 +22 /a2 — 162 + 100
to find x = 1.04345. The first deriva-
tive test shows that this gives a minimum.
The cost at this value is $43.1763 mil-
lion. The cost when we use the solution
r = 1.2529 from exercise 19 is $43.2078
million, so the increase is $31,500.

(b) C(z) =5V16 + 22 + 3/36 + (8 — x)?

0<z <8
C'(z) = 5x 3z — 24
V16 + 22 /100 — 162 + 22
Setting C’(z) = 0 yields
r ~ 1.8941
C(0) =50

C(1.8941) ~ 47.8104
C(8) ~ 62.7214
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23.

24.

The highway should emerge from the
marsh 1.8941 miles east of the bridge. So
if we must use the path from exercise 21,
the extra cost is

C(1.2529) — C(1.8941)

= 48.0452 — 47.8104 = 0.2348

or about $234.8 thousand.

Let r denote the running speed, and s be the
swimming speed and let f(y) be the time to
get to the ball. Since time = distance/speed,
we have

r S

ST

/r2 — g2

Solving f'(y) = 0 for y, we get y =

Substitute £ = 4m and z = 8m. Therefore, we
have

(0.9) (4)
(6.4)% — (0.9)
~ 0.56815.

y:

Therefore, Elvis should enter into the water at
y =~ 0.56815.

From the equation y =

s+ 1\/r]s — e

get that the value of y is independent of z > 1.

Let r denote the running speed, and s be the
swimming speed and let f(y) be the time to
get to the ball. Since time = distance/speed,
we have

r S

ST

Solving f/(y) = 0 for y, we get y = —.
r2 —s

Substitute » = 6.4 and s = 0.9.

0.9
y = x ~ 0.144z

(6.4)* — (0.9)

Therefore, for any = the optimal entry point is
approximately y = 0.144x.

25.

26.

27.

28.
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1 2 14+ (2—2)2
Ty = YIEe 1+ Co0)
U1 V2
T (x) = 1. 1(1 +22)712 9z
U1 2
1
+—1+2-2)) V2. 2-2)(-1)
Vo
- T + r—2
nvV1i+z2  vyy/1+4(2—1x)?
Note thatl
T
TI )= —  —
(@) v1 1+ 22
_1 2o
U2 14+ (2—12)2
1
= —sinf; — —sinfy
U1 (%)
When 7"(x) = 0, we have
1
— Sin91 = — Sin92
U1 Vo
sin 64 _u
sinfls w9
The distance light travels is

D=2 422+ /124 (4—2)2.
We maximize this by solving
;o x + 2z — 8 _
Va+ 22 222 -8z + 17
to find x = 8/3. For this value of z,
1 = 0, = tan—1(3/4). (Or simply note similar
triangles.)

V(r)=cri(ro —7)
V'(r) = 2cr(rg — r) + cr?(—1)
= 2crrg — 3er?
= cr(2rg — 3r)
V'(r) = 0 when r = 2r¢/3
V'(r) > 0 on (0,2r9/3)
V'(r) <0 on (2ry/3,00)
Thus r = 2ry/3 maximizes the velocity.
r = 2r9/3 < 1o, so the windpipe contracts.

We wish to minimize

E(G):CSCH 1fcot6'

ré + R4
We find

1+ cot? 6
E'0) = - o 7
B —cosOR* + 1t

r4R4sin% 0

cscf cot O

This is zero when cosf = r%/R% so 0 =
cos~t(r*/R*). The derivative changes from
negative to positive here, so this gives a mini-
mum as desired.
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(z) = Vi
T R ey
VIR+2)2-V3z-2(R+2x
oy = VARE 2R Ve 2R 42
(R+ )
V2R2 —V2.172
 (R+2)
p(z) =0 when x = R
p'(xz) > 0on (0,R)
p'(z) <0 on (R, 00)
Thus z = R maximizes the power absorbed.

If the meter registers 115 volts, then v =
115v/2. The function V(t) = vsin(27ft) has
amplitude v, so the maximum value of the volt-

age is 115v/2.

mr+4r+2w =84+
84T —r(r+4)

2

7T’I“2

A(?") = 7 —i- 27"11]
2

:%+r(8+7r—r(7r+4))
=12 (<= Z) +r(8+m)
Al(r) = —2T(4+*)+(8+7T)=0
A(r)=0whenr=1
A'(r) >0on (0,1)
A'(r) <0 on (1,00)

Thus r = 1 maximizes the area so
8+ m—(m+4)

The dimensions of the rectangle are 2 x 2.

Let x be the distance from the end at which the
wire is cut. Due to symmetry, we may consider
0 < z < 1. We wish to minimize the area of
the squares formed by the two pieces. The to-
tal area is

a@ = (2 + (232

_2x2—4x—|—4
B 16 '
We compute
Al(z) v 1 0 when z =1
= = — — = W = .
4 4

A = 1> 0, so this is a minimum.
We check A(0) = 1/4 and A(1) = 1/8 and see

that cutting the wire in half minimizes the area
of the two squares.

I xw=92 w=92/l

Ay =(1+4)(w+2)
=({+4)(92/1+2)
=92+368/l+21+38
=100 + 3680~ + 21

34.

35.

A'(l) = —368172 +2
B 212 — 368
= 7
A’(l) = 0 when [ = /184 = 21/46
A’(l) < 0 on (0,2+/46)
A'(l) > 0 on (2v/46, 0)
So I = 24/46 minimizes the total area. When
= 2\/76 w = ﬁ = \/46.

For the minimum total area, the printed area
has width v/46 in. and length 2v/46 in., and
the advertisement has overall width v/46+2 in.
and overall length 24/46 + 4 in.

Let  and y be the width and height of the ad-
vertisement. Then zy = 120 and y = 120/x.
We wish to maximize the printed area

120

A=(z-2-3)=@-2)(— -3

— 126 30— 220
x
24
We find A’ = 73+f0—0whenzf4f

The first Derivative Test shows that this is a
maximum. The smallest x could be is 2, and
this gives A(2) = 0. The largest x could be is
40, and this also gives A(40) = 0. Thus, we
see that the dimensions which maximize the
printed area are x = 4+/5 and Y= 6/5.

(a) Let L represent the length of the ladder.
Then from the diagram, it follows that
L =asech +besch.

Therefore,
dL

0 asecftan — beschcot 6

0 =asecHtand — besc b cot
asecftant = besclcotd
b secf tan 6

a  cscOcotd
1 sinfsinf sinf

cosfcosf 1 cosf
=tan> 6
Thus,
tanf = {/b/a
6 = tan~! (\3/ b/a)
- (Var5)
~ 0.748 rad or 42.87 degrees
Thus, the length of the longest ladder
that can fit around the corner is approxi-
mately
L =asech +besch
= 5sec(0.748) + 4 csc(0.748)
~ 12.7 ft

= tan
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(b)

From part (a), we have that 6 =
tan~!({/b/a) is the critical number lim-
iting the length of the ladder. Thus
tanf = b'/3/a'/3. We can then draw
a right triangle with 6 as one angle and
the length of the side opposite 0 equal to
b'/3 and the length of the side adjacent
to 6 equal to a'/?. By the Pythagorean
Theorem, the hypotenuse of this triangle
is (a®/3 +b%/3)1/2. From this triangle, we
find

g b1/3 d
Smv = (@273 1 b2/3)1/2 an
o ql/3
cosv = (a2/3+b2/3)1/2
SO
2/3 4 p2/3)1/2
cscl = % and
(a2/3 +b2/3)1/2
0T
us

L =asect +bcesch
(a2/3+b2/3)1/2

(a2/3 + b2/3)1/2

al/3 pl/3

_ a2/3(a2/3 +b2/3)1/2 +b2/3(a2/3 +b2/3)1/2

_ (a2/3 +b2/3)(a2/3 +b2/3)1/2
— (23 —|—b2/3)3/2.
Using the result of part (b) and solving
for b:
L — (a2/3 + b2/3)3/2
I2/3 — q2/3 4 12/3
b2/3 — L2/3 _ a2/3
b— (L2/3 _ a2/3)3/2
_ (82/3 _ 52/3)3/2
~ 1.16 ft

This was already done in part (c) while

solving for b:
b= (L3 — a2/3)3/2.

35z — x2

R(z) = ———

(@)= "3

2
fon . ardT 20 —35
R'(z) = 357@32 3572
= _35w

(22 4 35)2

Hence the only critical number for z > 0
is = 5 (that is, 5000 items). This
must correspond to the absolute maxi-
mum, since R(0) = 0 and R(z) is nega-

37.

38.

(a)
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tive for large . So maximum revenue is
R(5) = 2.5 (that is, $2500).

To maximize
2

cr — T
R(z)=2"%
(2) 22 +c’
we compute
R(z) = c(c— 2z — 2?)

@ 1o
This is zero when 22 4 22 — ¢ = 0, so

—2+ 4+ 4c
r=—.

The First ]%erivative Test shows that
24+ v4+4c

isa maxirm%m.
Q' (t) is efficiency because it represents the
number of additional items produced per
unit time.
Q(t) = —t3 + 12t* + 60t
Q'(t) = —3t% + 24t + 60

= 3(—t* + 8t + 20)
This is the quantity we want to maximize.
Q"(t) = 3(—2t + 8) so the only critical
number is ¢ = 4 hours. This must be
the maximum since the function Q’'(¢) is
a parabola opening down.

The worker’s efficiency, @’ is maximized
at the point of diminishing returns be-
cause at this point )" changes from pos-
itive to negative. The First Derivative
Test applied to Q' shows that Q' has a
local maximum at this point. (This as-
sumes that the graph of () changes from
concave up to concave down at the inflec-
tion point. If this was reversed, the inflec-
tion point would not be a point of dimin-
ishing returns, and the efficiency would be
minimized at such a point.)

Let C(t) be the total cost of the tickets.
Then
C(t) =(price per ticket)(# of tickets)
C(t) = (40 — (t — 20))(1)

= (60 — t)(t) = 60t — t2
for 20 < t < 50. Then C’(t) = 60 — 2¢, so
t = 30 is the only critical number. This
must correspond to the maximum since
C(t) is a parabola opening down.

If each additional ticket over 20 reduces
the cost-per-ticket by ¢ dollars, then the
total cost for ordering x tickets (with z
between 20 and 50) is
C(z) = (40 — ¢(z — 20))x

= (40 + 20c)x — cx?.
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This is a downward facing parabola with

. 20 4 10c
one maximum at £ = —. If we

c
want the maximum cost to be at x = 50,
we must choose ¢ so that the peak of the

parabola is at or to the right of 50. The

20 + 10c

value of x = increases as ¢ de-

c
creases, and equals 50 when ¢ = % Any
discount of 50 cents or less will cause the
maximum cost to occur when the group
orders 50 tickets.

202 cos? 0

g
2

— [2cosO(—sin 0)(tan O — tan 3)

(tand — tan j3)

X
—
5
=
I

+ cos? 0 - sec? (9]

202 in 6
- {—2 cosfsin - S

g cosf
+2cosfsinf tan g

+cos? 0 -

cos? 9}

21}2 ) .
= — [~2sin” 0 + sin(26) tan 3 + 1]
=2 [—2sin” 6 + sin(20) tan 3

g
+(sin® 0 + cos? )]

02
= [sin(26) tan 5

+(cos®  — sin® 0)]

— 2;)2 [sin(260) tan 5 4 cos(26)]

R'(#) = 0 when

_ —cos(20)
tanﬁ = W COt(29)
= —tan T_ 20
G
= tan (29 — 5)

Hence B=20—7/2, so

(0+3)

% .

I 15
s T1- 3t
i. B=10° 6 = 50°
i. B=0°,0=45°
i. B=—-10°, 0 = 40°

A= day

d
=4(zy +y)

dx
d

To determine y' = d—y, use the equation for the
T

ellipse:

41.

PR
b2
0= 2z 2yy
T a? B
2yy’ 2x
Rl
, b x
=-—=-

Substituting this expression for 3’ into the ex-

pression for —, we get
dA ,
aw Y
b2z
a”y
b2 22
== 4y

Zero:

b2 x2
=—=—+
a? y 4
b2 2
@y~
z27y2
a2 b2

Substituting the previous relationship into the

equation for the ellipse, we get
22 Y21

2 p2
and therefore,

b
V2
Thus, the maximum area is

a b
A=4—— =2ab
V22

a
r=— and =
5 Yy

Since the area of the circumscribed rectangle
is 4ab, the required ratio is

2ab:7rab:4ab:1:g:2

Let V. be the volume of the cylinder, h be the
height of the cylinder and r the radius of the
cylinder so that

V, = har?.

Let V; be the volume of the sphere and R be
the radius of the sphere so that

V, = %WR?’.

Draw the sphere on coordinate axes with cen-
ter (0,0) and inscribe the cylinder. Then draw
a right triangle as follows: draw a straight line
from the origin to the side of the cylinder (this
line has length 7, the radius of the cylinder);
draw a line from this point to the point where
the cylinder meets the sphere (this line has
length h/2, half the height of the cylinder);
connect this point with the origin to create the
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42.

hypotenuse of the triangle (this line has length
R, the radius of the sphere). Thus we see that

()"

Now we have

R? =724+

4 B2\ 3/2
Vs = 37r r? 4 1
Taking the derivative of both sides with respect
to h gives

9 2\ 1/2 , h
O—27r<r —|—Z 27‘1"—1—5
Solving for r’, we find ' = —h/4r. Taking the
derivative with respect to h of both sides of the
ﬁdo‘r/mula for the volume for the cylinder yields

dh

Plugging in the formula we found for r’ gives

ave. h
- 7r? + 2hwr ( ™ )

9 hin
=7r° — —.

= 7r? + 2h7rr’.

To maximize the volume of the cylinder, we set
this equal to 0 and find that the volume of the
cylinder is maximized when h? = 2r2. In this
case, the formula relating R, r and h above
gives

4 2R
h=y|-R2=22
3 \f

m vo

The maxim
V.= h7r7"2

e (\QT)
5 (577)

e

= S'

olume of the cylinder is then

&%\

Suppose that a = b in the isoscles triangle, so
that
A% =s(s—a)(s—b)(s —c) = s(s —a)*(s — ¢)

1
5((1 + b+ ¢), it follows that
= 1(2a+¢) = a+§, s0that s—a = §. Thus,

(5o

= (57 =)

Since s =

Since s is a constant (it’s half of the perimeter),
we can now differentiate to get

dA s
2Ad— 1 (236 — 3¢ )

c
0 =c(2s —3c¢)

221

Thus, the area is maximized when 2s — 3¢ = 0,
which means ¢ = %s Solving for a, we get

2

a=s 5 = s = 33.

Thus, the area is maximized when a = b = ¢;
in other words the area is maximized when the

triangle is equilateral.

c

[SCRRVA

The maximum area is

=== )
SRR B

3.8 Related Rates

1.

3.

V(t) = (depth)(area) = [;“(M2

(units in cubic feet per m
/ _ 1 / _ 1 ’
V'(t) = 15 2r(t)r'(t) 24r(t)r (t)
We are givenWV’(t) = % — 16.

Hence 16 = ﬂr(t)r’(t) SO

1oy (16)(24)
(a) When r = 100,
vy~ 192D _ 96
1007 25m

~ 1.2223 ft /min,
(b) When r = 200,
16)(24 4
vy - 102D _ 18

200 257
~ 0.61115 ft/min

1// 1 /
. V = (depth)(area). 3 —95
V(t) = gsmr(t)?.
v 2m  dr
Differentiating we find 96 (t)a

Using 1 ft* = 7.5 gal, the rate of change of vol-
90
ume is — = 12. So when r(¢) = 100,

7.5
12 = —100d and
96 dt’
dr % feet per minute.
dat ~ 2mn P
(a) From #1,
y _ T 1y — ’
5o — = —(1 6) = 2.
50 24( 00)(.6) = 2.5,

so g = (7.5)(2.5)m
= 18.75m ~ 58.905 gal/min.

(b) If the thickness is doubled, then the rate
of change of the radius is halved.
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(a) t = hours elapsed since injury
r = radius of the infected area
A = area of the infection
A=qr?
A'(t) =2mr(t) - r'(¢)
When r = 3 mm, ' =1 mm/hr,
A" =27(3)(1) = 67 mm? /hr

(b) We have A’(t) = 27rr'(t), and 7'(t) = 1

mm /hr, so when the radius is 6 mm we
have
A'(t) =27 -6-1=12r mm?/hr.
This rate is larger when the radius is
larger because the area is changing by
the same amount along the entire circum-
ference of the circle. When the radius
is larger, there is more circumerence, so
the same change in radius causes a larger
change in area.

Vit = gﬂmm3

V/(t) = dxlr(t)]*r' (t) = Ar'(t)
If V/(t) = kA(t), then
Vi) | kA®)

"O=Zm T A

. We have A'(t) = 2nrr/(t), and 7/(t) = 5

ft/min, so when the radius is 200 ft we have
A'(t) = 27 - 200 - 5 = 2,0007 ft* /min.

(a) 10% = 22 442

dx dy
=2r— + 2y—
0=200 T2
dy _ wde
dt y dt
6
=20
= —2.25 ft /s
(b) We have

t
cosf(t) = %
Differentiating with respect to t gives

/
t

im0 o) = S0
When the bottom is 6 feet from the wall,
the top of the ladder is 8 feet from the
floor and this distance is the opposite side
of the triangle from theta. Thus, at this
point, sinf = 8/10. So

3

8
—— 0 (t) = —
10 ®) 10

0'(t) = —% rad/s.

