

*للحصول على أوراق عمل لجميع الصفوف وجميع المواد اضغط هنا

https://almanahj.com/ae

* للحصول على أوراق عمل لجميع مواد الصف الثاني عشر المتقدم اضغط هنا

https://almanahj.com/ae/15

* للحصول على جميع أوراق الصف الثاني عشر المتقدم في مادة فيزياء ولجميع الفصول, اضغط هنا

https://almanahj.com/ae/15physics

* للحصول على أوراق عمل لجميع مواد الصف الثاني عشر المتقدم في مادة فيزياء الخاصة بـ الفصل الثالث اضغط هنا https://almanahj.com/ae/15physics3

* لتحميل كتب جميع المواد في جميع الفصول للـ الصف الثاني عشر المتقدم اضغط هنا

https://almanahj.com/ae/grade15

* لتحميل جميع ملفات المدرس محمود عوض الله اضغط هنا

للتحدث إلى بوت المناهج على تلغرام: اضغط هنا

https://t.me/almanahj_bot

وزارة التربية والتعليم Ministry of Education

الفصل االدراسي الثالث

العام الدراسي 2019/2020

Ministry of Education

إعداد :: محمود عوض الله

الحث الكهرومغناطيسي

اوراق عمل2020/2019

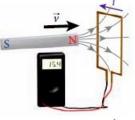
9.1 تجارب فارداي

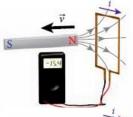
✓ النبار المسنحث:

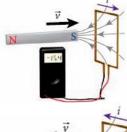
الحصول على تيار كهربائي بحلقة مغلقة بفعل التغير في المجال المغناطيسي الذي يجتاز الحلقة.

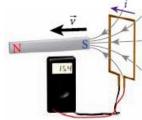
- ✓ التغير بالمجال المغناطيسي (زيادة بشدة المجال المغناطيسي أو نقصانه)
- تقريب المغناطيس من الحلقة (زيادة بشدة المجال الذي يجتاز سطح الحلقة)
- ابعاد المغناطيس عن الحلقة (نقصان بشدة المجال الذي يجتاز سطح الحلقة)

✓ تجارب فارداي:

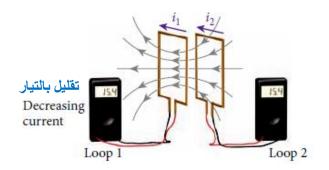

- أثناء تقريب المغناطيس أو أثناء ابعاده عن مستوى سطح حلقة مغلقة يتولد تيار كهربائي مستحث بالحلقة وينشأ عنه مجال مغناطيسي . فالحلقة اصبح لها قطبان مغناطيسيان شمالي وجنوبي.
 - 2 عند زيادة سرعة تقريب أو ابعاد المغناطيس عن الحلقة يزداد قيمة شدة التيار المستحث بالحلقة.
 - عندما تكون الحلقة والمغناطيس ثابتين لا يتولد بالحلقة تيار مستحث.

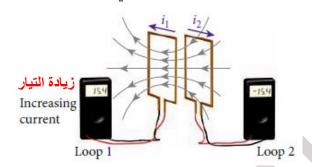

شرط تولد تيار مستحث بالحلقة هو استمرارية احداث تغير بالمجال المغناطيسي الذي يجتاز الحلقة. اي لا بد من احداث تغير نسبي بالحركة بين الحلقة والمغناطيس.


موقع المناهج الإماراتية almanahi.com/ae

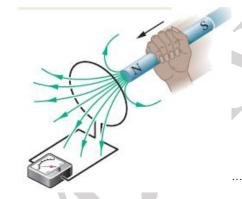

ملاحظة هامة:

- اذا تولد تيار مستحدث بالحلقة عكس عقارب الساعة (تيار موجب) (قطب شمالي خاص بالحلقة)
 اذا تولد تيار مستحدث بالحلقة مع عقارب الساعة (تيار سالب) (قطب جنوبي خاص بالحلقة)
 - 1. أثناء تقريب القطب الشمالي
 - 2. تولد تيار مستحث موجب (عكس عقارب الساعة)
 - 3. نشأ بالحلقة مجال مغناطيسي بفعل التيار المستحث
- 4. اتجاه المجال الناشيء بالحلقة عكس اتجاه مجال المغناطيس
 - 5. القطب المغناطيسي الناشيء عن الحلقة (قطب شمالي)
 - 1. أثناء ابعاد القطب الشمالي
 - 2. تولد تيار مستحث سالب (مع عقارب الساعة)
 - 3. نشأ بالحلقة مجال مغناطيسي بفعل التيار المستحث
- 4. اتجاه المجال الناشيء بالحلقة بنفس اتجاه مجال المغناطيس
 - 5. القطب المغناطيسي الناشيء عن الحلقة (قطب جنوبي)
 - 1. أثناء تقريب القطب الجنوبي
 - 2. تولد تيار مستحث ساك (مع عقارب الساعة)
 - 3. نشأ بالحلقة مجال مغناطيسي بفعل التيار المستحث
- 4. اتجاه المجال الناشيء بالحلقة عكس اتجاه مجال المغناطيس
 - 5. القطب المغناطيسي الناشيء عن الحلقة (قطب جنوبي)
 - 1. أثناء ابعاد القطب الجنوبي
 - 2. تولد تيار مستحث موجب (عكس عقارب الساعة)
 - 3. نشأ بالحلقة مجال مغناطيسي بفعل التيار المستحث
- 4. اتجاه المجال الناشيء بالحلقة بنفس اتجاه مجال المغناطيس
 - 5. القطب المغناطيسي الناشيء عن الحلقة (قطب شمالي)

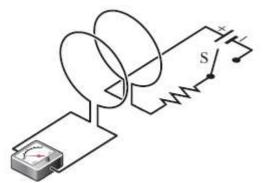




التيار المستحث بين حلقتين.


الحلقة الأولى يمر بها تيار كهربائي أصلي الحلقة الثانية يتولد بها تيار كهربائي مستحث

- 1. مرور تيار بالحلقة (1) نشأ بها مجال مغناطيسى
- 2. اصبح للحلقة (1) قطبان مغناطيسيات (المقابل للحلقة
- الثانية (جنوبي) أثناء نقصان شدة التيار بالحلقة (1) يقل شدة المجال الناشىء عنها وبالتالى يعتبر كأنه مغناطيس يبتعد
 - 4. تولد تيار مستحث موجب بالحلقة (2) (عكس عقارب الساعة)
- 5. نُشأ بالحلقة (2) مجال مغناطيسي بفعل التيار المستحث
- 6. اتجاه المجال الناشيء بالحلقة (2) بنفس اتجاه المجال المغناطيسي الناشيء عن الحلقة (1)
 - 7. القطب المغناطيسي الناشيء عن الحلقة (2) (قطب شماليN)


- مرور تيار بالحلقة (1) نشأ بها مجال مغناطيسى
- 2. اصبح للحلقة (1) قطبان مغناطيسيات (المقابل للحلقة الثانية (جنوبي)
- 3. أثناء زيادة شدة التيار بالحلقة (1) يزيد شدة المجال الناشيء عنها وبالتالي يعتبر كأنه مغناطيس يقترب.
 - 4. تولد تيار مستحث سالب بالحلقة (2) (مع عقارب الساعة)
- نشأ بالحلقة (2) مجال مغناطيسي بفعل التيار المستحث
- 6. اتجاه المجال النّاشيء بالحلقة (2) عكس اتجاه المجال المغناطيسي الناشيء عن الحلقة (1)
 - 7. القطب المغناطيسي الناشيء عن الحلقة (2) (قطب جنوبي 5)

مرين 1:

من خلال الشكل المجارو

- a- حدد على الرسم اتجاه التيار المستحث بالحلقة أثناء تقريب المغناطيس
 - b- اذا توقفت حركة المغناطيس ماذا يحدث للتيار المستحث بالحلقة

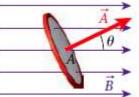
غرين 2:

a-حدد على الشكل التجاه التيار الكهربائي بكلا الحلقتين لحظة غلق الدائرة فقط؟

b-ما ذا يحدث لقراءة الاميتر بعد فترة زمنية من غلق الدائرة؟ (فسر اجابتك)

9.2 قانون فارداي للحث الكهرومغناطيسي

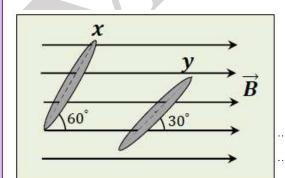
- ◄ يمكن التعبير عن التغير في شدة المجال المغناطيسي الذي يجتاز حلقة بالتغير في عدد خطوط المجال المغناطيسي التي تجتاز الحلقة.
 - ◄ قانون فارداي للحث:


يستحث فرق الجهد (ΔV_{ind}) في حلقة عندما يتغير عدد خطوط المجال المغناطيسي المارة عبر الحلقة بمرور الزمن.

- (ΔV_{ind}) يحدد معدل تغير خطوط المجال المغناطيسي فرق الجهد المستحث
 - ◄ توجد طريقتان لانتاج مجال كهربائي:
- من الشحنات الكهربائية: تكون القوة الكهربائية الناتجة المؤثرة في شحنة اختبارية محافظة. ولا تبذل القوى المحافظة شغلا عندما تؤثر على جسيم مشحون ببدأ مساره عند نقطة وينتهى عندها
- من المجالات المغناطيسية: تنتج المجالات الكهربائية من المجالات المغناطيسية المتغيرة وهذه القوى غير محافظة وبالتالي فإنها تبذل شغلاً يساوي (فرق الجهد المستحث في شحنة الجسيم غير محافظة وبالتالي فإنها تبذل شغلاً يساوي (فرق الجهد المستحث في شحنة الجسيم عبر محافظة وبالتالي فإنها تبذل شغلاً يساوي (فرق الجهد المستحث في شحنة الجسيم المستحث في شحنة الجسيم عبر محافظة وبالتالي فإنها تبذل شغلاً يساوي (فرق الجهد المستحث في شحنة الجسيم المستحث في شحنة الجسيم المستحث في شحنة المستحث في سحنة المستحث

التدفق المغناطيسي (Φ_B):

تعريف مبدئي : عدد خطوط المجال المغناطيسي التي تجتاز عمودياً مساحة سطح ما. التكامل السطحي للمجال المغناطيسي المار عبر عنصر مساحة تفاضلي للمجال المغناطيسي المار عبر عنصر مساحة تفاضلي


- B : هو المجال المغناطيسي عند كل عنصر مساحة تفاضلي.
 - . سطح مغلقdA -
- ﴾ : تعني الحلقة في رمز التكامل تشير الى سطح مغلق والتكاملان تشير الى وجود تكامل عبر متغيرين.
 - يشير متجه المساحة الى أنه العمود المقام على السطح خارجاً من السطح : $d\vec{A}$
 - وحدة قياس التدفق المغناطيسي Φ_B هي $T.m^2$ والتي تكافيء الويبر Wb ويحسب التدفق المغناطيسي من العلاقة التالية:

$$\Phi_B = AB \cos \theta$$

- الزاوية θ المحصورة بين متجه المجال ومتجه السطح (العمود المقام على السطح وخارج منه)

غرين 3:

يظهر الشكل المجاور حلقتين متماثلتين (y,x) يجتازهما مجال مغناطيسي منتظم .

