

*للحصول على أوراق عمل لجميع الصفوف وجميع المواد اضغط هنا

https://almanahj.com/ae

* للحصول على أوراق عمل لجميع مواد الصف التاسع المتقدم اضغط هنا * 16/ae/com.almanahj//:https * للحصول على جميع أوراق الصف التاسع المتقدم في مادة فيزياء ولجميع الفصول, اضغط هنا * https://almanahj.com/ae/16physics

* للحصول على أوراق عمل لجميع مواد الصف التاسع المتقدم في مادة فيزياء الخاصة بـ الفصل الأول اضغط هنا https://almanahj.com/ae/16physics1

* لتحميل كتب جميع المواد في جميع الفصول للـ الصف التاسع المتقدم اضغط هنا

للتحدث إلى بوت المناهج على تلغرام: اضغط هنا bot_almanahj/me.t//:https

9AdV Chapter (4)

PHYSICS

Prepared by: Mr. Yazan Odetalla

Mobile: 0543347424

Section 1

Section 2

To determine the position of anything we need a <u>coordinate system</u> Like the one above or to the right.

Origin is the starting point for coordinate systems.

Position: the distance between any object and the origin with the direction.

Example:

the red point's position is 5 units east or +5

The position of the blue point is 3 units south or -3

Because the position has a magnitude (قيمة أو رقم) and a direction it is a *vector* quantity.

Time interval: $\Delta t = t_f - t_i$ because time has no direction time is a <u>scalar</u> quantity.

Displacement: $\Delta x = x_f - x_i$, $||| x_f$: final position $||| x_i$: initial position

Because the displacement is the difference in positions it is also a vector like position.

Example:

The <u>position</u> of the red triangle is +7 cm (vector)

The <u>position</u> of the blue triangle is -4 cm (vector)

Find the <u>displacement</u> to go from red to blue: $\Delta x = x_f - x_i = (-4) - (7) = -13 \ cm$ or 13 cm to the left <u>(vector)</u>

Find the <u>displacement</u> to go from <u>blue</u> to <u>red</u>: $\Delta x = x_f - x_i = (7) - (-4) = +13$ cm or 13 cm to the right <u>(vector)</u>

However, the distance between red and blue tringles is 13 cm (direction not important) so distance is a scalar

So, distance = displacement without direction (without sign + or -)

The unit for distance and displacement is (meter or cm or mm)

Vector addition:

Example of Vector Addition

$$R = A + B$$

$$= 5 \text{ km} + 2 \text{ km}$$

$$= 7 \text{ km}$$

R = A + B= 7 km east

Examples of Vector Subtraction

Resultant R 3 km east

*Note: when we add or subtract

Vectors then the answer is called

the resultant

$$R = A - B$$

$$= 4 \text{ km} - 6 \text{ km}$$

$$= -2 \text{ km}$$

$$R = A - B$$

$$= A + (-B)$$

$$= 2 \text{ km west}$$

$$R = A - B$$

$$= 7 \text{ km} - 4 \text{ km}$$

$$= 3 \text{ km}$$

$$R = A - B$$

$$= A + (-B)$$

$$= 3 \text{ km east}$$

Section 3: position time graphs

AND	
Time (s)	Position (m)
0.0	0.0
1.0	5.0
2.0	10.0
3.0	15.0
4.0	20.0
5.0	25.0

Motion Diagram

Begin • • • • • End

What is the position at t=2 sec? answer: 10 m (from the table or the graph)

What is the position at t=2.5 sec? answer: 12.5m (blue arrows)

What is the time when the position is 22m? answer: 4.4 sec (red arrows)

What is the initial position of (A)? answer: 0m

What is the initial position of (B)? answer: -50m

At what time do A & B meet? Answer: at 45 sec

What is the positions of A&B at this time? answer: 190m

What is the displacement of B between 0 and 45 sec?

Answer: $\Delta x = x_f - x_i = (190) - (-50) = 240m$

Prepared by: Teacher. Yazan Odetalla

Section 4: How Fast (speed and velocity)

$$v = \frac{\Delta x}{\Delta t} = \frac{x_f - x_i}{t_f - t_i} = \frac{displacement}{time\ interval}$$
 the velocity(v) is a vector quantity because the displacement is a vector.

Because the displacement and distance have the same value (see last section) we can replace **displacement** (Δx) with the **distance** (d) but then we will find the **speed**(s) instead of the **velocity**(v).

$$v = \frac{\Delta x}{\Delta t}$$
 \Rightarrow $s = \frac{d}{\Delta t}$

Speed is *scalar* because distance is *scalar*

Which means that the speed has the <u>same value</u> as velocity only **without** direction(or sign like + or -).

Another way to find the velocity is from (position time graph).

The $\underline{slope}(\underline{llog})$ of the position time graph is the velocity. x-axis >>>> time (t)

y-axis >>>> position (X)

$$m = \frac{\Delta y}{\Delta x} \quad \Rightarrow \quad v = \frac{\Delta X}{\Delta t}$$

The unit for velocity is (m/s)

Other units (cm/s, mm/s, km/hr, ft/s)

(distance/time)

$$v = \frac{\Delta X}{\Delta t} \longrightarrow v \Delta X$$

So
$$\Delta x = v \cdot \Delta t$$

$$x_f - x_i = v ig(t_f - t_i ig)$$
 if the initial time= 0

$$x_f - x_i = vt$$
Or
$$x_f = vt + x_i$$

See questions on pages: 48&51

Summary of equations and formulas:

No	Equation	notes
1	$\Delta t = t_f - t_i$	Time interval (if $t_i = 0$ then Δt becomes simply t)
2	$\Delta x = x_f - x_i$	Displacement (we can use as distance if the direction is not important)
3	ΔX	To find the velocity (if the direction is not important then:
	$v = \frac{1}{2}$	V speed
	Δt	$\Delta X \longrightarrow \text{distance}$
4	$x_f = vt + x_i$	Used to find the position at any time

Important note: equations 3 & 4 are only used if there is no acceleration (constant velocity, constant speed, a=0...)