40 20
. a1 (&Y
(a) 6 =7 —tan (60—90) tan <x)

“ 10 (5 1)2 ,_ 3

() )

When x = 30, this becomes

2
a9 40(55) 300
o 14 (8 1+ (B)°
1
= ~1695 rad/ft
a9 _ db dr
dt  dx dt

(i)

~ —0.00246 rad/s

As in the solution to #8(a), let x be the
distance from the 20’ building to the per-

son. To find the maximum 6, we set

d—e = 0 and solve for z:

dx )
40 1 20
60 — 2
= 7t 2
60 — x T
20 40
2 +40 (60 —x)2+1

0 = 2022 + 2400z — 56000

0 = z? + 120z — 2800

Using the quadratic formula, we find two
roots:

x = —60=+80

We discard the = value obtained from the
minus sign as it is negative and does not
make sense for our problem. The other
value is x = 20. We find 6'(10) > 0 and
6'(30) < 0, so z = 20 must be a maximum
as desired.

We know [z(t)]? + 4% = [s(t)]*. Hence
2x(t)x'(t)(t:) ?(st()t)sl(t)éz(c)) "

Z'(t) = o = o0 . When z =
40, s = /402 +42 = 4y/101, so at that
moment

2 (t) = (=240) S*/W) —24V/101.

So the speed is 241/101 ~ 241.2mph.

From #9(a), we have
2(t) = s(t)s'(t) _ —240s(t)
x(t) x(t)

This time the height is 6 miles, so s =

V402 + 62 = 24/409, so at that moment
—240)(2v4
2'(t) = w = —12/400.
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11.

12.

13.

14.

15.

RELATED RATES

So the speed is 124/409 = 242.7mph. The
difference in height does not make a large
difference in the speed of the plane.

(a) If the police car is not moving, then
2'(t) = 0, but all the other data are un-
changed. So

PNIEGEIORST01I0
FOE+ BOP
~(1/2)(50)
VI/A+1/16

-1
= —100 ~ —44.721.

This is more accurate.

(b) If the police car is at the intersection, then
the rate of change the police car measures
is

0-(—40) + - (—50)

= —50,
\/1+0
the true speed of the car.
x(t)a’(t) +y(t)y'(t)
[z()]* + [y(1)]?
_ —(1/2)(v2 - 1)(50) — (1/2)(50)
V1/4+1/4

d'(t) =

= —50.

The radar gun will read less than the actual
speed if the police car is not at the intersection,
and is travelling away from the intersection.

From the table, we see that the recent trend is
for advertising to increase by $2000 per year.
A good estimate is then 2/(2) = 2 (in units of
thousands). Starting with the sales equation
5(t) = 60 — 40e~0:052(t),
we use the chain rule to obtain
s'(t) = —40e 0052 0.052/ (t)]

_ 2%'(15)670'05‘70@).
Using our estimate that z'(2) ~ 2 and since
z(2) = 20, we get s'(2) ~ 2(2)e”! ~ 1.471.
Thus, sales are increasing at the rate of ap-
proximately $1471 per year.

The year 2 rate of change for the average cost

— —94
is given by C' (t) = — - 2'(t).
T
From the table we see that in year two z = 9.4

and 2’ = 0.6, so

— —94

C(t) = o2 0.6 = —0.6383 per year.
— 100

_ 1

C'(a(t) = =22 2/(¢)

x2

16.

17.

18.
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6/(10) = —1(2) = —2 dollars per item, so av-
erage cost is decreasing at the rate of $2 per
year.

The rate of change of sales is

s’ = 0.8e70-045/(¢).

We are given z = 40 and 2/(t) = 1.5, so

5" = 0.8e70-0440 . 1.5 = (.242 thousand dollars
per year.

(a) We have tanf = g, S0

d (tanf) = 4 (x)

dt T dt\2
sec?0 -0 = lx’
2
, 1 o x’ cos?
~ 2sec26 B 2
z 0
ata::(),wehavetan9=§ 2580920
and we have 2’ = —130ft/s so
—130) - 20
¢ = % = —65 rad/s.

(b) = 2tané, so v _ QSGCZG%. =0
(and secd = 1) as the ball crosses home
g 1dz

T For this to be less

than 3 radians per sec, the pitch must be
less than 6 ft/sec.

plate, so

(a) t = number of seconds since launch
x = height of rocket in miles after ¢ sec-

onds
0 = camera angle in radians after t sec-
onds "
tanf = —
2
d d /x
= £ (3
dx( an 6) dx \2
1
sec?0-0' = ix’
cos?f -z

0 =
2
When x = 3, tanf = 3/2, so cosf =
2//13.

2
y_ ) 2
2
(b) If the height of the rocket is z, then
r = 2tan6, and

~ .03 rad/s

dx df
= = 2sec?—.
7 sec Hdt
dx
When z = 1 and U 0.2, we have
5 df do .
02 =2- 1@ and i 0.08 radians

per sec. This is larger because the angle
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19.

21.

22,
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changes more quickly when the rocket is
close to the ground. When the rocket is
far away, large changes in height result in
small changes in the angle, since the angle
is approaching a limit of 7/2.

(a) Let € be the angle between the end of
the shadow and the top of the lamppost.

Then tanf = § and tanf =

s s—i—x’so
x+s_s
18 6
d (xz+s _d s
dx( 18 )_dx(6)
o +s
18 6
2+ 5 =3¢
! x/
S =3

Since 2’ =2, 8 =2/2 =1 ft/s.
(b) From #19(a), s’ = 2//2. Since 2’ = -3,

s’ =-3/2 ft/s.

(a) P(t) - V'(t) + P'(t)V(t) =0
Pty P(t) ¢
Vi) V(@) V(D)2

(b) Solving Boyle’s Law for P gives P = %
Then differentiating gives

P(V)= V2’ the same as P’ (t)/V'(t).

Let 7(t) be the length of the rope at time ¢ and
x(t) be the distance (along the water) between
the boat and the dock.

r(t)? =36 + x(t)?

2r(t)r' (t) = 2x(t)a’ (t)

o - T _ 2
(t) a(t)
_ —2v/36 + 22
x
When z = 20, 2’ = —2.088; when z = 10,
= —2.332.

—7r?h, and we

Lol =

The volume of a cone is V' =

h
know that this cone has r = 5 so we have
V= 17r—2h3 . Differentiating gives
av _wh® dn
d 4 dt’

av
We are given that i 5 m3/s, so when h = 2

meters, we have

23.

24.

25.

2 an
B dt’
@ = § meters per nd
SO i eters per seco
1 T 110
TO=55w\ % = 0y
—110
A _ A

When L = 1/2, f(t) = 220 cycles per second.
If L' = —4 at this time, then f/(t) = 1760 cy-
cles per second per second. It will only take
1/8 second at this rate for the frequency to go
from 220 to 440, and raise the pitch one octave.

4
V=_7rd
dv 4 dr dr
A — A2
dt 37Td(3T Vo =

r

1 =dmr?—

r o
ﬂi 1
dt — 4mr? J 5500
When r = .01, o

ddt 2571'

When r = .1, "

At first, the radlus expands rapidly; later it

expands more slowly.

(a) Let R represent the radius of the circular
surface of the water in the tank.

V(R) = [602(602 RV
1 2 213/2 2 3
5 (607 — R?)*/% 4+ 260
[ 1
— =71 |60? (2) (602 — R%)~Y2(—2R)—

% (Z) (60% — RQ)”Q(—?R)]

—602R
=7 | =t RA\/602% — RQ}
L V6

<R [—602 + 602 — RT
V602 — R?
_ —TR3
- V602 - R2
dR  dV/dt
dt — dV/dR
10
- dV/dR
_ —10v60% — R?
N TR3
i. Substituting R = 60 into the previ-

ous equation, we get i 0.
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26.

ii. We need to determine the value of R
when the tank is three-quarters full.
The volume of the spherical tank is

4
577603, so when the tank is three-

quarters full, V(R) = 7603. Substi-
tuting this value into the formula for
V(R) and solving for R (using a CAS,
for example) we get R &~ 56.265. Sub-
stituting this value into the formula

for dR/dt, we get
wn  —10v/602 — R2
dt T TR3

_ —10v/60% — 56.2652
- 756.2653

~ —0.00037 ft/s

(b) Assuming the tank is at least half full, we
can represent the height of the water in
the tank by h(t) = v60%2 — R2 + 60.
Differentiating gives

1
R (t) = 5(602 — RHY2(—2R)R'(t)
= — (60> — R)™Y2R. R'(t)

_ —(60% — R?)~Y2R - (—10v60% — R2)

= 73 }
Here we have used the expression for R/ (t)
found in exercise 35.

i. Substituting R = 60 into the previ-
ous equation, we get h'(t) = 0.

ii. Substituting R = 56.265 into the for-
mula for h'(t) gives h'(t) ~ 0.001006
ft/s.

(a) The volume of the conical pile is V' =

§7r7"2h. Since h = 2r, we can write the

volume as )
V= 1 (h> h= Lp? Thus,
3 2 12
AV wh? dh
dt 4 dt
762 dh
V=@
dh 20
dt — 9m
dr 10
dt — 9r
(b) In this case, we have r = h so

3

V= éwhzh = %

Thus V'(t) = wh?h/(t) so when the height
is 6 feet,

W) = () = o = 2

:367_97T'

27.

225

(a) Let an object move around the circle
22(t) + y%(t) = 2. Both x and y coor-
dinates are the functions of ¢ and r is a
constant.

Therefore, on differentiating w.r.t. ¢, we
get

22(t)2’(t) + 2y(t)y'(t) = 0

z(t)z'(t) +y(t)y'(t) =0

D)
Therefore, (yt)(t?(t—) o0 d
/ o y)y
YO=-"

Thus, if 2(¢t) = 0, then y'(t) = 0 and if
y(t) =0, then z'(t) =0

From the graph it can be observed that:
At z(t) = 0 the tangent is horizontal

!
t
which means 2 M _ 0=y'(t) =0 and
a!(t)
At y(t) = 0 the tangent is vertical which
/
t
means ;v/( ) =0=2'(t)=0
y'(1)

(b) An object move around the asteroid
2?/3(t) + y?/3(t) = 1. Both z and y

coordinates are the functions of time.

Therefore, on differentiating w.r.t. t, we

get
2 2
32720+ 5y Py () =0

=)y O +y@) ' ()] =0
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' (t) =
thus, if () =0, then y(t) =1, 2/(¢) =0
and if y(t) = 0, then x(¢t) =1, y/'(t) =0
From the graph it can be observed that,
at x(t) = 0 the tangent is vertical which

!
t

means x/(t) =0=2'(t) =0 and

Y
at y(t) = 0 the tangent is horizontal which

y'(t) '

=0=y(t)=0

means () y'(t)

28. (a) Let 6 be the angle of the light at the
shadow as shown in figure below:

0]
64 — h(t)
100
h(t)
0
10 x— 10 S
Then,
~h() 100
tan 0 = m - %
= l‘(t) = m
iy - L0008(0)
[100 — A(t)]?
~ 8000\/(64 — h(t))
B [100 — h(t)]?
At h =0,
o) — 00V -0)
B [100 — 0]
64000
10000
=—6.4
(b) |2'(t)] = SOOOM
[100 — h(t)]
Adt maxima or minima of |z'(¢)],
(1)) =0

—3(64 — h(t)) "0/ (1)
[100 — h(t)]?

29.

30.

3.9

L V- h(tg () 0
[100 — A(t)]
= — 1/ (){(100 = A(t)) — 4(64 — h(t))} = 0
= I/(t) = 0 or 100—256—h(t)+4h(t) = 0
f)

= h'(t) = 0 or h(t) = 52
AL B (H)=0:|2'(t)] =0
At h(t) =52:
|2/ (t)| = go0p Y02 =) h(t)2
[100 — A(t)]
= 8000(1(()24__52)22) =12.02

Therefore, h(t) = 52 is the height in which
|’ (t)| is maximum.

(a) d(t) = /(2 () — 8)° + (0 — 4’

therefore d’ (t) = _(@®)-8)z’(t)
(x(t)—8)2+16

Now d’ (t) = 0.9 and 2’ (t) = 6.4
gives x (t) = 8.5681
z(t)—x(0) _ 8. —
L0 — B268L _ 1.3388
(b) Thus the location at this moment is
(8.5681, 0)

6 = tan~! (j;)
do (—%s) v20' (1)
dt 1+ (&)

hence t =

~ —2sT' (1)

T T2p2 4 452

For T=1, s=0.6 and v'(t) = 1,
db —-1.2

dT ~ 2+ 144
(®) do —-1.2

T 5ar —0.4918 rad/s
(b) e —1.2

T —0.2206 rad/s

Rates of Change in
Economics and the Sci-
ences

. The marginal cost function is

C'(z) = 322 + 40z + 90.

The marginal cost at x = 50 is C'(50) =
9590. The cost of producing the 50th item is
C(50) — C(49) = 9421.
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2. The marginal cost function is 9
C'(x) = 423 + 28z + 60.
The marginal cost at x = 50 is C'(50) =
501460. The cost of producing the 50th item
is C(50) — C'(49) = 486645.

3. The marginal cost function is
C'(z) = 322 + 42x + 110.

The marginal cost at = 100 is C’(100) = 10.

34310. The cost of producing the 100th item
is C(100) — C'(99) = 33990.

4. The marginal cost function is
C'(x) = 322 + 22z + 40.
The marginal cost at z = 100 is C’(100) =
32240. The cost of producing the 100th item
is C(100) — C'(99) = 31930.

_ 2.2
5. C'(x) = 3z* — 60z + 300 11.

C"(x) =62 —-60=0

x = 10 is the inflection point because C”(x)
changes from negative to positive at this value.
After this point, cost rises more sharply.

6. A linear model doesn’t reflect the capacity of
the stadium, or the presence of a certain num-
ber of fans who would attend no matter what
the price, but away from the extremes a linear
model might serve adequately. For ticket price
x, the revenue function is
R(z) = 2(—3,000z + 57,000)

= —3,00022 + 57,000z.
We solve
R'(z) = —6,000x + 57,000 = 0
and find that x = 9.5 dollars per ticket is the
critical number. Since R” = —6,000 < 0, this
is a maximum.

7. C(x) =C(x)/z =01z + 3 + @
C'(x)=0.1- 2220

Cyitical number is z = 100v/2 ~ 141 4.

C' () is negative to the left of the critical num-

ber and positive to the right, so this must be

the minimum.

8. The average cost function is

— 223 +4 4
C’(:c):o x° 4 4x + 4000

= 0.2z 2+4+@.

4000

6/(:10) = 0.4z — =0
when z ~ 21.54. Thls is a minimum because
' =04+

. C(z) =C(x)/z =10

12.

13.

60.02:70

€T

x
_ .02z —1
C'(z) = 1002 (O x2 )

Critical number is z = 50. 6/(90) is negative to
the left of the critical number and positive to
the right, so this must be the minimum.

The average cost function is

o 3
Cla) = Y2800 d
X
3
_ —1
O/ (a) = 201600
2x2v/ 23 + 800

This is zero when z = v/1600. This is a mini-

mum because 5 .
—n 5,120,000 4 12,800x° — = .
C = 129 (5 1 800)5/2 > 0 at this

x.

(2) C(z) = 0.0122 + 40z + 3600
C'(z) = 0.02z + 40

C(x) = Cl) =0.01z +40+@
xT T

C’'(100) = 42

C(100) = 77

so C'(100) < C(100)
C(101) = 76.65 < C(100)

(b) C'(z) = 0.02z + 40
C’(1000) = 60

0.01z2 + 40z + 3600
(z) =

X
C(1000) = 53.6

C(1001) = 53.6064
c’

Ql

3600
() =0.01 - == =0

so z = 600 is min and
C’(600) = 52
6(600) =52

(a) P(z) = R(z) - C(z)
Pl(x) = R'(x) C'(x) =
R/(z) = C'(x)

(b) P(z) = (10x — 0.0012%) — (2z + 5, 000).
P'(z) = 8 — 0.002z = 0 if = = 4, 000.
This is a maximum because P”(zx)

—0.002 < 0.
P
E=—f(p
f(p) (2) »
=——(-200) = ——
200(30 — p) ( ) p—30
To solve P < —1, multiply both sides
p—30
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by the negative quantity p — 30, to get p >
(=1)(p — 30) or p > 30 — p, so 2p > 30, so
15 < p < 30.

14, po /') _ p(=200) _ p

fp) ~ 200(20-p) p—20
< —1 when p > 20 — p, so demand is

p—20
elastic when 10 < p < 20.

15. f(p) = 100p(20 — p) = 100(20p — p?)

P

=75\

f(p) p( )
= —(100)(20 — 2

100p(20 7p)( ) p)
20-2p
- 20—p

—2p . .
To solve 20— p < —1, multiply both sides by

the positive quantity 20 — p to get 20 — 2p <
(—=1)(20 — p), or 20 — 2p < p — 20, so 40 < 3p,
so 40/3 < p < 20.

16, g PI'®)

f(p)
p(600 — 120p)  2p — 10

60p(10 —p)  p—10

2p — 10
it 2P < —1 for positive p, then p — 10
p—10
2p — 10
must be negative. this means L 0 < -1
p—

when 2p — 10 > 10 — p, so demand is elastic
20
when 3 <p < 10.