$(\Phi_B)_y$	7 ***	1.4	
$\overline{(\Phi_B)_x}$	النسبة	مقدار	وجد

 $1/\sqrt{3}$

4	•	•
:4	W	16
		_

_			
<u></u> _ `		\wedge	
\overline{B}			-2
		V	<u> </u>
	<u></u>	ص	ع
←			

يُظهر الشكل المجاور ثلاث حلقات نحاسية متماثلة (س،ص،ع) في مجال مغناطيسي منتظم .

a - فسر انعدام التدفق المغناطيسي الذي يجتاز سطح الحلقة (س)

الى التدفق المغناطيسي الذي يجتاز سطح الحلقة (ع)	سي الذي يجتاز سطح الحلقة (ص)	b- جد نسبة التدفق المغناطي

2/1

قانون فارادي للحث : بدلالة التدفق المغناطيسي:

مقدار فرق الجهد ΔV_{ind} المستحث في حلقة موصلة يساوي التغير في التدفق المغناطيسي مع الزمن عبر الحلقة.

$$\Delta V_{ind} = -\frac{d\Phi_B}{dt}$$

- و الاشارة السالبة : تدل على أن فرق الجهد المستحث يولد تياراً مستحثاً وبالتالي ينشأ عنه مجال مغناطيسي يعمل الى مقاومة التغير في التدفق (من أجل قانون لنز)
 - يمكن تغير التدفق المغناطيسي وفق المعادلة $\Phi_B = AB\cos\theta$ بتغير أحد عواملها.
 - emf يسمى ب القوة الدافعة الكهربائية المستحثة (ΔV_{ind}) يسمى و فرق الجهد المستحثة

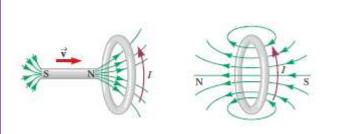
الحث فيي حلقة دائرية موصلة داخل مجال مغناطيسي.

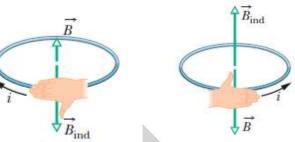
لحساب فرق الجهد المستحث من قانون فاراداي $\Delta V_{ind} = -rac{d\Phi_B}{dt} = -rac{d(AB\cos\theta)}{dt}$ وبالتالي فإن

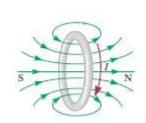
$$\Delta V_{ind} = -A\cos\theta \frac{dB}{dt} - B\cos\theta \frac{dA}{dt} + AB\sin\theta \frac{d\theta}{dt}$$

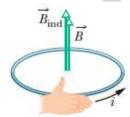
والسرعة الزاوية ω تساوي $d\theta/dt$ وتصبح المعادلة

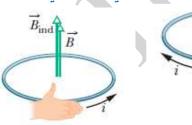
$$\Delta V_{ind} = -A\cos\theta \frac{dB}{dt} - B\cos\theta \frac{dA}{dt} + AB\omega\sin\theta$$

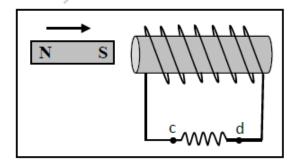

وبتطبيقها في الحالات الخاصة التالية:


- نغير المجال عند تثبيت المساحة واتجاهها بالنسبة للمجال فإن المعادلة $\Delta V_{ind} = -A\cos\theta \frac{dB}{dt}$ عند تثبيت المساحة واتجاهها بالنسبة للمجال
- عند تثبيت المجال واتجاه الحلقة بالنسبة للمجال فإن المعادلة $\Delta V_{ind} = -B\cos\theta \frac{dA}{dt}$ عند تثبيت المجال واتجاه الحلقة بالنسبة للمجال فإن المعادلة
 - $\Delta V_{ind} = \omega AB \sin \theta$ عند تثبیت المجال و المساحة ولكن بتغییر الزاویة كدالة زمن (3)


مثال 9.1 فرق الجهد المستحث بواسطة مجال مغناطيسي


قانون لنز


ينص قانون لنز على ما يلى: التيار المستحث في حلقة بواسطة تدفق مغناطيسي متغير ينتج عن التيار المستحث مجالاً مغناطيسياً يعمل على مقاومة التغير في التدفق المغناطيسي الأصلي الذي انتجه. يشير الرمز B الى المجال المغناطيسي الخارجي الأصلي يشير الرمز B_{ind} الى المجال المغناطيسي المستحث .


غړين 5:

فى الشكل المجاور حلقة نحاسية مرنة في مجال مغناطيسي منتظم. اكتب في العمود الأول من الجدول الآتي ما يجب عليك عمله لتحقق المطلوب المذكور في العمود الثاني

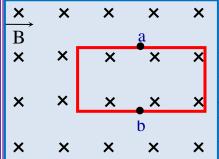
المطلوب	العمود الأول
لا يتولد في الحلقة تيار أثناء تحريكها	
لا يبولد في الخلفة نيار الناء تحريدها	
يتولد في الحلقة تيار يدور فيها عكس عقارب الساعة	
يتولد في الحلقة تيار يدور فيها مع عقارب الساعة	

مَرِينَ 6:

حدد على الشكل المجاور اتجاه التيار المست في المقاومة (cd) أثناء تحريك المغناطيس نحو اليمين.

	•	•
:/	W	5

_		×B×			
×××	×	××	×	×	×
××	×	× ×	×	×	×
← v × ×	×	$\stackrel{\times}{\longleftarrow} \vec{v}^{\times}$	×	×	$\stackrel{\times}{\longleftarrow} \vec{v}$

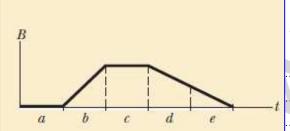

تتحرك حلقة بسرعة ثابتة في مجال مغناطيسي منتظم كما في الشكل . a-في أي المواضع (A,B.C) تتولد قوة دافعة مستحثه فسر اجابتك.

d-ارسم اتجاه التيار المستحث على الحلقة التي تتولد فيها قوة دافعة مستحثة.

مَرِينَ 8:

يبين الشكل المجاور حلقة مستطيلة الشكل مصنوعة من سلك موصل. معتمداً على الشكل، هل يتولد في الحلقة تيار مُستحث في كل من الحالات الآتية ؟ فسر اجابتك.

a-إذا سحبت الحلقة بسرعة ثابتة نحو اليمين.


b) و a) و b) و b) و b

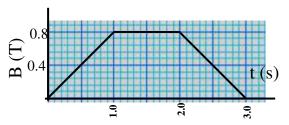
--إذا سحبت الحلقة بسرعة ثابتة نحو اليسار مع بقائها في المجال المغناطيسي.

مَرين 9:

الشكل البياني المجاور يبن العلاقة بين المجال المغناطيسي الذي يجتاز سطح حلقة مستواها عمودياً على المحال و الذون

على المجال والزمن .

• رتّب (مقدار) القوة الدافعة الكهربائية المستحثة بالحلقة ΔV_{ind} أو ΔV_{ind} من الأكبر الى الأقل.


مرين 10:

في الشكل المجاور حلقة معدنية مساحها 1.25 m² يخترقها مجال مغناطيسي B تغير قيمته مع الزمن وفقا للرسم البياني المجاور . اجب عما يلي:

a-حدد على الحلقة اتجاه التيار الحثي المتولد فيها خلال الثانية الأولي. b-ما أقصى تدفق مغناطيسي يخترق الحلقة.

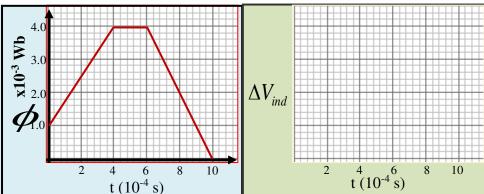
× × × × × × ×

1Wh

القوة الدافعة الحثية المتولدة في الحلقة خلال الفترة الزمنية -c الما الما الفترة الزمنية (2.0s-3.0s)

0, -1v

إدا سحب الملف من طرقيه بحيث	ملف دائري مصنوع من سلك مرن عدد لفاته (120) لفة ومساحة وجا في مجال مغنطيسي منتظم شدّته (0.25 T)، ومستواه يعامد المجال. أصبحت مساحة وجهه (0.010 m²)
ق سحبه (0.40 s).	احسب متوسط القوة المحركة الكهربائيّة المستحثّة المتولّدة في الملف إذا استغر
3 <i>V</i>	
	غرین 12: • غرین بات
MM SN	يبين الشكل المجاور ملفاً لولبياً به (500) لفة يتصل مع مقاوم
Turing Turing	وبالقرب منه مغناطيس قوي يُحْدِثُ فيه تدفقاً مغناطيسياً مقداره) (Wb -4.0×10. إذا سُحب المغناطيس نحو اليمين بحيث نقص
L	التدفق المغذ اطيسي الذي يجتاز الملف إلى 5Wb-2.0×2.0
R=5Ω	خلال (0.10s) أجب عما يلي:
	a- <mark>حدد على الرسم</mark> اتجاه التيار المار في <u>المقاوم.</u> b- احسب شدة التيار المستحث المار بالمقاومة؟
	٥- احسب سده البيار المستحت (عجر بالمعاولة-:
0.02 <i>A</i>	غړين 13:
בור ה פֹבּ ול בּעלפֿג וויוון בּ	مرين 13. من الشكل المجاور إن التدفق المغناطيسي الذي يجتاز الحلقة الساكنة يا
<u> </u>	t و mWb و $\Phi_B = 6.0t^2 + 7.0t$ و $\Phi_B = 6.0t^2 + 7.0t$
	t = 2.0s احسب القوة الدافعة المستحثة بالحلقة عند اللحظة - a
• (•••)	
R 31	nV
	b- حدد اتجاه التيار المستحث في المقاومة (R) ؟
y	غرين 14:
لفات يتجازها مجال مغناطيسي	ملف على شكل حلقة نصف قطرها $(r=5cm)$ وتتكون من 10
	$(B_t = 4t^2)$ عمودياً على سطحها ويتغير مع الزمن وفق العلاقة
ما مقدار فرق الجهد المستحث	
ما مقدار فرق الجهد المستحث	بالحلقة عند $t=3s$ بالحلقة بالحلقة بالحلقة عند
ما مقدار فرق الجهد المستحث	