17. [pf(p)] <
if and only if p'f(p) +pf'(p) <0
if and only if f(p) + pf'(p) <0
if and only if pf’(p) < —f(p)
if and only if p;(z(f)) < -1

18. The percentage change in quantity purchased

: : QU I
(using the chain rule) is ol0i)

. The percent-

age change in income is 17/
The income elasticity of demand is then
QU)I I Q) I

o T %Y o) -

19. (a) Rewrite 2’ (t) as f (z) = 2z[4 — z].
f(x)=2(4—-x)+2x(-1)

=8 -4z
f'(x) =0 = x = 2 where the f(z) is
maximum

(b) The critical points of 2’ (t) = 2z[4—z] are
r=0and z =4.

20.

21.

22,

23.

24.

2 (t)>0,0<z(t)<4

2 (t) <0, z>4orx<0
Therefore, the limiting concentration is 4.

(a) Rewrite 2/ (t) as f (z) = 0.5x[5 — z].
f'(£)=05(5—1z)+ 0.5z (1)

=25—-z
f'(x) =0 = x = 2.5 where the f(z) is
maximum.

(b) The critical points of 2’ (t) = 0.5z[5 — z]
are z =0 and x = 5.
2 (t)>0,0<x(t)<5b

2 (t) <0, z>5orxz<0
Therefore, the limiting concentration is 5.

2(t)=c- ch(t)[l — x(t)]
= ra(t)[1 —x(t)]
r=cK
The given conditions translate into equations
3=c-2(K —2)and 4 =c-4(K —4). Solving

the first equation for ¢ and substituting into
the second equation gives

4:42%5231) = K =8and c=1/4.

z'(t) = [a — z(®)][b — =(t)]

for z(t) = a,

2'(t)=[a—a]lb—a]=0

So the concentration of product is staying the
same.

If a < b and z(0) =
0<zx<a<d

2'(t) <0fora<axz<b
Thus z(t) = a is a maximum.

0 then 2/(t) > 0 for

1— (b—a)-0
2(0) = AL —¢ ]
1—(a)€ (b—a)-0
1-1
TS
1= (%)
. _ a[l-0] __
0= 4o

For a = 2 and b = 3 the graph looks like this:
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25. The first inflection point occurs around f =

1/3, before the step up. The second occurs
at the far right of the graph. The equivalence
point is presumably more stable. The first in-
flection point would be hard to measure, since
the pH takes drastic leap right after the inflec-
tion point occurs.

26. Recall that we are assuming 0 < f < 1. As

=17,
P/(f):ﬁ—“)o
rr
. = >
27. R(x) k+1;€7$_0
”
R(z) = ——

There are no critical numbers. Any possible
maximum would have to be at the endpoint
2 =0, but in fact R is increasing on [0, c0), so
there is no maximum (although as x goes to
infinity, R approaches r).

28. PV7/5 =¢

diP (Pv7/5) = dip(c) =0

7 av
75 4 Lpy2/stl
Vv +: 174 Iz 0
7 dV
av._ 5V
P~ 7 P’

But V7/5 = ¢/P, so V = (¢/P)*". Hence
v -5V

P~ 7T P
=5 (C/P)5/7 B —5¢c5/7
-7 P 7PWT

As pressure increases, volume decreases.

29. m/(x) = 4 — cosz, so the rod is less dense at

the ends.

30. m/(z) = 3(x — 1)? + 6.

Density is maximum at the ends and at a min-
imum in the middle.

31.

32.

33.

34.

35.

36.

37.

38.

39. p'(t) =
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m/(z) = 4, so the rod is homogeneous.

m/(z) = 8z.
Density increases from 0 at the left end to a
maximum at the right end.

Q'(t) = e - (=2)(cos 3t — 2sin 3t)
+e 2 ((—sin3t - 3) — 2cos 3t - 3)
= e %'(—~8cos 3t + sin 3t) amps

Q' (t) = e'(3 cos 2t + sin 2t)
+ et (—6sin 2t + 2 cos 2t)
= be'(cos 2t — sin 2t) amps

As t — oo, Q(t) — 4sin3t, so e 3 cos2t is
called the transient term and 4sin 3t is called
the steady-state value.
Q'(t) = e 3. (=3) cos 2t
+e 3 (—sin2t-2) +4cos3t- 3
= e 3 (=3 cos 2t — 2sin 2t)
+ 12 cos 3t
The transient term is e ~3!(—3 cos 2t — 2sin 2t)
and the steady-state value is 12 cos 3t.

Q'(t) = —2e % (cost — 2sint)

+e 2 (—sint — 2cost)

+ 73t — 3te™3" — 8sin 4t
Q'(t) = e ?!(—4cost + 3sint)

+ e 3 (1 — 3t) — 8sin4t
The transient term is e !(—4 cost + 3sint) +
e 31 — 3t) and the steady-state value is
—8sin 4¢.

The rate of population growth is given by
f(p) = 4p(5 — p) = 4(5p — p?)

f'(p) =4(5 — 2p),

so the only critical number is p = 2.5. Since
the graph of f is a parabola opening down, this
must be a max.

The rate of growth R = 2p(7 — 2p), so R’ =
14 —8p = 0 when p = 7/4. This is a maximum
because R’ = —8 < 0.

—B(1+ Ae=Fty
—B(—kAe™k?)
kABe™*t
kABe *t
1+ 2Ae kt 1 A2 2kt
- kAB

eFt £ 2A 4 A2ekt
As t goes to infinity, the exponential term goes
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40.

41.

42.

43.

44.

CHAPTER 3. APPLICATIONS OF DIFFERENTIATION

to 0, and so the limiting population is

B
—— =1B.
1+ A(0)
If the inflection point is p = 120, then the max-
imum population is B = 240. If the initial pop-
ulation is p(0) = 40, then

40 = ——.

1+ A
We solve to get A = 5. If then p(12) = 160, we
have the equation

240
160 = —
60 1+ 5e—12k
which we can solve to get
In10
k= ——.
12
70
For a = 70, b = 02, f(t) = m =
70(1 + 3¢ 02!
J2) = 13m0 ~ 23
f/(t) = =70(1 + 3¢~ 22)72(3e70-2)(~0.2)
42¢702
(14 3e70-26)2
42 0.2-2
7(2) = € ~ 3.105

(1 + 36_0‘2‘2)2

This says that at time ¢t = 2 hours, the rate at
which the spread of the rumor is increasing is
about 3% of the population per hour.

70
lim f(t)= —— =70

t—o0 1+0
so 70% of the population will eventually hear

the rumor.

J'(t) = —0.02¢70-02¢ 4 (0.42¢~0-42¢
f'(t) = 0 when 0.42e=04%t = 0.02¢09% or
e~04t = 0.02/0.42. So we see that

In 0.04761
_In0.047619 - o113

is the critical value. The Second Derivative
Test shows that it is a maximum.

—64x~ 14 (42794 4+ 15
f'(x) = 70(.4 2 )
(4z + 15)
(160204 + 90)(—1.62~4)
(4x=04 +15)2
—8162~ 14
L ()
(4x=04 +15)2
So f(z) is decreasing. This shows that pupils
shrink as light increases.

1 1
T(r) =102 — éxZ + ﬂx?
To maximize |T"(x)|, we find all extrema of
T’(x) and compare their magnitudes.

— 1
T (z) = — — 2.
(x) 3 x+18x

45.

46.

47.

-1 1
T (2) = ?—i-@x:OWhenx:?).
We test the critical numbers and the endpoints:
-1
T7'(0) = 0, T'(6) = 0, and T'(3) = ER The

dosage that maximizes sensitivity is 3 mg.

If v is not greater than ¢, the fish will never
make any headway. E'(v) = U((v”:f)‘;) so the
only critical number is v = 2c. When v is large,
E(v) is large, and when v is just a little big-
ger than ¢, E(v) is large, so we must have a

minimum.

We wish to minimize P = % + cvs.

P = %21+3cv2 =0 when v = {‘/i.
P” = Z +6cv > 0 at this velocity, so this gives
the minimum power.

(a) zy=c
y=<
Time spent to cover y miles = 4
[

. . T
Time spent to cover x miles= —
T2

x
So, the total time spent (T') = RN
1 T2
Now by taking f (z) =T we get:
y oo
f@)=(L+2
1 T2
( cl = )
= _— + —_
T X )
, —c 1 1
)= —+ —+ —
f'(@) o ox% 1y
F(@)=0=
—crg+mz2 =0
7"11’2 = Crg
2 CTra
72 = 22
8!
Cra
x=,/—
1
cr
Substitute x = , /=2 in y==:.
™
c
y =
cra
Vo
_ T1C
=\
cr
Therefore, when =z = =2 and y =
1
ric .
——, the time spent by the commuter
T2

1S minimum.

(b) Time spent driving at r; = Y
1
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48.

T2 C
1 T2
Time spent driving at ro = —
T2
rac
1 C
T2 172

Therefore, equal time is spent driving at
r1 and ro.

=0
b
CL:?Z
v? = -
a
v==+ é
%
C"(v) = =%

v
C"(v) >0atv= \/E.

Therefore, v = \/g to minimize C (v).

2

C(U):apviv +bv—pv

, (v —v.) (2v) — v?
C" (v) =a

(v) p[ o) ]

—bp
_|_ [ —

(v— Uc)2‘|
1 2

= m [2apv (v — ve) — apv® — bp]
1

= m [apv2 — 2apv.v — bp]

Cw)=0=

apv® — 2apv.v —bp =0
2apv, £ \/(2apvc)2 + 4abp?
v =

2ap

/ b
V=10, E V2 + —
a
b ...
Therefore, v = v, & {/v.2 + — minimizes
a

C (v)
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Ch. 3 Review Exercises

1.

. From the graph of f(z) =«

1
dy=——
) 1—

f(il') = 63a:a To = Oa

7'(z) = 3c

L(x) = f(x0) + f'(w0)(x — x0)
= f(0) + f(0)(z — 0)
— 30 4 330,
=143z

) = 2z
222 + 3

L(z) = f(zo "(z0)( — o)
=f(8)+ f'(8)(z —8)
= V84 3(8)"%3(xz —38)
=2+ (z—38)

L(7.96) = 2 + (7.96 — 8) ~ 1.99666

sin3 is close to sinw. If y = sinx, y = cosz.
The point is (m,0) and the slope is —1. The
linear approximation of sinxz at x = 7 is

L(z) = —(x — ), so

sin3 ~ —(3 — 7) &~ 0.14159.

. From the graph of f(x) = 23 + 5z — 1, there is

one root.

f'(z) =322 +5

Starting with o = 0, Newton’s method gives
1 = 0.2, x5 = 0.198437, and =3 = 0.198437.

3 _ e7® there is

one root.

fl(z) =322+ e *

Starting with ¢y = 1, Newton’s method gives
x1 = 0.8123, o = 0.7743, and x3 = 0.7729,
which is accurate to 4 decimal places.

. Near an inflection point, the rate of change

of the rate of change of f(z) is very small so
there aren’t any big dropoffs or sharp increases
nearby to make the linear approximation inac-
curate.

1
(1—x)*
For “small” z, x is near 0. The point on the
curve when = 0 is (0, 1), and the slope is 1,
so the linear approximation is L(z) = = + 1,
and this is valid for “small” x.

, then 3y =
x

3 _
lim < is type 2;
z—1 32 —1

0
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L’Hopital’s Rule gives

. sinx
10- 0 23

L’Hopital’s Rule gives

is type %;

Ccos T 1

+502r +3 3

2z

11. lim ——

. .
o I 1s type o;

applying L’Hopital’s Rule twice gives:

26212
lim —
oro0 Az
462a: 8621:
= lim = lim
t500 1222 z500 24x
S [
T8 Ty T
2 -3 z?
12. i 3y = lim i .
A (e = i s 18 pe

applying L’Hopital’s Rule twice gives:

I 2x
zioo 3e3z
- :clggo Qe3z =0
Va2 —4
13. L= lim |21
z—2+ |x — 2
. r+1
InL= lim (V22 —-4ln
x—2+ r—2
1
o In %
T oo | @2 - a2

3(x? — 4)3/2 )

— /&\
8

+

—_

=
8
|

\V)

S~—

— lim (3 2>1/2($+2)3/2>
-2+ x(x+1)
InL =
L=1
14. lim xln (1 + 1) = lim M
z—00 T 00 1

is type % so we can apply L’Hopital’s Rule:

CHAPTER 3. APPLICATIONS OF DIFFERENTIATION

15.

16.

17.

18.

19.

141
lim +z) 5
T—r00 —xTr
::plggo (1_|_l) =1
. . Inx
lim (tanzlnz) = lim
x—0+ z—0t+ \ cotx
1
= lim ( /x2 )
z—0+ \ —csc? x
<Sin2x)
= lim —
z—0+ T
sinx
= — lim < smx)
z—0t xT
= (-1)(0) =
. tan"lz | 0
lim T— is type §;

z—=0 sin” " x

we can apply L'Hopital’s Rule:
1 )

22 _ i yi-2* o
= =

T —0 1—{—:1}2

fl(x) =322 +6x — 9 =322 +2x—3)
=3(x+3)(x—-1)

So the critical numbers are x = 1 and z = —3.

f'(x) >0 on (—oo,—3)U(1,00)

f'(x) <0on (-3,1)

Hence f is increasing on (—oo,—3) and on

(1,00) and f is decreasing on (—3,1). Thus

there is a local max at x = —3 and a local min

at z =1.

f"(z)=32x+2)=6(x+1)

f"(z) >0 on (—1,00)

f"(x) <0 on (—o0,—1)

Hence f is concave up on (—1, 00) and concave
down on (—oo, —1), and there is an inflection
point at x = —1.

fl(z) =423 — 4

f'(x) = 0 when z = 1, and this is the only
critical number. The function is decreasing for
x < 1 and increasing for > 1.

f" = 1222 > 0 when 2 = 1, so this is a lo-
cal minimum. f” = 0 when z = 0, but does
not change sign there, so there are no inflection
points. The function is concave up everywhere.

lim
x—0

f(z) = 423 — 1222 = 42%(z — 3)

x = 0, 3 are critical numbers.

f'(z) > 0 on (3,00)

f'(z) <0 on (—o0,0)U(0,3)

f increasing on (3,00), decreasing on (—o0, 3)
so x = 3 is a local min.

f(x) = 1202 — 242 = 122(z — 2)
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20.

21.

22,

23.

f"(z) > 0 on (—00,0) U (2,00)

f"(z) < 0on (0,2)

f is concave up on (—o00,0) U (2, 00), concave
down on (0,2) so z = 0, 2 are inflection points.

f(z) =32 — 62 — 24 = 3(x — 4)(z + 2)

f'(x) =0 when x = 4 and x = —2. The func-
tion is increasing for x < —2, then decreasing
for -2 < x < 4, and increasing for =z > 4.
xr = —2 represents a local maximum, and z = 4
represents a local minimum.

f'(z) =6x—6

f"(x) = 0 when z = 1, and changes sign there,
so x = 1 is an inflection point. The function
is concave down for z < 1 and concave up for
x> 1.

fl(x) = e 4 pe™%(—4) =
x = 1/4 is a critical number.
f'(z) >0 on (—o0, 1)
f'(z) <0 on (%,00)
f increasing on (—oo, i), decreasing on
(—%,00) so z =1/4 is a local max.
f'(x) = e 4(—4)(1 — dx) + e~ 17 (—4)

= —4e~4%(2 — 4x)
f"(z) >0 on (3,00)
f"(z) <0 on (—o0, )
f is concave up on (%,
(foo, %) so z = 1/2 is inflection point.

e~ (1 — 4z)

oo), concave down on

(z)=2zInz+z=22lnz+1)

(r) = 0 when Inz = —1/2, so x = e~ /2.
(z = 0 is not a critical number because it is not
in the domain of the function.) The function
is decreasing for 0 < x < e~1/2| and increasing
for 2 > e~1/2. The critical number z = e~1/2
represents a minimum.

f'(x) =2Inx+3

f"(z) = 0 when z = e3/2 and the sign
changes from negative to positive there, so this
is an inflection point. The function is concave
down for 0 < z < e~3/2 and concave up for
x> e 32,

f/
fl

x? — (x —90)(2z)
4

—(z — 180)

23
x = 180 is the only critical number.
f'(xz) < 0on (—o0,0)U (180, 00)
f'(z) >0 on (0,180)
f(z) is decreasing on (—o0,0) U (180, 00) and
increasing on (0, 180) so f(x) has a local max-
imum at x = 180. ) )
() = o —(z . 80)(3x4)

fiz) =

24.

25.

26.

27.

233

—2x + 540
v
f"(z) <0 on (—o0,0) U (0,270)
f"(z) > 0 on (270,00) so x = 90 is an inflec-
tion point.
, 4z

f (l’) - 3(.’172 _ 1)1/3
f'(x) =0 at x = 0 and is undefined at x = +1.
The function is decreasing for x < —1, increas-
ing for —1 < z < 0, decreasing for 0 < x < 1,
and increasing for 1 < z. Critical numbers
z = +£1 are minima, and z = 0 is a maximum.
f”(CL’) — 4(372 — 3)[

9 _1)1/3
f"(x) = 0 when # = ++/3, and undefined
for x = +1. The function is concave up for
T < —\/g, concave down for —v/3 < z < -1,
concave down for —1 < z < 1, concave down
for 1 < z < /3, and concave up for v/3 < z.
The inflection points are = = +/3.

2% +4 — x(27)

(x2 +4)2

4 — 22
o (z2 +4)2

x = %2 are critical numbers.
f'(x) > 0on (-2,2)
f'(z) <0 on (—oo,—2)U(2,00)
f increasing on (—2,2), decreasing on
(=00, —2) and on (2,00) so f had a local min

f'z) =

at x = —2 and a local max at x = 2.
[ (@) =
—2x(x? +4)? — (4 — 2H)[2(2? + 4) - 22]
(22 4 4)*
223 — 24
- (22 + 4)3

f"(z) >0 on (—\/ﬁ7 0) U (\/ﬁ, oo)

f"(xz) <0 on (—o0,—v12) U (0,V12)

f is concave up on (—\/ﬁ,O) u (\/ﬁ, oo)7
concave down on (—oo, —\/ﬁ) U (0, \/ﬁ) SO
x = ++/12, 0 are inflection points.