4 1	- •	•
: L) U	مريا

مرين 16:

حلقة فلزية قطرها (0.2cm) تخضع لمجال مغناطيسي منتظم عمودياً على مستوى الحلقة وشدته على على مستوى الحلقة وشدته على 1.5T ، إذا انعدم المجال المغناطيسي الذي يجتاز الحلقة خلال 30 ثانية

أوجد متوسط فرق الجهد المستحث بالحلقة؟

 $2.61 \times 10^{-7} V$

يتغير التدفق المغناطيسي الذي يجتاز حلقة حسب الخط البياني الموضح بالشكل ومستعيناً بالرسم:-

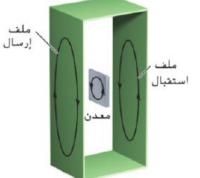
a-أوجد القوة المحركة الكهربائية المستحثة المتولدة في كل مرحلة من مراحل تغير التدفق المغناطيسي

d-أرسم بيانياً العلاقة بين القوة المحركة المستحثة الكهربائية التأثرية والزمن.

9.3 قانون لنز

التيارات الدوامية: ((تيارات إدى))

التجربة:

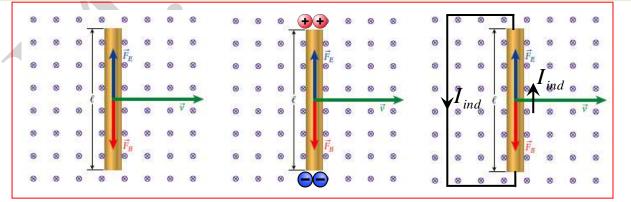

- بندو لان يتضمن الأول صفيحة فلزية مصمته والثاني صفيحة فلزية مشقوقة.
- سحب البندو لان جانباً ثم تركا حراً ليمرا عبر فجوة تحوي مجال مغماطيسي قوي.
- البندول الأول الذي يحوي صفيحة مصمتة (توقف البندول بالفجوة)
 يستحث بالصفيحة تيار كهربائي (تيارات دوامية) ينشأ عنه مجال مغناطيسي معاكس للمجال الأصلي يعمل على مقاومة الزيادة بالتدفق المغناطيسي (قوة تنافر) تؤدي الى ايقاف البندول.
- البندول الثاني الذي يحوي صفيحة مشقوقة (مرً عبر المجال المغناطيسي وتباطأ قليلاً)
 يحدث كما بالبندول المصمت ولكن التيارات الدوامية المستحثة يتم تقسيمها بواسطة الشقوق الموجودة بالصفيحة وهي دوامات ملتفة ثما يسمح بمرور والصفيحة ولكن يحدث تباطؤ بسيط.

سوال: اين تذهب الطّاقة الحركية في البندول ذو الصفيحة المصمتة عن توقفها؟ التيارات الدوامية تعمل على تشتت الحرارة بالفلز اي تتحول من طاقة حركية الى حرارية.

<u>ملاحظة:</u>

- ◄ التيارات الدوامية غير مرغوب بها مما يجعل مصممو الاجهزة والمعدات على تقليلها عن طريق تجزئة الاجهزة الكهربائية التي تعمل
 في المجالات المغناطيسية وبالتالي تقسم الى رقائق .
 - احيانا تكون التيارات الدوامات مفيدة بحيث يستخدموها في مكابح عربات القطار.

جهازكشف الفلزات


- يعتبر هذا الجهاز كتطبيق عملي لاستخدام الحث الكهرومغناطيسي ويسمى (الحث النبضي)
 - يتكون من ملف ارسال وملف استقبال.
- یمرر تیار متردد فی ملف الارسال وینتج عنه مجال مغناطیسی متردد
 - يحدث تيار مستحث بملف الاستقبال يميل الى مقاومة التغير في التدفق المغناطيسي الناشيء عن ملف الارسال.
 - يقاس التيار المستحث في ملف الاستقبال :
- و عندما يوجد هواء فقط بين الملفين او غير فلز لا يحدث تيارات دوامية
- عندما يكون بين الملفين جسم فلزي يحدث بالفلز تيارات دوامية تعمل على مقاومة الزيادة او الانخفاض
 في المجال الاصلي ويعمل التيار المستحث الى مقاومة الزيادة في التيار المار بالفلز (أي يكون التيار
 المقيس أقل عند وجود جسم فلزي)

◄ تستخدم اجهزة كشف الفلزات في التحكم في اشارات المرور.

- تحوي سلك حلقة مستطيلة تعمل كملف ارسال واستقبال معاً (على سطح الطريق)
- يتم تمرير نبضة من التيار عبر الحلقة وتستحث تيارات دوامة في قلز بالقرب من الحلقة ويقاس التيار المار بالحلقة بعد اكتمال النبضة.
- عندما تمر السيارة فوق سطح الطريق وعلى الحلقة تتسبب التيارات الدوامة المستحثة في فلز السيارة وبالتالي يتم قياس تيار مختلف بين النبضات التي بدورها تحفز اشارات المرور للتحول الى اللون الأخضر.

فرق الجهد المستحث المؤثر في سلك مستقيم متحرك داخل مجال مغناطيسي

- $ec{B}$ عمودیاً علی مجال مغناطیسی ثابت اسلامه ثابته $ec{v}$ عمودیاً علی مجال مغناطیسی تابت
 - . السلك يكون متعامد على السرعة المتجهة والمجال المغناطيسي.
 - $F_{B}=e\, \upsilon B$ يؤثر المجال المغناطيسي على الالكترونات داخل الموصل بقوة
 - القوة المغناطيسية يجعل الالكترونات تتجمع عند أحد طرفي السلك (جهد منخفض سالب) ومحصل الشحنات الموجبة عند الطرف الآخر (جهد مرتفع موجب)
 - بنشأ بالسلك مجال كهربائي داخل السلك مما يؤثر بقوة كهربائية تجعلها بعد فترة تلغي القوة المغناطيسية المؤثرة على الشحنات. $F_B=F_E$
- ورق الجهد بين طرفي الموصل المتحرك في المجال المغناطيسي هي ($rac{f e c B}{f e c B}$. فرق الجهد المستحث $F_B = e B$ ولكن $F_B = e B$ وأيضاً $F_E = e B$ ينتج أن

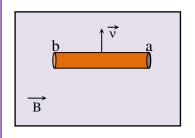
 $E = rac{\Delta V_{ind}}{\ell} = v B$ بما أن المجال الكهربائى ثابت فإن

 $\Delta V_{ind} = v \ell B$ فرق الجهد المستحث بين طرفى السلك

×	×	×	×	×	×	×
×	× t	, x	×	×	a ×	×.
×	×	×	×	×	×	×
×	×	×	×	×	×	×
В						

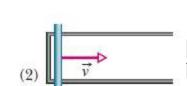
غرین 17:

يبين الشكل المجاور سلكاً موصلاً رفيعاً (ab) في مجال مغنطيسي منتظم.


إذا حُرك السلك بسرعة ثابتة في مستوى الصفحة نحو الأسفل، حدّد على الرسم قُطبية طرفي السلك نتيجة القوة المحركة المستحثة المتولده فيه

غرين 18:

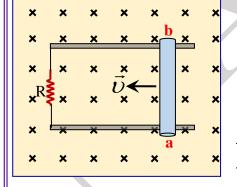
يبين الشكل المجاور سلكاً موصلاً (ab) يتم تحريكه بسرعة ثابتة عمودياً على مجال مغنطيسي منتظم فتتولدت فيه قوة محركة مستحثة بحيث يكون جهد الطرف (a) أعلى من جهد الطرف (b) . أجب عمّا يلي :


a- حدد على الرسم اتجاه المجال المغناطيسي.

b-أكتب العلاقة التي تُستخدم في حساب القوة المحركة المستحثة بين طرفي السلك؟

غرين 19:

الشكل المجاور حلقتان على شكل حرف U موضوعتان في مجال مغناطيسي ثابت عمودياً على مستوى الصفحة . وضع عل كل حلقة سلك موصل مستقيم حر الحركة بحيث $\ell_1=2\ell_2$ ، فعندما تحركا بنفس السرعة الثابتة كما بالشكل تولد بهما تياراً مستحثاً باتجاه عقارب الساعة . أجب عما يلي:



a- حدد أتجاه المجال المغناطيسي الذي تخضع له الحلقتان.

b- قار ن فرق الجهد المستحث بالحلقتين.

مَرِينَ 20:

الشكل المجاور يبين موصل a ,b طوله 0.2 m ينزلق نحو اليسار على سلكين دون احتكاك بسرعة ثابتة قدرها 0.4m/s عموديا على مجال مغناطيسي منتظم فتولدت فيه قوة دافعة كهربائية مستحثة مقدارها 0.1V أجب عما يلى: a- مقدار شدة المجال المغناطيسي الذي يتحرك فيه الموصل.