2

!
f (17) - (.132 +4)3/2
f/(z) is never zero and is defined for all z, so
there are no critical numbers. The function is
increasing for gll x.

" —ox
f (LU) - (1’2+4)5/2
f"(x) = 0 when x = 0. The function is con-
cave up for z < 0, concave down for z > 0, and
the inflection point is z = 0.

f'(z) =32% + 62— 9
=3(x+3)(x—-1)
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28.

29.

30.

31.

CHAPTER 3. APPLICATIONS OF DIFFERENTIATION

r = =3, x = 1 are critical numbers, but
x=-3¢10,4].

f(0)=02+3-02-9-0=0
f(4)=4%2+3-42-9.-4=176
f)y=1*+3.-12-9.-1=-5

So f(4) = 76 is absolute max on [0,4], f(1) =
—5 is absolute min.

First note that f(z) = x(x —1)(x —2) is
only defined on [0, 1]U[2, 00). So we are looking
at the intervals [0, 1] U [2, 3].

3x2 — 6x + 2
Va3 — 322 + 22

The numerator has roots z = %, but f(x)

is only defined at % The denominator has
zeros at x = 0, 1 and 2. Plus we have to check
the values of f at the endpoint x = 3. We find:
f(0)=0

F(E203) ~ 0.6204

f(1 ) =0

f(2)=0

f(3) = V6 ~2.4495

Thus f(z) has an absolute maximum on this
interval at x = 3 and absolute minimums at
r=0,z=1and z =2.

f'(x) =
x = 0 is critical number.

2) = (—2)*° ~ 1.74
)= (35 ~ 241
)= (0)*° =0
£(0) = 0 is absolute min, f(3) = 3%/ is abso-
lute max.

fiz) =

4..-1/5
5.13

f(=
(3
f(0

fl(x) =2we™® — 2% = xe (2 — 1)

f'(z) = 0 when x = 0 and x = 2. We test f(z)
at the critical numbers in the interval [—1,4],
and the endpoints.

F(=1) = e ~ 2.718

f(0)=0

F(2) = 4/e2 ~ 0.541

f(4) =16/e* ~ 0.293

The absolute maximum is f(—1) = e, and the
absolute minimum is f(0) = 0.
f(z) =322 + 8z +2
f'(z) = 0 when

_8+V6i-21_ 4 VIO

B 6 373

4 /10, 4 10,

r=-—-— 1sloca1max,w:—§+ 3 is
local min.

32.

33.

34.

35.

36.

37.

f(z) =42® — 62 +2
=2(x—1)(222 + 22 - 1)

—-14++3
f'(x) =0when z =1 and z = 7\[, and

the derivative changes sign at these values, so
these critical numbers are all extrema.

fl(z)=52* -4z +1=0
r ~ 0.2553, 0.8227

local min at = ~ 0.8227,

local max at x =~ 0.2553.

f'(z) =52+ 8z — 4

f'(z) = 0 at approximately x = —1.3033 and
xz = 0.4696 (found using Newton’s method,
or a CAS numerical solver). The derivative
changes sign at these values so they correspond
to extrema: x = —1.3033 is a local max and
z = 0.4696 is a local min.

One possible graph:

54

One possible graph:

Lla g

f(z) = 423 + 122% = 42%(4x + 3)
f(z) = 1222 + 242 = 122(z + 2)
f’(:z:) >0 on (—3,0) U (0, 00)
f'(xz) < 0on (—o0,—3)
f"(x) >0 on (—oo0,—2) U
f"(z) <0on (-2,0)
f increasing on (—3,00), decreasing on
(=00, —3), concave up on (—oo,—2) U (0, c0),
concave down on (—2,0), local min at x = —3,

(0, 00)
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inflection points at x = —2, 0.
f(x) = o0 as © — +oc.

N R T T T T e i aant
- Ny 2
* -20

38. f(x) = 42 + 8x
f'(z) =0 when z = 0.
f" =122 +8 > 0 at x = 0, so this is a min-
imum. f”(x) > 0 for all « so there are no
inflection points.
f(z) = o0 as x — +o0.

39. f/(z) =4a® +4=4(z>+1)
f(x) = 1222
f'(z) >0o0n (—1,00)
f'(x) <0 on (—o0,—1)
f"(x) >0 on (—00,0) U (0,00)
f increasing on (—1,00), decreasing on
(=00, —1), concave up on (—o0,00), local min
at z = —1.
f(z) = 00 as x — +o0.

235

40. f'(x) = 42% — 8x
f'(z) =0 when 2 = 0 and = = £/2.
f" =1222 —8 < 0 at = 0, so this is a max-
imum. f”(z) > 0 for x = +v/2, so these are
minima.
f"(z) = 0 when x = +4/2/3, and changes sign
there, so these are inflection points.
f(x) = 00 as © — +o0.

22 +1—2(27)
(z2 + 1)2
1—2?
- (22 +1)2
f'(x) =
—2z(2?2 +1)2 — (1 — 22)2(2% + 1)22
(x2 +1)4
_ 2z(2® - 3)
(22 +1)4
() >0on (—1,1)
() <0 on (—oo0,—1)U(1,00)
f"(z) > 0on (—v3,0) U (v/3,00)
f"(x) <0on (—oo7 —\/3) U (O7 \/g)
f increasing on (—1,1), decreasing on
(=00, —1) and on (1, 00), concave up on

41. f'(x) =

f/
f‘l

(—\/g, O) U (\/g, oo) ,
concave down on
(—oo, —\/§> U (O, \/5) ,

local min at x = —1, local max at x = 1, in-
flection points at 0, ++v/3.

. T
lim 5 =

r——o0 T4 + 1

So f has a horizontal asymptote at y = 0.
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42.

43.

CHAPTER 3. APPLICATIONS OF DIFFERENTIATION

reon 2 +1
f(l‘)——m

is undefined when f(z) is undefined, and is
never zero. There are no extrema. There are
vertical asymptotes at © = 41, and horizontal
asymptote y = 0.

P 22 (2% + 3)
f(z) = 1P

f”(xz) = 0 when z = 0, and this is the inflec-
tion point: f(x) is concave down on (—oo, —1)
and (0,1); f(z) is concave up on (—1,0) and
(1, 00).

_ (2z) (22 + 1) — 22(22)

(22 +1)2

_ 2z

) (;(2_1)f) 22 - 2(x2 4+ 1)2
” 2?2 +1)% — 22 2(2% + T
f (.’L‘) (I2+1)4

_ 2 — 622

" @y
f'(x) >0 on (0, oo)
f'(x) <0on (—

f(x) >Oon< \/;,f)
F'(x) <0 on (=00~ /3) U (y/4.0)

f increasing on (0, 00) decreasing on (—oc, 0),

@) =

concave up on

SE!

concave down on

—00 —\/T U \/T o0
) 3 3’ )
local min at x = 0, inflection points at x =
++/1/3.

.'L'Q .'I}Q
lim =
z—00 T2 + 1

lim =
z——oco 12 + 1

So f has a horizontal asymptote at y = 1.

2

-
I S R R Y R e

|
N Ry

2z
w1
f'(z) = 0 when = = 0, and is undefined when
f(x) is undefined. There is a local maximum

at x = 0. There are vertical asymptotes at
x = %1, and horizontal asymptote y = 1.

von 2(322 +1)
f(z) = (2 1)

f"(z) # 0 for any z, and there are no inflec-
tion points: f(zx) is concave up on (—oo, —1) U
(1,00) and concave down on (—1,1).
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45.

46.

32%(2% — 1) — 23(22)
-1
_ zt — 322
C (a2 1)
" (4'1'3 — 63’;)(3’;2 — 1)2
f (.’L‘) - T2 — 1)4
(2t — 32%)2(2% — 1)22
(2= 11
B 2z° + 6x
x2 —1)4

f'(z) >0 on (—o0, —v3) U (V/3,00)
f'(z) < 0on (—v3,-1) U (~1,0) U (0,1) U
(1,v3)
f"(xz) >0o0n (-1,0) U (1,00)
f"(x) <0on (—oo,—1)U(0,1)
f increasing on (—oo0, —v/3) and on (v/3,00);
decreasing on (—v/3,—1) and on (—1,1) and
on (1,/3); concave up on (—1,0)U(1, 00), con-
cave down on (—oo, —1)U(0,1); z = —+/3 local
max; z = v/3 local min; z = 0 inflection point.

f is undefined at © = —1 and = = 1.
3

fi(x) =

im = o0, and
a1+ 22 — 1
lim
im = —0
r—1— 2 -1
So f has vertical asymptotes at z = 1 and

r=—1.

vvvvvvvvv

foN 8x

(@212
f'(x) = 0 when = 0, and is undefined
when f(x) is undefined. f(x) is increasing
on (—oo,—1) and (—1,0); f(z) is decreasing
n (0, 1) and (1,00). There is a local maxi-
mum at x = 0. There are vertical asymptotes
at x = 1, and horizontal asymptote y = 0.

neoN 8(3x2 4+ 1)
f(z) = 21

f"(z) # 0 for any z, and there are no inflec-
tion points. f(z) is concave up on (—oo, —1)

47.

48.

49. C

50.

237

and (1,00); f(x) is concave down on (—1,1).

_5<\
-10-

d=/(z -2+ (y— 1)
=/(z —2)2 + (222 — 1)2
fa) = (x—2)* + (227 — 1)?
f(z) =2(z —2) +2(22% — 1)4z
= 1623 — 62 — 4
f'(z) = 0 when = = 0.8237
() < 0on (—o00,0.8237)
f'(z) > 0 on (0.8237,00)
So z = 0.8237 corresponds to the closest point.
y = 222 = 2(0.8237)% = 1.3570
(0.8237,1.3570) is closest to (2,1).

We compute the slope of the tangent line to
y = 2z% at the closest point (0.8237,1.3570).
When =z = 0.8237, we get 3y’ = 3.2948.
The slope of the line between (2,1) and
(0.8237,1.3570) is

1—1.3570
——— = —0.3035 =
2 —0.8237 3.2948’
so the lines are perpendicular.
z) =6,/42 + )2 +2v22 + 22
C’( )
6316 + (4 —2)?]7Y2 . 2(4 — 2)(—1)
+24(4+22)7 V2 20
6(x — 4) 2x
~ VI6+( VA + z?

C'(x)=0 When xR 2 864

C'(x) < 0 on (0,2.864)

C'(z) > 0 on (2.864,4)

So x & 2.864 gives the minimum cost. Locate
highway corner 4 — 2.864 = 1.136 miles east of
point A.

Let F(v) = e/2. Then F'(v) = —0.5¢7"/2,
so F'(v) < 0 for all v. Thus F(v) is decreasing
for all v. This says that as the speed of contrac-
tion increases, the force produced decreases.
Let P(v) = ve~*/2. Then

P'(v) = e /(1 - 1v).
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P'(v) = 0 when v = 2. We check that and so
P'(0) > 0 and P'(4) < 0 so v = 2 is in fact ) 1 H+P
a maximum. 0'(z) = 1+ (H;;P)Q ( 2x2 )
51. Area: A =2nr? + 27nrh H-P
Convert to in?: B H-P\2 \ 232 )°
.3 1 +( 2x )
16 fl 0z =16 fl 0z - 1.80469 in”/fl 0z
= 28.87504in> We set this equal to 0:
Volume: V = 7r2h 0 —2(H + P) 2(H — P)
= 42 2 2 — P2
Vol  98.87504 422+ (H + P) 422 + (H — P)
h = 2 = 2 and solve for x:
2(H + P) 2(H — P)
28.87504 =
A(r) =2n <r2 + = ) 4a? + (H + P)? 422 + (H — P)?
28.87504 82%(H + P) — 82*(H — P)
Al(ry=2r(2r - ——— 9
72 =2(H — P)(H + P)
3 _

, /2887504 82%(2P) = 2(H — P)(H + P)(2P)
r = T =~ 1663 ) H2 _ P2

€T =
4
A'(r) <0 on (0,1.663)
A'(r) >0 on (1.663, 00) YHE - P

Tr = 9

So r /=~ 1.663 gives the minimum surface area.
54. From exercise 53 we know that

~ 3.325 0'(z) = —2(H + P) 2(H — P)
422+ (H+ P)? 422+ (H — P)?

and that the function 6(x) is maximized at

~ 28.87504
~ 7(1.663)2

52. If O(x) = 0.0222 + 4z + 1200,
then C’(z) = 0.04z 4+ 4 > 0 for positive values o= H? — PQ.
of  (number of items manufactured). This 2

must be positive because the cost function

must be increa?,ing. It must cost more to man- for high school shows that 6(z) is maximized
ufacture more items. ) by x /= 23.9792. This is not in the range spec-
C"(z) = 0.04 > 0. This means that the cost ified. In order to find out whether §(z) is in-
per item is rising as the number of items pro- creasing or decreasing in the interval specified
duced increases. (For an efficient process, the we plug the H and P values into the expression
cost per item should decrease as the number of for 6(z) and then plug in a value in our inter-
items increases.) val, say 55. We find that 6’(55) ~ —0.00392.
Since this is negative, 6(x) is decreasing on this
interval, so the announcers must be wrong.

Plugging in the appropriate H and P values

53. Let 6; be the angle from the horizontal to the
upper line segment defining 6 and let 65 be the

angle from the horizontal to the lower line seg-

ment defining #. Then the length of the side find that 6(z) is maximized by z ~ 17.7324
— . and 0'(55) ~ —0.00412 so again the announc-
while the length of the

ers would be wrong.

Following the same procedure for college, we

opposite 5 is

P. Then Finally, for pros we see that 6(x) is maximized
at © = 0 and ¢’ (55) =~ —0.0055 so the announc-
0(z) = 01 — 05 ers would be wrong once again. In this situa-
tion there is no x value for which the announc-

— tan~ ! <H + P) ers would be correct, but in the high school

2z and college situations, if the field goal is taken

tan—1 (H - P ) from some z less than the z which maximized

side opposite 07 is

20 6(x), the announcers would be correct.



CHAPTER 3 REVIEW EXERCISES

55.

56.

57.

58.

59.

60.

Q'(t) = —3e 3sin2t + e 3t cos 2t - 2
= e 3%(2cos 2t — 3sin 2t) amps

f(z) =0.3z(4—2x), f'(z) = 1.2—0.62 = 0 when
x = 2, and changes from positive to negative
there, so this represents a maximum.

plw) = m'(z) = 22
As you move along the rod to the right, its
density increases.

With no studying, the person scores f(0) =

144670.415
(1+ de—0-4)2°
If the student were to study one hour, the score
will increase by approximately
1(0) = . 5.76 points.

25
C'(x) = 0.04x + 20
C’(20) = 0.04(20) + 20 = 20.8
C(20) — C(19) =
0.02(20)2 + 20(20) + 1800
— [0.02(19)? + 20(19) + 1800]

1+4
fl(x) =

= 20.78
— 0.02z2 + 20 1800
Cla) = x° + 200 +
1800
=0.02x + 20+ —
— 1800
C'(z) =0.02 - =

6/(:3) = 0 when z = 300, and the deriva-
tive changes from negative to positive here, so
x = 300 gives the minimum average cost.
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Chapter 4

Integration

4.1 Antiderivatives

4 .4 4
T x+37£_2

1. —, —
47 4 4

=

3. ", e +1,e"—3

240

4

7

Qo

©

10.

11

12

13

L LR L
-2 -1 — 1

L

. sinz,sinx 4 2,sinx — 5

2

. /(?m4 —3z)dxr = §:c5 - §x2 +c

) 2

. /(:E3 —2)dx = ix472x+c
1 3/2
x

. / <2m_2 - %) da

=207 42212 4 ¢

x_3+
— 4c
3

13 _
. /xT/?)gda: = /(x_1/3 — 3273 dx

= §x2/3—9x1/3—|—c

25/4

= %x3/4+4x1/2+c

2 3/4
/wdx: /(x_1/4+2x_1/2)dx

. /(QSinx—i—cosx)dw = —2cosz +sinz + ¢

. /(3cosxfsinx)dx =3sinz +cosx + ¢

. /2secxtanxdx =2secx +c



4.1.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

ANTIDERIVATIVES

dr = 4arcsinx + ¢

=

/5seczxdx =btanx + ¢

4

/ _Cc;sxdxz—élcscx—kc
sin” x

/(36””—2)dx=3ex—2x+c

/(4x—26z)dx:2x2—26”3+c

/(3cosx—1/ac)da::3sinx—ln\x|—|—c

/(Qx_l +sinz)dr = 2In|z| — cosz + ¢

4
/%de=21n|x2+4|+c
x

3 3
mdl‘zztan I+C

/cosxdx =In|sinz| +c

sinx

/(2cosm—ez)dﬂc =2sinz —e® +¢

/ - de=In|e* 4+ 3|+ ¢
e +3

/ - 1— Sdac = /(1 +3e™")dx

e
=z—3e “+c

/x1/4(x5/4 —4)dx = /(x3/2 — 4z da

2 16
_ gxo/z _ €x5/4 +e

/x2/3(x_4/3 —3)dzx = /(x_2/3 — 32%/%)dx

:3x1/3—§x5/3+c

d
— In [sec z + tan z|
dx

1 d( + )
=—— —(secx +tanzx
secx + tanx dx

secx tanx + secx

secx + tanx
secx (tanx + sec )

secx + tanx
=secT

d
30. — ln|sinz - 2|
dz )
_ 2 (s 2
sinz -2 dx (sinz - 2)
cos
= - =cotx
2sinx
31. (a) N/A
(b) By Power Formula,
2
/(Vx3 +4)dx = 5x5/2 +4x + c.
32. (a) By Power Formula,
322 —4 _
/ p dx:/(3—4x Hdx
=3r+4r ! +¢
(b) N/A
33. (a) N/A
(b) By Reversing derivative formula,
sec? zdr = tanx + ¢
34. (a) By Power Formula,
1 1
/(2—1>dx:——x+c
x x
(b) N/A
35. Finding the antiderivative,
2
f(z) =3e" + % +ec.
Since f(0) = 4,
we have 4 = f(0) =3 +c.
Therefore,
72
f(z) =3e” + -t 1.
36. Finding the antiderivative,
f(z) =4sinx + ¢
Since f(0) = 3,
we have 3 = f(0) = c.
Therefore,
f(z) =4sinx + 3.
37. Finding the antiderivative

f'(x) = 4a® + 2¢" + ¢;.
Since, f'(0) = 2.