1.25T
1.201

 $2.5 \times 10^{-2} A$

(1)

 $oldsymbol{b}$ - مقدار شدة التيار المستحث المار بالمقاومة $oldsymbol{\mathsf{R}}$ الذي مقدار ها $oldsymbol{\Omega}$ 4 وحدد اتجاه التيار على المقاومة - $oldsymbol{\mathsf{b}}$

ح. في أي أتجاه يمكن تحريك السلك بحيث لا تتولد فيه قوة دافعة مستحثة؟

الفصل الداسي الثاك 2019
مَرِينَ 21:
من خلال الشكل المجاور أعتبر أن $R=6.0\Omega$ و $\ell=1.2m$ و شدة المجال المغناطي
عمودیاً علی مستوی الصفحة $B=2.5T$
a- بأي سرعة ثابتة يجب تحريك الساق الحر ليمر به
0.5A تیار شدته

غين 22: ﴿

b- حدد اتجاه التيار بالمقاومة.

بالسؤال السابق، اذا تحرك السلك المستقيم بسرعة ثابتة نحو اليمين أجب عما يلى:

ما مقدار القوة الخارجية الواجب تطبيقها على السلك المستقيم ليتحرك بسرعة $\upsilon=2.0m/s$ باتجاه اليمين.

b- ما مقدار القدرة الكهربائية المتولدة بالسلك.

Fapp

:23 نينة

غرين 24

ينزلق عمود توصيل طوله 35cm فوق ساقين متوازيين فلزيين وموضوعين في مجال مغناطيسي R_2 قدره 2.5T كما بالشكل المجاوريتصل طرفي العمود بمقاومتین $\Omega = R_1 = \Omega$ و $R_2 = 5\Omega$ یتحرك عمود التوصيل بسرعة ثابتة قدرها 8.0m/s

a- ما مقدار التيار المار بكل مقاومة ؟وحدد اتجاهه على الرسم

لاما القدرة الواصلة للمقاومتين؟

34.3W .. حلقة على شكل مستطيل كما بالشكل وكتلتها M ومقاومتها الكهربائية R ، تسقط سقوطاً حراً وبنفس الوقت خاضعة لمجال مغناطيسي منتظم. $(\upsilon=rac{MgR}{R^2w^2})$ مقدار السرعة الثابتة التي يجب أن تسقط بها الحلقة تساوي

<i>m</i> /	ق رین 25:
	الشكل المجاور يمثل حلقة على شكل حرف U وساق
e Other	طوله المعرض للمجال $\ell=0.2m$ والمقاومة له قدرها
T B	$B=4.0T$ جميعها تخضع لمجال مغناطيسي $R=5\Omega$
	ومتصل بقالب كتلته $M=0.1kg$ فإذا تحركت المجموعة
	بسرعة ثابتة $ oldsymbol{\upsilon} $ باهمال الاحتكاك بين الساق والحلقة
\mathbf{g} M	أجب عما يلي:
	: احسب مقدار التيار المستحث في الساق المتحرك i_{ind}
1.226 <i>A</i>	
	b- احسب السرعة الثابتة التي يتحرك بها الساق الحر؟
7.66 <i>m</i> / <i>s</i>	\sim
	2cm احسب الشغل الخارجي المبذول W_{ext} لتحريك الساق مسافة -c
	~ •//>
0.019 <i>J</i>	
	احسب القدرة المولدة P_{ext} بالمقاومة ؟-
7.52W	26:::
D 0.25T in 5 tens	مَرِينَ 26؛
	الشكل المجاور ساقين موصلين قائمين. موضوعان بمجال مغناه
υ = $5.2m/s$ بتة قدرها	الشكل المجاور ساقين موصلين قائمين. موضوعان بمجال مغناه بدأ موصل حركته من رأس القائم عند زمن $t=0$ وبسرعة ثا
υ = $5.2m/s$ بتة قدرها	الشكل المجاور ساقين موصلين قائمين. موضوعان بمجال مغناه بدأ موصل حركته من رأس القائم عند زمن $t=0$ ويسرعة ثا $-a$ احسب التدفق المغناطيسي الذي يجتاز مساحة المثلث عند a
υ = $5.2m/s$ بتة قدرها	الشكل المجاور ساقين موصلين قائمين. موضوعان بمجال مغناه بدأ موصل حركته من رأس القائم عند زمن $t=0$ وبسرعة ثا
υ = $5.2m/s$ بتة قدرها	الشكل المجاور ساقين موصلين قائمين. موضوعان بمجال مغناه بدأ موصل حركته من رأس القائم عند زمن $t=0$ ويسرعة ثا $-a$ احسب التدفق المغناطيسي الذي يجتاز مساحة المثلث عند a
υ = $5.2m/s$ بتة قدرها	الشكل المجاور ساقين موصلين قائمين. موضوعان بمجال مغناه بدأ موصل حركته من رأس القائم عند زمن $t=0$ ويسرعة ثا $-a$ احسب التدفق المغناطيسي الذي يجتاز مساحة المثلث عند a
υ = $5.2m/s$ بتة قدرها	الشكل المجاور ساقين موصلين قائمين. موضوعان بمجال مغناه بدأ موصل حركته من رأس القائم عند زمن $t=0$ ويسرعة ثا $-a$ احسب التدفق المغناطيسي الذي يجتاز مساحة المثلث عند a
υ = $5.2m/s$ بتة قدرها	الشكل المجاور ساقين موصلين قائمين. موضوعان بمجال مغناه بدأ موصل حركته من رأس القائم عند زمن $t=0$ ويسرعة ثا $-a$ احسب التدفق المغناطيسي الذي يجتاز مساحة المثلث عند a
$\upsilon = 5.2m/s$ بنة قدرها $t = 3.0$	الشكل المجاور ساقين موصلين قائمين. موضوعان بمجال مغناه بدأ موصل حركته من رأس القائم عند زمن $t=0$ وبسرعة ثا $-a$ احسب التدفق المغناطيسي الذي يجتاز مساحة المثلث عند a (ملاحظة قاعدة المثلث تساوي ضعف ارتفاعه)
$\upsilon = 5.2m/s$ بنة قدرها $t = 3.0$	الشكل المجاور ساقين موصلين قائمين. موضوعان بمجال مغناه بدأ موصل حركته من رأس القائم عند زمن $t=0$ ويسرعة ثا $-a$ احسب التدفق المغناطيسي الذي يجتاز مساحة المثلث عند a
$\upsilon = 5.2m/s$ بنة قدرها $t = 3.0$	الشكل المجاور ساقين موصلين قائمين. موضوعان بمجال مغناه بدأ موصل حركته من رأس القائم عند زمن $t=0$ وبسرعة ثا $-a$ احسب التدفق المغناطيسي الذي يجتاز مساحة المثلث عند a (ملاحظة قاعدة المثلث تساوي ضعف ارتفاعه)
$\upsilon = 5.2m/s$ بنة قدرها $t = 3.0$	الشكل المجاور ساقين موصلين قائمين. موضوعان بمجال مغناه بدأ موصل حركته من رأس القائم عند زمن $t=0$ وبسرعة ثا $-a$ احسب التدفق المغناطيسي الذي يجتاز مساحة المثلث عند a (ملاحظة قاعدة المثلث تساوي ضعف ارتفاعه)
v = 5.2m/s بنة قدرها $t = 3.0$	الشكل المجاور ساقين موصلين قائمين. موضوعان بمجال مغناه بدأ موصل حركته من رأس القائم عند زمن $t=0$ وبسرعة ثا $-a$ احسب التدفق المغناطيسي الذي يجتاز مساحة المثلث عند a (ملاحظة قاعدة المثلث تساوي ضعف ارتفاعه)
$v = 5.2m/s$ بنة قدرها $t = 3.0$ بنة قدرها \overline{v}	الشكل المجاور ساقين موصلين قائمين. موضوعان بمجال مغناه بدأ موصل حركته من رأس القائم عند زمن $t=0$ ويسرعة ثا a احسب التدفق المغناطيسي الذي يجتاز مساحة المثلث عند a (ملاحظة قاعدة المثلث تساوي ضعف ارتفاعه) - القوة الدافعة الكهربائية المستحثة ΔV_{ind} في الموصل بعد ثاراً الموصل بعد ثاراً الموصل و الموص
$v = 5.2m/s$ بنة قدرها $t = 3.0$ بنة قدرها \overline{v}	الشكل المجاور ساقين موصلين قائمين. موضوعان بمجال مغناه بدأ موصل حركته من رأس القائم عند زمن $t=0$ وبسرعة ثا $-a$ احسب التدفق المغناطيسي الذي يجتاز مساحة المثلث عند a (ملاحظة قاعدة المثلث تساوي ضعف ارتفاعه)
$v = 5.2m/s$ بنة قدرها $t = 3.0$ بنة قدرها \overline{v}	الشكل المجاور ساقين موصلين قائمين. موضوعان بمجال مغناه بدأ موصل حركته من رأس القائم عند زمن $t=0$ ويسرعة ثا a احسب التدفق المغناطيسي الذي يجتاز مساحة المثلث عند a (ملاحظة قاعدة المثلث تساوي ضعف ارتفاعه) - القوة الدافعة الكهربائية المستحثة ΔV_{ind} في الموصل بعد ثاراً الموصل بعد ثاراً الموصل و الموص

9.4 المولدات والمحركات الكهربائية

أولاً: المحرك الكهربائي:

يحول الطاقة الكهر بائية الى طاقة حركية

ي أنه ينتج حركة ميكانيكية من التيار الكهربائي (تمت دراسته سابقاً)

ثانياً: المولد الكهربائي:

يحول الطاقة الميكانيكية الى طاقة كهربائية.

أي انه ينتج تياراً كهربائياً من الحركة الميكانيكية.

مكوناته المولد الكهربائي البسيط:

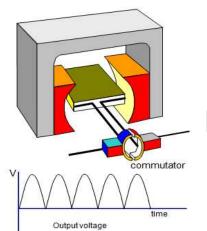
يتكون من حلقة تدور داخل مجال مغناطيسي منتظم ثابت.

مبدأ عمله:

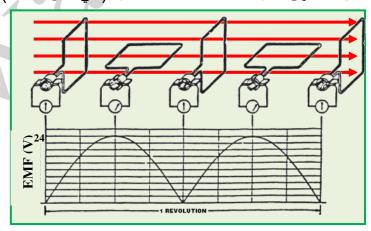
تدور الحلقة داخل المجال المغناطيسي الثابت وتكون مساحة الحلقة ثابتة وإنما تتغير الزاوية بين حلقة التوصيل والمجال المغناطيسي بمرو الزمن.