We have 2 = f/(0) =2+ ¢
and therefore

f'(z) = 42 + 2¢°.

Finding the antiderivative,
f(z) = 2* +2e" + co.

Since f (0) = 3,

We have 3= f(0) =2+ ¢
Therefore,

241
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38.

39.

40.

41.

f(z) =zt 4+ 2e* + 1.

Finding the antiderivative,
f(x) =5z + e* + ;.
Since f/(0) = -3,

we have —3=f'(0) =14 ¢
Therefore,

f'(x) = bat + e** — 4.

Finding the antiderivative,
2z

f(a:)::c5+%f4x+02.
Since f (0) = 2,
We have2:f(0):%+02

Therefore,
2z

e 3
flz) =2+ 5 4x+2.

Taking antiderivatives,
frt)=2t++c
3

f () :t2+%+01t+cz
Since f (0) =2,
we have 2 = f(0) = ¢
Therefore,

3
f(t) :t2+§+clt+2.
Since f (3) = 2,
we have
2=f(3)=949+3¢; +2
—6= C1
Therefore,

t?’
f(t):§+t276t+2.

Taking antiderivatives,
fl(t) =4t +3t* + ¢

ft) =22 +> + et +co
Since f (1) =3,

wehave 3=f(1)=2+14c¢;1 + ¢

Therefore,
c1+co=0
Since f (—1) = -2,

we have —2=f(-1)=2—-1—c1 + ¢

Therefore, —c; + ¢co = —3.

So,c1 =3 and ¢; = —3
Hence,
3, 3
t)=t>+26 + St — -
Taking antiderivatives,

f"(x) = 3sinz + 4a?

4
f(x) = =3cosz + §x3 +c

42.

43.

44.

45.

46.

47.

48.

CHAPTER 4. INTEGRATION

1
f(z) = —3sinz + §x4 + 1z + co.

Taking antiderivatives,
f(x) = 2Y? —2cos x

fl(z) = §x3/2 —2sinz + ¢

4
f(z) = 1—5335/2 4+ 2cosx + ci1x + cg.

Taking antiderivatives,
f(x) =4 -2/

() =4z +272+¢
fl(z)=22% -2+ ciz + ¢

2 c
flx)= §x3 —Inlz| + §1$2 + oz +c3

Taking antiderivatives,
" (xz) =sinz —€*

f'(x) = —cosz —€e” + ¢
fl(z) = —sinz — € + 12 + ¢
f(z) =cosz —e® + %xg + cox + 3

Position is the antiderivative of velocity,
s(t) = 3t — 6t2 + c.

Since s(0) = 3, we have ¢ = 3. Thus,
s(t) = 3t — 6t + 3.

Position is the antiderivative of velocity,

s(t) = —3et — 2t +c.

Since s(0) = 0, we have —3 + ¢ = 0 and there-
fore ¢ = 3. Thus,

s(t) = —3et — 2t + 3.

First we find velocity, which is the antideriva-
tive of acceleration,

v(t) = —3cost + ¢;.

Since v(0) = 0 we have

—3+c¢1=0,cp =3 and

v(t) = —3cost + 3.

Position is the antiderivative of velocity,

s(t) = —3sint + 3t + cs.

Since s(0) = 4, we have ¢z = 4. Thus,

s(t) = —3sint + 3t + 4.

First we find velocity, which is the antideriva-
tive of acceleration,

1
v(t) = §t3 +t+er.

Since v(0) = 4 we have ¢; =4 and

1
v(t) = §t3 +t+4

Position is the antiderivative of velocity,
Loy 1y

s(t) = ot + 5t + 4+ oo

Since s(0) = 0, we have ¢z = 0. Thus,

1 1
s(t) = Et4 + 51&2 + 4t.



4.1. ANTIDERIVATIVES

49. (a) There are many correct answers, but any
correct answer will be a vertical shift of
these answers.

L
-4.0 \-83.2 -24 -1.6 -0.87 0

(b) There are many correct answers, but any
correct answer will be a vertical shift of
these answers.

L e o e e e e e e B e B B e e |
-3 -2 -1 (o] 1 2 3
X

50. (a) There are many correct answers, but any
correct answer will be a vertical shift of
these answers.

(b) There are many correct answers, but any
correct answer will be a vertical shift of
these answers.

243

L LI e
-3

51. We start by taking antiderivatives:
flx)=22/2—2+c1
f(x)=23/6 —22/2 + c17 + ca.
Now, we use the data that we are given. We
know that f(1) = 2 and f’(1) = 3, which gives
us
3=f'(1)=1/2—-1+4 ¢4,
and
1=f(1)=1/6—-1/2+c1 + ca.
Therefore ¢; = 7/2 and ¢; = —13/6 and the
function is

52. We start by taking antiderivatives:
fl(x) =322+ 42+ 1
flx) =23 +22% + c1o + co.
Now, we use the data that we are given. We
know that f(—1) = 1 and f/(—1) = 2, which
gives us
2=f(-1)=—1+q,
and
].:f(—l) = 1—61-’-02.
Therefore ¢; = 3 and ¢; = 3 and the function
is
flx) = 2% + 222 + 3z — 3.

53. o [sin2?] = 2z cos x>

Therefore,

/2x cosz?dr = sina? + ¢

d 3 3/2 9 9.3 1/2
54. — {(x +2) }_Qx (23 + 2)

Therefore,

2
/mQ\/x3 + 2dx = §(x3 +2)%2 4+ ¢

d
55. e [2° sin 2z] = 2(z sin 2z + 2* cos 2z)
x

Therefore,
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56.

57.

58.

59.

60.

/ (m sin 2z + 22 cos 2:5) dx

= §z2 sin2x + ¢

d z? 2xe3® — 3x2e3
% e3z - eﬁm
Therefore,
2xe3® — 3x2e3 d x?
eG:c T = e?)m tc
x cos(x?)

dx = /sin(z?) + ¢

V/sin(z2)
a4 (2vzsinz) = 2y/z cosw + 1 sin x
dx NG

/ <2\/§cosx + % sinx) dx

=2y/xsinz +c

Use a CAS to find antiderivatives and verify by
computing the derivatives:
For 11.1(b):

secxdr = In|secz + tanx| + ¢
Verify:
d
— In|secx + tan x|

dz
secxtanz + sec? z

= =secx
secx + tanx

For 11.1(f):
. sin2x  xcos2x

x sin 2xdx = — +c
4 2

Verify:

i sin2x  xcos2x

dz 4 2

_ 2cos2x  cos2x — 2xsin2x

= . 5

= rsin2x

Use a CAS to find antiderivatives and verify by
computing the derivatives:

For 31(a): The answer is too complicated to be
presented here.

For 32(b): % <3x +V3In 2\/3—3%) +c

2v/3 + 3z
Verify:
d |1 2v3 — 3z
— | = 3x+\/§ln7
dx [9 < 2\/34-31‘)1
2v/3 + 3z

1
B 9 (3 * 2v/3 — 3z
—3(2v3 + 32) — 3(2v/3 — 3x)>

(2V/3 + 37)2

61.

62.
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1 . 36 2P
) 12—-922) 322 -4

For 33(a): Almost the same as in Exercise 59,
example 1.11 (b).

1 —
For 34(b): §1n i 1

+c
Verify:

d (1, z—1
22—

de \2 x+1

1l z4+1 (@4+1)—(z—-1)

2 z-1 (x +1)2
1

2 -1

Use a CAS to find antiderivatives and verify by
computing the derivatives:

: 1
(a) 22 dy = —ge*m +c
Verify:
A
dz 3
1
= —ge_:g (—31‘2)
— I267m
(b) / 5 dx = ln |z —1|—In|z| + ¢ Verify:
x?—z
2 (nlz ~ 1]~ Ina]
7y (nlz n|x
11 z—(z-1)
S rx-1 oz x-1)
1 1

z(x—1) a2

-z
(c) /secxdx =In|secx + tanz| + ¢
Verify:
4 [In |sec x + tan x|]
dz

sec x tan x + sec?

secx + tanx
sec z(sec x + tan x)
= =secx
secx + tanx

Use a CAS to find antiderivatives and verify
by computing the derivatives:

1
(a) / %_de =3 arctan 2 4 ¢

Verify:

d (1 9

% iarctan:c

_ 1 1 9y — T

T A YT
(b) /3,7: sin 2xdx

3 3
= ZsinQa:—%cosQa:—i—c



4.1.

63.

64.

65.

66.

ANTIDERIVATIVES

Verify:

d (3 . 3z
. <4 sin 2x — > cos 2x>

= §c052x— 50052x—|—3xsin2x

= 3z sin2x

(c) /lnasd:v =zlhe—z+c
Verify:
d
%(xlnx—x) =hz+1-1
=Ilnz

dr = cos ! (z) + ¢;

——— dr=—sin"Yz) +ec
Vv (@) +
Therefore,
cos 'z + c=— sin"'a+ Co
Therefore,

sin™'z +cos™!x = constant

To find the value of the constant, let = be any
convenient value.

Suppose z = 0; then sin~'0 = 0 and cos™' 0 =
/2, s0

sin'z+costr=—

NN

To derive these formulas, all that needs to be
done is to take the derivatives to see that the
integrals are correct:

d 2
— (tanz) = sec” x

dx

— (secx) = secxtanx

7 (secz)

To derive these formulas, all that needs to be
done is to take the derivatives to see that the
integrals are correct:

d T\ _ T
% (") =e
() =
1 1 /1
= l1n|x| +c
= 1
1 1 k
= %ln|kx| + ¢o
l%ecause 1
%ln|kz| = E(ln\k| +1In|z|)

1 1 1

The two antiderivatives are both correct.

67.

68.

69.

245

The key is to find the velocity and position
functions. We start with constant acceleration
a, a constant. Then, v(t) = at + vy where vg
is the initial velocity. The initial velocity is 30
miles per hour, but since our time is in seconds,
it is probably best to work in feet per second
(30mph = 44ft/s). v(t) = at + 44.

We know that the car accelerates to 50 mph
(50mph = 73ft/s) in 4 seconds, so v(4) = 73.

29
Therefore, a -4+ 44 =73 and a = T ft/s

So,
29
v(t) = Zt + 44 and

29
s(t) = §152 + 44t + s
where sq is the initial position. We can assume
the the starting position is so = 0.

29
Then, s(t) = gtz + 44t and the distance

traveled by the car during the 4 seconds is
s(4) = 234 feet.

The key is to find the velocity and position
functions. We start with constant acceleration
a, a constant. Then, v(t) = at + vy where vg
is the initial velocity. The initial velocity is 60
miles per hour, but since our time is in seconds,
it is probably best to work in feet per second
(60mph = 88ft/s). v(t) = at + 88.

We know that the car comes to rest in 3 sec-
onds, so v(3) = 0.

Therefore,

a(3)+88 = 0 and a = —88/3ft/s (the accelera-
tion should be negative since the car is actually
decelerating.

So,
v(t) = f§t + 88 and

44
s(t) = —EtQ + 88t 4 sg where sq is the initial

position. We can assume the the starting po-
sition is s¢g = 0.

44
Then, s(t) = ,3752 + 88t and the stopping
distance is s(3) = 132 feet.

To estimate the acceleration over each inter-
val, we estimate v’(t) by computing the slope
of the tangent lines. For example, for the in-
terval [0,0.5]:

_v(0.5) —v(0) 9
N = = —31.6 m/s”.
Notice, acceleration should be negative since
the object is falling.
To estimate the distance traveled over the in-
terval, we estimate the velocity and multiply

by the time (distance is rate times time). For
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70.

71.

an estimate for the velocity, we will use the
average of the velocities at the endpoints. For
example, for the interval [0, 0.5], the time inter-
val is 0.5 and the velocity is —11.9. Therefore
the position changed is (—11.9)(0.5) = —5.95
meters. The distance traveled will be 5.95 me-
ters (distance should be positive).

’ Interval \ Accel \ Dist ‘

[0.0,0.5] | —31.6 | 5.95
[05,1.0] | —2 |12.925
[1.0,15] | —11.6 | 174
[15,20] | —3.6 | 19.3

To estimate the acceleration over each inter-
val, we estimate v'(¢) by computing the slope
of the tangent lines. For example, for the in-
terval [0, 1.0]:

_v(1.0) —v(0) 9
GNW——Q.SIH/S .
Notice, acceleration should be negative since

the object is falling.

To estimate the distance traveled over the in-
terval, we estimate the velocity and multiply
by the time (distance is rate times time). For
an estimate for the velocity, we will use the av-
erage of the velocities at the endpoints. For
example, for the interval [0,1.0], the time in-
terval is 1.0 and the velocity is —4.9. Therefore
the position changed is (—4.9)(1.0) = —4.9 me-
ters. The distance traveled will be 4.9 meters
(distance should be positive).

’ Interval \ Accel \ Dist ‘

0.0,1.0] | —9.8 | 4.9
1.0,2.0] | —8.8 | 14.2
[2.0,3.0] | —6.3 | 21.75
[3.0,4.0] | —3.6 | 26.7

To estimate the speed over the interval, we
first approximate the acceleration over the in-
terval by averaging the acceleration at the end-
point of the interval. Then, the velocity will be
the acceleration times the length of time. The
slope of the tangent lines. For example, for the
interval [0, 0.5] the average acceleration is —0.9
and v(0.5) = 70 + (—0.9)(0.5) = 69.55.

And, the distance traveled is the speed times

the length of time. For the time ¢t = 0.5, the
distance would be w x0.5 ~ 34.89 me-

ters.

72.
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’ Time \ Speed \ Dist ‘

0 70 0
0.5 | 69.55 | 34.89
1.0 70.3 | 69.85
1.5 | 70.35 | 105.01
2.0 | 70.65 | 104.26

To estimate the speed over the interval, we first
approximate the acceleration over the interval
by averaging the acceleration at the endpoint
of the interval. Then, the velocity will be the
acceleration times the length of time. the slope
of the tangent lines. For example, for the in-
terval [0.0, 0.5] the average acceleration is —0.8
and v(0.5) = 20+(—0.8)(.5) = 19.6. Of course,
speed is the absolute value of the velocity.

And, the distance traveled is the average speed
times the length of time. For the time ¢ = 0.5,

the distance would be w x 0.5 =99
meters.
| Time | Speed | Dist |

0 20 0

0.5 19.6 9.9

1.0 | 17.925 | 19.281

1.5 16.5 | 27.888

2.0 | 16.125 | 34.044

4.2 Sums And Sigma Notation

1.

. The given

The given sum is the sum of twice the
squares of the integers from 1 to 14.

14
2(1)° +2(2)° +23)* +... +2(14)* = > 2i”

sum is the sum of squares
roots of the integers from 1 to 14.

V214 V3—14vVa—1+4...+V/I5 -1
=V1I+vV2+V3+..+VI3+V14

~3 Vi

50
(a) > i*= w = 42,925

i=1

(b) (iz) = <50(251))2 = 1,625,625

i=1

10
(@) Y Vi
Va4 VI+ VB
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10.

11.

12.

13.

.
<.

[ Mm

—~ O

SUMS AND SIGMA NOTATION

+VT+V8+V9+ V10
~ 2247

10 10(11
;H/g N

6
. 2312:3+12+27+48+75+108

i=1
=273
7

. Zi2+i:12+20+30+42+56

i=3
= 160
10

S (4i+2)

:6(4(6) +2)+ (4(7) +2) + (4(8) +2)
+(4(9) +2) + (4(10) + 2)
=26+ 30+ 34 + 38 + 42

=170

(i* +2)

6% +2)+ (7 +2) + (82 +2)
=38 + 51 + 66 = 155
70

70
S Bi—1)=3-)i-70
i=1

=1
70(71)

2

— 70 = 7,385

45

45 45
dBi-4)=3) i—-4) 1
=1 =1

=1 A
_3 (45(246)> _ 4(45) = 2925

40 4

0
d(a-i?)y=160-Y i’
: =1

i=1 i
40)(41)(81

160 U0V

=160 — 22,140 = —21, 980

50

50 50
dB-i)=8)1->"i
i=1 i=1

i=1 1=
1
=8(50) — %5) = 875
100
Z (n2 —3n + 2)
n:1100 100 100
= Z n?—3 Z n+ Z 2
n=1 n=1 n=1
(100)(101)(201) . 100(101)

= -3 200
6 2 +

14.

15.

16.

17.