 $\Delta V_{ind} = \omega\!AB\sin heta$ يمكن استخدام قانون فار اداي للحث على توليد تيار كهربائي مستحث

$$\theta = \omega t$$
 و $\omega = 2\pi f$ حيث $\Delta V_{ind} = \omega A B \sin(\omega t)$

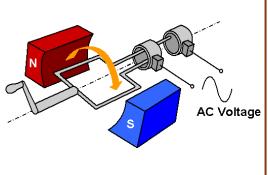

ملاحظة:

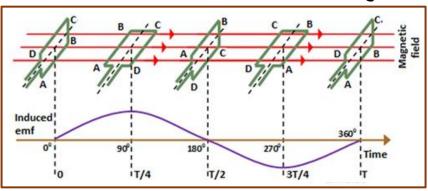
يمكن توفير الطاقة الميكانية لتدوير الحلقة بواسطة البخار عبر التوربين أو بواسطة المياه الساقطة او الرياح)


المولدات الكهربائية نوعان:

الأول: مولد التيار المستمر - يتم اتصال الحلقة الدوارة بدائرة خارجية عبر حلقة عاكس تيار

- عند دور إن الحلقة ينعكس الاتصال مرتين بالدوارة.
- يحمل فرق الجهد المستحث العلامة نفسها (في نفس الاتجاه) موحد الاتجاه.




DC

الثانى: مولد التيار المتردد

- التيار المتردد: هو التيار الذي يتغير مقداره كل لحظة واتجاهه كل نصف دورة.
- يتصل كل طرف من الحلقة بدائرة خارجية عبر حلقة انز لاق مصمته خاصة بها.
 - ينتج هذا المولد فرق جهد مستحث يختلف من الموجب الى السالب وبالعكس

	•	•
:27	ď	S

ملف مولد كهربائي مساحة مقطعه ($0.05~\mathrm{m}^2$) وعدد لفاته (50) يدور بمعدل (600) دورة في الدقيقة الواحدة في مجال مغناطيسي منتظم مقداره (0.7 T)، فإذا بدأ الملف الدوران من الوضع الذي مستواه عمودياً على المجال المغناطيسى .

 (ω) احسب السرعة الزاوية للملف -a

62.8rad/s

d- احسب القوة المحركة الكهربائية المستحثة العظمى المتولدة في الملف.

c- احسب التدفق المغناطيسي الذي يجتاز لفة واحدة من الملف بعد (0.01s) من بدء دورانه.

غرين 28:

الرسم البيائي المجاور يبين العلاقة بين القوة المحركةالكهربائية المستحة في ملف مولد كهربائى عدد لفاته 1000 لفة ومساحة مقطعه 2.08m

أجب عما يلي:

a- اكتب معادلة القوة الدافعة الكهربائية المستحثة بالملف بدلالة الزمن

d- شدة المجال المغناطيسي المنتظم الذي يدور فيه ملف المولد.

 $3.185 \times 10^{-3} T$...

مَرِينَ 29:

يبين الشكل المجاور ملف مولد كهربائى مكون من حلقة واحدة ، تدور باتجاه عقارب الساعة بتردد 50 Hz حول محور عمودي على مجال مغناطيسي منتظم شدته 0.5T ومساحة سطح الحلقة الين عما يلي: $1.2 \times 10^{-3} \, m^2$

1- نوع المولد الكهربائي المستخدم.

2- قيمة القوة الدافعة الكهربائية المستحثة في الملف عند هذه اللحظة.

3- حدد اتجاه التيار المار في المقاومة على الرسم عند هذه اللحظة.

4- مقدار التدفق المغناطيسي الذي يجتاز سطح اللفة بعد \$ 0.015 من بدء الدوران من هذه اللحظة.

^	\mathbf{a}	•	•
:3	U	U	1

مولد كهربائي يتكون من (200) لفة ومساحة كل لفة ($10^{-4}m^2$) تُعطى معادلة القوة الدافعة $V_{ind}(t) = 7.5\sin(100\pi)$ الكهربائية المستحثة في سلك الملف بدلالة الزمن بالمعادلة $V_{ind}(t) = 7.5\sin(100\pi)$ احسب مقدار شدة المجال المغناطيسي المؤثر.


الماري الماري

0.15T

مَرِينَ 31:

مولد كهربائي بسيط يتكون من حلقة مساحة مقطعها ($4.0 \times 10^{-3} m^2$) تدور في مجال مغناطيسي منتظم مقدار شدته (2.0T) فيتولد فيها قوة دافعة كهربائية مستحثة قيمتها العظمى (1.5V)

a-أحسب السرعة الزاوية لدوران الملف؟

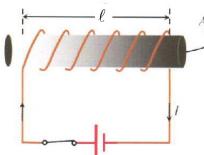
187.5rad/s

b- كيف يمكن زيادة شدة اضاءة المصباح دون تغيير تركيب المولد الكهربائي؟

c- حدد على الشكل اتجاه التيار المار في المصباح عند هذه اللحظ

b- ما التعديل الذي يجب ادخاله على تركيب المولد لتحويله لمولد تيار مستمر DC

9.5 المجال الكهربائي المستحث


- و من قانون فاراداي: يمكن الحصول على تيار مستحث بفعل التغير في التدفق المغناطيسي.
- شحنة موجبة q متحركة في مسار دائري نصف قطره r في مجال كهربائي منتظم \vec{E} فإن الشغل المبذول $W=q\Delta V_{ind}$ وأن $W=\vec{F}.d\vec{s}$ وأن
- نفترض أن المجال الكهربائي المنتظم خطوطه دائرية والشحنة تتحرك بطول أحد هذه الخطوط وخلال اللغة $W = \oint \vec{F}.d\vec{s} = \oint q\vec{E}.d\vec{s} = \oint qE\cos 0ds = qE \oint ds = qE(2\pi r)$ فإن الشغل المبذول عليها
 - $\Delta V_{ind} = 2\pi r E$ من العلاقات السابقة فإن ${f \circ}$
 - يمكن التعميم بحيث الشغل المبذول على شحنة تتحرك بطول مسار عشوائي مغلق: $W=\Delta V_{ind} q$ وبالتعويض بالعلاقة $W=\oint \vec{F}.d\vec{s}=q\oint \vec{E}.d\vec{s}$
 - و يمكن التعبير عن فرق الجهد المستحث بطريقة اخرى من خلال المعادلات السابقة

:نص على أن
$$\vec{E}.d\vec{s} = -\frac{d\Phi_B}{dt}$$

الندفق المغناطيسي المنغير يسنحث مجالاً كهربائياً على اي مسار مغلق في مجال مغناطيسي منف-غير وإن لم يوجد موصل داخل المسار.

9.6 حث اللف اللولبي (الحلزوي) الحث الذاتي للملف اللولبي

- o ماف لولبي طويل عدد لفاته N ويحمل تيار كهربي i ويولد مجال مغناطيسي في مركز الملف اللولبي
 - م ينتج تدفق مغناطيسي عبر جميع اللفات والتي تساوي $N\Phi_B$ و هو التدفق الكلى للملف اللولبي.
 - يكون متجه المجال المغناطيسي موازياً لمتجه العمودي على السطح.
 - من الوحدة السابقة. $B=\mu_{\circ}ni=\mu_{\circ}$ مقدار المجال المغناطيسي داخل الملف اللولبي
- $N\Phi_B=L\,i$ و يتناسب التدفق الكلي بالملف اللولبي مع شدة التيار $N\Phi_B\alpha\,i$ وبالتالي فإن V.S/A أو V.S/A أو V.S/A ويكافيئ V.S/A أو V.S/A أو V.S/A ويمكن استنتاج معامل الحث الذاتي للملف عن المحيث :

$$L = \frac{N\Phi_B}{i} = \frac{NAB}{i} = \frac{NA}{i} \frac{\mu_{\circ} Ni}{\ell} = \mu_{\circ} \frac{N^2 A}{\ell} = \mu_{\circ} n^2 \ell A$$

• يمكن حساب معامل الحث الذاتي للملف اللولبي من العلاقتين:

$$L = \mu_{\circ} \frac{N^2 A}{\ell}$$
 of $L = \mu_{\circ} n^2 \ell A$

٥ نلاحظ من المعادلتين السابقتين أن معامل الحث الذاتي للملف اللولبي يعتمد فقط على أبعاده فقط

غرين 32:

أيهما يؤدي الى زيادة أكبر في معامل الحث الذاتي لملف لولبي مضاعفة عدد لفاته أو مضاعفة مساحة مقطعه (لماذا)

طعه (لمادا)

غرین 33:

ملف يتكون من 500 لفة يمر به تيار شدته (2.5) أمبير ويحدث التيار تدفقاً مغناطيسياً قدره 1.4x10-4 Wb

ما هو معامل التأثير الذاتي للملف ؟

0.028*H*

غرین 34:

ملف كهربائي لولبي طوله (cm)، ومساحة مقطعه (cm²)، وعدد لفاته (300) لفة ، وقلبه من الهواء ويمر به تيار كهربائي شدته (A A).

أحسب أ

التدفق المغناطيسي الذي يجتاز مقطع الملف.

 $1.51 \times 10^{-5} Wb$

غرين 35:

ملف لولبي عدد لفاته N ومعامل حثه الذاتي L . ما مقدار معامل تغير معامل حثه الذاتي الى زادت عدد لفاته للضعف

9.7 الحث الذاتي والحث المتبادل

أولاً: الحث الذاتي:

ظاهرة الحث الذاتي:

عند حدوث تغير بالتيار المار بالملف نفسه يحدث تغير في التدفق داخل الملف نفسه وبالتالي يستحث فرق جهد في نفس الملف، ويطلق على فرق الجعد مستحثاً ذاتياً

من قانون فارداي فإن

وبالتالي فإن
$$\Delta {
m V}_{
m ind,\,L} = -rac{d(N\Phi_B)}{dt} = -rac{d(Li)}{dt} = -Lrac{di}{dt}$$

1H=V.s/A يساوي $L=-rac{\Delta V_{ind,L}}{(rac{di}{dt})}$ ومن العلاقة فإن وحدة معامل الحث الذاتي يساوي

الاشارة السالبة في القانون تدل على أن فرق الجهد المستحث يقاوم أي تغيير في التيار الأصلي دوماً

تيار مستحث ذاتي طردي	تيار مستحث ذاتي عكسي
عند احداث نقصان في شدة التيار يتولد تيار مستحث	عند احداث زيادة في شدة التيار يتولد تيار مستحث
بنفس اتجاه التيار الأصلي مما يعمل على زيادة التيار	معاكس لاتجاه التيار الأصلي مما يعمل على
الكلي عند لحظة تغيير التيار الأصلي	انقاص التيار الكلي بالدائرة عند لحظة تغيير التيار
	الأصلي
ر میافشا) ا المیابیک المیابیک المی المیابیک المیابیک المیابیک المیابیک المیابیک ال	(ext(st)) 1

غرین 36:

وضح ماذا يحدث مع ذكر السبب ؟

لإضاءة المصباح المبين بالشكل أتناع إدخال قالب الحديد داخل الملف اللولبي؟

مصباح

غرين 37:

ملف لولبي به (600) لفة ومساحة مقطعه ($4.0 \times 10^{-4} \text{m}^2$) قلبه من الهواء ومعامل حثه الذاتي (0.40H) ويمر به تيار شدته (0.50A). $\frac{1}{1000}$

a- طول الملف.

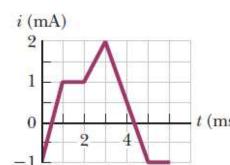
 $4.52\times10^{-4}\,m$

d- متوسط القوة المحركة الكهربائية المستحثة المتولدة في الملف إذا انعدم التيار المار فيه خلال (0.25s).

0.8V

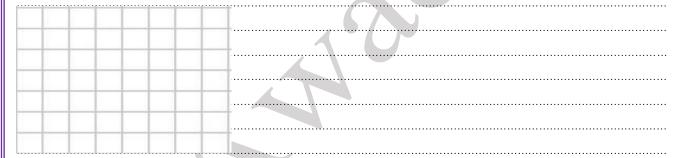
غرین 38:

ملف لولبي به (400) لفة ومساحة مقطعه (400^{-4} m²) قلبه فارغ وطوله (4.0×10^{-4} m²) ويمر به تيار شدته (1.5 A) . أجب عما يلي:


a- احسب معامل الحث الذاتي للملف.

 $1.61 \times 10^{-4} H$

b-إذا زيدت شدة التيار المار في الملف إلى (4.5A) خلال (0.20S) فاحسب متوسط القوة الدافعة الكهربائية المستحثة في الملف.


$-2.41\times10^{-3}V$

Current source 50.0 mH

مرين 39:

يوضح الشكل المجاور التيار المار عبر ملف حتى معامل حته الذاتى عبر ملف خلال فترة زمنية 50mH أرسم تمثيلاً بيانياً يوضح فرق الجهد t (ms) خلال نفس الفترة الزمنية $\Delta V_{ind,L}$

ثانياً: الحث المتبادل

ظاهرة المتبادل:

ملفان متجاوران: الأول يمر به تيار كهربائي ثابت ، ينشأ مجال مغناطيسي يجتاز مساحة مقطع الملف الثاني. عندما يحدث تغير في التيار بالملف الأول يستحث فرق جهد بالملف الثاني .

- ينتج التيار بالملف (1) مجال مغناطيسي $\hat{B_1}$ يجتاز مساحة مقطع الملف الثاني
- $N_2\Phi_{1 o 2}$ (1) الناشيء عن المجال بالملف الأول (2) الناشيء عن المجال بالملف الأول ($^{-}$
- معامل الحث المتبادل $M_{1 o 2}$ والخاص بالملف الثاني (2) الناتج عن الملف (1) فإن المعادلة تصبح

$$i_1 M_{1 o 2} = N_2 \Phi_{1 o 2}$$
 وبالتالي $M_{1 o 2} = \frac{N_2 \Phi_{1 o 2}}{i_1}$

 $M_{1 o 2} rac{di_1}{dt} = N_2 rac{d\Phi_{1 o 2}}{di}$ اذا كان التيار بالملف (1) يتغير مع الزمن فيمكن كتابة المعادلة lacksquare

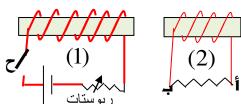
وبالتالي فإن فرق الجهد المستحث بالملف الثاني الناشيء عن الملف الأول

$$\Delta V_{ind.1} = -N_1 \frac{d\Phi_{2 o 1}}{di}$$
 وَ $\Delta V_{ind.2} = -M_{1 o 2} \frac{di_1}{di}$

ح تعاد بنفس الطريقة فرق الجهد المستحث من الملف الأول الناشيء عن الملف الثاني

$$\Delta V_{ind.2} = -N_2 \frac{d\Phi_{1\rightarrow 2}}{di} \ \ \underline{\hspace{1cm}} \ \Delta V_{ind.1} = -M_{2\rightarrow 1} \frac{di_2}{di} \ \ \underline{\hspace{1cm}} \ \Delta V_{ind.2} = -M_{2\rightarrow 1} \frac{di_2}{di} \ \ \underline{\hspace{1cm}} \ \Delta V_{ind.2} = -M_{2\rightarrow 1} \frac{di_2}{di} \ \ \underline{\hspace{1cm}} \ \underline{\hspace{1cm}} \ \ \underline{\hspace{1cm}} \ \ \underline{\hspace{1cm}} \$$

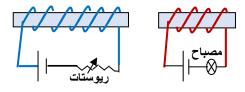
$$M_{1
ightarrow2}=M_{2
ightarrow1}=M_{1
ightarrow2}$$
من العلاقات السابقة فإن


$$\Delta V_{ind.2} = -M \, rac{di_1}{di}$$
 و مكن كتابة المعادلات السابقة مرة أخرى: $\Delta V_{ind.2} = -M \, rac{di_2}{di}$

$$\mathbf{M} = -rac{\Delta V_{ind,1}}{(rac{di_2}{dt})}$$
 معامل الحث المتبادل M وحدة قياسه (هنري \mathbf{M}) من العادلة \mathbf{M}

غړين 40:

في الشكل المجاور: حدد اتجاه التيار المستحث في المقاومة (أ ب) في الحالات التالية:


a- عند إغلاق المفتاح (ح) في الدائرة الاولى(1).

b- عند زيادة قيمة المقاومة المتغيرة في الدائرة الأولى (1).

:41 ພາຣ

وضح ماذا يحدث لإضاءة المصباح إذا قلنا مقاومة الريوستات (المقاومة المتغيرة) مع ذكر السبب ؟



من خلال الشكل المبين أجب عن الأسئلة التالية:

1- حدد على الرسم أقطاب الدائرة الابتدائية. وأقطاب الدائرة الثانوية عند لحظة فتح المفتاح بالدائرة الابتدائية. وين ما يحدث إضاءة المصباح لحظة فتح الدائرة الابتدائية. الدائرة الابتدائية. الدائرة الابتدائية الدائرة الابتدائية المصباح لحظة فتح الدائرة الابتدائية الدائرة الدائرة الدائرة الابتدائية الدائرة الدائرة الابتدائية الدائرة الدائر

غرين 43:

يبين الشكل المجاور دائرتين متجاورتين معامل الحث المتبادل بينهما (0.80H). عندما فتح مفتاح الدائرة (ص) تناقصت شدة التيار المار فيها من (2.50A) إلى أن تلاشى كلياً خلال (0.25 s) .

أجب عمّا يلي: a- احسب القوة المحركة المستحثة المتولدة في الدائرة (س) ؟

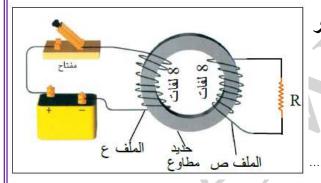
b- ماذا يحدث لدرجة سطوع المصباح في الدائرة (س) لحظة فتح الدائرة (ص) ؟ فسر إجابتك.

4 4	•	•
•44	(11	10
• • •	~	,

A)	O_A_P
	2 3 (مرز) 4

في الشكل المجاور ملفان س ، ص في دائرتين كهربائيتين متجاورتين، عدد لفات الملف (ص) (10) لفات.

- a- لحظة غلق مفتاح دائرة الملف (ص) حدد ما يلي:
- 1- نوع القطب المغناطيسي للملف (ص) عند الطرف (2)
- 2- نوع القطب المغناطيسي للملف (س) عند الطرف (3)
- 3- اتجاه مرور التيار في دائرة الملف (س) بين النقطة (P) والنقطة (O)عبر الأميتر......


s (0.03) حیث نتج عنه تدفق مقداره	مى (A 5) خلال (ص) قيمته العظ	في دائرة الملف (d- اذا وصل التيار
أحسبب	عمودياً وأثر عليه	قطع الملف (س)	11 x 4) اجتاز مأ	0 ⁻² Wb)

1. القوة المحركة التأثيرية المتولدة في الملف (س).

- . معامل الحث المتبادل بين الدائرتين.
- $4.8 \times 10^{-2} H$

غرين 45:

لحظة غلق المفتاح في الدائرة (ع) كما بالشكل المجاور يتغير التدفق المغناطيسي الذي يجتاز القلب الحديدي بمعدل (4Wb/s-6.0x10+) ويتغير التيار في دائرة الملف (ع) بمعدل (15A/s).