= 338,350 — 15, 150 + 200 = 323, 400

140

> (n®+2n—4)

n=1
140 140 140

= an + 2 Zn— 24
n=1 n=1 n=1

6

247

_ (140)(141)'(281) Lo (140(141)> — 4(140)
2

= 043,670

30

Z[(i—3)2+i—3}

1:330 30
= (-3 +> (-3
i=3 =3
27 27
_ Z n? 4+ Z n (substitute i — 3 =n)
n=0 o7 n=0 97
=0+ Z n? +0+ Z n
n=1 n=1
_27(28)(55) | 27(®) _ .00
6 2
20 20
S i-3)(i+3) =Y (*-9)
i=4 i=4
20 20
=Y i2-93"1
i=4 1=4
20 3 20
=) ?->it93 1
i=1 i=1 i=4
:w_1_4_9—9(17)
= 2703
> (K -3)
k=3
—S Y (-3)
k=3 k=3
n 2
= Z k2 - Z k2
k=1 k=1
n 2
+> (=3)=> (-3)
k=1 k=1
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18.

19.

20.

21.

_n(n+1)(2n+1) Csn4l

23.

\-’[\DN’
—
—
<]
—
—

+(17.36)(0.1)
1) +(21.04)(0.1)
+(25.04)(0.1)
1) + (29.36)(0.1)
1)+ (34)(0.1)

24.
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= ((2.05)® +4)(0.1) + ...
+ ((2.95)% + 4)(0.1)

= (202.4375)(0.1)

= 20.24375

S| () ()]

- Z% z;]
i E
2

1
n

/\/—\lMS

6n3

_ —13n? —12n+1
6n2

nlzr;cii [(Q B (nﬂ

—13n2 —12n+1
6n?

= lim
n—oo

=lim —— - —+



4.2.

25.

26.

27.

SUMS AND SIGMA NOTATION

13
6

L))
- n n n
=1
gt
n =1 n2 i:ln
116 ¢~ , 2.
et
L =1 =1
[16 (n(n+ 1)(2n + 1)>

| n? 6

()

6n(n+1)2n+1) n(n+1)

1
n

6n3 n

"1 2\  [2i
li “la(z) (2
a3 () - (3)

~ lim {lﬁn(n +1)@2n+1) n(n+1)

n—o00 6n3
6, 13
3 3

L =1 i=1
_ 174 (nn+1)(2n+1)
T n | n? 6
4 (n 1
4 ()]
n 2
dn(n+1)2n+1)  4n(n+1)
n 6n3 2n2
_ 10n2 + 12n + 2
- 3n?

lim il % 2+4 ‘
TLA)OO’L_ZIT], n n

10n2 + 12n + 2
m - ‘-="r=

~
N—
I

n—00 3n2
o 10122 10
o83 T30 32 3

Want to prove that

28.

249

zn:z3— ”+1)

1s true for all 1ntegers n > 1.

For n = 1, we have
1

S 1= 12(1+1)°
P=1="0
, 4

as desired.
So the proposition is true for n = 1.
Next assume that

Z 5 Kk + 1)2
for some mteger k>1.

In this case, we have by the induction assump-
tion that for n = k; +1,

k+1
Zl —Zz —Zz +( k—l—l
7/6 (k+1)

+ (k+1)3
R (k412 +4(k+1)°

4
~ (k+1)%(k* 4 4k + 4)

4
_ (k+1)%(k+2)°
n%(n +le)2

as desired.

Want to prove that
5 n*(n+1)%(2n® +2n — 1)
Z 12
1s true for all integers n > 1.
For n =1, we have
12 1+1)2(2+2-1)
Z ! 12 ’

ab deslred
So the proposition is true for n = 1.
Next assume that
Z 5 KA(k+1)%(2k* + 2k — 1)
12 ’
for some integer k > 1.
In this case, we have by the induction assump-

tion that for n = k +1,
k+1

Zz —Zz —Zz + (k+1)°

_ k: (k+1) (2k2+2k 1) ety
12
E2(k+1)2(2k% + 2k — 1) + 12(k + 1)°
N 12
(R +1)2[R* (2K + 2k — 1) 4+ 12(k + 1)?]
12
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2797.4 3 2 -
_ (k + 1)%[2k* + 14k* 4 35k* + 36k + 12] 34. When n =0, a = al ar
—r
12 Assume the formula holds for n = k — 1, which
_ (k+1)%(k* 4 4k + 4)(2k* + 6k + 3) gives
- 12 w1 a—ar®
n2(n+1)2(2n2 + 2n — 1) atardart S =
= 2 Then for n = k,
as desired. we have a + ar + - - - ar”
10 :a+arj~~ark71+ark
20. S (% - 3i + 1) - tat

i= 1 a—ar® +ark(1—7)

—Zz —3Zz+10 AT -

a—ar” +ar® —ar

100(11) 10(11) 1—r
3y +10 a—artt
= 2,870 L-r
_ a — ar
20 17
30. Z(ii" + 2i) as desired.
1= 1
= Zz + 22 - 6i/n 6
35. =
xe(;
400( 1)2 20(21) T oa
R 2 5 44,520 =2 Z Si/n
100 )
31 ) (i —2i2) _ G (e
i=1 o\ 1—eb/n
100 100 6 1 6
-5 -2 — €
= 1° =2 1 = — -1
~(100)(1012)[2(100%) + 2(100) — 1] _61-¢ 6
- 12 T nl-— 666/” n
100(101)(201) Now lim — = 0, and
6
= 171,707, 655, 800 lim 8 =€
z—oomn 1 — eb/m
100 1/n
. . _ 6 .
32. ) (2i° +2i+1) =6(1-e )115201_7&3/"
=1
100 100 — 6(1 — ¢ lim IR
=2 i®+2) i+100 200 —6e6/m
' =eb —1.
1002)(1012)[2(1002) + 2(100) — 1
_ 5(100%)(101%)[2(100%) +2(100) — 1] Thus hmzeez/nﬁ_e 1
12 T—00 n
100(101
+2- % +100
= 343,416, 675, 200 36. (2i)/n 2

HVM:
—
9]

n
62/n7€2
(1—62/">
1— 2
RE
(=)

33. z”: (ca; + db;) anl +Zdb _
i=1
=Y a Y _
i=1 i=1

Sl 3w



4.3.

37.

38.

39.

40.

AREA

2 1—¢? 2
Tnl-e¥n n
Now lim — =0, and

Tr—oon
2 1—¢2

hm —_—
rooomn 1 — e2/n

=2(1 —¢?) lim 1/n

r—o00] — e2/n

=2(1-e )11510107_262/”

=e2 1.
Thus li 2i/n2 _ 2 _ 1.
us lim Z(ﬁ n 6

Tr—00

Distance
= 50(2) +60(1) + 70(1/2) 4+ 60(3)
= 375 miles.

Distance
= 50(1) +40(1) + 60(1/2) + 55(3)
= 285 miles.

On the time interval [0, 0.25], the estimated ve-

120 + 116
locity is the average velocity % =118

feet per second.

We estimate the distance traveled during the

time interval [0,0.25] to be

(118)(0.25 — 0) = 29.5 feet.

Altogether, the distance traveled is estimated

as

= (236/2)(0.25) + (229/2)(0.25)
+(223/2)(0.25) + (218/2)(0.25)

+ (214/2)(0.25) + (210/2)(0.25)

+ (207/2)(0.25) + (205/2)(0.25)

= 217.75 feet.

On the time interval [0, 0.5], the estimated ve-
10+149 19.45

meters per second. We estimate the distance
fallen during the time interval [0, 0.5] to be
(12.45)(0.5 — 0) = 6.225 meters.
Altogether, the distance fallen (estimated)
(12 45)(0.5) + (17.35)(0.5)

(22 25)(0.5) + (27.15)(0.5)

(32.05)(0.5) + (36.95)(0.5)

(41 85)(0.5) + (46.75)(0.5)
= 118.4 meters.

locity is the average velocity

4.3 Area

1.

(a) Evaluation points:
0.125, 0.375, 0.625, 0.875.

2.

251

Notice that Az = 0.25.
Ay = [f(0.125) + £(0.375) + f(0.625)
+ £(0.875)](0.25)
=[(0.125)2 + 1 + (0.375)%2 + 1
+(0.625)% + 1 + (0.875)% +
= 1.38125.

1](0.25)

N
i}

/
|~

"
I S I L S R

"

(b) Evaluation points:
0.25, 0.75, 1.25, 1.75.
Notice that Az = 0.5.
Ay = [£(0.25) + £(0.75) + f(1.25)
+ £(1.75)](0.5)
=[(0.25)% + 14 (0.75)% + 1 + (1.25)?

+ 1+ (1.75)% + 1)(0.5)
= 4.625.
3 //
2 /
=

T L e e S e
-0.5 o 0.5 1 1.5 2 25

(a) Evaluation points:

1.125, 1.375, 1.625, 1.875.

Notice that Az = 0.25.

Ay = [f(1.125) + £(1.375) + £(1.625)

+ £(1.875)](0.25)

=[(1.125)3 — 1 + (1.375)3 —
+ (1.625)3 — 1 + (1.875)3 —

= 2.7265625.

1(0.25)



252

g
<

(b) Evaluation points:

1.25, 1.75, 2.25, 2.75.

Notice that Ax = 0.5.

Ag = [f(1.25) + f(1.75) + f(2.25)

+ £(2.75)](0.5)

=1[(1.25)> =1+ (1.75) — 1
+(2.25)% — 1+ (2.75)% — 1](0.5)

= 17.75.

10
5 ‘7,474
o

;H’{ 1.5 2 25 3

(a) Evaluation points:

/8, 3w/8, 5m/8, Tm/8.

Notice that Az = 7 /4.

A = [f(n/8) + [(37/8) + f(57/9)

+ f(Tm/8)](m/4)
= [sin(7/8) + sin(37/8) + sin(57/8)
+ sin(77/8)](7w/4)
= 2.05234.

1; /—'\

(b) Evaluation points:

w/16, 3w/16, b5m/16, Tn/16, 97/16,

CHAPTER 4. INTEGRATION

117/16, 137 /16, 157 /16.
Notice that Az = 7/8.
Ay = [f(x/16) + f(37/16) + f(57/16)
+ f(7m/16) + f(97/16) + f(117/16)
+ f(137/16) + f(157/16)](7/8)
= [sin(7/16) + sin(37/16) + sin(57/16)
+ sin(77/16) + sin(97/16)
+ sin(117/16) + sin(137/16)
+ sin(157/16)](7/8)
= 2.0129.

13

I \

Evaluation points:

—0.75, —0.25, 0.25, 0.75.

Notice that Az = 0.5.

Ay =[f(=0.75) + f(—0.25) + f(0.25)

+ £(0.75)](0.5)

=[4—(-0.75)2 44— (-0.25) +4
—(0.25)%2 +4 — (0.75)%](0.5)

= 7.375.

T T
L~ K AN

Evaluation points:

—2.75, —2.25, —1.75, —1.25.

Notice that Az = 0.5.

Ay = [f(—2.75) + f(—2.25) + f(—1.75)
+ f(-1.25)](0.5)

=[4—(-275)24+4—(-225)2+4

— (=1.75)2 + 4 — (—1.25)2](0.5)
= —0.625.



4.3. AREA

5.

(a)

There are 16 rectangles and the evalua-
tion points are given by ¢; = iAx where i
is from 0 t01515.

Aig = Az f(e)

=0

15 . 2
IS (Y 4y
164 [(16)

There are 16 rectangles and the evalua-

~ 1.3027

tion points are given by ¢; = iAx + 5
where 7 is f{5om 0 to 15.

A16 = A:ZJ Z f(CZ)

=0
. 2+1
16 ' 32

There are 16 rectangles and the evalua-
tion points are given by ¢; = iAx + Ax
where ¢ is f{g)m 0 to 15.

Are = sz flei)
=0

. 2
RANLE
16 ' 16

115

16 4
=0
~ 1.3330

1 15
16 =

~ 1.3652

There are 16 rectangles and the evalua-
tion points are given by ¢; = iAx where i
is from 0 t01515.

Aig =AY flei)

i=0
1 5 N
== - 1
| ()
=0
There are 16 rectangles and the evalua-
Ax

tion points are given by ¢; = iAz + B3

~ 4.4219

where ¢ is from 0 to 15.

253

15
Aig = Az > f(ei)

i=0

. 2

1 1

-+ — 1
(8 + 16) +
There are 16 rectangles and the evalua-

tion points are given by ¢; = iAz + Ax
where ¢ is from 0 to 15.

15
A16 = Al‘ Z f(Ci)

i=0
! + AN +1
8 8
There are 16 rectangles and the evalua-
tion points are the left endpoints which

are given by
¢; = 1+ iAx where i is from 0 to 15.

15
A16 = AIZ? Z f(Cl)

=0

3 & 3i
:EZ,/1+1—6+2z6.2663

There are 16 rectangles and the evalua-
tion points are the midpoints which are
given by

Rt
:gz

=0

~ 4.6640

~ 4.9219

A
¢ =1+ iAz+ 733 where 4 is from 0 to
15.

15
Aig =AY fle)
31 3
14+ —=+—=+2
+ 16 + 32 +
~ 6.3340

There are 16 rectangles and the evalua-
tion points are the right endpoints which
are given by

¢; = 1 + iAxz where ¢ is from 1 to 16.

16
A16 = AI Z f(&)

i=1
16 -
3 3
= — \/1+ — +2~6.4009
16 P + 16 +

There are 16 rectangles and the evalua-
tion points are the left endpoints which
are given by

¢ =—1+1iAz — Az

where 7 is from 1 to 16.

16
Aw = A!L‘ Z f(Ci)

i=1
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10.

(b)

16
=2 D e 2R~ 4.0991

i=1
There are 16 rectangles and the evalua-
tion points are the midpoints which are
given by
C; = -1+ 1Ax — %

where 7 is from 1 to 16.

16
Ag = Aw Z fci)

=1
16 ' _
=3 Ze—Q(—Hé—%) ~ 3.6174
=1

There are 16 rectangles and the evalua-
tion points are the right endpoints which
are given by

¢; = —1 4+ iAx where 7 is from 1 to 16.

16
A16 = AJI Z f(CZ)

i=1

1 Js )
=2 Z e 2(=1+%) ~ 31924
=1

There are 50 rectangles and the evalua-
tion points are given by ¢; = iAx where i
is from 0 to5049.

Aso = Az flei)

=0

50 .
™ ™
= — 5[ — | ~ 1.01

100 i_ocos<100> 0156

There are 50 rectangles and the evalua-

x
tion points are given by ¢; = - + iAx

where 1 is fg(())m 0 to 49.
A50 = AQ? Z f(CZ)
i=0
50 .
TN eos (4 T
100 ~ 200 100
~ 1.00004

There are 50 rectangles and the evalua-
tion points are given by ¢; = Az + iAx
where 7 is from 0 to 49.

50
Aso = Az flei)

1=0
50 .
LT N s (o
100 = 100 100

~ (0.9842

There are 100 rectangles and the evalu-
ation points are left endpoints which are

11. (a)

CHAPTER 4. INTEGRATION

given by ¢; = —1 + iAx — Ax where i is
from 1 to 19(())(.)

Asgo = Az Yy f(ei)

=1

2 2 2\°
- = S I A B |
100 & 100 100

~ —2.02

There are 100 rectangles and the evalua-
tion points are midpoints which are given

A
by ¢; = -1+ ilAx — 7.’[7 where i is from 1

to 100.
100
Asgo = Az Y f(ci)

=1

2 2 1\°
- = S LA B |
100 & 100 100

= -2
There are 100 rectangles and the evalua-
tion points are right endpoints which are

given by ¢; = —1 4+ iAx where 7 is from 1
to 100.

100
Asgo = Az Y f(ei)

i=1

100 N
2 24
= — —14+—) —1| =-1.
100 = ( + 100) ] o8

1
Ax = —. We will use right endpoints as
n .

. . 1
evaluation points, x; = —.

n
A, = Z f(z) Az
i=1

i:i [(;>2+1] :%ZiQJrl
1i_(1n(n+ 1)(2n+ 1)) '
6

n3

_ 8n?+3n+1

N 6n2
Now to compute the exact area, we take
the limit as n — oo:

2
1
A= lim A, = lim 8n”+3n+1
n— 00 n— 00 6n2
i 8 n 3 n 1 4
= lim -+ —+— ==
n—oo 6 6n  6n? 3

P
8
Il

2
—. We will use right endpoints as
n

. . 29
evaluation points, x; = —

A, = i f(z) Az
i=1
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I
S
Il 3
_
1
N
3|
S~

[\

_|_

—

~.

=

31
—
7N
v

~.

Il
S
[~]=
1
‘133/—\
3R
o N
[\

_|_

—_

SERN

2 n
=

.
|

Zz + 2

[_ (n+1)( 2n+1)}+2
= [

m\oo%\oo %\oo

2n+1)] 4o

= (2n® +3n+1) +2
3n2
14n? +12n + 4
n2
Now, to compute the exact area, we take

the limit as n — oo :
A= lim A,
n—oo
o ldn®> +12n+4
= lim —M——

n— 00 3n?

14
3

2
(¢) Az = - We will use right endpoints as

21
evaluation points,r; = 1 + —.

Il Il

S Sy ey
s g
§

_|_

—_

S—

/’\

S 3N

~

A
i]=
VR
/N
—
_|_
(V)
~
S~
[\v]
_|_
—_
~__—

@
Il
-

n

i+§3zn:i2

o)

8 (n + H(2n+1
2 )
6
4n+4 8n?+12n +4
n 3n
Now, to compute the exact area, we take

the limit as n — oo:
A= lim A,

n—roo

An+ 4
— lim <4+ ntd,
n

Il
I
+

Il
B
+
.| o0
VRS
/ELM

n— 00 3n2

8n? + 12n + 4)

12.

(a)

255

1
Ax = —. We will use right endpoints as
n .

. . i
evaluation points, x; = —.
n

1 (n(n+1)(2n+1)>

1In?+12n+1

= T
Now to compute the exact area, we take

the limit as n — oo:

A= lim A,
n—oo
o 1In?+12n+1
= hm _—
n—o00 6n2
11 12 1 11

. We will use right endpoints as

. . 24
evalution points, z; = —.
n

(8n? + 12n +4) 6n + 6
+
3n? n

Now, to compute the exact area, we take
the limit asn —o00: A= lim A,

n—oo
8n? + 12 4
. (8n? + n+)+6n+6
n—00 3n2 n
8 26
= — 6:—
3+ 3



256

2
(¢) Az = —. We will use right endpoints as
n

. . 21
evalution points, z; =1+ —.
n

n? 2
+§ n(n+1)(2n+1)
n3 6
10 4 )
_8+;(n+1)+@(2n +3n+1)

Now, to compute the exact area, we take
the limit as n — oc:

A= lim A,
n—oo
= lim
n—oo
10 4
8+;(n+1)+@(2n +3n+1)
8 62
=8+410+ - =—
+10+ 2 =3

1
13. (a) Az = —. We will use right endpoints as
n

evalution points, x; = —.
n

A, = Zf(:cl)Am
i=1
n . 2
1Z[Q<Z> +1
n 4 n
=1
2 =
i=1
:% n(n+1)(2n+1)}+1
n 6
(5n2+n—|—1)
2

n
Now, to compute the exact area, we take
the limit as n — 0o :

_

A= lim A,
n—oo
.| (BrP4+n+1)| 5
= lim |[————F| =-.
n— 00 3n?2 3

CHAPTER 4. INTEGRATION

2
(b) Az = —. We will use right endpoints as
n
. . 24
evalution points, z; = —1 4+ —.
n

A, = ilf(xl) Az

(22 +1) (Z)

|

s
I
—

N
—

I
S 3w
IX Mz

3l
N
w
|
3|2
+
(0 8]
:w‘%
N——

8n + 8 16n2 4+ 24n + 8
=6— /"
n 3n?

Now, to compute the exact area, we take
the limit as n — oo:

A= lim A,
n—oo
= lim
n—o0
6 8n + 8 N 16n2 4+ 24n + 8
n 3n?
16~ 10
=6 -84+ — = —
3 3

2
(¢) Az = —. We will use right endpoints as
n
9
evaluation points, x; = 1 + —Z.
n

A= flz)Ax
=1
2 & 2i\ 2
(1) 4

2 o (82 &
=— — +—+3
ni:l n

16 <n(n + 1)6(2n + 1)>

16 (n(n+1)

o (M) 4

16n(n+1)(2n + 1)
6n3
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16n(n+1)
2n2
Now to compute the exact area, we take

the limit as n — oo:
A= lim A,

n—oo

~ lim (16n(n+ 1(2n+1)

+6

6n3

16n(n +1)

n—oo

2 1
—im 240 58

n—oo 6 2 3

1
14. (a) Az = —. We will use right endpoints as
n

A N
T n&n? n&n
4 (nn+1)(2n+1)
S ()

1 /n(n+1)

n?2 2
i(2n2+3n+1) LAY
3n?2 2n
53 2
6 2n  3n?
Now, to compute the exact area, we take
the limit as n — oo:

A= lim A,

n—oo

o (532
B n—oo \ O 2n 3’112

2
(b) Az = —. We will use right endpoints as
n
. . 2
evalution points, z; = —1 4+ —.
n

Ay = if(fﬂi)Aw = Zn: [4z;% — ;] %

i=1

n N 2 .

2 2 2
_z l4(—1+’) —(—1+Z>

n P n n

2 & 18 1632
= — 5 P — + 3
n =1 n n

i=1 i=1 i=1
36 (n(n+1)
n? ( 2
32 <n(n+1) (2n+1))
T
n 6
8

257

1 16,
:10—g(n+1)+3?(2n +3n+1)

Now, to compute the exact area, we take

the limit as n — oo :
A= lim A,

n—oo

o (32,16
- n—oo \ 3 n 37’L2

2

Ax = —. We will use right endpoints as
n

. . 2
evaluation points z; =1+ —.
n

n

Ap = 2"; fzi)Ax = Z [4z;% — ;] %

i=1

2‘ 2 2
4(1+Z) (1+Z
n n
~ 14i 1632
D3+t
— n n

6 n 28 n . 39 n 5
:ﬁzl—Fﬁ Z+$ZZ
i=1 =1 1=1
28 (n(n+1)

2
32 <n(n+1)(2n+1))
+ 6

)

16
=6+—(n+1)+-— (2n*+3n+1)

n 3n2
92 30 16
Jr PR

3 ' n @ 3n2

Now, to compute the exact area, we take

the limit as n — oo:

A= lim A,
n— 00
o (2,30, 16
- n—00 3 n 3712

_ 92
3
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15.
n Left Midpoint Right
Endpoint Endpoint
10 10.56 10.56 10.56
50 10.662 10.669 10.662
100 | 10.6656 10.6672 10.6656
500 | 10.6666 10.6667 10.6666
1000 | 10.6667 10.6667 10.6667
5000 | 10.6667 10.6667 10.6667
16.
n Left Midpoint Right
Endpoint Endpoint
10 0.91940 1.00103 1.07648
50 0.98421 1.00004 1.01563
100 | 0.99213 1.00001 1.00783
500 | 0.99843 1.00000 1.00157
1000 | 0.99921 1.00000 1.00079
5000 | 0.99984 1.00000 1.00016
17.
n Left Midpoint Right
Endpoint Endpoint
10 | 15.48000 | 17.96000 | 20.68000
50 17.4832 17.9984 18.5232
100 | 17.7408 17.9996 18.2608
500 | 17.9480 17.9999 18.0520
1000 | 17.9740 17.9999 18.0260
5000 | 17.9948 17.9999 18.0052
18.
n Left Midpoint Right
Endpoint Endpoint
10 | —2.20000 -2 —1.80000
50 | —2.04000 -2 —1.96000
100 | —2.02000 -2 —1.98000
500 | —2.00400 -2 —1.99600
1000 | —2.00200 -2 —1.99800
5000 | —2.00040 -2 —1.99960

19. Let L, M, and R be the values of the Riemann
sums with left endpoints, midpoints and right
endpoints. Let A be the area under the curve.

Then: L < M < A< R.

-~
=3
=y

TR B R B R

N

=3

=)
i

1

=

oL

20.

21.

22.

23.

24.
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Let L, M, and R be the values of the Riemann
sums with left endpoints, midpoints and right
endpoints. Let A be the area under the curve.
Then: L< A< M < R.

Let L, M, and R be the values of the Riemann
sums with left endpoints, midpoints and right
endpoints. Let A be the area under the curve.
Then: R< A< M < L.

0.12]

0.4

0.08]

0.06]

0.04

0.02]

03
2 2.5 3 3.5 4

Let L, M, and R be the values of the Riemann
sums with left endpoints, midpoints and right
endpoints. Let A be the area under the curve.
Then: R< A< M < L.

There are many possible answers here. One
possibility is to use x = 1/6 on [0,0.5] and

r =+/23/6 on [0.5,1].

There are many possible answers here. One
possibility is to use x = 1/4 on [0,0.5] and



4.3. AREA

25.

26.

x =25/36 on [0.5, 1].

(a) We subdivide the interval [a,b] into n
equal subintervals. If you are located at
a+ (b — a)/n (the first right endpoint),
then each step of distance Ax takes you to
a new right endpoint. To arrive at the -
th right endpoint, you have to take (i —1)
steps to the right of distance Ax. There-
fore,
ci=a+(—a)/n+(i—1)Az = a+ilAx.

(b) We subdivide the interval [a,b] into n
equal subintervals. The first evaluation
point is a + Axz/2. From this evaluation
point, each step of distance Az takes you
to a new evaluation point. To arrive at
the ¢-th evaluation point, you have to take
(i — 1) steps to the right of distance Ax.
Therefore,
ci=a+Az/2+ (i —1)Azx
=a+(i—1/2)Az,fori=1,...,n

(a) We subdivide the interval [a,b] into n
equal subintervals. If you are located at a
(the first left endpoint), then each step of
distance Ax takes you to a new left end-
point. To arrive at the i-th left endpoint,
you have to take (i — 1) steps to the right
of distance Ax. Therefore,
ci=a+ (i—1)Az.

(b) We subdivide the interval [a,b] into n
equal subintervals. The first evaluation
point is a + Az/3. From this evaluation
point, each step of distance Az takes you
to a new evaluation point. To arrive at
the i-th evaluation point, you have to take
(i — 1) steps to the right of distance Ax.
Therefore,
ci=a+Az/3+ (i—1)Ax
=a+(i—2/3)Azx, fori=1,...,n

2
27. Consider interval [2, 4], then Az = —.

n
Use right endpoints as evaluation points,

(2+3;).

28.

29.

30.
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2
Consider interval|0, 2], then Az = =

n
Use mid points as evaluation points,
(2(1'71) 4 &)

n n

Ty =

Hence, B
A= lim 3 H( 1) 2]
Assume =
i = kn—i:ll-
1
A_k:O {n( 20+1) - 1) n}
= ; [171 (var+1) 721]

hence, .
A=Y | (va) 2

k=1

S
Il
0o
-
—

= N | .
v
o

=3 [12 42 + 3% + 4]

=1
380375L4‘21241 <i21>2
_51524:12 (0% + 1% + 2% + 3]
=1
:%:1.75

The function f(z) = 22 is symmetric on the
two intervals [—2,0] and [0,2], so the upper
sum Ug is just double the value of U, as cal-
culated in Exercise 35, and the same is for Lsg.
The answers are
Ug=2-375=75,Lg=2-1.75=3.5.
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dn(n+1)2n+1) 24 [(n—1)%n2 2
3w “wlr Ta
4 1 1 2
=—(1+=)(2+= _4n-1)
3 ( + n) ( + n) - n2 +2
8
1. = — 2 = — 2 _
A Un = 3(2) =3 _ A2+ 1) 3“+1)+2
n
2. /230 —1)\? 8 4
(b)Ln— Z( ) =6—-—+ —
n n n 2
=1 lim L, =6
92 3 n n—00
; 2
= (n> Z(Z -1 33. Here, f (x) = a? — 2% and interval is [—a, a].
i=1
Hence Az = 27a.
2\% 2 , n- . :
= () 2 Use right endpoints as evaluation points,
n, ( 2ai>
ri=|—a+—.
_(2) (n=1)(m)(2n 1) W
\n 6 A, = Zf(xi)Ax
_ 4@ =1)®)(2n-1) w
-3 n3 =) (a®—z®) Az
4 (1 1) (2 1) i=1
-3 - . " 2 2
3 n4 8n :Z[a2—(—a+m>>a1
lim L, =-(2)=- i=1 K
e R Km? 42’2(12) m}

9 n 9 3 =1
32. (a) Up==) (O—!—i) +1 C8a% <~ 8a® .,
i n n2 n3
=1 =1
2 - | (2i)° ~ 8a® (n(n+1)
) w) w2\ 2
1=1

8a® (n(n+1) (2n+1)>

_ (2 e 3 1 n3 6
-(23) Loy »

— — 9
=1 i=1 = T (n + 1) — 3n3 (Zn + 3n + 1)
24 n2(n+1)2 2
T 4 + E(n) Now, to compute the exact area, we take the
9 limit as n — oo:
_ AT, A= lim A,
n2 n—00
4n?+2n+1 = lim @(n+1)—@(2n2+3n+1)
— (’I’L +2’I’L+ )+2 T nooo n 3n3
8 ' 4 (4 8) 32248
= _ = a = —a
=6+ —+ - 3 3
n n ) )
nh_)rr;<> U,=6 =3 (2a) (a®)
2' 2 \*
(b) L, == Z <() + z) +1 34. Here,f () = az?and interval is [0, b].
"izo " Hence Az = —.
n
22 l(Qz) 3 N 1] Use right endpoints as evaluation points, z; =
=0 T bi
5[ B
n

1 n n

:(i>4§¢3+21 AnZZ;f(%)ASU
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35.

36.

37.

38.

_ ag (n(n+1)6(2n+1)>

ab?
= o2 (Qn +3n+ 1)
n?2
Now, to compute the exact area, we take the
limit as n — oo :

A= lim A,

n— oo

. ab?

n—oo

3 3
20~ = b (a?)

6 3
Using left hand endpoints:
Lg = [f(0.0)+f(0.1)+ f(0.2)+ £(0.3)+ f(0.4)+
£(0.5) + f(0.6) + f(0.7)](0.1)
=(204+24+26+27+26+24+420+
1.4)(0.1) = 1.81
Right endpoints:
Rg = [f(0.1)4+£(0.2)4 f(0.3)+ f(0.4)+ f(0.5)+
£(0.6) + f(0.7) + £(0.8)](0.2)
=(24426+27+26+24+20+14+
0.6)(0.1) = 1.67

Using left hand endpoints:

Lg = [f()-0)+f(0.2)+ f(0.4)+ f(0.6)+ f(0.8) +
F(1.0) + f(1.2) + f(1.4))(0.2)

= (204+224+16+14+16+20+22+
2.4)(0.2) = 3.08

Right endpoints:

Rg = [f(0.2)4 f(0.4)+ f(0.6)+ f(0.8)+ f(1.0)+
F(1.2) + f(1.4) + f(1.6))(0.2)

= (224164+14+16+20+22+24+
2.0)(0.2) = 3.08

Using left hand endpoints:

Ls = [f(1.O)+f(1L. D)+ f(1.2)+f(1.3)+ f(1.4)+
f(1.5) + f(1.6) + f(1.7)](0.1)
=(18414+114+074+12+14+1.82+
2.4)(0.1) = 1.182

Right endpoints:

Rs = [f(1.1)+f(1.2)+ f(1.3)+ f(1.4)+ f(1.5)+
£(1.6) + f(1.7) + f(1.8)](0.1)
=(14411+4+07+124+14+182+24+
2.6)(0.1) = 1.262

Using left hand endpoints:
Lg = [f(1.0)+f(1.2)+f(1.4)+ f(1.6)+ f(1.8)+
£(2.0) + f(2.2) + f(2.4)](0.2)

39.

40.

1.
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=(00+04+06+08+12+14+12+
1.4)(0.2) = 1.40

Right endpoints:

Rg = [f(1.2)4+ f(1.4)+ f(1.6)+ f(1.8)+ f(2.0)+
f(2.2) + f(2.4) + £(2.6)](0.2)
=(04+06+08+12+14+12+14+
1.0)(0.2) = 1.60

A~ (0.2 —0.1)(0.002) + (0.3 — 0 2)(0.004) +
(0.4 — 0.3)(0.008) + (0.5 — 0.4)(0.014) +
(0.6 — 0.5)(0.026) + (0.7 — 0.6)(0.048) +
(0.8 — 0.7)(0.085) + (0.9 — 0.8)(0.144) +
(0.95 — 0.9)(0.265) + (0.98 — 0.95)(0.398) +
(0.99 — 0.98)(0.568) + (1 — 0.99)(0.736) + 1/2 -
[

(0.1 —0)(0.002)
+(0.2—0.1)(0.004—0.002) 4 (0.3 —0.2)(0.008 —
0.004) + (0.4 — 0.3)(0.014 — 0.008) + (0.5 —
0.4)(0.026 — 0.014) + (0.6 — 0.5)(0.048 —
0.026) + (0.7 — 0.6)(0.085 — 0.048) + (0.8 —
0.7)(0.144 — 0.085) + (0.9 — 0.8)(0.265 —
0.144) + (0.95 — 0.9)(0.398 — 0.265) + (0.98 —
0.95)(0.568 — 0.398) + (0.99 — 0.98)(0.736 —
0.568) (1 —0.99)(1 — 0.736)]
~ 0.092615 The Lorentz curve looks like:

o =)
. B . B -
Nk 1 ®

o

o

[

o

Obviously G = A;/As is greater or equal to
0. From the above figure we see that the
Lorentz curve is below the diagonal line y = x
on the interval [0,1], hence the area A; <
the area As. Furthermore, As = the area of
the triangle formed by the points (0,0), (1,0)
and (1,1), hence equal to 1/2. Now G =
A1 /Ay = 2A,. Using the date in Exercise 33,
G =~ 2-0.092615 = 0.185230.

4.4 'The Definite Integral

We know that
3 n

/ (J;g—i—x)dm%Z(C?—&—Ci) Az
0 i

Where ¢; = 5 ,r; = —,n = 6.
n
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3i .
6 + 6 (21 — 1)
Here ¢; = 5 1
Z" 3
3 J—
=1 (Ci + CZ) n

125

64

11 1 27 3 5
(64+4+64+4+ it
7T 729 9 1331 1\ 1
1T "1t e 4>
3

= / (2 + 2) do ~ 24.47
0

. We know that

/ Va? + deZ 2+ 1Ax

343

64

1=1
5
Wherecizw,xi:—l,n:&
L st "
31 11— .
3 (2i — 1)
Here ¢; = 806 — .
nerec 5 1
CES 3)
: n
=1
_26: 2i — 1 2+1 1
e 4 2
=1
V17 5 41 /65
=T+
4 4 4 4
n 97+ 137 1
4 4 2

3
= / vVa? +1dx ~ 5.64
0

. We know that

T n
/ sinz?dx ~ E (Sincl2

0 i=1
T, + X1
Where ¢; = 2—""= ¢

)Ax.