أجب عما يلي:

a- احسب معامل الحث المتبادل بين دائرتي الملفين (ع،ص)

9.9 الطاقة وكثافة الطاقة لجال مغناطيسي

- يمكن لملف حثي أن يخزن طاقة في المجال المغناطيسي وتشبه تخزين المكثف للطاقة بمجال كهربائي.
 - و عند تغير التيار المتدفق بالملف ينتج فرق جهد ذاتياً مستحثاً يقاوم الزيادة في التيار
 - R=0 القدرة التي يوفرها التيار هي حاصل $P=V_{\it emf}\,i$ باعتبار أن ${f \circ}$
- $P=V_{emf}\,i=L(rac{di}{dt})i$ ويمكن حساب القدرة من العلاقة تساوي $V_{emf}=Lrac{di}{dt}$ ويمكن حساب القدرة من العلاقة $\mathbf{v}_{emf}=0$

$$U_B=\int\limits_0^t Pdt=\int\limits_0^t L(rac{di'}{dt})i'dt=\int\limits_0^t Li'di'=rac{1}{2}Li^2$$
 والحصول على الطاقة من عملية تكامل القدرة $U_B=rac{1}{2}Li^2$ وبالتالي فإن الطاقة المختزنة بالمجال المغناطيسي بالملف

و من المعلومات السابقة لكل من $\ell = \mu_\circ n^2 \ell A$ و للملف اللولبي $\mu_\circ ni = \mu_\circ ni = B$ يمكن استنتاج ما يلي: $D = \mu_\circ ni = B$

$$u_{\scriptscriptstyle B}=rac{U_{\scriptscriptstyle B}}{V}=rac{rac{1}{2}\,\mu_{\scriptscriptstyle \circ}n^2\ell Ai^2}{A\ell}=rac{1}{2}\,\mu_{\scriptscriptstyle \circ}n^2i^2=rac{1}{2\mu_{\scriptscriptstyle \circ}}B^2$$
المختزنة

ملاحظة: تنطبق هذه المعادلة على جميع المجالات المغناطيسية عموماً

غرين 46:

الجدول التالي يبين تُلاَثَة ملفات لولبية وعدد اللفات لوحدة الطول لكل ملف وشدة التيار المار بكل ملف وكذلك مساحة مقطع كل ملف.

رتب كثافة الطاقة المختزنة بكل ملف من الأكبر للأقل

الملف الل	n عدد اللفات لوحدة الطول	شدة التيار	مساحة مقطع الملف اللولبي
а	$2n_1$	i_1	2A ₁
b	n_1	$2i_1$	A_1
c	n_1	i_1	$6A_1$

:47 ໝໍຮ້

ملف لولبي طوله (15cm) ومساحة مقطعه (4cm²) لف عليه 300 لفة. فإذا مر به تيار كهربائية شدته (6.0A) أوجد ما يلي: ه- معامل الحث الذاتي للملف اللولسي.

	ي. ي	اللولية	تدائي تنملف	معامل الحت ا

 $3.014 \times 10^{-4} H$

 U_R . الطاقة المختزنة بالملف -b

c - كثافة الطاقة المختزنة.

 $90.43J/m^3$

		غرين 48:
ر 120 <i>J</i> ما مقدار شدة	، كثافة الطاقة المختزنة فيه تساوي $m{m}^3$	ملف لولبي هوائي يمر به تيار ثابت فكانت
		المجال المغناطيسي بالملف اللولبي؟
0.0173T		
		غرين 49:
نه 0.45T ، إذا كان	ئي ثابت فينشأ عند مجال مغناطيسي شد:	ملف لولبي هوائي يمر به تيار تيار كهرباة
m	•	قُطر مقطعه 6.2cm وطول الملف اللولبي
	ىغناطىسى؟	1. كِتَافَةُ الطاقة المغناطيسية للمجال الم
		A 6/N/
4	$8.06 \times 10^4 J/m^3$	
	$U_{\scriptscriptstyle B}$ في مجال الملف	2. مقدار الطاقة المغناطيسية المختزنة
63.24 <i>J</i>		
		9.10 تطبيقات على تكنولوجيا المعلومات
قراص الثابتة والاشرطة	ين المغناطيسية (اشرطة الفيديو ومحركات الا	 من الاجهزة والادوات التي تستخدم التخز
		الصوتية وبطاقات الائتمان واقراص
		محرك الأقراص الثابتة في الحاسوب:
7 11		 ◄ جهاز يخزن المعلومات باستخدام التمغنط
	انة دوارة واحدة أو اكثر ذات طبقة من مادة فير سول الى اي من المسارات المتعددة على الاسط	<u> </u>
		العودة الى شكل 9.32 من كتاب الطالب: يبين ر
	يع أمامها إشارة ﴿ ﴿ ﴾ ﴾	أختر أنسب تكملة لكل مما يلي ثم ضع في المر
الحلقة:	قة قيمتها القصوى عندما يكون فيها مستوى	1. يبلغ التدفق المغناطيسي الذي يجتاز سطح حا
	🗖 موازياً لخطوط المجال المغنطيسي	🗖 عمودياً على خطوط المجال المغنطيسي
1 1 1 1 1 1 1 1 1	🗖 يصنع زاوية منفرجة مع خطوط المجال المغنطيسي	🗖 يصنع زاوية حادة مع خطوط المجال المغنطيسي
$A = 0.0025 \text{ m}^2$		
	لعلوى للقرص الموضح في الشكل المجاور؟	2. ما مقدار التدفق المغناطيسي الذي يجتاز السطح ال
$ \downarrow \\ B= 0.06 T $	$-1.5 \times 10^{-4} \text{ Tm}^2$	
D= 0.00 1	$+ 4.17 \times 10^{-2} \text{ Tm}^2 \Box$	$\Box - 4.17 \times 10^{-2} \text{ T}m^2$
	1 111 1110 1111 =	
و يجتاز سطحها	طوط لمجال مغناطيسي منتظم فكان التدفق الذو	3. الحلقة في الوضع (أ) يميل سطحها على خد
	الَّذي يَجْتَازُ سطحُهَا فِّي الوضِّع (ب) يساوي	
	1.0×10 ⁻⁴ Wb □	1.2×10 ⁻⁴ Wb □
30°	37°	
	9.0×10 ⁻⁵ Wb	$2.4 \times 10^{-4} \text{Wb} \Box$
· ·		

التدفق المغناطيسي الذي يجتاز سطح الحلقة (Y) إلى التدفق المغناطيسي (Y	4.ما نسبأ
يجتاز سطح الحلقة (X) في الشكل المجاور إذا كانت مساحة سطح	
\vec{B} (X) مثلي مساحة سطح الحلقة (X)؟ \vec{B}	الحلقا
$\frac{2}{1}$	
$\frac{1}{4} \square$	
$\sqrt[7]{2}$ كل المجاور، لكي يتولّد في الحلقة الموصلة تيار كهربائي مستحث اتجاهه باتجاه عكس دوران عقارب $\sqrt[8]{2}$	5. في الش
اعة: سحب الحلقة بسرعة ثابتة في مستوى الصفحة نحو الأعلى.	
سحب الحلقة بسرعة ثابتة في مستوى الصفحة نحو الأسفل. سحب الحلقة بسرعة ثابتة في مستوى الصفحة نحو الأسفل. نقص شدّة المجال المغنطيسي تدريجيًا.	
نقص شدّة المجال المغنطيسي تدريجيًا.	
زيد شدّة المجال المغنطيسي تدريجيًا.	
المجاور حلقة موضوعة في مجال مغناطيسيB منتظم كما بالشكل إذا زاد شدة المجال المغناطيسي فإنه	
. تيار مستحث في الحلقة عمودي على الصفحة نحو الداخل	
ولد تيار مستحث في الحلقة . تيار مستحث في الحلقة عكس عقارب الساعة . تيار مستحث في الحلقة مع عقارب الساعة	
x x x x x مستوى الصفحة، يمر بها تيار مستحث كما هو مبين	7. حلقة
لمجاور بسبب	بالشكا
كة المغناطيس باتجاه مستوى الحلقة.(لليسار) كة المغناطيس باتجاه أعلى الصفحة (للأعلى)	
ية المعناطيس بابحاه أعلى الصفحة (للأسفل) كة المعناطيس باتجاه أسفل الصفحة (للأسفل)	
	,
كِة المغناطيس بعيدا عن مستوى الحلقة.(لليمين)	
	ا حر
كة المغناطيس بعيدا عن مستوى الحلقة. (لليمين) في المغناطيس بعيدا عن مستوى الحلقة. (لليمين) معدنيتان قطر الاولى ضعف قطر الثانية فإذا كان معدل التغير في التدفق المغناطيسي فيهما واحد, فإن نسبة ΔV_1 التأثيرية في الثانية هي : ΔV_2	□ حر8. حلقتار
معدنيتان قطر الاولى ضعف قطر الثانية فإذا كان معدل التغير في التدفق المغناطيسي فيهما واحد,فإن نسبة	□ حر8. حلقتار
ن معدنيتان قطر الاولى ضعف قطر الثانية فإذا كان معدل التغير في التدفق المغناطيسي فيهما واحد, فإن نسبة ΔV_{1} التأثيرية في الثانية هي : $\frac{1}{2} \square$	□ حر8. حلقتار
ن معدنيتان قطر الاولى ضعف قطر الثانية فإذا كان معدل التغير في التدفق المغناطيسي فيهما واحد, فإن نسبة $\Delta V_{2(ind)}$ التأثيرية المتولدة في الأولى إلى ($\Delta V_{2(ind)}$) التأثيرية في الثانية هي : $\frac{1}{2}$	حرّ عرق الله عرق الله الله عرق الله الله عرق الله الله الله الله الله الله الله الل
ن معدنيتان قطر الاولى ضعف قطر الثانية فإذا كان معدل التغير في التدفق المغناطيسي فيهما واحد, فإن نسبة ΔV_{1} التأثيرية المتولدة في الأولى إلى ($\Delta V_{2(ind)}$) التأثيرية في الثانية هي : $\frac{1}{2} \Box$ $\frac{1}{1} \Box$ ا يلي صحيح عند حركة الموصل ab بسرعة ثابتة في الشكل المجاور؟	ا حرّ 8. حلقتار ((ind)) 2
ن معدنيتان قطر الاولى ضعف قطر الثانية فإذا كان معدل التغير في التدفق المغناطيسي فيهما واحد, فإن نسبة (ΔV_1) التأثيرية المتولدة في الأولى إلى $(\Delta V_{2(ind)})$ التأثيرية في الثانية هي : $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{$	ا حرَ 8. حلقتار ((ind)) 1 - 1 1 - 1 1 - 1 1 - 1 1 - 1
ن معدنيتان قطر الاولى ضعف قطر الثانية فإذا كان معدل التغير في التدفق المغناطيسي فيهما واحد,فإن نسبة ΔV_1 التأثيرية المتولدة في الأولى إلى ($\Delta V_{2(ind)}$) التأثيرية في الثانية هي : $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{2}$.8 حلقتار ((ind)) (1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -

10. من خلال الشكل المجاور عند تحريك المغناطيس قطب المغناطيس نسبياً من طرف الملف قلت				
نجاه حركة المغناطيس	اضاءة المصباح بالدائرة فما نوع القطب P وان			
المغناطيسP جنوبي P المغناطيس	□ نحرك المغناطيس نحو طرف الملف (لليمين)			
ب المغناطيسP شمالي المغناطيس المغناطيس المغناطيس المعناطيس المعناطي المعناط المعناط المعاط المعناط المعناط المعناط المعناط المعاط المعاط	□ نحرك المغناطيس بعيداً عن طرف الملف (لليسار) قطب			
ب المغناطيس P جنوبي	□ نحرك المغناطيس بعيدأ عن طرف الملف (لليسار) قطب			
ب المغناطيس P جنوبي المغناطيس P بنوبي	عرك المغناطيس للأعلى			
11. تبلغ القوة الدافعة الكهربائية المتولدة في ملف لمولد كهربائي قيمتها الصعفرى في اللحظة التي				
تموند خهرباني فيمنها الطنسيري في التخطه التي	يكون فيها مستوى الملف:			
🗖 موازياً لخطوط المجال المغنطيسي	ي ول سيم المعتمل المع			
رو. على خطوط المجال المغنطيسي 🗖 عمودياً على خطوط المجال المغنطيسي	☐ يصنع زاوية حادة مع خطوط المجال المغنطيسي			
	12. ملف مكوّن من (150) لفة ومساحة مقطعه (
(120 rad/s) حول محور دوران عمودي علي مجال مغطيسي منتظم شدّته (0.025 T).				
يَّدَة فَي الملفُ تسباوي:	القيمة القصوى للقوة الكهربائية المستحثة المتو			
$2.0 \times 10^4 \text{ V}$	11 V 🗖			
450 V □	99 V □			
سي ثابت، اذا كانت الحلقة تدور بتردد f فإنه يمكن تحديد	13. يتكون ملف بسيط من حلقة تدور داخل مجال مغناطيه			
$A=1.0m^2$ و $B=1.0T$ فإذا كان $\Phi_B(t)=BA$				
سى لفرق الجهد المستحث يساوي 110V؟	كم يجب أن تكون قيمة f حتى يصبح قيمة الحد الأقص			
17.5 <i>Hz</i> □ 8.5 <i>Hz</i> □	55 <i>Hz</i> □			
14. تم تدویر ملف مکون من 2×10^4 لفة حول محور دوران عمودي علی مجال مغناطیسی منتظم				
شدته $3.0G$ ونصف قطر الحلقات يساوي $40cm$ فإذا دار الملف بتردد قدره $150Hz$ فما أقصى				
$R=1.5k\Omega$ تيار مستحث يتدفق في مقاومة قدرها				
190A □	3.79A □			
4.73A 🗆	1.89 <i>A</i> □			
15. اذا كانت القيمة القصوى للقوة المحركة الكهربائية المستحة في ملف تساوي 40 V عند دورانه في				
مجال مغناطيسي بمعدل 60 دورة في الثانية فإن مقدار القوة العظمى للقوة المحركة المستحثة عندمًا يدور يمعدل 90 دور في الثانية مع بقاء المجال ثابت تساوي:				
بب عموي. 30 V □	يور يحدل 90 دور عي العلية مع بدع العبال - 120V □			
90 V 🗖	60 V 🗖			
	16. لزيادة معامل الحث الذاتي لملف قلبه من الحديد			
اً نزع قلب الحديد تزع قلب الحديد	ي زيادة طوله			
انقاص مساحة مقطعه انقاص مساحة مقطعه	ا زیادة عدد لفاته			
_	17. ملف لوّلبي منتظم طويل أخذ منه جزء فيه 10 ل			
الذاتي لُجزَّء آخر فيه 30 لفة يساوي:				
9 L 🗖	3 L 🗖			
90 L 🗖	30 L □			

زيد شدة التيار المار فيه إلى ضعف ما كان عليه فإن	18. إذا نقصت عدد لفات ملف حلزوني إلى نصف ما كانت عليه و			
_	معامل حثه الذاتي L : —			
🗖 يزيد الى ضعف ماكان عليه —	☐ لا يتغير ــــــــــــــــــــــــــــــــــــ			
🗖 يقل الى نصف ماكان عليه	🗖 يقل الى ربع ماكان عليه			
T/A . 🗖	19. وحدة قياس معامل الحث الذاتي هنري H وهي تكافيء			
$T/A.s \square$	Wb/A			
V/A.s 🗖	V.A/s 			
•	20. يدور ملف مكوّن من (100) لفة بسرعةزاوية ثابن			
محور الدوران ،مُثّلت تغيّرات التدفق المغناطيسي الذي يجتاز سطح الملف مع الزمن كما في				
Φ (10 ⁻⁶ wb)	الشكل المجاور فإن مقدار القوة الدافعة			
	الكهربائية المستحثة العظمى تساوي			
20.0	0.0753V 🗖			
0.0 t (s)	0.1130V 🗖			
0.00 0.10 0.20 0.30 0.40				
-20.0	0.1507V 🗖			
.40.0				
	21. ملف لولبي عد لفاته 100 لفة ومعامل حثه الذاتي 0.4H يمر به تي			
$4\times10^{-3}V$				
	$Vb \square 8 \times 10^{-3} Wb \square$			
	22. وحدة قياس معامل الحث المتبادل هنري H وهي تكافيء كالله الله Wb/s □			
· ·	V.s/A			
- 1	, _			
23. أوجد مقدار الطاقة المختزنة في ملف لولبي عدد لفاته 200 لفة ويمر بع تيار شدته قدره 1.75A أذا علمت ان				
0.064	التدفق الذي يجتاز الملف اللولبي 3.7×10 ⁻⁴ Wb			
0.064				
0.0162	2 <i>J</i>			
	أسئلة ثانوية عامة سابقة			
ث تمر من خلال مجال مغناطيسي منتظم.	24. تتحرك حلقة نحاسية نحو اليمين كما بالشكل المجاور بحيد			
كهربائي مستحث خلال حركتها؟	في أي المناطق المحددة في الشكل يمر في الحلقة تيار			
*****	□ المنطقتان c و a			
	□ المنطقتان c و e □ المنطقتان e و a			
	ط المنطقتان d و d			
X X X X X X X X X X X X X X X X X X X				
a b c d e				

يجتازها مجال مغناطيسي بوحدة (T)	(4.0cm) وعرضها	25. حلقة فلزية مستطيلة الشكل طولها (
· (B _t	$t=7.0t^2$ الزمن وفق المعادلة	عمودياً على سطحها ويتغير مع ا
مساعدة	(t=5.0s) الحلقة عندما	ما مقدار فرق الجهد المستحث في
$\Delta V_{ind} = -\frac{d(ABcos\theta)}{dt}$	0.06 V □	0.6 V □
	1.4 V □	0.14 V □
ختزن طاقة كهربائية (375 <i>J</i>)	لي ملف حثه الذاتي (1.2 H) ويد	26. ما شدة التيار المستمر الذي يتدفق ف
	18 A □	5.0A □
	1.4 A □	25A □
$(10\ mH)$ ، د الذاتي	، شدة التيار والزمن في ملف معاما	27. يُظهر الرسم البياني المجاور تغيرات
, i(A)	في الملف خلال فترات تغيرات	ما مقدار أكبر فرق جهد مستحث
2.0		التيار الموضحة في الرسم.
0 1 1 1 1		20 V □
-2.0 2.0 4.0 6.0 8.0	A 6	30 V □
$t \times 10^{-3} \text{s}$		40 V □ 60 V □
		, , ,
		مسألة (1)
الكه بائية بمعدل (T/s)	مغناطسي الذي بحتاز الدائدة	في الشكل المجاور ينخفض المجال الد
* * 12 cm * * *	لال انخفاض المجال المغناطيس	أحسب شدة التيار المار في المقاوم خ
× T × 10 Ω × × B		
2 × × ×		
→ × ×		
i – 0.184		
1 - V.10A		
		مسألة (2)
عند اللحظة $\left[oldsymbol{i_{(t)}} = 5 + 7t - 2t^2 ight]$	التيار بوحدة (A) وفق المعادلة	ملف حثي يمر فيه تيار مستمر وتتغير شدة
مساعدة		كان فرق الجهد المستحث ($t=3.0~s$)
$\Delta V_{ind} = -L \frac{di}{dt}$		أحسب معامل الحث الذاتي للملف؟
dt		
$L = 7.2 \times 10^{-3} H \dots$		

الاختيار من متعدد

 $\frac{1}{1}.4$ $2.4 \times 10^{-4} \, ext{Wb}$. $3-1.5 \times 10^{-4} \, ext{Tm}^2$. 2 المغنطيسي $1.5 \times 10^{-4} \, ext{Mb}$. $3-1.5 \times 10^{-4} \, ext{Tm}^2$

ننقص شدّة المجال المغنطيسي تدريجيًا.
 يتولد تيار مستحث في الحلقة عكس عقارب الساعة

 $\frac{1}{1}$.8 (ليسار) الجاه مستوى الحلقة. (ليسار) .7

و. عمل الموصل كبطارية ويكون الطرف \mathbf{b} قطباً موجباً والطرف \mathbf{a} قطباً سالباً

17.5*Hz* .13

99V .12

11. موازياً لخطوط المجال المغنطيسي

10. الثالثة

3 L .17

16. زيادة عدد لفاته

60 V **.15**

1.89A .14

 $8 \times 10^{-3} Wb$.21

0.0376V .20

18. يقل الى ربع ما كان عليه 19. Wb/A

24. المنطقتان d و d

0.0647*J* .23

V.s/A .22

60 V .27

25A .26

0.06 V .25

مراجعة المفاهيم الخاصة بالكتاب.

9.1. c 9.2. a 9.3. c 9.4. c 9.5. a 9.6. a 9.7. a 9.8. e

الاختيار من متعدد خاص بالكتاب

9.3. a 9.4. a 9.1. d 9.2. c 9.5. a 9.6. c 9.7. d 9.8. b 9.9. a

9.11. c 9.12. d 9.13. e 9.14. a 9.10. d