é/ sin z%dz ~ 0.8685
0
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4. We know that

/ IdeZe A

4

Where ¢; = m,mi =-2+4 —Z,n = 6.
2 n

Here,

(2+4) +[2+ 450 5
: -

i=1 i=1

_ [6—25/9+e—1 e l/9
Lo M9 ol o 25/9]

_ [6725/9_%671 +e’1/9]

:»/ e da ~ 1.7665
—2

. Notice that the graph of y = 2 is above the

x-axis. So,fl3 x%dx is the area of the region
bounded by y = z? and the x-axis, between
z=1and x = 3.

. Notice that the graph of y = €” is above the

z-axis. So, fol e*dx is the area of the region
bounded by y = €%, and the z-axis, between
z=0and x = 1.

. Notice that the graph of y = z2 — 2 is below

the z—axis for |z| < V2 above the, z—axis for
lz| > V2.
Also,

/02(552—2)d:v

:/()ﬂ(x2—2)dx+/\;(x2—2)dm.

So, [i (z* —2)dx is the additon of the ar-
eas of the regions bounded by y = 2% — 2and
the x—axis, between z = 0 and = = V2 (which
is below the x—axis) and between x = /2 and
x = 2 (which is above the z—axis)

. Notice that the graph of y = 2> — 322 + 22

is below the z-axis, for 1 < x < 2and x <0
and above the x-axis, for all other values of z.
Also,

2
/ (:c?’ — 322 + 21’) dzr
0
1
= / (x3 — 322 + 21) dx
0
2
—|—/ (x3 — 322 + Qx) dx
1
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2
So, / (:103 — 32?2 +2sc) dx is the additon of

the ar%as of the regions bounded by

y = 2% — 322 + 2z and the z-axis between
x = 0 and z = 1 (which is above the z-axis)
and between z = 1 and « = 2 (which is below
the z-axis).

1
. For n rectangles, Ax = —, x; = iAx.
n

R, = Zf(mi)A:v
= Z 2x; Az = — Z

) 2 ,
(5)-w
i=1 i

(n+1)
n? 2 - on
To compute the value of the integral, we take
the limit as n — oo,
1
1
/ 2adr = lim Ry — lim (F D
0

n— 00 n— oo n

2 (n(n+1)

=1

1
For n rectangles, Ax = —, z; = 1+ iAx.
n

R, = Zn:f(xi) Az
—zp%Axgj(}+2>

=1

2 2 .
i=1 i=1

2+ 2 (")

2+( ntl)

To compute the value of the integral, we take
the limit as n — oo,

2
/ 2zdxr = lim R,
1

n—00

= lim 2+

n— oo

(n+1)

=2+1=3

For n rectangles,

2 21
Ar = —,x; = iAx = —Z.
n n

R, = Zf(:cl)A:v
= Z(xQ)Ax = —

12.

13.

263

_ % <n(n+1)6(2n+ 1))

_4(n+1)2n+1)

- 3n?
To compute the value of the integral, we take
the limit as n — oo,

z%dr = lim R,

) n— o0
o At D@1 8
n—00 3n2 3

For n rectangles,
3 31

Ax = — xi:iAx:—Z.
n

_ % Z<_n(n+1)6(2n+ 1)) . <2) .

_ 9(n+1)§2n+1) 43
n

To compute the value of the integral, we take
the limit as n — oo,

3
/ (% + 1)dz = lim R,
0 n—oo

1)(2 1
— lim 9(n + )(2 n+1)
n— 00 n

=9+3=12

+3

2
For n rectangles, Az = —,
n

21
-—1+2Ax—1+—z

R, = Zf(xi) Az
= (¢} -3)Az

n 8n(n+1)2n+1)
- 4
2n2 + 6n3
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14.

15.

16.

17.

To compute the value of the integral, we take
the limit as n — oo,

3
/ (z? = 3)dr = lim R,
1 n—roo

8 16 8
=4 = 4=
2+6 3

For n rectangles,

4 ) 44
Ar=—,2;, = 24+ iAxr = -2+ —
n

n

R, = ;f(xl)Aac = Z(m? — 1Az

=1

()2 (2)

2m+1)(2n+1)
+
3n?
To compute the value of the integral, we take
the limit as n — oo,

2
/ (#* = 1)dr = lim R,
n— oo

-2
[12 ~32(n+1)

32(n+1)
n

= lim

n—00 n

Jr32(71 +1)(2n+1)

3n?
64 4
=12—-324+ — = =
3 3
Notice that the graph of y = 4 — 22 is above
the z-axis between r = —2 and z = 2:

/_22(4 — 2?)dx

Notice that the graph of y = 42 — 22 is above
the z-axis between z = 0 and x = 4:

/04(490 —2%)dx

Notice that the graph of y = 22 — 4 is below
the z-axis between x = —2 and = = 2. Since
we are asked for area and the area in question
is below the z-axis, we have to be a bit careful.

18.

19.

20.

21.

22,

CHAPTER 4. INTEGRATION

Notice that the graph of y = 22 — 4z is below
the z-axis between x = 0 and x = 4. Since we
are asked for area and the area in question is
below the x-axis, we have to be a bit careful.

4
/—(x2—4x)dx
0
/sinxdm
0

0 /4
7/ sinxd:c+/ sin zdx
—7/2 0

The total distance is the total area under the
curve whereas the total displacement is the
signed area under the curve. In this case, from
t = 0 to t = 4, the function is always positive
so the total distance is equal to the total dis-
placement. This means we want to compute

the definite integral / 40(1 — e~ 2")dt. We

0
compute various right hand sums for different
values of n:

[_n] Ry, |
10 | 146.9489200
20 | 143.7394984
50 | 141.5635684

100 | 140.7957790
500 | 140.1662293
1000 | 140.0865751

It looks like these are converging to about 140.
So, the total distance traveled is approximately
140 and the final position is

s(b) = s(0) + 140 = 0 + 140 = 140.

The total distance is the total area under the
curve whereas the total displacement is the
signed area under the curve. In this case, from
t = 0 tot = 4, the function is always posi-
tive so the total distance is equal to the total
displacement. This means we want to com-
pute the definite integral f04 30e~t/* dt. We
compute various right hand sums for different
values of n:
L n] Ry |

10 | 72.12494524

20 | 73.97390774

50 | 75.09845086
100 | 75.47582684
500 | 75.77863788
1000 | 75.81654616
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24.

25.
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It looks like these are converging to about 75.8.
So, the total distance traveled is approximately
75.8 and the final position is

s(b) = s(0) +75.8=—-1+75.8 ="74.8.

/f da:—|—/ f(z)dz
:/0 2xdx—|—/1 4dx

i
2zdz is the area of a triangle with base

0
1 and height 2 and therefore has area =
) =1

4dzx is the area of a rectangle with base 3

1
and height 4 and therefore has area = (3)(4) =
12.

T}}lerefore

/ flx)de=1+12=13
0

/f
/f dﬂc+/f
:/Ode+/23xdx

2
2dx is the area of a square with base 2 and

0
height 2 (it is, after all, a square) and therefore
hag area = 4.

3zdx is a trapezoid with height 3 and bases

2
6 and 12 and therefore has area (using the for-
mula in the front of the text)

1
7(6 +12)(2) = 18.
Therefore

/ f(z)de =4+ 18 = 22

area =

fave=1/4<2:c+1)d
=i 2 (5 )
i (20D )

n—o00 In2
=44+1=5

1

1 1
e fave = f/ (x2 + 2x)dx
0

27.

28.

29.

30.
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n . B
) 1 /42 2
Jim > " <n + n)
P

— lim nn+1)2n+1) n 2n(n+1)
n— 00 6m3 n2
2 7

= — 2 = —
6 + 3

1 <4i 4z2>
= lim — | —+—
n—,oon n n
) dn(n+1) 4dn(n+1)2n+1)
= lim
n—00 2’)’L2 6n3
4 1
3 3
1 1
fave 1 Y (237 — 2 )d

|
i.—-
g B
(1=
SN
—o

[\
7 N\
3|
N———

|

[\
Y
N——
e

i=1

"1 /2 22
li =4+ =
ngf;oZn(nmz)

~ lim <2n(n+1) N

2n(n+1)(2n+ 1))

n—o0 2n2 6n3
2 5
= 1 _—= -
+ 3 3

The function f(x) = 3cosz? is decreasing on
[7/3,m/2]. Therefore, on this interval, the
maximum occurs at the left endpoint and is
f(7/3) = 3cos(7?/9). The minimum occurs at
the right endpoint and is f(7/2) = 3 cos(n?/4).
Using these to estimate the value of the inte-
gral gives the following inequality:

2 w/2
T. (3 cos 71-—) < / 3 cos x2dx
6 1 /3

2
T

< - (3 —
(cosg)

o3

/2
—1.23< / 3cos x2dx < 0.72
/3

The function f(z) = e~ is decreasing on
[0,1/2]. Therefore, on this interval, the maxi-
mum occurs at the left endpoint and is f(0) =
1. The minimum occurs at the right endpoint
and is f(1/2) = e~ /4. Using these to estimate
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31.

32.

33.

34.

the value of the integral gives the following in-
equality:

1 1/2 1
,(6—1/4) S/ e—xzdx < 7(1)
2 0 2

1/2 )
0.3894 < / e " dr<05
0

The function f(z) = /22241 is increasing
on [0, 2]. Therefore, on this interval, the maxi-
mum occurs at the right endpoint and is f(2) =
3. The minimum occurs at the left endpoint
and is f(0) = 1. Using these to estimate the
value of the integral gives the following inequal-
ity:

2)(1) < /2 V22§ 1dz < (2)(3)
0
QS/ V222 + 1dx <6
0

The function f(x) = e is decreasing
x

on [—1,1]. Therefore, on this interval, the
maximum occurs at the left endpoint and is
f(=1) = 3. The minimum occurs at the right
endpoint and is f(1) = 1. Using these to esti-
mate the value of the integral gives the follow-
ing inequality:

1
@AW= [ <)o)

3
QS/ 3 dr <6
12 +2

We are looking for a value ¢, such that

1 2,
flc) = —— d
(¢) 5 ; 3x°dx
2

Since 32%dx = 8, we want to find ¢ so that

fle) = ?l or, 3¢2 = 4

Solving this equation using the quadratic for-
mula gives ¢ = +——

We are interested in the value that is in the
interval [0,2], so ¢ = —.

V3

We are looking for a value ¢, such that
1 1
fle)= 7/ (2% — 2z)dx
-1/,

1
Since / (2 — 2z)dx =

2
—, we want to find ¢
1 3

1 1
so that f(c) = 3 o, & — 2= 3
Solving this equation using the quadratic for-
3+2V3

mula gives ¢ = 3

35.

36.

37.

38.

39.
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We are interested in the val\/ug that is in the
3—-2v3
interval [—1,1], so ¢ = —

(a) /Ozf(a:)dx+/23f(m)da:=/ng(x)dm
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41. (a) Notice that z2sinx is a continuous func-
tion for all values of x and
for1 <z <2,
sinzx < 22 sinz < 4sinzx.
On using theorem 4.3,we get

2 2
/ sin xdzx < / 2% sin zdz
1 1

2

< 4 sin xdx

1
2

(cos1—cos2) < x? sin zdx

1
(cos1 — cos2)
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(b) Notice that #?sinz is a continuous func-
tion for all values of z and
forl<z< 2,:1:281111 < 2%sinx < 22 .
On using theorem 4.3,we get

2 2
sinl/ xzdasg/ 2% sin zdx
1 1
2
§/ 22dx
1

2 2 323
S/ 2 sinxdr < ==
1 3

3 2

sinl —

1 1

7 2
fsinlg/ 2 sinzdr < -
3 1 3

EN(

2
(¢) Let us evaluate / x? sin xdx
1
2 n
using/ z? sin zdx ~ E cZsinc;Ax
1 .
i=1

and n =06 n )
xZ; Ti—1 (3

Where ¢; = ===, z; = 1+

ere ¢ 2( l)x —1—6

2+ * e

Here ¢; = +6;r 6

(2i+11)

12

S (@sine) (1)

i=1

B (3 4 (1) g (15
—\12) "M\ 12 12) "M\ 12
+ E 2Sin E + 9 2Sin B
12 12 12 12
+ E 2sin E + § 2sin §
12 12 12 12/ ]°
2
Therefore,/ 22 sin zdx ~ 2.2465
1

2
(cos1 —cos2) < / 22 sin zdz
1

<4 (cos1—cos2)
= 0.9564 < 2.2465 < 3.8257

and
2

gsinl < 22 sinzdr < 3

5 1.9634'< 2.2465 < 2.3333

The second inequality gives a range which
is more closer to the value of the integral.
Therefore, part (b) is more useful than
part (a).

42. Notice that z2e~V® is a continuous function
for all values of x > 0.
For 1 <z <2,

e*‘/5 < e VE < et

1

6
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43.

44.

45.

46.

47.

48.

49.

50.

51

Therefore z2e~ V2 < r2eVE < g2e!

Thus, on using theorem 4.3.

2 2 2
/ mze_‘/idx §/ r2e Vidg §/ x2e Vdx
1 1 1

2312 2 2312
V2 S/ xQefﬁdzg 671?

3 1 ) 1
ze_‘/5 < / r2e Vidg < Ze_1
3 1 3

1

2
0.5672 < / 2eV¥dr < 0.8583
1

This is just a restatement of the Integral Mean
Value Theorem.

b
Let ¢ = %. By definition,

/b fl@)dx = nlgl;o if(ci)Ax.
a i=1

We can choose n to be always even, so that
n = 2m, and

b n
/ f(z)dx = lim Zf(ci)Asc
o n—o0o =

Do fe)dr+ lm 37 f(e)As

m—o0 4 .
i=m+1

= /acf(;da:—&-/cbf(x)dx

Between x = 0 and x = 2, the area below the
z-axis is much less than the area above the x-
axis. Therefore f02 f(z)dz >0

= lim

Between £ = 0 and = = 2, the area above the
z-axis is much greater than the area below the
x-axis. Therefore f02 f(x)dz >0

Between £ = 0 and z = 2, the area below the
z-axis is slightly greater than the area above
the z-axis. Therefore fOQ f(x)dz <0

Between £ = 0 and = = 2, the area below the
z-axis is much greater than the area above the
T-axis. Thereforef02 f(x)dx <0

2 1 1
/O Bede = bh = (2)(6) =6

/42xdx “Latnn=teorsm)
; 2 2

=15

2 1 1
A — 2 = 22 = 2y =
/0 4—x 4777’ 47r(2) T

53.

(a)

CHAPTER 4. INTEGRATION

1 1
V9 —22dx = ZWTQ = 732

4

Given1 limit
T nmw
nh—{%oﬁ [sin gn) + .... +sin (;)}
1 s
= Jm o [; sin (n)]
We knoT\LvV that
Jim L; (cl-)Ax] = f; f(x)dz

Where ¢; = a + 1Az and Az = (b — a)
n

On comparision,we get

ci = i,Ax = — and

n n
f(z) =sin(rz) = a=0,b=1
Therefore

.1 & . (i L
nlgr;oﬁ ;sm (n)] _/0 sin(rz)dx

Given limit
o [n+1
= lim 5
n—oo | M

ol | &= n+i
-t [

i=1
We know that

n b
lim [Zf(ci)Ax] :/ f(z)dx

n—+ 2 2£

T—00

h—
Where ¢; = a + iAzxz and Az = ( a)
n
On comparision,we get
) 1
¢ = E,Aa:: —and f(x)=142x

n n
=a=0,b=1

Therefore,

1 n+i
lim — A
nLH;on[Z i

:/01(1+cv)dx

i=1

Given limit

lim f(i)+f(i)++f(z)‘|

n—00 n
_ 1' 1 n .
= |27 ;)
We know that

n b
lim [Zf(cl)Am] :/ f(x)dx
T—>r00 =1 a

Where ¢; = a + 1Az and Az = (b;a)

S
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On comparision,we get
)

ci:fandA:z::%L
n
=a=0,b=1
Therefore,
J:H;onlzf( )] [ s
b
1 /fxdm—v
b—a
/f ~a)
and
c—b A f(x)dx:w

f(@)dx = w(c—b)

The average value of f over [a,c] is
C

= cia l/abf(x)dx—l—/bcf(m)dxl

= cia[v(bfa)+w(c—b)]
_ v(b—a)+w(c—0b)

55. Since b(t) represents the birthrate (in births

per month), the total number of births from
tlme t =0 tot = 12 is given by the integral
0 b( ) dt.
Similarly, the total number of deaths from time
t = 0 tot = 12 is given by the integral
2 a(t) dt.
Of course, the net change in population is the
number of birth minus the number of deaths:
Population Change
= Births — Deaths
12

= byt - / P dt
0

0
12

= / [b(t) — a(t)] dt.

Nex(‘)c we solve the inequality

410 — 0.3t > 390 + 0.2¢

20 > 0.5t then t < 40 months .

Therefore b(t) > a(t) when ¢ < 40 months.
The population is increasing when the birth
rate is greater than the death rate, which is
during the first 40 month. After 40 months,
the population is decreasing. The population-
would reach a maximum at ¢ = 40 months.

56. Since b(t) represents the birthrate (in births

57.

58.
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per month), the total number of births from

time ¢t = 0 to ¢t = 12 is given by the integral
12

b(t)dt.

0
Similarly, the total number of deaths from time

t = 0 tot = 12 is given by t